(重点)平面向量数量积公式的应用(可编辑修改word版)
平面向量的数量积及平面向量的应用
三基能力强化
1.(2009年高考重庆卷改编)已知 |a|=1,|b|=6,(a+2b)· (b-a)=68, 则向量a与b的夹角是( ) π π A. B. 6 4 π π C. D. 3 2 答案:C
三基能力强化
2.已知a=(1,-3),b=(4,6),c= (2,3),则a· c)等于( (b· ) A.(26,-78) B.(-28,-42) C.-52 D.-78 答案:A
规律方法总结
1.对数量积概念的理解 (1)两个向量的数量积是一个数 量,它的值为两个向量的模与两向量 夹角的余弦的乘积,结果可正、可 负、可为零,其符号由夹角的余弦值 确定.计算数量积的关键是正确确定 两向量的夹角,条件是两向量的始点 必须重合,否则要通过平移,使两向 量符合以上条件.
规律方法总结
课堂互动讲练
例1 已知|a|=4,|b|=3,(2a- 3b)(2a+b)=61. (1)求a与b的夹角θ; (2)求|a+b|.
课堂互动讲练
【思路点拨】
平面向量数 量积的定义
夹角公式
求模公式
课堂互动讲练
【解】 (1)∵(2a-3b)· (2a+b)=61, ∴4|a|2-4a· b-3|b|2=61. 又|a|=4,|b|=3, ∴64-4a· b-27=61, ∴a· b=-6. -6 a· b 1 ∴cosθ= = =- . 2 |a||b| 4×3 2π 又 0≤θ≤π,∴θ= . 3
课堂互动讲练
(2)|a + b| = (a+b)2 = |a|2+2a· b+|b|2 = 16+2×(-6)+9= 13.
【点评】正确地进行数量积的运 算,避免错用公式,如a2=|a|2是正确 的,而a· b=|a||b|和|a· b|=|a||b|都是错 误的.
平面向量的应用重难点解析版
突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。
考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。
平面向量的数量积
平面向量的数量积可以用于判 断两条直线是否平行或垂直
平面向量的数量积可以用于计 算平面上点的坐标和轨迹
04
平面向量的数量积 与向量的模的关系
数量积与向量模的关系
数量积的定义:两个向量的模的乘积与两个向量夹角的余弦值的乘积之和 的平方根
数量积的性质:两个向量的数量积等于它们的模的乘积与它们夹角的余弦 值的乘积
值
投影:向量a 在向量b上的 投影长度等于 向量a的数量 积除以向量b
的长度
方向:向量a 与向量b的数 量积的正负号 表示两向量的 夹角是锐角还
是钝角
数量积的性质
非零向量的数量积为实数
向量的数量积满足交换律和分配律
向量的数量积为0的充分必要条件是两个向量垂直 向量的数量积与向量的模长和夹角有关,可以用来描述两个向量的 相似程度
05
平面向量的数量积 的运算技巧
代数法计算数量积
定义:两个向量的数量积定义为它们的对应坐标的乘积之和 性质:数量积满足交换律和分配律 坐标法:利用向量的坐标进行计算,公式为:a·b=x1x2+y1y2 几何意义:数量积表示两个向量在垂直方向上的投影长度之积
几何法计算数量积
定义:两个非零向量的夹角余弦值乘以两个向量模的乘积
数量积的运算方法
定义:两个向量的数量积定义为 它们的模长和夹角的余弦值的乘 积
几何意义:表示两个向量在垂直 方向上的投影长度
添加标题
添加标题
添加标题
添加标题
性质:数量积满足交换律和分配 律
计算公式:a · b = |a||b|cosθ, 其中θ为两向量的夹角
03
平面向量的数量积 的应用
在三角形中的应用
平面向量的数量积
平面向量的数量积及平面向量的应用举例
3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角
平面向量的数量积
平面向量的数量积平面向量的数量积,也叫点积或内积,是向量运算中的一种重要操作。
它与向量的夹角以及向量的长度有着密切的关系。
在本文中,我们将详细介绍平面向量的数量积的概念、计算方法以及一些应用。
一、概念平面向量的数量积是指将两个向量的对应分量相乘,并将所得乘积相加而得到的数值。
设有两个平面向量A和A,它们的数量积记作A·A,计算公式为:A·A = AAAA + AAAA其中,AA和AA分别是向量A在A轴和A轴上的分量,AA和AA分别是向量A在A轴和A轴上的分量。
二、计算方法要计算平面向量的数量积,需要先求出两个向量在A轴和A轴上的分量,然后按照数量积的计算公式进行计算。
假设有两个向量A = (A, A)和A = (A, A),它们的数量积为A·A,计算步骤如下:1. 计算A和A在A轴上的分量AA和AA,分别为A和A;2. 计算A和A在A轴上的分量AA和AA,分别为A和A;3. 将AA和AA、AA和AA进行相乘得到AA和AA;4. 将AA和AA相加,得到平面向量的数量积A·A。
三、性质平面向量的数量积具有以下性质:1. 交换律:A·A = A·A2. 数乘结合律:(AA)·A = A(A·A) = A·(AA)3. 分配律:(A + A)·A = A·A + A·A其中,A为任意实数,A、A和A为任意向量。
四、夹角与数量积的关系两个非零向量A和A的数量积A·A与它们夹角A的余弦函数之间存在着如下关系:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖分别为向量A和A的长度。
五、应用平面向量的数量积在几何和物理学中有着广泛的应用。
以下是一些常见的应用:1. 判断两个向量是否垂直:如果两个向量的数量积为零,即A·A = 0,那么它们是垂直的。
2. 计算向量的模:根据数量积的性质,向量的模可以通过向量与自身的数量积来计算。
平面向量的数量积及平面向量的应用
解析 建立平面直角坐标系如图所示,则A(2,0),
设P(0,y),C(0,b),则B(1,b),且0≤y≤b.
所以 PA
+3 PB
=(2,-y)+3(1,b-y)=(5,3b-4y),
所以| PA
+3 PB
|= 25
(3b
4
y)2
(0≤y≤b),
所以当y= 3 b时,| PA
+3 PB
§5.2 平面向量的数量积及平面向量的应用
知识清单
考点一 向量数量积的定义及长度、角度问题 1.两向量夹角的定义和范围
2.两向量的夹角分别是锐角与钝角的充要条件
3.平面向量的数量积
4.向量数量积的性质 设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则 (1)e·a=a·e=⑤ |a|·cos θ . (2)a⊥b⇔⑥ a·b=0 . (3)当a与b同向时,⑦ a·b=|a||b| ;当a与b反向时,⑧ a·b=-|a||b| . 特别地,a·a=⑨ |a|2 .
解析 因为a⊥(2a+b),所以a·(2a+b)=0,
所以a·b=-2|a|2,设a与b的夹角为θ,则cos
θ= a b
| a || b |
=
2 4|
| a |2 a |2
=- 1 ,又0≤θ≤π,
2
所以θ= 2 ,故选C.
3
例4 (2017江西七校联考,13)已知向量a=(1, 3 ),b=(3,m),且b在a的方向
标→求 AF · BC
解析 解法一:如图,
AF · BC
=( AD
专题5.3 平面向量的数量积(重难点突破)(解析版)
专题5.3 平面向量的数量积一、考情分析1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题。
二、经验分享考点一 向量的夹角定义图示范围共线与垂直 已知两个非零向量a 和b ,作OA ―→=a ,OB ―→=b ,则∠AOB 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是0°≤θ≤180°θ=0°或θ=180°⇔a ∥b ,θ=90°⇔a ⊥b考点二 平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a||b|cos θ叫做a 与b 的数量积,记作a·b投影 |a|cos θ叫做向量a 在b 方向上的投影, |b|cos θ叫做向量b 在a 方向上的投影几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积考点三 向量数量积的运算律 交换律 a ·b =b ·a 分配律 (a +b)·c =a ·c +b ·c 数乘结合律(λa)·b =λ(a ·b)=a ·(λb)考点四 平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 几何表示 坐标表示模 |a|=a·a |a|=x 21+y 21夹角cos θ=a·b |a||b|cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22|x1x2+y1y2|≤ x21+y21x22+y22考点五必备结论1.平面向量数量积运算的常用公式:(1)(a+b)·(a-b)=a2-b2;(2) (a±b)2=a2±2a·b+b2.2.有关向量夹角的两个结论:(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为a与b夹角为0时不成立).(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为a与b夹角为π时不成立).三、题型分析重难点题型突破1 平面向量数量积的运算例1、(2020·西安调研)在梯形ABCD 中,AB ∥CD ,AB =4,BC =CD =DA =2,若E 为BC 的中点,则AC →·AE →=( ) A. 3 B .3 C .2 3 D .12【答案】D【解析】解法一:如图过点D 作DM ⊥AB ,交AB 于点M ,过点C 作CN ⊥AB ,交AB 于点N ,则MN =DC =2.在Rt △ADM 中,AD =2,AM =AB -MN 2=4-22=1,所以∠DAM =60°.因为AC →=AD →+DC →=AD →+12AB →,AE →=AD →+DC →+CE →=AD →+12AB →+12CB →=AD →+12AB →+12(CD →+DA →+AB →)=12AD →+34AB →,所以AC →·AE →=⎝⎛⎭⎫AD →+12AB →·⎝⎛⎭⎫12AD →+34AB →=12AD →2+AD →·AB →+38AB →2=12×22+2×4×cos60°+38×42=12.故选D.解法二:如图以A 为坐标原点,AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (4,0). 设D (m ,n )(n >0),则C (m +2,n ),因此BC 边的中点E ⎝⎛⎭⎫m +62,n 2.则AC →=(m +2,n ),AE →=⎝⎛⎭⎫m +62,n 2.又由BC =DA =2,得⎩⎨⎧(m +2-4)2+n 2=2,m 2+n 2=2,所以m =1,n 2=3.则AC →·AE →=(m +2)·m +62+n 22=3×72+32=12.故选D.【变式训练1-1】、(2020·河南安阳二模)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE →=-7DE →,3BF →=FC →,则AF →·BE →=( )A .11B .10C .-10D .-11【答案】D 【解析】:.以A 为坐标原点,建立直角坐标系如图所示.则A (0,0),B (4,0),E (1,4),F (5,1),所以AF →=(5,1),BE →=(-3,4),则AF →·BE →=-15+4=-11.故选D.【变式训练1-2】、(2020·黑龙江大庆实验中学高考模拟)在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF →=2,则AE →·BF →的值为( )A. 2 B .2 C .0 D .1【答案】A【解析】建立如图所示的坐标系可得A (0,0),B (2,0),E (2,1),F (x,2),∴AB →=(2,0),AF →=(x,2),∴AB →·AF →=2x =2,解得x =1,∴F (1,2), ∴AE →=(2,1),BF →=(1-2,2),重难点题型突破2平面向量数量积的性质例2、已知|a |=2,|b |=3,a 与b 的夹角为2π3,且a +b +c =0,则|c |=________.【答案】7【解析】因为a +b +c =0,所以c =-a -b ,所以c 2=a 2+b 2+2a ·b =22+32+2×2×3×cos 2π3=4+9-6=7.所以|c |=7.【变式训练2-1】、已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B .π3C.2π3 D .5π6【答案】B.【解析】:设a 与b 的夹角为α, 因为(a -b )⊥b , 所以(a -b )·b =0, 所以a ·b =b 2,所以|a |·|b |cos α=|b |2,又|a |=2|b |,所以cos α=12,因为α∈(0,π),所以α=π3.故选B.重难点题型突破3 向量数量积的综合应用例3、(2020·华南师大附中一模)已知向量|OA →|=3,|OB →|=2,BC →=(m -n )OA →+(2n -m -1)OB →,若OA →与OB →的夹角为60°,且OC →⊥AB →,则实数m n 的值为( )A.87B.43C.65D.16【答案】A【解析】由题意得,OC →=OB →+BC →=(m -n )OA →+(2n -m )OB →,AB →=OB →-OA →,OA →·OB →=3×2×cos60°=3.又因为OC →⊥AB →,所以OC →·AB →=[(m -n )OA →+(2n -m )OB →]·(OB →-OA →)=-(m -n )OA →2+(2m -3n )OA →·OB →+(2n -m )·OB →2=-9(m -n )+3(2m -3n )+4(2n -m )=0, 整理得7m -8n =0,故m n =87.【变式训练3-1】、(2020·天津市宁河区芦台第一中学高考模拟)如图所示,等边△ABC 的边长为2,D 为边AC 上的一点,且AD →=λAC →,△ADE 也是等边三角形,若BE →·BD →=449,则λ的值是( )A.23B.33C.34D.13【答案】A【解析】 BE →·BD →=(BA →+AE →)·(BA →+AE →+ED →)=BA →2+BA →·AE →+BA →·ED →+AE →·BA →+AE →2+AE →·ED →=22+2·2λcosπ3-2·2λ+2·2λcos π3+4λ2+4λ2cos 2π3=2λ2+4=449⇒λ2=49,因为λ>0,所以λ=23,选A.【变式训练3-2】、(2020·石家庄质量检测(一))已知AB →与AC →的夹角为90°,|AB →|=2,|AC →|=1,AM →=λAB →+μAC →(λ,μ∈R ),且AM →·BC →=0,则λμ的值为________.【答案】:14【解析】:根据题意,建立如图所示的平面直角坐标系则A (0,0),B (0,2),C (1,0),所以AB →=(0,2),AC →=(1,0),BC →=(1,-2).设M (x ,y ),则AM →=(x ,y ),所以AM →·BC →=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM →=λAB →+μAC →,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14.重难点题型突破4 平面向量与三角函数例4、(2020·开封模拟)已知AB →,AC →是非零向量,且满足(AB →-2AC →)⊥AB →,(AC →-2AB →)⊥AC →,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形【答案】C【解析】∵(AB →-2AC →)⊥AB →⇒(AB →-2AC →)·AB →=0,即AB →·AB →-2AC →·AB →=0,(AC →-2AB →)⊥AC →⇒(AC →-2AB →)·AC →=0,即AC →·AC →-2AB →·AC →=0,∴AB →·AB →=AC →·AC →=2AB →·AC →,即|AB →|=|AC →|,则cos A =AB →·AC →|AB →||AC →|=12,∴∠A =60°,∴△ABC 为等边三角形.【变式训练4-1】、在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0. (1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. 【答案】见解析【解析】:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0, sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而C ∈(0,π),所以∠C =π3.(2)由AD →=DB →知,CD →-CA →=CB →-CD →, 所以2CD →=CA →+CB →,两边平方得4|CD →|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.① 又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23四、迁移应用1.已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →=( ) A .-3 B .-2 C .2 D .3【答案】C.【解析】:因为BC →=AC →-AB →=(1,t -3),所以|BC →|=1+(t -3)2=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2,故选C.2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB →的夹角为60°,且OC →⊥AB →,则实数m n 的值为( )A.16 B .14C .6D .4 【答案】A.【解析】:因为向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,OA →与OB →夹角为60°,所以OA →·OB →=3×2×cos 60°=3,所以AB →·OC →=(OB →-OA →)·(mOA →+nOB →)=(m -n )OA →·OB →-m |OA →|2+n |OB →|2=3(m -n )-9m +4n =-6m +n =0,所以m n =16,故选A.3.已知向量a =(-2,m ),b =(1,2),若向量a 在向量b 方向上的投影为2,则实数m =( ) A .-4 B .-6 C .4 D.5+1【答案】D【解析】 ∵a ·b =-2+2m ,∴|a |cos θ=a ·b |b |=-2+2m1+4=2.解得m =5+1. 4.已知e 1,e 2为单位向量且夹角为2π3,设a =3e 1+2e 2,b =3e 2,则a 在b 方向上的投影为________.【答案】:12【解析】:根据题意得,a ·b =9e 1·e 2+6e 22=9×1×1×⎪⎭⎫⎝⎛21-+6=-92+6=32,又因为|b |=3,所以a 在b 方向上的投影为a ·b |b |=323=12.5.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求sin θ·cos θ1+3cos 2θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.【答案】见解析【解析】(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ; 当cos θ=0时,sin θ=0,与sin 2θ+cos 2θ=1矛盾, 所以cos θ≠0,故tan θ=14,所以sin θ·cos θ1+3cos 2θ=sin θ·cos θsin 2θ+4cos 2θ=tan θtan 2θ+4=465. (2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5, 即1-4sin θcos θ+4sin 2θ=5, 从而-2sin2θ+2(1-cos2θ)=4, 即sin2θ+cos2θ=-1, 于是sin ⎪⎭⎫⎝⎛+42πθ=-22, 又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4或2θ+π4=7π4,因此θ=π2或θ=3π4.。
中职数学基础模块下册《平面向量的内积》word教案 (2)
江苏省高邮职业教育中心校教案纸首页江苏省高邮职业教育中心校教案纸续页一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比 8点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点9线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b,可得OP =b a b a λλλλλ+++=++111110.力做的功:W = |F |⋅|s |cos ,是F 与s 的夹角二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0≤≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos ,(0≤θ≤π)并规定0与任何向量的数量积为0⋅探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替(3)在实数中,若a 0,且a ⋅b =0,则b =0;但是在数量积中,若a 0,且a ⋅b =0,不能推出b =0因为其中cos有可能为0(4)已知实数a 、b 、c (b 0),则ab=bc ⇒ a=c 但是a ⋅b = b ⋅ca = c如右图:a ⋅b = |a ||b |cos= |b ||OA|,b ⋅c = |b ||c |cos = |b ||OA|⇒ a ⋅b = b ⋅c 但ac(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )ca (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量1e ⋅a = a ⋅e =|a |cos2aba ⋅b = 0C3当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = |a ||b |特别的a ⋅a = |a |2或a a a ⋅=||4cos=||||b a ba ⋅5|a ⋅b | ≤ |a ||b |三、讲解范例:例1 判断正误,并简要说明理由①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0; 对于②:应有0·a=0;对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс则a·b=(λс)·b=λ(с·b)=λ(b·с),∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律例2 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9 评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能四、课堂练习:五、小结 通过本节学习,要求大家掌握平面向量的数量积的定义、重要性质、运算律,并能运用它们解决相关的问题。
(完整word)平面向量知识点总结(可编辑修改)
b
的数量积(或内积或点积),记作:
a
b
,即
a
b
|
a
|
|
b
|
cos
.
规定:零向量与任一向量的数量积是 0。
注:数量积是一个实数,不再是一个向量。
举例 4 (1) △ ABC 中, | AB | 3 , | AC | 4 , | BC | 5 ,则 AB BC _________。
结果: 9 。
1
AB
(sin
x, cos
y)
,
x,
y (
,
)
,则
x
y
。结果: 或 ;
2
22
6
2
(3)已知作用在点 A(1,1) 的三个力 F1 (3,4) , F2 (2,5) , F3 (3,1) ,则合力 F F1 F2 F3 的终点坐标是
。 结果: (9,1) .
(2)实数与向量的积:
x
轴、
y
轴方向相同的两个单位向量
i,
j
为
基底,则平面内的任一向量
a
可表示为
a
xi
yj
(
x,
y)
,称
(
x,
y)
为向量
a
的坐标,
a
(x,
y)
叫做向
量 a 的坐标表示。
结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.
三、平面向量的基本定理
定理
设
e1
,
e2
同一平
面
内
的
一
组
结果:
四、实数与向量的积
实数
与向量
第3节 平面向量的数量积及平面向量的应用
第3节 平面向量的数量积及平面向量的应用知识梳理1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0. (3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律). 4.平面几何中的向量方法三步曲:(1)用向量表示问题中的几何元素,将几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系; (3)把运算结果“翻译”成几何关系.1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.3.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0),不能得出b =c ,两边不能约去同一个向量.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(4)若a ·b =a ·c (a ≠0),则b =c .( ) 答案 (1)× (2)√ (3)√ (4)× 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等.2.已知向量a =(1,1),b =(2,4),则(a -b )·a =( ) A.-14 B.-4C.4D.14答案 B解析 由题意得a -b =(-1,-3),则(a -b )·a =-1-3=-4. 3.设a ,b 是非零向量,则“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件.4.(2020·湘潭模拟)已知平面向量a ,b ,满足|a |=|b |=1,若(2a -b )·b =0,则向量a ,b 的夹角为( ) A.π6 B.π4C.π3D.2π3答案 C解析 由(2a -b )·b =0,可得a ·b =12b 2=12,设向量a 、b 的夹角为θ, 则cos θ=a ·b |a ||b |=12,又θ∈[0,π],所以向量a 、b 的夹角为π3.5.(多选题)(2021·青岛统检)已知向量a +b =(1,1),a -b =(-3,1),c =(1,1),设a ,b 的夹角为θ,则( ) A.|a |=|b | B.a ⊥c C.b ∥cD.θ=135°答案 BD解析 由a +b =(1,1),a -b =(-3,1),得a =(-1,1),b =(2,0),则|a |=2,|b |=2,故A 不正确;a ·c =-1×1+1×1=0,故B 正确; 不存在λ∈R ,使b =λc 成立,故C 不正确;cos θ=a ·b |a |·|b |=-22×2=-22,所以θ=135°,故D 正确.综上知选BD.6.(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22.考点一 平面向量的数量积运算1.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3C.2D.0答案 B解析 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.2.(2020·北京卷)已知正方形ABCD 的边长为2,点P 满足AP →=12()AB →+AC →,则|PD→|=__________;PB →·PD →=__________. 答案5 -1解析 法一 ∵AP→=12(AB →+AC →),∴P 为BC 的中点.以A 为原点,建立如图所示的平面直角坐标系,由题意知A (0,0),B (2,0),C (2,2),D (0,2),P (2,1),∴|PD →|=(2-0)2+(1-2)2= 5. 易得PB→=(0,-1),PD →=(-2,1). ∴PB→·PD →=(0,-1)·(-2,1)=-1.法二 如图,在正方形ABCD 中,由AP→=12(AB →+AC →)得点P 为BC的中点,∴|PD→|=12+22= 5. PB→·PD →=PB →·(PC →+CD →)=PB →·PC →+PB →·CD → =-PB→2+0=-1. 3.在四边形ABCD 中,AD ∥BC ,AB =23,AD =5,∠A =30°,点E 在线段CB的延长线上,且AE =BE ,则BD →·AE →=________. 答案 -1解析 如图,在等腰△ABE 中, 易得∠BAE =∠ABE =30°,故BE =2. 则BD→·AE →=(AD →-AB →)·(AB →+BE →) =AD→·AB →+AD →·BE →-AB →2-AB →·BE → =5×23×cos 30°+5×2×cos 180°-12-23×2×cos 150° =15-10-12+6=-1.4.(2020·新高考山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP→·AB →的取值范围是( ) A.(-2,6) B.(-6,2)C.(-2,4)D.(-4,6)答案 A解析 法一 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP→=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6). 故选A.法二 AP→·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP→|cos ∠P AB 表示AP →在AB →方向上的投影. 结合几何图形,当点P 与F 重合时投影最小,当P 与点C 重合时,投影最大, 又AC→·AB →=23×2×cos 30°=6,AF →·AB →=2×2cos 120°=-2, 故当点P 在正六边形ABCDEF 内时,-2<AP →·AB →<6.感悟升华 1.计算平面向量的数量积主要方法: (1)利用定义:a ·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. (3)活用平面向量数量积的几何意义.2.解决涉及几何图形的向量的数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简后再运算.但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补.考点二向量数量积的性质及应用角度1夹角与垂直【例1】(1)(2020·全国Ⅱ卷)已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()A.a+2bB.2a+bC.a-2bD.2a-b(2)(2021·新高考8省联考)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案(1)D(2) B解析(1)易知a·b=|a||b|cos 60°=1 2,则b·(a+2b)=52≠0,b·(2a+b)=2≠0,b·(a-2b)=a·b-2b2=-32≠0,b·(2a-b)=0.因此b⊥(2a-b).(2)法一设a=(1,0),b=(0,1),则c=(7,2),∴sin〈a,c〉=2 3.法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.角度2平面向量的模【例2】(1)(2020·南昌模拟)设x,y∈R,a=(x,1),b=(2,y),c=(-2,2),且a⊥c,b∥c,则|2a+3b-c|=()A.234B.26C.12D.210(2)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值是________.答案 (1)A (2)2+1解析 (1)因为a ⊥c ,所以a ·c =-2x +2=0,解得x =1,则a =(1,1), 因为b ∥c ,所以4+2y =0,解得y =-2,则b =(2,-2). 所以2a +3b -c =(10,-6),则|2a +3b -c |=234. (2)法一 由a ·b =0,得a ⊥b .如图所示,分别作OA→=a ,OB →=b ,作OC →=a +b ,则四边形OACB 是边长为1的正方形,所以|OC →|= 2.作OP→=c ,则|c -a -b |=|OP →-OC →|=|CP →|=1. 所以点P 在以C 为圆心,1为半径的圆上.由图可知,当点O ,C ,P 三点共线且点P 在点P 1处时,|OP →|取得最大值2+1.故|c |的最大值是2+1. 法二 由a ·b =0,得a ⊥b .建立如图所示的平面直角坐标系,则OA →=a =(1,0),OB →=b=(0,1).设c =OC →=(x ,y ), 由|c -a -b |=1, 得(x -1)2+(y -1)2=1,所以点C 在以(1,1)为圆心,1为半径的圆上. 所以|c |max =2+1.法三 易知|a +b |=2,|c -a -b |=|c -(a +b )| ≥||c |-|a +b ||=||c |-2|, 由已知得||c |-2|≤1,所以|c |≤1+2,故|c |max =2+1.感悟升华 1.两个向量垂直的充要条件是两向量的数量积为0,若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.若题目给出向量的坐标,可直接运用公式cos θ=x1x2+y1y2x21+y21·x22+y22求解.没有坐标时可用公式cos θ=a·b|a||b|.研究向量夹角应注意“共起点”,注意取值范围是[0,π].3.向量模的计算主要利用a2=|a|2,把向量模的运算转化为数量积运算,有时借助几何图形的直观性,数形结合,提高解题效率.【训练1】(1)(多选题)(2021·湖南三校联考)已知a,b是单位向量,且a+b=(1,-1),则()A.|a+b|=2B.a与b垂直C.a与a-b的夹角为π4 D.|a-b|=1(2)已知单位向量a,b的夹角为θ,且tan θ=12,若向量m=5a-3b,则|m|=()A.2B.3C.26D.2或26答案(1)BC(2)A解析(1)|a+b|=12+(-1)2=2,故A错误;因为a,b是单位向量,所以|a|2+|b|2+2a·b=1+1+2a·b=2,得a·b=0,a与b 垂直,故B正确;|a-b|2=a2+b2-2a·b=2,|a-b|=2,故D错误;cos〈a,a-b〉=a·(a-b)|a||a-b|=a2-a·b1×2=22,所以a与a-b的夹角为π4,故C正确.故选BC.(2)依题意|a|=|b|=1,又θ为a,b的夹角,且tan θ=1 2,∴θ为锐角,且cos θ=2sin θ,又sin2θ+cos2θ=1,从而cos θ=25 5.由m=5a-3b,∴m2=(5a-3b)2=5a2+9b2-65a·b=2,因此|m|= 2.考点三 平面向量的综合应用【例3】 (1)(2020·天津卷)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD→=λBC →,AD →·AB →=-32,则实数λ的值为__________;若M ,N 是线段BC 上的动点,且|MN→|=1,则DM →·DN →的最小值为__________.答案 16 132解析 因为AD→=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD→·AB →=|AD →|·|AB →|·cos 120°=-32, 解得|AD→|=1. 因为AD→,BC →同向,且BC =6, 所以AD→=16BC →,即λ=16. 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系. 如图,设M (a ,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝ ⎛⎭⎪⎫1,332,所以DM →=⎝ ⎛⎭⎪⎫a -1,-332, DN→=⎝⎛⎭⎪⎫a ,-332, 所以DM→·DN →=a 2-a +274=⎝ ⎛⎭⎪⎫a -122+132. 所以当a =12时,DM→·DN →取得最小值132.(2)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C . ①求角C 的大小;②若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 ①m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,cos C =12. 又因为C ∈(0,π),故C =π3.②由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA→·(AB →-AC →)=18,所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36,所以c =6.感悟升华 1.以平面几何为载体的向量问题有两种基本解法:(1)基向量法:恰当选择基底,结合共线定理、平面向量的基本定理进行向量运算.(2)坐标法:如果图形比较规则,可建立平面坐标系,把有关点与向量用坐标表示,从而使问题得到解决.2.解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题.【训练2】 (1)(2020·全国Ⅲ卷)在平面内,A ,B 是两个定点,C 是动点.若AC →·BC →=1,则点C 的轨迹为( ) A.圆B.椭圆C.抛物线D.直线(2)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若AB →·AC →=6AO →·EC →,则AB AC 的值是________. 答案 (1)A (2)3解析 (1)以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设点A ,B 分别为(-a ,0),(a ,0)(a >0),点C 为(x ,y ),则AC→=(x +a ,y ),BC→=(x -a ,y ),所以AC →·BC →=(x -a )(x +a )+y ·y =x 2+y 2-a 2=1,整理得x 2+y 2=a 2+1.因此点C 的轨迹为圆.故选A.(2)法一 如图,过点D 作DF ∥CE 交AB 于点F ,由D 是BC 的中点,可知F 为BE 的中点.又BE =2EA ,则知EF =EA ,从而可得AO =OD ,则有AO→=12AD →=14(AB →+AC →),EC →=AC →-AE →=AC →-13AB →,所以6AO →·EC →=32(AB →+AC →)·⎝ ⎛⎭⎪⎫AC →-13AB →=32AC →2-12AB →2+AB →·AC →=AB→·AC →,整理可得AB →2=3AC →2,所以AB AC= 3.法二 以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.设E (1,0),C (a ,b ),则B (3,0),D ⎝ ⎛⎭⎪⎫a +32,b 2.⎭⎪⎬⎪⎫l AD :y =ba +3x ,l CE :y =ba -1(x -1)⇒O ⎝ ⎛⎭⎪⎫a +34,b 4. ∵AB→·AC →=6AO →·EC →, ∴(3,0)·(a ,b )=6⎝ ⎛⎭⎪⎫a +34,b 4·(a -1,b ),即3a =6⎣⎢⎡⎦⎥⎤(a +3)(a -1)4+b 24,∴a 2+b 2=3,∴AC = 3.∴AB AC =33= 3.平面向量与三角形的“四心”向量具有数形二重性,借助几何直观研究向量,优化解题过程,进而提高解题效率.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA→|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA→·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.一、平面向量与三角形的“重心”【例1】已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心B.△ABC 的垂心C.△ABC 的重心D.AB 边的中点答案 C解析 取AB 的中点D ,则2OD→=OA →+OB →,∵OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 二、平面向量与三角形的“内心”问题【例2】在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063 B.1463 C.43D.62答案 B解析 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 三、平面向量与三角形的“外心”问题【例3】(2020·安庆质检)在△ABC 中,O 为其外心,OA →·OC →=3,且3OA →+7OB →+OC →=0,则边AC 的长是________. 答案3-1解析 设△ABC 外接圆的半径为R , ∵O 为△ABC 的外心, ∴|OA→|=|OB →|=|OC →|=R , 又3OA→+7OB →+OC →=0, 则3OA→+OC →=-7OB →, ∴3OA→2+OC →2+23OA →·OC →=7OB →2, 从而OA→·OC →=32R 2, 又OA→·OC →=3,所以R 2=2, 又OA→·OC →=|OA →||OC →|cos ∠AOC =R 2cos ∠AOC =3, ∴cos ∠AOC =32,∴∠AOC =π6, 在△AOC 中,由余弦定理得 AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-2 3. 所以AC =3-1.四、平面向量与三角形的“垂心”问题【例4】已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心 B.垂心C.外心D.内心答案 B解析 因为OP→=OA →+λ(AB →|AB →|cos B +AC→|AC →|cos C),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以BC→·AP →=BC →·λ(AB →|AB →|cos B +AC→|AC →|cos C)=λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.A 级 基础巩固一、选择题1.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A.-92 B.0C.3D.152答案 C解析 因为2a -3b =(2k -3,-6),(2a -3b )⊥c ,所以(2a -3b )·c =2(2k -3)-6=0,解得k =3,选C.2.(2020·新乡质检)已知向量a =(0,2),b =(23,x ),且a 与b 的夹角为π3,则x =( ) A.-2B.2C.1D.-1答案 B解析 由题意得a ·b |a ||b |=2x 2·12+x 2=12, 则2x =12+x 2,解之得x =2,x =-2(舍去).3.(2021·长沙调研)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE→=-7DE →,3BF →=FC →,则AF →·BE →=( )A.11B.10C.-10D.-11答案 D解析 以A 为坐标原点,建立直角坐标系如图.则A (0,0),B (4,0),E (1,4),F (5,1),所以AF →=(5,1),BE→=(-3,4),则AF →·BE →=-15+4=-11. 4.若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( ) A.π3 B.2π3C.5π6D.π6答案 D解析 设|b |=1,则|a +b |=|a -b |=2. 由|a +b |=|a -b |,得a ·b =0,故以a 、b 为邻边的平行四边形是矩形,且|a |=3, 设向量a +b 与a 的夹角为θ,则cos θ=a ·(a +b )|a |·|a +b |=a 2+a ·b |a |·|a +b |=|a ||a +b |=32,又0≤θ≤π,所以θ=π6.5.(多选题)(2021·武汉调研)如图,点A ,B 在圆C 上,则AB →·AC →的值( )A.与圆C 的半径有关B.与圆C 的半径无关C.与弦AB 的长度有关D.与点A ,B 的位置有关 答案 BC解析 如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB→·AC →的值与圆C 的半径无关,只与弦AB 的长度有关,故选BC. 6.(多选题)(2020·青岛调研)在Rt △ABC 中,CD 是斜边AB 上的高,如图,则下列等式成立的是( ) A.|AC→|2=AC →·AB → B.|BC→|2=BA →·BC → C.|AB→|2=AC →·CD → D.|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2答案 ABD解析 因为AC→·AB →=|AC →||AB →|cos A =|AC →||AC →|=|AC →|2,选项A 正确;因为BA→·BC →=|BA →||BC →|cos B =|BC →||BC →|=|BC →|2,选项B 正确; 由AC→·CD →=|AC →||CD →|·cos(π-∠ACD )<0,|AB →|2>0,知选项C 错误; 由题图可知Rt △ACD ∽Rt △ABC ,所以|AC→||BC →|=|AB →||CD →|,结合选项A ,B 可得|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2,选项D 正确.故选ABD.二、填空题7.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉=________. 答案 23解析 由题意,得cos 〈a ,c 〉=a ·(2a -5b )|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23.8.(2020·全国Ⅰ卷)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 如图,设OA →=a ,OB →=b ,利用平行四边形法则得OC →=a +b ,∵|a |=|b |=|a +b |=1,∴△OAC 为正三角形,∴|BA →|=|a -b |=2×32×|a |= 3.9.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+MD →|的最小值为________.答案 3解析 以BC 所在直线为x 轴,BA 所在直线为y 轴建立如图所示的平面直角坐标系,设A (0,a ),M (0,b ),且0≤b ≤a ,由于BC =2,AD =1. ∴C (2,0),D (1,a ).则MC →=(2,-b ),MD →=(1,a -b ), ∴MC→+MD →=(3,a -2b ). 因此|MC→+MD →|=9+(a -2b )2, ∴当且仅当a =2b 时,|MC →+MD →|取得最小值3.三、解答题10.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0,于是tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.B 级 能力提升11.(2021·石家庄调研)已知向量a ,b 满足|a |=1,(a -b )⊥(3a -b ),则a 与b 的夹角的最大值为( ) A.π6 B.π3C.2π3D.5π6答案 A解析 设a 与b 的夹角为θ,θ∈[0,π]. 因为(a -b )⊥(3a -b ),所以(a -b )·(3a -b )=0. 整理可得3a 2-4a ·b +b 2=0, 即3|a |2-4a ·b +|b |2=0.将|a |=1代入3|a |2-4a ·b +|b |2=0, 可得3-4|b |cos θ+|b |2=0, 整理可得cos θ=34|b |+|b |4≥234|b |×|b |4=32,当且仅当34|b |=|b |4,即|b |=3时取等号, 故cos θ≥32,结合θ∈[0,π], 可知θ的最大值为π6.12.(2021·重庆联考)已知点O 为坐标原点,向量OA →=(1,2),OB →=(x ,y ),且OA→·OB →=10,则|OB →|的最小值为________. 答案 25解析 由题意知|OB→|=x 2+y 2,x +2y =10,∴点B 在直线x +2y -10=0上,∴|OB→|的最小值为点O 到直线x +2y -10=0的距离. 则|OB →|min=|0+0-10|12+22=105=2 5. 13.(2020·浙江卷)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤ 2.设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是__________. 答案 2829解析 因为单位向量e 1,e 2满足|2e 1-e 2|≤2, 所以|2e 1-e 2|2=5-4e 1·e 2≤2,即e 1·e 2≥34. 因为a =e 1+e 2,b =3e 1+e 2,a ,b 的夹角为θ,所以cos 2θ=(a ·b )2|a |2|b |2=[(e 1+e 2)·(3e 1+e 2)]2|e 1+e 2|2·|3e 1+e 2|2=(4+4e 1·e 2)2(2+2e 1·e 2)(10+6e 1·e 2)=4+4e 1·e 25+3e 1·e 2. 不妨设t =e 1·e 2,则t ≥34,cos 2θ=4+4t 5+3t ,又y =4+4t 5+3t 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增,所以cos 2θ≥4+35+94=2829, 所以cos 2θ的最小值为2829.14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ), sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2·5c ·⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7(舍去),故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.。
专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视
专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。
2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)
专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。
高三数学一轮复习平面向量的数量积及应用教案
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2017年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
法二: · = ·( + )
= ·( + + )
=2 · + ·
=2| |·| |·cos ,
=2×| |·| |·
=2×| |2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cosθ求解;
(2)已知向量a,b的坐标,利用数量积的坐标形式求解.
以题试法
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)的一个充分不必要条件是( )
A.x=0或2 B.x=2
C.x=1 D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),向量d如图所示,则( )
A.存在λ>0,使得向量c与向量d垂直
B.存在λ>0,使得向量c与向量d夹角为60°
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
二.典例分析
(1)若向量a=(1, 1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=( )
A.6B.5
C.4D.3
(2) (2012·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 · =________.
平面向量的数量积与应用
平面向量的数量积与应用平面向量的数量积是向量运算中的一种重要概念,可以帮助我们理解和解决许多与向量相关的问题。
本文将介绍平面向量的数量积的定义和性质,并探讨其在几何和物理中的应用。
1. 数量积的定义平面向量的数量积又称为点积或内积,用符号"·"表示。
对于平面上任意两个向量A和B,其数量积的定义如下:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和B的模长,θ为A与B之间的夹角。
2. 数量积的性质(1)交换律:A·B = B·A(2)分配律:(A + B)·C = A·C + B·C(3)常数乘法:(kA)·B = k(A·B),其中k为实数(4)数量积与向量的垂直关系:A·B = 0 当且仅当A与B垂直3. 应用一:向量的夹角与正交投影通过数量积的定义,我们可以得到向量A与B之间的夹角公式:cosθ = A·B / (|A||B|)这个公式在几何中的应用非常广泛,其中一个重要的应用就是求解向量的正交投影。
给定向量A和B,向量B在A上的正交投影向量的长度可以利用数量积公式求得:projA(B) = (B·A / |A|^2) * AprojA(B)表示向量B在A上的正交投影向量。
4. 应用二:向量的工作与功率在物理学中,向量的数量积有许多重要应用,其中之一是描述力的方向与物体位移方向的关系。
当力F作用于物体上时,通过点积可以得到该力对物体作用的工作W:W = F·d其中,d表示物体位移的向量。
如果力与位移方向相同,则工作为正值;如果力与位移方向相反,则工作为负值;如果力与位移方向垂直,则工作为零。
同时,功率P也可以利用数量积表示:P = F·v其中,v表示物体的速度向量。
5. 应用三:向量的投影与图形的面积利用数量积,我们还可以求解平面上某个凸多边形的面积。
2023届高三新高考数学试题一轮复习专题7.3平面向量数量积及应用教案讲义(Word)
7.3 平面向量数量积及应用课标要求考情分析核心素养1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.新高考3年考题 题 号 考 点 数学建模 数学运算 直观想象 逻辑推理2022(Ⅱ)卷4利用向量数量积的坐标运算求夹角2021(Ⅰ)卷 10 向量数量积的坐标运算,向量的模2021(Ⅱ)卷 15 向量数量积的运算2020(Ⅰ)卷7向量数量积的运算和投影1.向量的夹角定义范围 共线与垂直图示已知两个非零向量a ⃗和b ⃗⃗,作OA ⃗⃗⃗⃗⃗⃗=a ⃗,OB ⃗⃗⃗⃗⃗⃗=b ⃗⃗,则∠AOB =θ(0≤θ≤π)叫做向量a ⃗与b ⃗⃗的夹角.[0,π]a ⃗//b⃗⃗?θ=0或π; a ⃗⊥b⃗⃗?θ=π2向量夹角:共起点定义已知两个非零向量a ⃗与b ⃗⃗,它们的夹角为θ,我们把数量|a ⃗||b ⃗⃗|cosθ叫做a ⃗与b ⃗⃗的数量积,记作a ⃗?b ⃗⃗. 即a ⃗?b ⃗⃗=|a ⃗||b⃗⃗|cosθ. 特殊情况 0⃗⃗a ⃗=0; a ⃗⊥b ⃗⃗?a ⃗?b⃗⃗=0 运算律a ⃗?b ⃗⃗=b ⃗⃗?a ⃗(交换律);λa ⃗?b ⃗⃗=λ(a ⃗?b ⃗⃗)=a ⃗?(λb ⃗⃗)(结合律);(a ⃗+b ⃗⃗)?c ⃗=a ⃗?c ⃗+b ⃗⃗?c ⃗(分配律)运算性质(a ⃗+b ⃗⃗)2=a ⃗2+2a ⃗?b ⃗⃗+b ⃗⃗2; (a ⃗+b ⃗⃗)(a ⃗−b ⃗⃗)=a ⃗2−b⃗⃗2 (a ⃗+b ⃗⃗+c ⃗)2=a ⃗2+b ⃗⃗2+c ⃗2+2a ⃗?b ⃗⃗+2b ⃗⃗?c ⃗+2c ⃗?a ⃗如图,设a ⃗,b ⃗⃗是两个非零向量,AB ⃗⃗⃗⃗⃗⃗=a ⃗, CD ⃗⃗⃗⃗⃗⃗=b ⃗⃗,考虑如下变换:过AB ⃗⃗⃗⃗⃗⃗的起点A 和终点B ,分别作CD ⃗⃗⃗⃗⃗⃗所在直线的垂线,垂足分别为A 1、B 1,得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗,称上述变换为向量a ⃗向向量b ⃗⃗投影, A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗叫做向量a ⃗在向量b ⃗⃗上的投影向量.若向量a ⃗,b ⃗⃗的夹角为θ,则向量a ⃗在向量b ⃗⃗上的投影向量为|a ⃗⃗|cosθ|b⃗⃗|b ⃗⃗4.平面向量数量积的性质及坐标表示已知非零向量a ⃗=(x 1,y 1),b ⃗⃗=(x 2,y 2),a ⃗,b⃗⃗的夹角为θ.几何表示坐标表示数量积 a ⃗?b ⃗⃗=|a ⃗||b ⃗⃗|cosθ a ⃗?b ⃗⃗=x 1x 2+y 1y 2 夹角cosθ=a ⃗?b⃗⃗|a ⃗||b ⃗⃗|cosθ=x 1x 2+y 1y 2√x 12+y 12?√x 22+y 22模 |a ⃗|=√a ⃗2 |a ⃗|=√x 12+y 12 垂直 a ⃗⊥b ⃗⃗a ⃗?b ⃗⃗=0 a ⃗⊥b ⃗⃗?a ⃗?b⃗⃗=x 1x 2+y 1y 2=0 共线a ⃗//b ⃗⃗a ⃗=λb ⃗⃗(λ∈R ) a ⃗//b⃗⃗?x 1y 2=x 2y 1 不等关系a ⃗⃗,b⃗⃗共线时等号成立 |a ⃗?b ⃗⃗|≤|a ⃗||b⃗⃗| x 1x 2+y 1y 2≤√x 12+y 12?√x 22+y 221.向量模长不等式:||a ⃗|−|b ⃗⃗||≤|a ⃗±b ⃗⃗|≤|a ⃗|+|b ⃗⃗|; |a ⃗?b ⃗⃗|≤|a ⃗||b⃗⃗| 2.两个向量a ⃗,b ⃗⃗的夹角为锐角?a ⃗?b ⃗⃗>0且a ⃗,b ⃗⃗不共线;两个向量a ⃗,b ⃗⃗的夹角为钝角?a ⃗?b ⃗⃗<0且a ⃗,b ⃗⃗不共线1.【P24 T21】在三角形ABC 中,已知|AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗|=|AB ⃗⃗⃗⃗⃗⃗−AC ⃗⃗⃗⃗⃗⃗|,|AB ⃗⃗⃗⃗⃗⃗|=2,点G 满足GA ⃗⃗⃗⃗⃗⃗+GB ⃗⃗⃗⃗⃗⃗+GC ⃗⃗⃗⃗⃗⃗=0⃗⃗,则向量BG⃗⃗⃗⃗⃗⃗在向量BA ⃗⃗⃗⃗⃗⃗方向上的投影向量为() A. 13BA ⃗⃗⃗⃗⃗⃗ B. 23BA ⃗⃗⃗⃗⃗⃗ C. 2BA ⃗⃗⃗⃗⃗⃗ D. 3BA⃗⃗⃗⃗⃗⃗ 2.【P41 T3】设作用于同一点的三个力F 1⃗⃗⃗⃗,F 2⃗⃗⃗⃗⃗,F 3⃗⃗⃗⃗⃗处于平衡状态,若|F 1⃗⃗⃗⃗|=1,|F 2⃗⃗⃗⃗⃗|=2,且F 1→与F 2⃗⃗⃗⃗⃗的夹角为23π,如图所示.(1)求F 3→的大小; (2)求F 2→与F 3→的夹角.考点一 平面向量数量积的运算 【方法储备】1.平面向量数量积的运算方法2.已知数量积求参数已知向量的数量积,用上述方法展开,得出关于参数的方程,进而求出参数.角度1投影向量 【典例精讲】例1.(2022·安徽省期中)已知|a ⃗|=3,|b ⃗⃗|=5,a ⃗·b ⃗⃗=−12,且e ⃗是与b ⃗⃗方向相同的单位向量,则a ⃗在b ⃗⃗上的投影向量为.【名师点睛】本题考查向量的夹角、向量的投影,属于中档题.设a⃗与b ⃗⃗的夹角为θ,求出cos θ,根据投影向量的概念,即可求出结果. 【靶向训练】练1-1(2021·江苏省无锡市期末)设平面向量a ⃗,b ⃗⃗满足|a ⃗|=12,b ⃗⃗=(2,√5),a ⃗?b ⃗⃗=18,则b ⃗⃗在a ⃗方向上的投影向量为() A. 12b⃗⃗ B. 18b⃗⃗ C. 12a ⃗ D. 18a⃗ 练1-2(2022·陕西省模拟)已知△ABC 的外接圆圆心为O ,且AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗=2AO ⃗⃗⃗⃗⃗⃗,|AB ⃗⃗⃗⃗⃗⃗|=|OA ⃗⃗⃗⃗⃗⃗|,则CA ⃗⃗⃗⃗⃗⃗在CB ⃗⃗⃗⃗⃗⃗上的投影向量为() A. 14CB ⃗⃗⃗⃗⃗⃗ B. √32CB ⃗⃗⃗⃗⃗⃗ C. 34CB ⃗⃗⃗⃗⃗⃗ D. 12CB ⃗⃗⃗⃗⃗⃗ 角度2平面向量数量积的概念及运算 【典例精讲】例2.(2022·山东省潍坊市模拟)在梯形ABCD 中,AB//DC ,AD =BC =2,AB =4,∠ABC =π3,P 是BC 的中点,则AB ⃗⃗⃗⃗⃗⃗·AP⃗⃗⃗⃗⃗⃗= 【名师点睛】本题考查了平面向量的线性运算以及数量积的运算问题,把所求向量转化,再结合数量积的运算即可求解结论.【靶向训练】练1-3(2022·江西省模拟)已知两个单位向量a ⃗,b ⃗⃗的夹角为60°,c ⃗=ta ⃗+(1−t)b ⃗⃗.若c ⃗?b ⃗⃗=0,则t =.练1-4(2022·北京市期末)已知△ABC 是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF⃗⃗⃗⃗⃗⃗·BC ⃗⃗⃗⃗⃗⃗的值为() A. −58B. 14C. 18D. 118角度3平面向量数量积的坐标运算 【典例精讲】例3.(2021·新课标Ⅰ卷.多选)已知O 为坐标原点,点P 1(cosα,sinα),P 2(cosβ,−sinβ), P 3(cos(α+β),?sin(α+β)),A(1,?0),则() A. |OP 1⃗⃗⃗⃗⃗⃗⃗⃗|?=?|OP 2⃗⃗⃗⃗⃗⃗⃗⃗| B. |AP 1⃗⃗⃗⃗⃗⃗⃗⃗|?=?|AP 2⃗⃗⃗⃗⃗⃗⃗⃗|C. OA ⃗⃗⃗⃗⃗⃗?OP 3⃗⃗⃗⃗⃗⃗⃗⃗=OP 1⃗⃗⃗⃗⃗⃗⃗⃗?OP 2⃗⃗⃗⃗⃗⃗⃗⃗D. OA ⃗⃗⃗⃗⃗⃗?OP 1⃗⃗⃗⃗⃗⃗⃗⃗=OP 2⃗⃗⃗⃗⃗⃗⃗⃗?OP 3⃗⃗⃗⃗⃗⃗⃗⃗【名师点睛】本题考查平面向量的坐标运算,考查三角函数的恒等变形公式,属于中档题. 根据平面向量的坐标运算结合三角函数公式进行化简逐个判断即可.【靶向训练】练1-5(2022·辽宁省大连市模拟)设向量a ⃗=(1,m),b ⃗⃗=(2,1),且b ⃗⃗?(2a ⃗⃗+b ⃗⃗)=7,则m =. 练1-6(2022·江西省萍乡市期末)已知向量m ⃗⃗⃗⃗=(2cosωx,−1),n ⃗⃗=(√3sinωx −cosωx,1),其中ω>0,函数f(x)=m⃗⃗⃗⃗?n ⃗⃗+2,且f(x)的最小正周期为π2,则f(x)的解析式为. 考点二 平面向量的夹角、模长、垂直、共线问题 【方法储备】1.求平面向量模的方法2.求平面向量夹角的方法3.向量的垂直、共线问题(1)两个向量垂直的充要条件是两向量的数量积为0,即:a ⃗=(x 1,y 1), b ⃗⃗=(x 2,y 2),则a ⃗⊥b ⃗⃗?a ⃗·b⃗⃗=0?x 1x 2+y 1y 2=0. 应认识到此充要条件对含零向量在内的所有向量均成立,因为可视零向量与任意向量垂直. (2)利用向量垂直或平行的条件构造方程或函数是求参或最值问题最常用的解题技巧.【特别提醒】在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.角度1平面向量的模 【典例精讲】例4.(2022·山东省模拟)已知向量a ⃗⃗,b ⃗⃗夹角为45°,且|a ⃗⃗|=1,|2a ⃗⃗−b⃗⃗|=√10,则|b ⃗⃗|=. 【名师点睛】利用数量积的性质即可得出.本题考查了数量积的性质,向量模的计算,属于基础题.【靶向训练】练2-1(2022·湖北省咸宁市期末)已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=|b ⃗⃗|=5,且|a ⃗⃗+b ⃗⃗|=6,则|a ⃗⃗−b⃗⃗|=() A. 6B. 8C. 36D. 64练2-2(2022·.山东省济南市期末.多选) 若平面向量a ⃗⃗、b ⃗⃗、c ⃗⃗两两的夹角相等,且|a ⃗⃗|=1,|b ⃗⃗|=2,|c ⃗⃗|=3,则|a ⃗⃗+b ⃗⃗+c ⃗⃗|=()A. √3B. 3C. 5D. 6角度2平面向量的夹角 【典例精讲】例 5.(2022·江西省模拟)若非零向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=2√23|b ⃗⃗|,且(a ⃗⃗−b ⃗⃗)⊥(3a ⃗⃗+2b⃗⃗),则a ⃗⃗与b ⃗⃗的夹角为()A. π4 B. π2C. 3π4D. π【名师点睛】根据向量垂直的等价条件以及向量数量积的应用进行求解即可.本题主要考查向量夹角的求解,利用向量数量积的应用以及向量垂直的等价条件是解决本题的关键.【靶向训练】练2-3(2021·湖北省武汉市期末)在平行四边形ABCD 中,AB =3,AD =2,AP ⃗⃗⃗⃗⃗⃗=13AB ⃗⃗⃗⃗⃗⃗,AQ ⃗⃗⃗⃗⃗⃗=12AD ⃗⃗⃗⃗⃗⃗⃗, 若CP ⃗⃗⃗⃗⃗⃗CQ ⃗⃗⃗⃗⃗⃗=12,则∠ADC =()A. 5π6B. 3π4C. 2π3D. π2练2-4(2022·江苏省南通市期末)已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗+b ⃗⃗|=|a ⃗⃗−b ⃗⃗|=2√33|a ⃗⃗|,则向量<a ⃗⃗+b ⃗⃗,a⃗⃗>=()A. 5π6B. 2π3C. π3D. π6角度3平面向量的垂直 【典例精讲】例6.(2021·浙江省温州市模拟)若|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗与b ⃗⃗的夹角为60°,若(3a ⃗⃗+5b ⃗⃗)⊥(m a ⃗⃗−b ⃗⃗),则m 的值为【名师点睛】本题考查向量数量积的计算公式,两向量垂直的充要条件是两向量的数量积为0.由条件可求得a ⃗⃗?b ⃗⃗=1,根据两向量垂直,则两向量的数量积为0,从而会得到关于m 的方程,解方程即可求出m .【靶向训练】练2-5(2021·山东省模拟)已知向量a ⃗⃗与b ⃗⃗的夹角是π3,且|a ⃗⃗|=1,|b ⃗⃗|=4,若(3a ⃗⃗+λb ⃗⃗)⊥a ⃗⃗,则实数λ=()A. −32B. 32C. −2D. 2练2-6(2022·上海市期末)已知a 、b 都是非零向量,且a ⃗⃗+3b ⃗⃗与7a ⃗⃗−5b ⃗⃗垂直,a ⃗⃗−4b ⃗⃗与7a ⃗⃗−2b ⃗⃗垂直,则a ⃗⃗与b ⃗⃗的夹角为.考点三 平面向量中的最值、范围问题 【方法储备】1.求最值、范围问题的思路(1)将向量的最值、范围问题转化为平面几何的最值、范围问题,利用平面几何的知识求解; (2)将向量坐标化,转化为函数、方程、不等式的问题解决.【典例精讲】例7.(2022·湖北省黄冈市模拟)已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB ⃗⃗⃗⃗⃗⃗PC⃗⃗⃗⃗⃗⃗的最大值为() A. 16+16√55B. 16+8√55C. 165D. 565【名师点睛】本题考查向量数量积的计算,涉及直线与圆的位置关系.根据题意,设AD 为斜边BC 上的高,求出AD 的值,连接PA ,可得PB ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗=(PA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)?(PA ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=PA ⃗⃗⃗⃗⃗⃗2+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=165+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗),分析可得当PA ⃗⃗⃗⃗⃗⃗与(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)同向时,PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)取得最大值,据此计算可得答案.【靶向训练】练3-1(2022·湖北省模拟)已知梯形ABCD 中,∠B =π3,AB =2,BC =4,AD =1,点P ,Q 在线段BC 上移动,且PQ =1,则DP ⃗⃗⃗⃗⃗⃗DQ⃗⃗⃗⃗⃗⃗⃗的最小值为()A. 1B. 112C. 132D. 114练3-2(2022·江苏省宿迁市期末)在ΔABC 中,角A,B,C 的对边分别为a,b,c ,若b(tanA +tanB)=2ctanB ,且G 是ΔABC 的重心,AB ⃗⃗⃗⃗⃗⃗AC⃗⃗⃗⃗⃗⃗=2,则|AG ⃗⃗⃗⃗⃗⃗|的最小值为.核心素养系列 直观想象、数学运算——平面向量与极化恒等式【方法储备】1.极化恒等式:a ⃗⃗?b ⃗⃗=14[(a ⃗⃗+b ⃗⃗)2−(a ⃗⃗−b ⃗⃗)2] 三角形模型:在△ABC 中,D 为BC 的中点,则AB ⃗⃗⃗⃗⃗⃗BC ⃗⃗⃗⃗⃗⃗=|AD ⃗⃗⃗⃗⃗⃗|2−|BD ⃗⃗⃗⃗⃗⃗⃗|2=|AD ⃗⃗⃗⃗⃗⃗|2−|CD ⃗⃗⃗⃗⃗⃗|2=|AD ⃗⃗⃗⃗⃗⃗|2−14|BC ⃗⃗⃗⃗⃗⃗|2平行四边形模型:在平行四边形ABCD 中:则AB ⃗⃗⃗⃗⃗⃗AD ⃗⃗⃗⃗⃗⃗=14(|AC⃗⃗⃗⃗⃗⃗|2−|BD ⃗⃗⃗⃗⃗⃗⃗|2) 2.利用极化恒等式求数量积问题的步骤:【典例精讲】例8.(2022·山东省模拟) 如图,在△ABC 中,AC =6,AB =8,∠BAC =π2,D 为边BC 的中点. (1)求AD⃗⃗⃗⃗⃗⃗⃗?CB ⃗⃗⃗⃗⃗⃗的值; (2)若点P 满足CP →=λCA →(λ∈R),求PB ⃗⃗⃗⃗⃗⃗PC⃗⃗⃗⃗⃗⃗的最小值; (3)若点P 在∠BAC 的角平分线上,且满足PA →=mPB →+nPC →(m,n ∈R).若1≤n ≤2,求|PA⃗⃗⃗⃗⃗⃗|的取值范围. 【名师点睛】本题考查平面向量的数量积运算,考查化归与转化,考查运算求解能力,是中档题.(1)由极化恒等式及向量的加减运算求解;(2)设|AD ⃗⃗⃗⃗⃗⃗⃗|=3m >0,|BC ⃗⃗⃗⃗⃗⃗|=2n >0,由已知结合极化恒等式求解m 与n 值,进一步可得EB⃗⃗⃗⃗⃗⃗?EC ⃗⃗⃗⃗⃗⃗的值. 【靶向训练】练4-1(2021·湖北省模拟)如图,已知P 是半径为3,圆心角为π2的一段圆弧AB ⏜上一点,AB ⃗⃗⃗⃗⃗⃗=3BC ⃗⃗⃗⃗⃗⃗,则PA ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗的最小值是()A. −6B. 6−9√2C. −8D. 6−6√5练4-2(2022·福建省龙岩市期中)阅读下一段文字:(a ⃗+b ⃗⃗)2=a ⃗2+2a ⃗?b ⃗⃗+b ⃗⃗2,(a ⃗−b ⃗⃗)2=a ⃗2−2a ⃗?b ⃗⃗+b ⃗⃗2,两式相减得(a ⃗+b ⃗⃗)2−(a ⃗−b ⃗⃗)2=4a ⃗?b ⃗⃗?a ⃗?b ⃗⃗=14[(a ⃗+b ⃗⃗)2−(a ⃗−b ⃗⃗)2],我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若AD =BC =3,求AB⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗的值; (2)若AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=27,FB ⃗⃗⃗⃗⃗⃗?FC ⃗⃗⃗⃗⃗⃗=−5,求EB⃗⃗⃗⃗⃗⃗?EC ⃗⃗⃗⃗⃗⃗的值.易错点1.投影向量理解错误例9.(2022·湖北省武汉市期末.多选)若A i (i =1,2,…,n)是△AOB 所在的平面内的点,且OA i ⃗⃗⃗⃗⃗⃗⃗⃗?OB ⃗⃗⃗⃗⃗⃗⃗=OA⃗⃗⃗⃗⃗⃗?OB ⃗⃗⃗⃗⃗⃗⃗.下面给出的四个命题中,其中正确的是() A. |OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|+|OA 2⃗⃗⃗⃗⃗⃗⃗⃗⃗|+⋯+|OA n ⃗⃗⃗⃗⃗⃗⃗⃗⃗|=|OA ⃗⃗⃗⃗⃗⃗|B. AA i ⃗⃗⃗⃗⃗⃗⃗⃗?OB ⃗⃗⃗⃗⃗⃗⃗=0C. 点A 、A 1、A 2…A n 一定在一条直线上D. OA ⃗⃗⃗⃗⃗⃗、OA i ⃗⃗⃗⃗⃗⃗⃗⃗在向量OB ⃗⃗⃗⃗⃗⃗⃗方向上的投影数量一定相等易错点2.向量夹角定义理解错误例10.(2021·辽宁省期中)已知|a ⃗⃗|=√2,|b ⃗⃗|=4,当b ⃗⃗⊥(4a ⃗⃗−b ⃗⃗)时,向量a ⃗⃗与b ⃗⃗的夹角为()A. π6 B. π4 C. 2π3 D. 3π4易错点3.平面向量的运算律运用错误例11.(2022·江苏省南通市模拟.多选)关于平面向量a ⃗⃗,b ⃗⃗,c⃗⃗,下列说法不正确的是() A. 若a ⃗⃗?c ⃗⃗=b ⃗⃗?c ⃗⃗,则a ⃗⃗=b ⃗⃗B. (a ⃗⃗+b ⃗⃗)?c ⃗⃗=a ⃗⃗?c ⃗⃗+b ⃗⃗?c ⃗⃗C. 若a ⃗⃗2=b ⃗⃗2,则a ⃗⃗?c ⃗⃗=b ⃗⃗?c ⃗⃗D. (a ⃗⃗?b ⃗⃗)?c ⃗⃗=(b ⃗⃗?c ⃗⃗)?a ⃗⃗易错点4.混淆平面向量共线、垂直的坐标关系例12.(2022·福建省名校联考.多选)已知向量a ⃗⃗=(−1,2),b ⃗⃗=(1,m),则()A. 若a ⃗⃗与b ⃗⃗垂直,则m =12B. 若a ⃗⃗//b ⃗⃗,则m 的值为−2C. 若|a ⃗⃗|=|b ⃗⃗|,则m =2D. 若m =3,则a ⃗⃗与b ⃗⃗的夹角为45°答案解析【教材改编】1.【解析】在△ABC 中,∵|AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗|=|AB ⃗⃗⃗⃗⃗⃗−AC⃗⃗⃗⃗⃗⃗|, ∴AB⃗⃗⃗⃗⃗⃗2+2AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗2=AB ⃗⃗⃗⃗⃗⃗2−2AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗2,∴AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=0,即AB ⊥AC , 点G 满足GA ⃗⃗⃗⃗⃗⃗+GB ⃗⃗⃗⃗⃗⃗+GC ⃗⃗⃗⃗⃗⃗=0⃗⃗,则G 为△ABC 的重心,设AC 的中点为D ,∴向量BG ⃗⃗⃗⃗⃗⃗在向量BA ⃗⃗⃗⃗⃗⃗方向上的投影向量为:23BA ⃗⃗⃗⃗⃗⃗⃗?BD ⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|, ∵BD ⃗⃗⃗⃗⃗⃗⃗?BA ⃗⃗⃗⃗⃗⃗=(AD ⃗⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗)?BA ⃗⃗⃗⃗⃗⃗=12AC ⃗⃗⃗⃗⃗⃗?BA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗2=AB ⃗⃗⃗⃗⃗⃗2,∴向量BG ⃗⃗⃗⃗⃗⃗在向量BA ⃗⃗⃗⃗⃗⃗方向上的投影向量为:23×AB ⃗⃗⃗⃗⃗⃗⃗2|BA⃗⃗⃗⃗⃗⃗⃗|?BA⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|=23BA⃗⃗⃗⃗⃗⃗, 故答案选:B .2.【解析】 (1)由F 1⃗⃗⃗⃗,F 2⃗⃗⃗⃗⃗,F 3⃗⃗⃗⃗⃗处于平衡状态,知F 1⃗⃗⃗⃗+F 2⃗⃗⃗⃗⃗+F 3⃗⃗⃗⃗⃗=0⃗⃗,∵|F 1⃗⃗⃗⃗|=1,|F 2⃗⃗⃗⃗⃗|=2,且F 1⃗⃗⃗⃗与F 2⃗⃗⃗⃗⃗的夹角为23π, ∴|F 3⃗⃗⃗⃗⃗|=|−F 1⃗⃗⃗⃗−F 2⃗⃗⃗⃗⃗|=√(F 1⃗⃗⃗⃗+F 2⃗⃗⃗⃗⃗)2=√1+4+2×1×2×(−12)=√3;(2)∵F 3⃗⃗⃗⃗⃗=−(F 1⃗⃗⃗⃗+F 2⃗⃗⃗⃗⃗),∴F 3⃗⃗⃗⃗⃗·F 2⃗⃗⃗⃗⃗=−F 1⃗⃗⃗⃗·F 2⃗⃗⃗⃗⃗−F 2⃗⃗⃗⃗⃗·F 2⃗⃗⃗⃗⃗,设F 2⃗⃗⃗⃗⃗与F 3⃗⃗⃗⃗⃗的夹角为θ,∴√3×2×cosθ=−1×2×(−12)−4,解得cosθ=−√32,又θ∈[0,π],∴θ=5π6.即F 2⃗⃗⃗⃗⃗与F 3⃗⃗⃗⃗⃗的夹角为5π6.? 【考点探究】例1.【解析】设a ⃗与b ⃗⃗的夹角为θ,因为|a ⃗|=3,|b ⃗⃗|=5,a ⃗·b ⃗⃗=−12,所以cosθ=a ⃗⃗·b ⃗⃗|a⃗⃗||b ⃗⃗|=−123×5=−45, 因为e ⃗是与b ⃗⃗方向相同的单位向量,所以a ⃗在b ⃗⃗上的投影向量为:|a ⃗|cosθ·e ⃗=3×(−45)e ⃗=−125e ⃗.故答案为−125e ⃗.练1-1.【解析】因为平面向量a ⃗,b ⃗⃗满足|a ⃗|=12,?b ⃗⃗=(2,√5),?a ⃗?b ⃗⃗=18, 所以b ⃗⃗在a ⃗方向上的投影向量是a ⃗⃗?b ⃗⃗|a⃗⃗|×a ⃗⃗|a⃗⃗|=1812×a ⃗⃗12=18a ⃗.故答案选;D .练1-2.【解析】因为2AO ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗,所以O 为BC 中点,又△ABC 外接圆的圆心为O , 所以三角形为以A 为直角顶点的直角三角形, 又|AB ⃗⃗⃗⃗⃗⃗|=|OA ⃗⃗⃗⃗⃗⃗|,所以△ABO 为等边三角形,则∠ABC =60°,∠ACB =30°,所以向量CA⃗⃗⃗⃗⃗⃗在向量CB ⃗⃗⃗⃗⃗⃗上的投影向量为: CA ⃗⃗⃗⃗⃗⃗·CB ⃗⃗⃗⃗⃗⃗|CB⃗⃗⃗⃗⃗⃗|·CB ⃗⃗⃗⃗⃗⃗|CB ⃗⃗⃗⃗⃗⃗|=|CA⃗⃗⃗⃗⃗⃗||CB ⃗⃗⃗⃗⃗⃗|cos30°|CB⃗⃗⃗⃗⃗⃗|2·CB⃗⃗⃗⃗⃗⃗=|CB⃗⃗⃗⃗⃗⃗|cos30°|CB ⃗⃗⃗⃗⃗⃗|cos30°|CB⃗⃗⃗⃗⃗⃗|2·CB ⃗⃗⃗⃗⃗⃗=34CB⃗⃗⃗⃗⃗⃗. 故答案选:C .例2.【解析】∵在梯形ABCD 中,AB//DC ,AD =BC =2,AB =4,∠ABC =π3,P 是BC 的中点,∴AB ⃗⃗⃗⃗⃗⃗?AP ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+BP ⃗⃗⃗⃗⃗⃗)=AB ⃗⃗⃗⃗⃗⃗2+AB ⃗⃗⃗⃗⃗⃗?12BC ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗2−12BA ⃗⃗⃗⃗⃗⃗?BC ⃗⃗⃗⃗⃗⃗=42−12×4×2×12=14,故答案为:14.练1-3.【解析】∵c ⃗=ta ⃗+(1−t)b ⃗⃗,c ⃗?b ⃗⃗=0,∴c ⃗?b ⃗⃗=ta ⃗?b ⃗⃗+(1−t)b ⃗⃗2=0, ∵a ⃗,b ⃗⃗是单位向量,∴|a ⃗|=|b⃗⃗|=1, 又∵a⃗与b ⃗⃗的夹角为60°,∴a ⃗⃗?b ⃗⃗=1×1×cos60°=12, ∴c ⃗?b ⃗⃗=ta ⃗?b⃗⃗+(1−t)b ⃗⃗2=12t +(1−t)=0,∴t =2. 故答案为:2.练1-4.【解析】如图,∵D 、E 分别是边AB 、BC 的中点,且DE =2EF , ∴AF⃗⃗⃗⃗⃗⃗·BC ⃗⃗⃗⃗⃗⃗=(AD ⃗⃗⃗⃗⃗⃗+DF ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=(−12BA ⃗⃗⃗⃗⃗⃗+32DE ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=(−12BA ⃗⃗⃗⃗⃗⃗+34AC ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=(−12BA ⃗⃗⃗⃗⃗⃗+34BC ⃗⃗⃗⃗⃗⃗−34BA ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗ =(−54BA ⃗⃗⃗⃗⃗⃗+34BC ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=−54BA ⃗⃗⃗⃗⃗⃗?BC ⃗⃗⃗⃗⃗⃗+34BC ⃗⃗⃗⃗⃗⃗2=−54|BA ⃗⃗⃗⃗⃗⃗|?|BC ⃗⃗⃗⃗⃗⃗|cos60°+34×12 =−54×1×1×12+34=18. 故答案选:C .例3.【解析】OA ⃗⃗⃗⃗⃗⃗=(1,0),OP 1⃗⃗⃗⃗⃗⃗⃗⃗=(cos?α,sin?α),OP 2⃗⃗⃗⃗⃗⃗⃗⃗=(cos?β,−sin?β),OP 3⃗⃗⃗⃗⃗⃗⃗⃗=(cos?(α+β),sin?(α+β)), AP 1⃗⃗⃗⃗⃗⃗⃗⃗=(cosα−1,sinα),AP 2⃗⃗⃗⃗⃗⃗⃗⃗=(cosβ−1,−sinβ),对于A ,|OP 1⃗⃗⃗⃗⃗⃗⃗⃗|=√cos 2α+sin 2α=1,|OP 2⃗⃗⃗⃗⃗⃗⃗⃗|=√cos 2β+(−sinβ)2=1,A 正确;对于B ,|AP 1⃗⃗⃗⃗⃗⃗⃗⃗|=√(cosα−1)2+sin 2α=√2−2cosα,|AP 2⃗⃗⃗⃗⃗⃗⃗⃗|=√(cosβ−1)2+(−sinβ)2=√2−2cosβ,因为α,β不一定相等,所以|AP 1⃗⃗⃗⃗⃗⃗⃗⃗|,|AP 2⃗⃗⃗⃗⃗⃗⃗⃗|不一定相等,B 错误;对于C ,OA ⃗⃗⃗⃗⃗⃗·OP 3⃗⃗⃗⃗⃗⃗⃗⃗=cos(α+β);OP 1⃗⃗⃗⃗⃗⃗⃗⃗?OP ⃗⃗⃗⃗⃗⃗2=cosαcosβ+sinα(−sinβ)=cos(α+β),C 正确;对于D ,OA ⃗⃗⃗⃗⃗⃗·OP 1⃗⃗⃗⃗⃗⃗⃗⃗=cosα,OP 2⃗⃗⃗⃗⃗⃗⃗⃗?OP 3⃗⃗⃗⃗⃗⃗⃗⃗=cosβcos(α+β)+(−sinβ)sin(α+β)=cos(α+2β),不一定相等,D 错误.故选:AC .练1-5.【解析】∵向量a ⃗=(1,m),b ⃗⃗=(2,1),∴2a ⃗⃗+b ⃗⃗=(4,2m +1),∵b ⃗⃗?(2a ⃗⃗+b ⃗⃗)=7,∴b ⃗⃗?(2a ⃗⃗+b ⃗⃗)=8+2m +1=7,解得m =−1. 故答案为:−1.练1-6.【解析】f (x )=m ⃗⃗⃗⃗·n ⃗⃗+2=2cosωx ·(√3sinωx −cosωx)−1+2 =√3sin2ωx −(1+cos2ωx )+1=2sin (2ωx −π6),∵最小正周期为π2,故ω=2,则f (x )的解析式为f (x )=2sin (4x −π6). 故答案为:f (x )=2sin (4x −π6).例4.【解析】∵向量a ⃗⃗,b ⃗⃗夹角为45°,且|a ⃗⃗|=1,|2a ⃗⃗−b ⃗⃗|=√10.∴√4a ⃗⃗2+b ⃗⃗2−4a ⃗⃗?b ⃗⃗=√10,化为4+|b ⃗⃗|2−4|b ⃗⃗|cos45°=10,化为|b ⃗⃗|2−2√2|b ⃗⃗|−6=0,∵|b ⃗⃗|≥0,解得|b ⃗⃗|=3√2. 故答案为:3√2.练2-1.【解析】因为|a ⃗⃗+b ⃗⃗|2=a ⃗⃗2+2a ⃗⃗?b ⃗⃗+b ⃗⃗2=50+2a ⃗⃗?b ⃗⃗=36,所以a ⃗⃗?b ⃗⃗=−7. 因为|a ⃗⃗−b ⃗⃗|2=a ⃗⃗2−2a ⃗⃗?b ⃗⃗+b ⃗⃗2=50+2×7=64,所以|a⃗⃗−b ⃗⃗|=8. 故选:B .练2-2.【解析】因为平面向量a ⃗⃗、b ⃗⃗、c ⃗⃗两两的夹角相等,所以夹角为0°或120°, 由题意知:|a ⃗⃗|=1,|b ⃗⃗|=2,|c ⃗⃗|=3, 当夹角为0°时,2a ⃗⃗·b ⃗⃗=2|a ⃗⃗||b ⃗⃗|=4,2b ⃗⃗·c ⃗⃗=2|b ⃗⃗||c ⃗⃗|=12,2a ⃗⃗·c ⃗⃗=2|a ⃗⃗||c ⃗⃗|=6,则|a ⃗⃗+b ⃗⃗+c ⃗⃗=√(a ⃗⃗+b ⃗⃗+c ⃗⃗)2=√a ⃗⃗2+b ⃗⃗2+c ⃗⃗2+2a ⃗⃗·b ⃗⃗+2b ⃗⃗·c ⃗⃗+2a ⃗⃗·c ⃗⃗=√1+4+9+4+12+6=6,故选项D 正确; 当夹角为120°时,2a ⃗⃗·b ⃗⃗=2|a ⃗⃗||b ⃗⃗|cos120°=−2,2b ⃗⃗·c ⃗⃗=2|b ⃗⃗||c ⃗⃗|cos120°=−6,2a ⃗⃗·c ⃗⃗=2|a ⃗⃗||c ⃗⃗|=−3,则|a ⃗⃗+b ⃗⃗+c ⃗⃗|=√(a ⃗⃗+b ⃗⃗+c ⃗⃗)2=√a ⃗⃗2+b ⃗⃗2+c ⃗⃗2+2a ⃗⃗·b ⃗⃗+2b ⃗⃗·c ⃗⃗+2a ⃗⃗·c ⃗⃗=√1+4+9−2−6−3=√3,故选项A 正确.故选:AD .例5.【解析】∵(a ⃗⃗−b ⃗⃗)⊥(3a ⃗⃗+2b ⃗⃗),∴(a ⃗⃗−b ⃗⃗)?(3a ⃗⃗+2b ⃗⃗)=0, 即3a ⃗⃗2−2b ⃗⃗2−a ⃗⃗?b ⃗⃗=0,即a ⃗⃗?b ⃗⃗=3a ⃗⃗2−2b ⃗⃗2=23b ⃗⃗2,∴cos <a ⃗⃗,b ⃗⃗>=a⃗⃗?b ⃗⃗|a ⃗⃗||b⃗⃗|=23b ⃗⃗22√23b ⃗2=√22,即<a ⃗⃗,b ⃗⃗>=π4,故选:A .练2-3.【解析】根据题意,因为AB =3,AD =2,AP ⃗⃗⃗⃗⃗⃗=13AB ⃗⃗⃗⃗⃗⃗,AQ ⃗⃗⃗⃗⃗⃗=12AD ⃗⃗⃗⃗⃗⃗⃗, 所以CP ⃗⃗⃗⃗⃗⃗CQ ⃗⃗⃗⃗⃗⃗=(CB ⃗⃗⃗⃗⃗⃗+BP ⃗⃗⃗⃗⃗⃗)·(CD ⃗⃗⃗⃗⃗⃗+DQ ⃗⃗⃗⃗⃗⃗⃗)=(DA ⃗⃗⃗⃗⃗⃗−23DC ⃗⃗⃗⃗⃗⃗)·(−DC ⃗⃗⃗⃗⃗⃗+12DA ⃗⃗⃗⃗⃗⃗) =23DC ⃗⃗⃗⃗⃗⃗2+12DA ⃗⃗⃗⃗⃗⃗2−43DC ⃗⃗⃗⃗⃗⃗?DA ⃗⃗⃗⃗⃗⃗=12,所以DC ⃗⃗⃗⃗⃗⃗DA ⃗⃗⃗⃗⃗⃗=−3,即|DC ⃗⃗⃗⃗⃗⃗||DA ⃗⃗⃗⃗⃗⃗|cos∠ADC =−3,即cos∠ADC =−12,又∠ADC ∈(0,π),所以∠ADC =2π3.故答案选:C .练2-4. 【解析】∵|a ⃗⃗+b ⃗⃗|=|a ⃗⃗−b ⃗⃗|,∴(a ⃗⃗+b ⃗⃗)2=(a ⃗⃗−b ⃗⃗)2?a ⃗⃗?b ⃗⃗=0, 又∵|a ⃗⃗+b|=2√33|a ⃗⃗|,∴(a ⃗⃗+b ⃗⃗)2=43a ⃗⃗2?|b ⃗⃗|=√33|a ⃗⃗|,∴(a ⃗⃗+b ⃗⃗)?a ⃗⃗=a ⃗⃗2+a ⃗⃗·b ⃗⃗=a ⃗⃗2,∴cos <a ⃗⃗+b ⃗⃗,a ⃗⃗>=(a ⃗⃗+b ⃗⃗)·a ⃗⃗|a ⃗⃗+b ⃗⃗|·|a ⃗⃗|=22√33|=√32,故向量a ⃗⃗+b ⃗⃗与a ⃗⃗的夹角为π6. 故答案选:D .例6.【解析】∵|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗与b ⃗⃗的夹角为60°,∴a ⃗⃗·b ⃗⃗=|a ⃗⃗|·|b⃗⃗|·cos60°=1 ∵(3a ⃗⃗+5b ⃗⃗)⊥(m a ⃗⃗−b ⃗⃗),∴(3a ⃗⃗+5b ⃗⃗)?(m a ⃗⃗−b ⃗⃗)=3m |a ⃗⃗|2+(5m −3)·a ⃗⃗·b ⃗⃗−5|b⃗⃗|2=3m +(5m −3)−20=0;∴m =238. 故答案为:238.练2-5.【解析】已知向量a ⃗⃗与b ⃗⃗的夹角是π3,且|a ⃗⃗|=1,|b ⃗⃗|=4,则:a ⃗⃗?b ⃗⃗=|a ⃗⃗||b ⃗⃗|cos π3=2,已知:(3a ⃗⃗+λb ⃗⃗)⊥a ⃗⃗,则:(3a ⃗⃗+λb ⃗⃗)?a ⃗⃗=0,即:3a ⃗⃗2+λa ⃗⃗?b ⃗⃗=0,解得:λ=−32,故选:A .练2-6.【解析】∵a ⃗⃗+3b ⃗⃗与7a ⃗⃗−5b ⃗⃗垂直,∴(a ⃗⃗+3b ⃗⃗)?(7a ⃗⃗−5b ⃗⃗)=7a ⃗⃗2−15b ⃗⃗2+16a ⃗⃗?b ⃗⃗=0①,又∵a ⃗⃗−4b ⃗⃗与7a ⃗⃗−2b ⃗⃗垂直,∴(a ⃗⃗−4b ⃗⃗)?(7a ⃗⃗−2b ⃗⃗)=7a ⃗⃗2+8b ⃗⃗2−30a ⃗⃗?b ⃗⃗=0②,由①②得a ⃗⃗2=b ⃗⃗2=2a ⃗⃗?b ⃗⃗,又由cosθ=a⃗⃗?b ⃗⃗|a ⃗⃗|?|b⃗⃗|,易得:cosθ=12,则θ=60°,故答案为:60°例7.【解析】根据题意,直角三角形ABC 中,∠A =90°,设AD 为斜边BC 上的高, 又由AB =2,AC =4,则AD =√4+16=4√55, 连接PA ,则圆A 的半径r =|PA⃗⃗⃗⃗⃗⃗|=4√55,则PB ⃗⃗⃗⃗⃗⃗PC ⃗⃗⃗⃗⃗⃗=(PA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)?(PA ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=PA ⃗⃗⃗⃗⃗⃗2+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=165+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗), 当PA ⃗⃗⃗⃗⃗⃗与(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)同向时,PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)取得最大值, 此时|PA⃗⃗⃗⃗⃗⃗|=4√55,|AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗|=√4+16=2√5, 则PA ⃗⃗⃗⃗⃗⃗(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)的最大值为4√55×2√5=8,故PB ⃗⃗⃗⃗⃗⃗?PC⃗⃗⃗⃗⃗⃗的最大值为165+8=565, 故选:D .练3-1.【解析】如图,以B 为坐标原点,?BC 所在的直线为?x 轴, 过点B 且垂直与BC 的直线为y 轴,建立平面直角坐标系, 因为AD//BC ,∠B =π3,AB =2,AD =1,所以D(2,√3),不妨设P (x,0),Q (x +1,0)(0≤x ≤3), 则DP ⃗⃗⃗⃗⃗⃗DQ ⃗⃗⃗⃗⃗⃗⃗=(x −2,−√3)?(x −1,−√3) =(x −2)(x −1)+3=x 2−3x +5=(x −32)2+114,由二次函数性质得当x =32时,DP ⃗⃗⃗⃗⃗⃗DQ ⃗⃗⃗⃗⃗⃗⃗取得最小值114. 故选D.练3-2.【解析】由b(tanA +tanB)=2ctanB ,得sinB (sinAcosA +sinBcosB )=2sinC ·sinBcosB , 整理得sinAcosB +cosAsinB =2sinCcosA ,即sin(A +B)=2sinCcosA , 又sin(A +B)=sinC , 所以cosA =12,由AB ⃗⃗⃗⃗⃗⃗AC ⃗⃗⃗⃗⃗⃗=2,得AB ⃗⃗⃗⃗⃗⃗?AC⃗⃗⃗⃗⃗⃗=bccosA =2,所以bc =4, 又AG ⃗⃗⃗⃗⃗⃗=13(AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗), 所以|AG ⃗⃗⃗⃗⃗⃗|=13√(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)2=13√b 2+c 2+2×2≥13√2bc +4=√123=2√33, 当且仅当b =c 时,等号成立, 所以|AG ⃗⃗⃗⃗⃗⃗|的最小值为2√33.【素养提升】例8.【解析】 (1)由勾股定理知,AB =√AB 2+AC 2=10;解法一(坐标法):建立平面直角坐标系,如图所示:则A(0,0),B(0,8),C(6,0),BC 的中点D(3,4),所以AD ⃗⃗⃗⃗⃗⃗⃗=(3,4),CB ⃗⃗⃗⃗⃗⃗=(−6,8), 所以AD ⃗⃗⃗⃗⃗⃗⃗CB⃗⃗⃗⃗⃗⃗=3×(−6)+4×8=14; 解法二(基向量法):AD ⃗⃗⃗⃗⃗⃗⃗CB ⃗⃗⃗⃗⃗⃗=12(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)?(AB ⃗⃗⃗⃗⃗⃗−AC ⃗⃗⃗⃗⃗⃗)=12(AB ⃗⃗⃗⃗⃗⃗2−AC ⃗⃗⃗⃗⃗⃗2)=12×(82−62)=14; 解法三(定义法):AD ⃗⃗⃗⃗⃗⃗⃗?CB ⃗⃗⃗⃗⃗⃗=2AD ⃗⃗⃗⃗⃗⃗⃗?CD ⃗⃗⃗⃗⃗⃗=2×|AD ⃗⃗⃗⃗⃗⃗⃗|×|CD ⃗⃗⃗⃗⃗⃗|×cos2B =2×5×5×(2cos 2B −1)=50×[2×(45)2−1]=14;(2)由题意,点P 在AC 上,解法一(极化恒等式):PB ⃗⃗⃗⃗⃗⃗PC⃗⃗⃗⃗⃗⃗=(PB ⃗⃗⃗⃗⃗⃗⃗+PC ⃗⃗⃗⃗⃗⃗)2−(PB ⃗⃗⃗⃗⃗⃗⃗−PC ⃗⃗⃗⃗⃗⃗)24=PD⃗⃗⃗⃗⃗⃗2−CB ⃗⃗⃗⃗⃗⃗24=PD⃗⃗⃗⃗⃗⃗2−25,所以当PD ⊥CA 时,此时|PB⃗⃗⃗⃗⃗⃗|=4, PB⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗取到最小值,即(PB ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗)min =−9; 解法二(坐标法):设P(x,0),则PB ⃗⃗⃗⃗⃗⃗PC ⃗⃗⃗⃗⃗⃗=(−x,8)?(6−x,0)=(x −3)2−9,所以PB ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗的最小值是−9; (3)解法一(坐标法):以AC ,AB 为x ,y 轴建立坐标系,则∠BAC 的角平分线方程为y =x ,可以设P(a,a),则PA ⃗⃗⃗⃗⃗⃗=m PB ⃗⃗⃗⃗⃗⃗+n PC ⃗⃗⃗⃗⃗⃗可以表示为(−a,−a)=m(−a,8−a)+n(6−a,−a)=(−am +6n −an,8m −am −an),所以(m +n −1)a =8m =6n ,m =34n ,|PA ⃗⃗⃗⃗⃗⃗|=√2|a|=√2|24n7n−4|=√2|247−4n|,当1≤n ≤2时,|PA ⃗⃗⃗⃗⃗⃗|的取值范围是[245√2,8√2]. 解法二(几何法):由已知得(1−m −n)PA ⃗⃗⃗⃗⃗⃗=m AB ⃗⃗⃗⃗⃗⃗+n AC ⃗⃗⃗⃗⃗⃗, 则有{(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗=m AB ⃗⃗⃗⃗⃗⃗2+n AC ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=m AC ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗+n AC⃗⃗⃗⃗⃗⃗2,即{(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗=64m ①(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AC⃗⃗⃗⃗⃗⃗=36n ②;由①÷②得86=64m 36n,所以m =34n ,所以PA⃗⃗⃗⃗⃗⃗=mAB ⃗⃗⃗⃗⃗⃗⃗+nAC ⃗⃗⃗⃗⃗⃗1−m−n=3nAB⃗⃗⃗⃗⃗⃗⃗+4nAC ⃗⃗⃗⃗⃗⃗4−7n,所以|PA ⃗⃗⃗⃗⃗⃗|=|24√2n (4−7n)|∈[24√25,8√2].? 练4-1.【解析】由题意可得AB =√32+32=3√2,又因为AB ⃗⃗⃗⃗⃗⃗=3BC ⃗⃗⃗⃗⃗⃗,则BC =√2,所以AC =4√2,取AC 的中点M ,则PA ⃗⃗⃗⃗⃗⃗+PC ⃗⃗⃗⃗⃗⃗=2PM ⃗⃗⃗⃗⃗⃗⃗,PC ⃗⃗⃗⃗⃗⃗−PA ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗, 两式平方后作差得PC⃗⃗⃗⃗⃗⃗PA ⃗⃗⃗⃗⃗⃗=PM ⃗⃗⃗⃗⃗⃗⃗2−14AC ⃗⃗⃗⃗⃗⃗2=PM ⃗⃗⃗⃗⃗⃗⃗2−8, 要使PC ⃗⃗⃗⃗⃗⃗PA⃗⃗⃗⃗⃗⃗最小,就要使PM 最小, 易知当圆弧AB 的圆心与点P ,M 三点共线时,PM 最小, 设AB 的中点为D ,圆心为O ,连接OD 和OM , 此时DM =AM −AD =2√2−3√22=√22, 在△ODM 中,OM =√OD 2+DM 2=(3√22)(√22)=√5,所以PM 的最小值为3−√5,代入求得PC ⃗⃗⃗⃗⃗⃗PA ⃗⃗⃗⃗⃗⃗最小值为6−6√5. 故答案选:D .练4-2.【解析】 (1)由极化恒等式知,AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=14[(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)2−(AB ⃗⃗⃗⃗⃗⃗−AC ⃗⃗⃗⃗⃗⃗)2]=(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗2)2−BC ⃗⃗⃗⃗⃗⃗24=AD ⃗⃗⃗⃗⃗⃗2−BC ⃗⃗⃗⃗⃗⃗24=9−94=274;(2)设|AD ⃗⃗⃗⃗⃗⃗⃗|=3m >0,|BC ⃗⃗⃗⃗⃗⃗|=2n >0, 由极化恒等式知,AB⃗⃗⃗⃗⃗⃗AC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗2−BC ⃗⃗⃗⃗⃗⃗24,FB⃗⃗⃗⃗⃗⃗?FC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗⃗29−BC ⃗⃗⃗⃗⃗⃗24,EB ⃗⃗⃗⃗⃗⃗?EC ⃗⃗⃗⃗⃗⃗=4AD ⃗⃗⃗⃗⃗⃗⃗29−BC ⃗⃗⃗⃗⃗⃗24, 又AB⃗⃗⃗⃗⃗⃗AC ⃗⃗⃗⃗⃗⃗=27,FB ⃗⃗⃗⃗⃗⃗?FC ⃗⃗⃗⃗⃗⃗=−5, ∴有{9m 2−n 2=27m 2−n 2=−5,解得m =2,n =3,∴EB ⃗⃗⃗⃗⃗⃗EC ⃗⃗⃗⃗⃗⃗=4m 2−n 2=7.? 【易错点归纳】例9.【解析】因为OA⃗⃗⃗⃗⃗⃗i ·OB ⃗⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗,所以OA ⃗⃗⃗⃗⃗⃗i ·OB ⃗⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗=(OA ⃗⃗⃗⃗⃗⃗i −OA ⃗⃗⃗⃗⃗⃗)·OB ⃗⃗⃗⃗⃗⃗⃗=0, 所以AA i ⃗⃗⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗=0,故选项B 正确; 即|OA i ⃗⃗⃗⃗⃗⃗⃗⃗|?|OB ⃗⃗⃗⃗⃗⃗⃗|?cos∠A i OB =|OA ⃗⃗⃗⃗⃗⃗|?|OB ⃗⃗⃗⃗⃗⃗⃗|?cos∠AOB , 所以|OA i ⃗⃗⃗⃗⃗⃗⃗⃗|?cos∠A i OB =|OA ⃗⃗⃗⃗⃗⃗|?cos∠AOB ,则向量OA ⃗⃗⃗⃗⃗⃗、OA ⃗⃗⃗⃗⃗⃗i 在向量OB⃗⃗⃗⃗⃗⃗⃗方向上的投影数量相等, 又AA i ⃗⃗⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗=0,所以点A 、A i 在同一条垂直于直线OB 的直线上, 故A 选项错误,选项C 正确,选项D 正确. 故选:BCD .例10.【解析】根据题意,设向量a ⃗⃗与b ⃗⃗的夹角为θ, 若b ⃗⃗⊥(4a ⃗⃗−b ⃗⃗),则b ⃗⃗(4a ⃗⃗−b ⃗⃗)=4a ⃗⃗?b ⃗⃗−b ⃗⃗2=4|a ⃗⃗||b ⃗⃗|cosθ−|b ⃗⃗|2=16√2cosθ−16=0, 变形可得:cosθ=√22,又由0≤θ≤π,则θ=π4,故选:B .例11.【解析】对于A ,a ⃗⃗?c ⃗⃗=b ⃗⃗c ⃗⃗?(a ⃗⃗−b ⃗⃗)?c ⃗⃗=0,不一定有a ⃗⃗=b ⃗⃗?,故A 不正确; 对于B ,利用向量数量积的运算性质可得:(a ⃗⃗+b ⃗⃗)?c ⃗⃗=a ⃗⃗?c ⃗⃗+b ⃗⃗?c ⃗⃗?,故B 正确;对于C ,若a ⃗⃗2=b ⃗⃗2,则|a ⃗⃗|=|b ⃗⃗|,但当a ⃗⃗,b ⃗⃗与c ⃗⃗的夹角不相等时,a ⃗⃗?c ⃗⃗≠b ⃗⃗?c ⃗⃗,故C 不正确;对于D ,a ⃗⃗?b ⃗⃗与b ⃗⃗c ⃗⃗都为实数,而a ⃗⃗与c ⃗⃗不一定共线,因此(a ⃗⃗?b ⃗⃗)?c ⃗⃗≠(b ⃗⃗?c ⃗⃗)?a ⃗⃗.故D 不正确.故选:ACD .例12.【解析】向量a ⃗⃗=(−1,2),b ⃗⃗=(1,m),A .若a ⃗⃗与b ⃗⃗垂直,则(−1)×1+2×m =0,解得m =12,故A 正确;B .若a ⃗⃗?//b ⃗⃗,则(−1)×m −2×1=0,解得m =−2,故B 正确;C .若|a ⃗⃗|=|b ⃗⃗|,则√5=√1+m 2,所以m =±2,故C 错误;D .若m =3,则b ⃗⃗=(1,3),则a ⃗⃗·b ⃗⃗=1×(−1)+2×3=5,|a ⃗⃗|=√5,|b⃗⃗|=√10, 所以cos <a ⃗⃗,b ⃗⃗>=a⃗⃗·b ⃗⃗⃗⃗|a ⃗⃗||b ⃗⃗|=√5×√10=√22, 又<a ⃗⃗,b⃗⃗>∈[0,180°], 所以a ⃗⃗与b ⃗⃗的夹角为45°?,故D 正确. 故选:ABD .。
《平面向量的数量积及运算律》教案及说明
5.平面向量数量积的运算律:
(1)
(2)数乘向量的结合律:( ) = ( ) = ( )
(3)分配律:( + ) = +
(引导学生利用数量积的定义证明)
不满足结合律: (作为思考题留给学生课余去证明)
(三)例题讲解
例1、求证:
(1)
(2)
例2、
(四)巩固练习
1、判断正误,说明理由。
①若 = ,则对任一向量 ,有 · =0;
平面向量的数量积及运算律
一、教学目标
1.正确理解平面向量的数量积的概念,能够运用这一概念求两个向量的数量积,并能根据条件逆用等式求向量的夹角;
2.掌握平面向量的数量积的5条重要性质及运算律,并能运用这些性质解决有关问题;
3.通过平面向量的数量积的概念,几何意义,重要性质及运算律的应用,培养学生的应用意识.
二、教学重点,教学难点
教学重点平面向量的数量积的概念、重要性质及运算律
教学难点平面向量的数量积的重要性质及运算律的理解和应用.
三、教具三角尺,实物投影仪,多媒体
四、教学方法
启发引导式
本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的性质及运算律,然后通过习题加深学生对于平面向量数量积的认识.
②若 ≠ 则对任一 ≠ ,有 · ≠0;
③若 ≠ , · =0,则 ;
④若 · =0,则 , 中至少有一个为 ;
⑤对任一向量 ,有 ; ⑥
2、已知 =4, =5,当① // ② ⊥ ③ 与 的夹角为 时,分别求 与 的数量积。
(五)归纳小结:
1、平面向量的夹角:
(1)两向量要共起点; (2)范围:
2、平面向量的数量积定义和几何意义;
第五章 平面向量5-3平面向量的数量积及向量的应用
答案:B
(2010· 辽宁锦州)已知直线 ax+by+c=0 与圆 O:x2+y2 → OB → =1 相交于 A、B 两点,且|AB|= 3,则OA· =( 1 A. 2 1 C. 4 1 B.- 2 1 D.- 4 )
解析:设 AB 中点为 P, 3 ∵|AB|= 3,∴|AP|= 2 , π 又|OA|=1,∴∠AOP=3, 2π ∴∠AOB= , 3 → · =|OA|·→ |· 2π=-1. → ∴OA OB → |OB cos 3 2
(文)已知向量 a=(3,4),b=(2,-1),如果向量 a+λb 与向量-b 互相垂直,则实数 λ 的值为( )
23 3 2 A. 2 B.23 C.2 D.-5 解析:a+λb=(3,4)+λ(2,-1)=(3+2λ,4-λ),-b=
(-2,1), ∵(a+λb)⊥(-b),∴-2(3+2λ)+4-λ=0, 2 ∴λ=-5,故选 D.
2.用向量法处理垂直 → CD → 要证两线段 AB⊥CD,只需证AB· =0. 3.用向量法处理平行 → 要证两线段 AB∥CD, 只需证存在实数 λ≠0, 使等式AB → =λCD成立. 4.用向量法处理距离 → → → 要证线段 AB=CD,可转化为证明AB2=CD2 或|AB|= → |CD|.
[例 1]
已知向量 a=( 3,1),b 是不平行于 x 轴的单 ) 3 2
位向量,且 a· b= 3,则 b 等于(
A.
3 1 ,2 2
1 B. , 2
1 3 3 C. , 4 4
D.(1,0)
分析:设出 b 的坐标,由 a· b= 3及|b|=1 列方程可 解.
2.向量数量积的性质 设a,b都是非零向量,e是单位向量,θ是a 与b的夹角,则 (1)e·a=a·e=|a|·cos〈a,e〉. (2)a⊥b⇔a·b= 0 . |a||b| (3)当a与b同向时,a·b= ; -|a||b| 当a与b反向时,a·b= ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
D
C
A
a
B 1
O
-
A 1 b
B
平面向量数量积公式的应用
向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。
下面谈谈数量积公式在解题中的应用。
一、解决平面几何问题:
1. 长度问题
例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ⋅ AE + AD ⋅ AF = AC 2 。
B
E
2. 垂直问题
例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明:
PA ⊥ EF 。
3. 夹角问题
例 3:求等腰直角三角形两直角边上的中线所成的钝角。
二、解决三角问题:
1. 证明一些公式:
例 4: 对 于 任 意 实 数
,
Y
, 求 证 :
cos(+ ) = cos cos - sin sin 。
X
y
A
B
P
E D O F
C
x
y A
E
O C D B x
2. 证明三角恒等式:
例 5:已知
、 为锐角, 且 3sin 2 + 2 s in 2
= 1 ,
A 5
3sin 2- 2 s in 2= 0 ,求证:+ 2= 。
2
A 6
A 4
A
7
e A 3
A 1
A 2
3. 求三角函数值:
2 例 6:求值: cos 7
+ cos 4+ c os 6。
7 7
4. 解与三角形有关的问题:
例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) =
3 ,求角 C 的值。
2
三、证明等式:
一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。
例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y
a b
1 - b
2 1 - a 2 x 4x - 1 4 - x x 5x 例 9:已知 a + b = 1 ,求证: a 2 + b 2 = 1。
四、解方程:
解决一些特殊的方程时,也可以适用向量的方法解决。
例 10:解方程: ⨯ + = 4 。
五、求函数的最值或值域:
某些条件最值如果按常规方法求不易入手,但是若能仔细观察题目条件和结论,恰当地构造向量,则会使问题变得简单。
例 11:求函数 f ( x ) = + 的最大值。
例 12:已知 x 2 + y 2 = 9 , a 2 + b 2 = 4 ( x , y , a , b ∈ R ),求ax + by 的极值。
6 - x。