高中数学函数的平均变化率

合集下载

函数的平均变化率课件

函数的平均变化率课件
T10-T0
16
(2)平均变化率为
=-
=-1.6.
10
10
它表示从 t=0 到 t=10,蜥蜴的体温平均每分钟下降 1.6 ℃.
课堂小结
1.函数的平均变化率可正可负可为零,反映函数 y=f(x)在[x1,x2]
上变化的快慢,变化快慢是由平均变化率的绝对值决定的,且绝对值
越大,函数值变化得越快.
C.2
D.0
Δy f1.1-f1 0.21
[Δx=
= 0.1 =2.1.]
1.1-1
3.如图所示,函数 y=f(x)在[x1,x2],[x2,x3],[x3,x4]这几个区
间内,平均变化率最大的一个区间是________.
[x3,x4]
[由平均变化率的定义可知,函数 y=f(x)在区间[x1,x2],[x2,
一般地,若函数y=f(x)的定义域为D,且x1,x2∈D,x1≠x2,y1=f(x1),y2=f(x2),则称Δx=x2-x1
为自变量的改变量;称Δy=y2-y1(或Δf=f(x2)-f(x1))为相应的因变量的改变量;称
y
x
=
y 2 -y 1
x 2 -x 1
(或
f
x
=
f(x 2 )-f(x 1 )
________.
5 [因为函数 f(x)=x2-x 在区间[-2,t]上的平均变化率是 2,
ft-f-2 t2-t-[-22--2]
所以

=2,
t--2
t+2
即 t2-t-6=2t+4,从而 t2-3t-10=0,解得 t=5 或 t=-2(舍去).]
5.已知函数f(x)=3x2+5,求f(x):
(2)运动物体在t0到t1这段时间内运动的平均速度就是物体运动的位

(完整版)高中数学选修2-2知识点总结(最全版)

(完整版)高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。

(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。

函数的平均变化率课件

函数的平均变化率课件
函数的平均变化率ppt课件
目录 Contents
• 函数平均变化率的概念 • 函数平均变化率的应用 • 函数平均变化率的性质 • 函数平均变化率的实例分析 • 总结与思考
01
函数平均变化率的概念
平均变化率的定义
01
平均变化率是指在一定区间内函 数值的改变量与自变量改变量的 比值,通常表示为函数在区间两 端点处的函数值的差的商。
函数平均变化率的重要性
理解函数单调性的基础
数学分析的基础
平均变化率是判断函数单调性的重要 依据,通过研究平均变化率,可以深 入理解函数的单调性。
平均变化率是微积分学中的基本概念 ,对于后续学习微积分、导数等数学 知识具有重要意义。
指导实际应用
在工程、经济、生物等领域中,平均 变化率的概念有着广泛的应用,如预 测模型、成本分析等。

幂函数的平均变化率
幂函数形式
$y = x^n$
平均变化率公式
$frac{Delta y}{Delta x} = nx^{n-1}$
实例分析
对于函数$y = x^3$,当$Delta x = 1$时,$Delta y = 3x^2$ ,所以平均变化率为$nx^{n-1} = 3x^2$。
05
总结与思考
02
它反映了函数在区间内整体变化 的趋势和速度,是函数在区间内 的一种平均性质。
平均变化率的意义
平均变化率可以用于分析函数的单调 性、凹凸性以及极值点等性质,是研 究函数的重要工具之一。
通过计算平均变化率,可以了解函数 在区间内的整体变化趋势,从而对函 数的性质进行初步判断。
平均变化率的计算方法
01
02
03
04
计算平均变化率需要找到函数 在区间两端点处的函数值,然 后相减得到函数值的改变量。

高中数学知识点精讲精析 变化的快慢与变化率

高中数学知识点精讲精析 变化的快慢与变化率

1 变化的快慢与变化率
1.平均变化率:上述问题中的变化率可用式子 表示,称为函数f (x )从x 1到x 2的平均变化率。

1.函数的平均变化率的概念:一般地,给出函数()f x 在区间12[]x x ,上的平均变化率2121
()()f x f x x x --; 2. 平均变化率的几何意义:直线的斜率;
3.平均变化率的实际作用:反映了函数某个区间上的平均变化率(变化快慢);或者说在某个区间上曲线的陡峭程度.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.
提醒:平均变化率有局限.我们知道平均变化率只能反映函数在某个区间内的平均变化,而无法精确反映某一点的变化状态
1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及
临近一点)2,1(y x B ∆+-∆+-则
=∆∆x
y . 【解析】
)1()1(22x x y ∆+-+∆+--=∆+- ∴x x
x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 2 求2x y =在0x x =附近的平均变化率.
【解析】
2
020)(x x x y -∆+=∆
所以x x x x x y ∆-∆+=∆∆2020)(x x x x x x x x ∆+=∆-∆+∆+=020202022 1
212)()(x x x f x f --
所以2x y =在0x x =附近的平均变化率为x x ∆+02。

函数的平均变化率课件

函数的平均变化率课件

实际问题中如何应用函数的平均变化率?
运动学
速度和加速度的变化率都是平均 变化率,可以通过这些平均变化 率来了解运动学中的物理现象。
商业领域
可以通过函数的平均变化率来评 价某一产品或公司的增长速度。
时间管理
可以通过函数的平均变化率来了 解时间利用效率的变化。
平均变化率的图像解释
相邻两点之间的斜率
在图像上,平均变化率可以表示为相邻两条线段的 斜率。
函数的平均变化率的应用举例
1
应用一
在积分计算中,常用平均变化率来近似求解曲线下的面积。
2
应用二
在微分方程的求解中,平均变化率可以用于简单的数值方法计算。
3
应用三
在统计学中,业务活动的整体变化趋势可以通过平均变化率来进行分析。
函数的平均变化率在物理学中的应用
万有引力
质点在单位时间内运动的平均速 度可以用万有引力的平均变化率 来计算。
1 步骤一
首先,要知道函数在哪里发生了断裂,也就 是函数不连续的地方。
2 步骤二
判断函数在不连续点与相邻区间之间的平均 变化率是否存在。
3 步骤三
如果这一区间存在平均变化率,那么新的区 间一定就是函数的定义域。
4 步骤四
如果不存在平均变化率,则需要进一步的讨 论和推导。
如何根据函数的平均变化率推断函数 的值域?
1 步骤一
求出函数的导数。
2 步骤二
根据导数的正负来判断函数的值域。
3 步骤三
如果导数大于零,则函数单调递增;如果导数小于零,则函数单调递减;否则,需要进 一步研究函数。
函数的平均变化率的重要性
平均变化率是微积分的基础概念之一,不仅在学术研究中广泛应用,而且在 日常生活中也具有重要的意义。通过平均变化率可以揭示出事物在不同时间 段内的变化趋势,从而帮助我们做出更好的决策。

高二数学函数的平均变化率

高二数学函数的平均变化率

r ,
3
Hale Waihona Puke 如果把半径r表示为体积V的函数, 那么 r V
3
3V 4
.
当空气容积 V从 0增加到1 L时, 气球半径增加了 r 1 r 0 0.62cm ,
气球的平均膨胀率为
r 1 r 0 10
0.62dm / L .
类似地,当空气容量从1 L增加到2 L时, 气球半径 增加了 r 2 r 1 0.16dm ,
第一章
导数
你看过高台跳水比赛吗 ? 照片中锁定了运动员比 赛的瞬间 . 已知起跳 1 s后, 运动员相对于水面的高 度 h 单位 : m 可用函数 ht 4.9t 6.5t 10 表
2
示.如何求他在某时刻的 速 度 ? 他 距水面的最大 高度是多少 ?
1.1变化率与导数
的图象图1.1.1 , 平均 变化率 f x f x2 f x1 x2 x1
f x 1
x2 x1
O
x1
x2
x
表示什么 ?
图 1 .1 1
门闩。《北齐书·窦泰传》:“其人入数屋,俄顷而去。旦视关键不异,方知非人。”指装在物体上作关闭用的器件。 宋周煇《清波杂志》卷二:“ 元丰 间,亦有守边者,一夕失城门锁,亦不究治,但亟令易而大之。继有得元 锁来归者,乃曰:‘初不失也。’ 使持往合关键,蹉跌不相入。” 机关,机械装置。清袁枚《新齐谐·铜人演<;西厢>;》:“西洋贡铜伶十八人,能演《西厢》一部。人长尺许,身躯耳目手足悉铜铸成。其心 腹肾肠皆用关键凑接,如自鸣钟法。” ; /s/blog_13002ab1a0102xg8o.html jeh50mcg 比喻事物最关紧要的部分;对事情起决定作用的因素。秦牧《艺海拾贝·鹦鹉与蝴蝶鸟》:“而这里面有一个关键性的问题,就是作品应该有荡 气回肠的感人力量。” 比喻禁约。《魏书·萧宝夤传》:“如不限以关键,肆其傍通,则蔓草难除,涓流遂积。”比喻诗文的结构。宋周必大《二老堂诗话·东坡寒碧 轩诗》:“苏文忠公 诗,初若豪迈天成,其实关键甚密。” 明胡应麟《少室山房笔丛·九流绪论下》:“古今文章之关键,亦间有相通者。”比喻咽喉要地。《清史稿·兵志九》:“李宗羲以苏松之门户, 吴淞为要,长江之关键,江阴为先。” 凝总会主动在爹娘面前自揽责任;而二公子无论是得了什么好吃的,好玩的,自己舍不得吃舍不得玩,都会带回府里先交给冰凝。因此,兄妹情 深四个字,根本表达不了他们兄妹两人的全部情谊。要不是到京城任职,二公子才不会舍了妹妹壹个人在湖广。二公子真是少年得志!五年前, 才二十来岁就任翰林院检讨。这翰林院号称“玉堂清望之地”,能够跻身其中,绝对是非同凡响的人物,更何况是壹个才二十出头的青年才俊。 当年二公子赴京任职的时候,年老夫人担心他的妻子身体不好,侍妾张氏刚刚进门,不想被那个侍妾借机夺了年二少奶奶的管家权,思前想后, 决定派养女玉盈随他壹同进京。第壹卷 第六章 玉盈玉盈6岁的年纪来到年总督府上。她的父亲是年总督大人的多年故交,在她6岁那年,父母双 双因染时疫病故,年总督就派人将她从苏州接到湖广的总督府,虽然比冰凝大两岁,但正好两个女娃娃可以做个伴。于是两个半路丫鬟妹开始了 壹起读书,壹起学女红,壹起玩耍的年府生活,慢慢地,两个人就好得像两个双生子似的。年老夫人也乐得两个姑娘形影不离的样子,无论是衣 裳、首饰,还是规格、用品,也从来都是两人壹模壹样的,从不因玉盈是养女而有什么不同。然后,就是壹眨眼的功夫,两个女娃娃就长成了大 姑娘。大姑娘了,两姐妹的脾气、禀性、样貌、才学也越发地各不相同起来。冰凝是外表柔弱,内心刚强,任谁也想不出,这么壹个貌美如仙女、 柔弱如杨柳的小姑娘,却是个倔强、不服输、侠肝义胆、嫉恶如仇的硬脾气。那玉盈却是正正好相反,表面上风风火火、办事干净麻利,内心却 是极为敏感,脆弱得不行。也难怪,她是养女,虽然年老夫妇壹直将她当亲生女儿看待,但她总是没来由地有壹种自卑感。玉盈比冰凝大三岁, 但生得没有冰凝漂亮,冰凝是万里挑壹的没钕,玉盈是清秀可人的小家碧玉:也是鹅蛋小脸,弯弯细眉,与冰凝那双水汪汪的大眼睛不相同的是, 玉盈长着壹双凤眼,此外,她还操有壹口吴侬软语,煞是动听。这玉盈样貌没有冰凝好、学业没有冰凝好,但是,她的管家本领却是与生俱来, 好得很。她办事既利落又公道,年夫人偶尔不在府的时候,才十来岁的娃娃,竟是将诺大个年总督府维持得井井有条。这也是年夫人决定派她随 二公子壹同进京的原因,有玉盈这么壹个精通府务的人照料二公子,她就放心踏实多了。在京城期间,年二公子衙门当差,二嫂踏实养病,玉盈 管家,过得还算顺利。可是好景不长,也是二嫂没有福份,养了多年的病,终究也是没有好起来,突然就故去了。这二嫂是大学士明珠的孙女, 纳兰性德的侄女。年家和明珠府都是豪门望族,因此,丧事的规格极高,礼仪非常隆重。而承担这个重任的,就是

高中数学变化率问题、导数精选题目(附答案)

高中数学变化率问题、导数精选题目(附答案)

高中数学变化率问题、导数精选题目(附答案)(1)函数的平均变化率对于函数y=f(x),给定自变量的两个值x1和x2,当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),我们把式子f(x2)-f(x1)x2-x1称为函数y=f(x)从x1到x2的平均变化率.习惯上用Δx表示x2-x1,即Δx=x2-x1,可把Δx看作是相对于x1的一个“增量”,可用x1+Δx代替x2;类似地,Δy=f(x2)-f(x1).于是,平均变化率可表示为Δy Δx.(2)瞬时速度①物体在某一时刻的速度称为瞬时速度.②若物体运动的路程与时间的关系式是S=f(t),当Δt趋近于0时,函数f(t)在t0到t0+Δt之间的平均变化率f(t0+Δt)-f(t0)Δt趋近于常数,我们就把这个常数叫做物体在t0时刻的瞬时速度.(3)导数的定义一般地,函数y=f(x)在x=x0处的瞬时变化率是:lim Δx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(4)导数的几何意义函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx.(5)导函数从求函数f(x)在x=x0处导数的过程可以看到,当x=x0时,f′(x0)是一个确定的数.这样,当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).y=f(x)的导函数有时也记作y′.即f′(x)=y′=lim Δx→0f(x+Δx)-f(x)Δx.1.已知函数f (x )=3x 2+5,求f (x ): (1)从0.1到0.2的平均变化率; (2)在区间[x 0,x 0+Δx ]上的平均变化率.2.已知函数f (x )=x +1x ,分别计算f (x )在自变量x 从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快.3.若一物体的运动方程为S =⎩⎨⎧29+3(t -3)2,0≤t <3,3t 2+2,t ≥3,(路程单位:m ,时间单位:S ).求:(1)物体在t =3 S 到t =5 S 这段时间内的平均速度; (2)物体在t =1 S 时的瞬时速度.求瞬时速度的步骤(1)求物体运动路程与时间的关系S =S (t );(2)求时间改变量Δt ,位移改变量ΔS =S (t 0+Δt )-S (t 0); (3)求平均速度Δs Δt; (4)求瞬时速度v =lim Δt →0Δs Δt. 4.一质点按规律S (t )=at 2+1做直线运动(位移单位:m ,时间单位:S ),若该质点在t =2 S 时的瞬时速度为8 m/S ,求常数a 的值.[思考] 任何一个函数在定义域中的某点处均有导数吗?函数f (x )=|x |在x =0处是否存在导数?解:不一定,f (x )=|x |在x =0处不存在导数.因为Δy Δx =f (0+Δx )-f (0)Δx =|Δx |Δx =⎩⎨⎧1,Δx >0,-1,Δx <0,所以当Δx →0时,Δy Δx 的极限不存在,从而在x =0处的导数不存在.5.利用导数的定义求函数f (x )=3x 2-2x 在x =1处的导数.求函数y =f (x )在点x 0处的导数的三个步骤简称:一差、二比、三极限.6.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.7.已知曲线y=x2,(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点P(3,5)的切线方程.利用导数的几何意义求切线方程的方法(1)若已知点(x0,y0)在已知曲线上,求在点(x0,y0)处的切线方程,先求出函数y=f(x)在点x0处的导数,然后根据直线的点斜式方程,得切线方程y-y0=f′(x0)(x-x0).(2)若点(x0,y0)不在曲线上,求过点(x0,y0)的切线方程,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.8.已知曲线y=2x2-7,求:(1)曲线上哪一点的切线平行于直线4x-y-2=0?(2)曲线过点P(3,9)的切线方程.9.若曲线y=x3-3x2+1在点P处的切线平行于直线y=9x-1,求P点坐标及切线方程.10.已知抛物线y=2x2+1,求(1)抛物线上哪一点的切线平行于直线4x-y-2=0?(2)抛物线上哪一点的切线垂直于直线x+8y-3=0?11.(1)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是下图中的()(2)已知函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()12.如图,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的()参考答案:1.解:(1)因为f(x)=3x2+5,所以从0.1到0.2的平均变化率为3×0.22+5-3×0.12-50.2-0.1=0.9.(2)f(x0+Δx)-f(x0)=3(x0+Δx)2+5-(3x20+5)=3x20+6x0Δx+3(Δx)2+5-3x20-5=6x0Δx+3(Δx)2.函数f(x)在区间[x0,x0+Δx]上的平均变化率为6x0Δx+3(Δx)2Δx=6x0+3Δx.(1)求函数平均变化率的三个步骤第一步,求自变量的增量Δx=x2-x1.第二步,求函数值的增量Δy=f(x2)-f(x1).第三步,求平均变化率ΔyΔx=f(x2)-f(x1)x2-x1.(2)求平均变化率的一个关注点求点x0附近的平均变化率,可用f(x0+Δx)-f(x0)Δx的形式.2.解:自变量x从1变到2时,函数f(x)的平均变化率为f(2)-f(1) 2-1=2+12-(1+1)1=12;自变量x从3变到5时,函数f(x)的平均变化率为f(5)-f(3)5-3=5+15-⎝⎛⎭⎪⎫3+132=14 15.因为12<14 15,所以函数f(x)=x+1x在自变量x从3变到5时函数值变化得较快.3.[尝试解答](1)因为ΔS=3×52+2-(3×32+2)=48,Δt=2,所以物体在t=3 S到t=5 S这段时间内的平均速度为ΔsΔt=482=24(m/S).(2)因为ΔS=29+3[(1+Δt)-3]2-29-3×(1-3)2=3(Δt)2-12Δt,所以Δs Δt=3(Δt)2-12ΔtΔt=3Δt-12,则物体在t=1 S时的瞬时速度为S′(1)=limΔx→0ΔsΔt=limΔx→0(3Δt-12)=-12(m/S).4.解:因为ΔS=S(2+Δt)-S(2)=a(2+Δt)2+1-a·22-1=4aΔt+a(Δt)2,所以Δs Δt =4a +a Δt ,故在t =2S 时,瞬时速度为S ′(2)=lim Δx →0 Δs Δt=4a (m/S ). 由题意知,4a =8,所以a =2.5.解: Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1)=3(Δx )2+4Δx , ∵Δy Δx =3(Δx )2+4ΔxΔx =3Δx +4,∴y ′|x =1=lim Δx →0 ΔyΔx =lim Δt →0(3Δx +4)=4. 6.解:由导数的定义知,函数在x =2处的导数f ′(2)=lim Δx →0f (2+Δx )-f (2)Δx,而f (2+Δx )-f (2)=-(2+Δx )2+3(2+Δx )-(-22+3×2)=-(Δx )2-Δx ,于是f ′(2)=lim Δx →0 -(Δx )2-ΔxΔx =li m Δx →0 (-Δx -1)=-1. 7.解: (1)设切点为(x 0,y 0), ∵y ′|x =x 0=lim Δx →0 (x 0+Δx )2-x 20Δx=lim Δx →0 x 20+2x 0·Δx +(Δx )2-x 2Δx=2x 0, ∴y ′|x =1=2.∴曲线在点P (1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.(2)点P (3,5)不在曲线y =x 2上,设切点为(x 0,y 0), 由(1)知,y ′|x =x 0=2x 0, ∴切线方程为y -y 0=2x 0(x -x 0),由P (3,5)在所求直线上得5-y 0=2x 0(3-x 0),① 再由A (x 0,y 0)在曲线y =x 2上得y 0=x 20,② 联立①,②得x 0=1或x 0=5.从而切点为(1,1)时,切线的斜率为k 1=2x 0=2, 此时切线方程为y -1=2(x -1),即y =2x -1, 当切点为(5,25)时,切线的斜率为k 2=2x 0=10, 此时切线方程为y -25=10(x -5),即y =10x -25.综上所述,过点P (3,5)且与曲线y =x 2相切的直线方程为y =2x -1或y =10x-25.8.解:y′=limΔx→0ΔyΔx=limΔx→0[2(x+Δx)2-7]-(2x2-7)Δx=limΔx→0(4x+2Δx)=4x.(1)设切点为(x0,y0),则4x0=4,x0=1,y0=-5,∴切点坐标为(1,-5).(2)由于点P(3,9)不在曲线上.设所求切线的切点为A(x0,y0),则切线的斜率k=4x0,故所求的切线方程为y-y0=4x0(x-x0).将P(3,9)及y0=2x20-7代入上式,得9-(2x20-7)=4x0(3-x0).解得x0=2或x0=4,所以切点为(2,1)或(4,25).从而所求切线方程为8x-y-15=0或16x-y-39=0.9.解:设P点坐标为(x0,y0),Δy Δx=f(x0+Δx)-f(x0)Δx=(x0+Δx)3-3(x0+Δx)2+1-x30+3x20-1Δx=(Δx)2+3x0Δx-3Δx+3x20-6x0.所以f′(x0)=limΔx→0[(Δx)2+3x0Δx-3Δx+3x20-6x0]=3x20-6x0,于是3x20-6x0=9,解得x0=3或x0=-1,因此,点P的坐标为(3,1)或(-1,-3).又切线斜率为9,所以曲线在点P处的切线方程为y=9(x-3)+1或y=9(x +1)-3,即y=9x-26或y=9x+6.10.解:设点的坐标为(x0,y0),则Δy=2(x0+Δx)2+1-2x20-1=4x0·Δx+2(Δx)2.∴ΔyΔx=4x0+2Δx.当Δx无限趋近于零时,ΔyΔx无限趋近于4x0.即f′(x0)=4x0.(1)∵抛物线的切线平行于直线4x-y-2=0,∴斜率为4,即f′(x0)=4x0=4,得x0=1,该点为(1,3).(2)∵抛物线的切线与直线x+8y-3=0垂直,∴斜率为8,即f′(x0)=4x0=8,得x0=2,该点为(2,9).11.解:(1)由导数的几何意义知导函数递增说明函数切线斜率随x增大而变大,因此应选A.(2)从导函数的图象可知两个函数在x0处斜率相同,可以排除B、C.再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x)的导函数的值在减小,所以原函数的斜率慢慢变小,排除A.12.解析:选D函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.。

课件6:1.1.1 函数的平均变化率

课件6:1.1.1 函数的平均变化率

试比较两人的平均速度哪个大?

由图象可知 s1(t0)=s2(t0),s1(0)>s2(0),
s1t0-s10 s2t0-s20

<

t0
t0
所以在从 0 到 t0 这段时间内乙的平均速度大.
小结
平均变化率的绝对值反映函数在给定区间上变化的快
慢,平均变化率的绝对值越大,函数在区间上的变化越快;平
1.1.1 函数的平均变化率
知识导航
1.函数的平均变化率:已知函数y=f(x),x0,x1是其定义域
x -x
内不同的两点,记Δx= 1 0 ,Δy=y1-y0=f(x1)-f(x0)
Δy
+∆ −()
f(x
+Δx)-f(x
)
0
0
Δx

,则当Δx≠0时,商
=______叫

做函数y=f(x)在x0到x0+Δx之间的 平均变化率
均变化率的绝对值越小,函数在区间上的变化越慢.
跟踪训练 3 甲用 5 年时间挣到 10 万元,乙用 5 个
月时间挣到 2 万元,如何比较和评价甲、乙两人
的经营成果?
10
10 1
解 甲赚钱的平均速度为
= = (万元/月),乙赚钱
5×12 60 6
2
的平均速度为 (万元/月).
5
因为乙平均每月赚的钱数大于甲平均每月赚的钱数,

fx2-fx1

2.函数y=f(x)的平均变化率的几何意义: =__________
x2-x1

表示函数y=f(x)图象上过两点(x1,f(x1)),(x2,f(x2))的割线

高中数学人教版选修2-2导数及其应用知识点总结

高中数学人教版选修2-2导数及其应用知识点总结

高中数学人教版选修2-2导数及其应用知识点总结高中数学人教版选修2-2导数及其应用学问点总结数学选修2-2导数及其应用学问点必记1.函数的平均变化率是什么?答:平均变化率为f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自变量的转变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念是什么?答:函数yf(x)在xx0处的瞬时变化率是limf(x0x)f(x0)y,则称limx0xx0x函数yf(x)在点x0处可导,并把这个极限叫做yf(x)在x0处的导数,记作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。

5、常见的函数导数和积分公式有哪些?函数导函数不定积分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxex xylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinx dxcosxycosxy"sinx6、常见的导数和定积分运算公式有哪些?答:若fx,gx均可导(可积),则有:和差的导数运算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)积的导数运算特殊地:Cfx"Cf"x商的导数运算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特殊地:"2gxgx复合函数的导数yxyuux微积分基本定理fxdxab(其中F"xfx)和差的积分运算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特殊地:积分的区间可加性bakf(x)dxkf(x)dx(k为常数)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb6.用导数求函数单调区间的步骤是什么?答:①求函数f(x)的导数f"(x)②令f"(x)>0,解不等式,得x的范围就是递增区间.③令f"(x)8.利用导数求函数的最值的步骤是什么?答:求f(x)在a,b上的最大值与最小值的步骤如下:⑴求f(x)在a,b 上的极值;⑵将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

6.1.1函数的平均变化率课件高二下学期数学人教B版选择性

6.1.1函数的平均变化率课件高二下学期数学人教B版选择性

C.0.41
(3+2.12 )-(3+22 )
解析:平均速度为
=4.1.
0.1
答案:B
D.3
3.某手机配件生产流水线共有甲、乙两条,产量s(单位:个)与时间t(单位:天)
的关系如图所示,则接近t0天时,下列结论正确的是(
A.甲的日生产量大于乙的日生产量
B.甲的日生产量小于乙的日生产量
C.甲的日生产量等于乙的日生产量
均变化率是多少呢?你能估计出当x=2时y的值吗?
Δ 9-1
提示: Δ = 3-1 =4.直线AB的方程为y-1=4(x-1),即y=4x-3.当x=2时,y=5,故估
计y的值为5.
四、平均速度与平均变化率
1.如果物体运动的位移x m与时间t s的关系为x=h(t),则物体在[t1,t2](t1<t2时)
Δ (2 )-(1 ) (1 +Δ)-(1 )
=
=
表示的是什么吗?
Δ
Δ
2 -1
提示:直线AB的斜率,其中A(x1,f(x1)),B(x2,f(x2)).
2.函数在一个区间内的平均变化率,等于这个区间端点对应的函数图象上
两点连线的 斜率 .如图,函数y=f(x)在区间[x1,x2]上的平均变化率,等于直线
Δ (4.1)-(4) 40.92-39
(2)Δ =
=
=19.2,
4.1-4
4.1-4
即 f(x)在区间[4,4.1]上的平均变化率为 19.2.
探究二
平均变化率的物理意义及应用
【例2】 已知一物体运动的位移s(单位:m)是时间t(单位:s)的函数,且当t=3
时,s=29;当t=5时,s=77.

平均变化率

平均变化率

函数的平均变化率
学习目标:理解函数的平均变化率的概念,并会求此变化率. 新知:
1. 函数的平均变化率的定义:
函数y=f(x)在点
0=x x 及其附近有定义,令=x ∆ ,00=y-y =(x)-(x )=y f f ∆
,则当 时,比值 叫做函数y=f(x)在0x 到0+x x ∆之间的平均变化率。

2. 平均变化率的计算公式: 尝试应用
1. 若函数f(x)在12[,]x x 内的平均变化率为0,能否说明函数f(x)没有发
生变化?
2. 平均变化率的计算公式中x ∆,y ∆的值是否可为任意实数?
考点把握
考点 求平均变化率

2
00(x)=+2+f x x x x x ∆求函数在到之间的平均变化率。

跟踪演练:2(x)=5+622+f x x ∆求函数在到之间的平均变化率。

练习
1. 00=(x),x x +y=
f x x ∆∆求函数y 当自变量由改变到时,( ) A 0(x +)f x ∆ B 0(x )+f x ∆ C 0(x )f x ∆ D
00(x +)-(x )f x f ∆ 2.若函数2f(x)=-1x ,当自变量x 由1变为1.1时函数的平均变化率为
3.在x=1附近取231=0.3,=,=,=,=x x
y x y x ∆函数y x y 中,平均变化率最大的是
4.已知2=s 2t ,t 从3秒到3.1秒的平均速度是多少?。

课件3:1.1.1 函数的平均变化率

课件3:1.1.1 函数的平均变化率

C.0.43
D.0.44
解析:Δy=f(2+0.1)-f(2)=2.12+1-(22+1)=0.41.
答案:B
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在 4到4+Δt之间的平均速度v. 解:Δs=s(4+Δt)-s(4) =3(4+Δt)2+(4+Δt)+4-(3×42+4+4) =25Δt+3(Δt)2. ∴v=ΔΔst=25+3Δt. 即物体在 4 到 4+Δt 之间的平均速度为 25+3Δt.
提示:从20 min到30 min变化快. 问题2:如何刻画体温变化的快慢? 提示:用平均变化率. 问题3:平均变化率一定为正值吗? 提示:不一定.可正,可负,可为零.
知识点解读
平均变化率
(1)定义:对一般的函数 y=f(x)来说,当自变f量(x2x)-从f(xx21)变为 x2 时,函数值从 f(x1)变为 f(x2),它的平均变化率为. x2-x1
其中自变量的变化 x2-x1 称作自变量的改变量,记作Δx ,
函数值的变化 f(x2)-f(x1) 称作函数值的改变量,记作Δy .这样,
函数的平均变化率就可以表示为函数值的改变量与自变量的改变
f(x2)-f(x1)
量之比,即ΔΔxy=
x2-x1 .
(2)作用:刻画函数值在 区间[x1,x2] 上变化的快慢.
瞬时变化率
(1)定义:对于一般的函数 y=f(x),在自变量 x 从 x0 变到 x1
的过程中,设 Δx=x1-x0,Δy=f(x1)-f(x0),则函数的平均变化
率是ΔΔxy=
fx1-fx0 = x1-x0
fx0+Δx-fx0 Δx
.而当 Δx趋于0
时,平
均变化率就趋于函数在 x0 点的瞬时变化率.

高二数学(选修人教B版)函数的平均变化率1教案

高二数学(选修人教B版)函数的平均变化率1教案

教案下面是一个曲线的一个局部图形,你能判断它是直的还是弯曲的吗?如果显示出网格线,能否判断呢?这个图的全貌其实是这样的:如果我们用一个“高倍显微镜”来看曲线的一个局部,都可以近似地把它看成直线段.所以,我们也可以把弯曲的山路看成许多平直的小段组成.从学生的知识经验理解“以直代曲”.类比双曲线,理解弯曲山路中的“以直代曲”.概念的形成(四)构造数学模型表示山坡陡峭程度假设下图是一座山的剖面示意图.爬山者上升的高度y可以看成水平行进距离x的函数,这座结合函数的概山的山坡剖面图则可以看作函数y =f (x )的图象,建立平面直角坐标系如图所示.我们把山路分成许多近似平直的小段.对于AB 这一段平直的山路,放大如下图:坡度为: 1010tan y y yx x xθ-∆==-∆. 对于CD 这一段弯曲的山路,可以分成许多段,比如第一小段CD 1可以近似地看成直线段,于是这一段山路的陡峭程度可表示为:32323232()()y y f x f x y x x x x x --∆==-∆-. 一般地,任何一小段山路的陡峭程度可以表示为:11()()k k k k f x f x y x x x ++-∆=∆-.念,以函数图象表示山坡的剖面图,将实际问题数学化.用数学语言表达山路的陡峭程度.O y x D 1x 3AB k =y B -y A x B -x A =f (x 1)-f (x 0)x 1-x 0=ΔyΔx =tan θ.概念的 巩固例 求函数y =x 在x 0到x 0+∆x 之间的平均变化率. 解:当自变量从x 0变到x 0+∆x 时,函数的平均变化率为0000()()()1f x x f x x x x x x +∆-+∆-==∆∆.思考与总结:(1)函数y =2x 在x 0到x 0+∆x 之间的平均变化率是什么?你有什么发现?函数y =2x 在x 0到x 0+∆x 之间的平均变化率是2. 我们发现,一次函数在任何一个区间内的平均变化率等于它的一次项系数,几何意义就是直线的斜率. (2)求函数的平均变化率的主要步骤:①求自变量的增量Δx =x 2-x 1;②求函数值的增量Δy =f (x 2)-f (x 1);③求函数的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.(3)求函数在x 0附近的平均变化率,常用f (x 0+Δx )-f (x 0)Δx 的形式来表达.例 求函数y =x 2在x 0到x 0+∆x 之间的平均变化率. 解:当自变量从x 0变到x 0+∆x 时,函数的平均变化率为2200000()()()2f x x f x x x x x x x x +∆-+∆-==+∆∆∆.计算与探索: (1)当∆x =13,x 0=1,2,3时,求函数的平均变化率;(2)当x 0=1,∆x =13,12,1时,求函数的平均变化率.通过例题研究具体函数在x 0到x 0+∆x 之间的平均变化率,并研究它随着x 0及∆x 变化而变化的规律,加深和巩固对函数的平均变化率的理解.【思考】(请同学们自行思考)(1)如果10x-<∆<,它们的大小关系如何?你能结合函数的图象来解释吗?(2)与y x=的平均变化率比较,它们的大小关系如何呢?例两工厂经过治理,污水的排放流量(W)与时间(t)的关系,如图所示.试指出哪一个厂治污效果较好?分析:这是一个应用问题.读图的关键点是“治污效果”用什么量来刻画——考查函数的平均变化率的应用.解:甲、乙两厂在相同的时间内都将污水排放流量治理到标准要求.甲厂原来的排放流量较大,因而平均变化率较大,所以甲厂的治污效果较好.课堂小结本节课学习的主要内容是函数的平均变化率.学习过程从生活情境到数学情境,再到数学概念以及几何意义,初步体会了“以直代曲”的思想和数形结合的方法.概括本节课的主要知识与思想方法.布置作业(1)求223y x x=-+在2到94之间的平均变化率.(2)试比较正弦函数siny x=在0到π6之间和π3到π2之间的平均变化率,哪一个较大?延伸巩固函数的平均变化率的概念.。

高中数学_3.1.1 函数的平均变化率教学设计学情分析教材分析课后反思

高中数学_3.1.1 函数的平均变化率教学设计学情分析教材分析课后反思

函数的平均变化率本节课是普通高中课程标准实验教科书人教B版选修(文)1-1第三章导数及其应用中的内容,(理)2-2第一章中的内容,《平均变化率》。

为更好地把握这一课时内容,便于学生学习和理解,对本课时教学设计给予如下说明:一、教学内容分析:平均变化率主要通过大量的生活实例借助直观图形逐步引入“平均变化率”的概念,并在此基础上给出了它的两种应用——在生活中的应用以及在数学内部的应用。

本节课应着力渗透“局部以直代曲”思想、“数形结合”思想以及“极限(逼近)”思想,以便更好地为研究、学习后续的“瞬时变化率”乃至“导数的概念”奠定基础。

这节课是在学生在学习了函数、指、对数函数、幂函数、三角函数等知识后安排的一节内容,学生已经具备了一定的函数知识的素养。

本节课目的是在为导数的引出作必要的铺垫,在导数教学中起着承上启下的作用。

学好这一节,学生将会为以后理解导数的概念等知识打下一个良好的基础,同时学生对函数也有了更为完整的知识结构。

二、学生情况分析:同学们在物理中已经充分理解平均速度的概念,为函数的平均变化率打下了良好的基础。

且在之前的学习中,具备一定的用数形结合思想解决问题的能力,这为从数与形两方面考察函数的平均变化率提供了知识准备。

而平均变化率来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法.但学生仅是比较熟悉平均速度,对于变量变化的快慢的认识以及表示比较模糊,还有,由实际问题抽象成函数表示,这些都给学生学习本节内容造成一定困难。

三、教学目标:知识与技能:(1)了解平均变化变化率的概念;(2)会求函数在指定区间上的平均变化率;(3)能利用平均变化率解决或说明生活中的实际问题。

情感、态度与价值观:(1)以实际生活为背景,引出平均变化率的相关内容,让学生感受到事物相联系的观点;(2)通过数形结合的手段解决问题,让学生体会到“无形不直观,无数不入微”的辩证思想;(3)通过本节的学习,体会数学模型在实际生活中的应用,提高数学的应用意识。

高中数学同步教学课件 函数的平均变化率

高中数学同步教学课件 函数的平均变化率

反思感悟
平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、 加速度、膨胀率、经济效益等,分清自变量和因变量是解决此类问题的 关键.
跟踪训练 3 蜥蜴的体温与阳光的照射有关,其关系为 T=t1+205+15,其中 T 为体温(单位:℃),t 为太阳落山后的时间(单位:min),则从 t=0 到 t= 10,蜥蜴的体温的平均变化率为__-__1_.6___℃/min.
(1)先计算函数值的改变量y2-y1.
(2)再计算自变量的改变量x2-x1.
(3)最后求平均变化率
y2-y1 x2-x1.
跟踪训练 2 已知函数 f(x)=-6x,则函数 f(x)在区间[1,1.5],[1,1.1]上的平 均变化率各是多少?
∵f(x)=-6x, ∴f(1)=-6,f(1.5)=-4,f(1.1)=-6110, ∴该函数在区间[1,1.5]上的平均变化率为 f11.5.5--1f1=02.5=4, 在区间[1,1.1]上的平均变化率为f11.1.1- -f11=-61010.1+6=6110.
率为a,则
A.v=2154 m/s,a=2154 m/s2
B.v=-1245 m/s,a=2154 m/s2
C.v=2154 m/s,a=-2154 m/s2
√D.v=-1245 m/s,a=-2154 m/s2
探测器与月球表面的距离逐渐减小,所以 v=01-4×1 56000=-2154(m/s); 探测器的速度逐渐减小,所以 a=01-4×1 56000=-1245(m/s2).



s2 - s0>s1 - s0 , t1 - t0>0 , 所 以
st21- -st00>st11- -st00,故 C 正确,D 错误.

高中数学 第1章 1.1第1课时 函数的平均变化率课件 新人教B版选修2-2

高中数学 第1章 1.1第1课时 函数的平均变化率课件 新人教B版选修2-2

(3)平均变化率是指函数值的“增量”(即“改变量”)Δy与 相应的自变量的“增量”Δx的比,这也给出了平均变化率的 求法,可得平均变化率可正、可负,也可为零.
2.求函数平均变化率的步骤: 求函数y=f(x)在点x0附近的平均变化率: (1)确定函数自变量的改变量Δx=x1-x0; (2)求函数的增量Δy=f(x1)-f(x0); (3)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0.当求函数在某点附近 的平均变化率时,可在函数图象上表示出来.
)
A.3
B.3Δx-(Δx)2
C.3-(Δx)2
D.3-Δx
[答案] D
[解析] ∵Δy=f(-1+Δx)-f(-1) =-(-1+Δx)2+(-1+Δx)-(-2) =-(Δx)2+3Δx, ∴ΔΔyx=-ΔxΔ2x+3Δx=-Δx+3. 故选D.
求运动物体的平均速度
以初速度v0竖直上抛一物体的位移(单位:m)与 时间(单位:s)的关系为:s(t)=v0t-12gt2.
成才之路 ·数学
人教B版 ·选修2-2
路漫漫其修远兮 吾将上下而求索
导数及其应用 第一章
研究函数,从量的方面研究事物运动变化是微积分的基本 方法.
从微积分成为一门学科来说,是在十七世纪,但是,微分 和积分的思想在古代就已经产生了.公元前三世纪,古希腊的 阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线面 积和旋转双曲体的体积的问题中,就隐含着近代积分学的思 想.作为微分学基础的极限理论来说,早在古代以有比较清楚 的论述.比如《庄子》一书中,记有“一尺之棰,日取其半, 万世不竭”.
二、平均速度 设物体运动路程与时间的关系是s=f(t),如图,从t0到t0+ Δt这段时间内,物体的平均速度是v0=ft0+ΔΔtt-ft0=ΔΔst. 可见平均速度v0就是函数f(t)在区间[t0,t0+Δt]上的平均变 化率.

函数的平均变化率

函数的平均变化率
2
【例】物体的运动方程是 s t 1(s的单位:米;t的单位:
秒),求物体在t=1秒到t=(1+Δ t)秒这段时间内的平均速度. 【审题指导】求物体在一段时间内的平均速度就是求位移对 时间的平均变化率.本题已知函数表达式,代入公式化简即可 .
【规范解答】∵ s
2 t 2 m .
【审题指导】
【规范解答】物体在t=1到t=1+Δt这段时间内的位移增量
Δs=s(1+Δt)-s(1)
=[(1+Δt)2+2(1+Δt)+3]-(12+2×1+3)
=(Δt)2+4Δt.
物体在t=1到t=1+Δt这段时间内的平均速度为
s 4t t 4 t. t t
3
变化率的值,并比较函数f(x)=3-x2在哪一点附近的平均变化
率最大?
【审题指导】先求f(x)在x0到x0+Δx之间的平均变化率,再求
各点附近的平均变化率,最后比较得结论 .
【规范解答】函数f(x)=3-x2在x0到x0+Δx之间的平均变化率
2 [ 3 x x ] 3 x f x x f x 0 0 0 为 0 x x 2 2x 0 x x 2x 0 x x 当x0=1, x 1 时,平均变化率的值为 7 , 3 3 当x0=2, x 1 时,平均变化率的值为 13, 3 3 1 当x0=3,x 时,平均变化率的值为 19 , 3 3 ∵ 7 > 13> 19 , 3 3 3 2
3
(1)求半径r关于体积V的函数r(V); (2)比较体积V从0 L增加到1 L和从1 L增加到2 L半径r的平 均变化率;哪段半径变化较快(精确到0.01)?此结论可说明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( x) f ( x2 ) f ( x1 ) x x2 x1
思考?
• 观察函数f(x)的图象
平均变化率
y f(x2 ) f ( x1 ) x 表示什么 ? x2 x1
Y=f(x) y f(x2) f(x2)-f(x1)=△y A f(x1) B
直线AB 的斜率
x2-x1=△x x x1 x2
y2 O x0
y 比值 反映的山坡的陡峭程度. x
A(x0, y0 ) x x1
平均变化率定义: f(x2 ) f ( x1 ) 式子 x2 x1
表示函数f(x)从x1到x2的平均变化率.
• 若设Δx=x2-x1, Δf=f(x2)-f(x1)
则平均变化率为
这里Δx看作是对于x1的一个 “增量”可用x1+Δx代替x2 同样Δf=Δy==f(x2)-f(x1)
相应的平均速度为( A ) A. 6+t C.3+t 9 B. 6+t+ t D.9+t
2.物体按照s(t)=3t2+t+4的规律作直线 运动,求在4s附近的平均变化率.25 3t小结:
• 1.函数的平均变化率
f ( x) f ( x2 ) f ( x1 ) x x2 x1

2.求函数的平均变化率的步骤:
f ( x2 ) f ( x1 ) x x2 x1
(1)求函数的增量Δf=Δy=f(x2)-f(x1);
(2)计算平均变化率 f ( x)
O
做两个题吧!
1 .已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,2+Δy),则Δy/Δx=( ) A 3 B 3Δx-(Δx)2 C 3-(Δx)2 D 3-Δx
D
2.求y=x2在x=x0附近的平均速度。 2x0+Δx
练习: 2 1.质点运动规律s=t +3,则在时间(3,3+t)中
3.1.1函数的平均变化率
•问题 怎样用数学反映山坡的平缓与 从点A 爬到点B的位移可用向量 AB (x, y)表示。 陡峭程度呢?
设向量AB 对x轴的倾斜角为 ,直线AB的斜率为 k, y
y
1
B(x1, y1 )
则有k tan
y1 y 0 y . x1 x0 x
相关文档
最新文档