第10章含有耦合电感的电路
10章 含有耦合电感的电路
jω L2 (支路 支路3)L ± 同侧取 同侧取“ 支路 3=±M(同侧取“+”,异 异
R2
侧取“ 侧取“-”) (支路 1’=L1 m M,M前所取符 支路1)L 支路 , 前所取符 号与L 号与 3中的相反 (支路 2’=L2 m M,M前所取 支路2)L 支路 , 前所取 符号与L 符号与 3中的相反
反相串联无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
Z = Z1 + Z 2 = R1 + R2 + jω ( L1 + L2 − 2 M )
R1
L1 u1
2、顺向串联 、 每一耦合电感支路的阻抗为: 每一耦合电感支路的阻抗为:
Z1 = R1 + jω ( L1 + M )
两个耦合线圈的磁通链可表示为: 两个耦合线圈的磁通链可表示为:
ψ 1 = ψ 11 ± ψ 12
= L1i1±Mi2
ψ 2 = ±ψ 21 + ψ 22
= ±Mi1+L2i2 上式表明, 上式表明 , 耦合线圈中的磁通链与施感电流 线性关系 关系, 成 线性 关系 , 是各施感电流独立产生的磁通链叠 加的结果。 加的结果。
di di u2 = R2i + ( L2 −M ) dt dt di = R2i + ( L2 − M ) dt
无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
di u = u1 + u 2 = ( R1 + R2 )i + ( L1 + L2 − 2 M ) dt
L1 N1 L2 N2
电路分析基础第五版第10章
二、互感消去法(等效去耦法)
消去互感,变为无互感的电路计算,从而简化 电路的计算。
1、受控源替代去耦法
jM
I1
I2
+ +
U1
jL1
jL2
U2
I1
+
jL1
U1
jM I 2
I2
+
jL2
U
2
jM I 1
U1 jL1 I1 jMI2
U2 jL2 I2 jMI1
d2i dt
i 2 u 2
2
相量形式:
1
i1
U1 jL1 I1 jMI2
u1
U2 jL2 I2 jMI1
注意:
i 2 u 2
2
•互感元件的自感恒为正;
•互感元件的互感有正有负,与线圈的具体绕法及 两线圈的相互位置有关。
当每个电感元件中的自感磁链与互感磁链是互相 加强时(自感磁链与互感磁链同向),互感为正; 反之为负。(说法不同,正确理解)
+
U
L反L1L22M
等效电感不能为负值,
因此:L反0, M12(L1L2)
3、并联耦合电感的去耦等效
(1)同侧并联:同名端分别相联。
I
+
jM
U
jL1
jL2
I +
U
j L同
L同
L1L2 M2 L1 L2 2M
因为 L同 0 所以 L1L2M20
第十章含有耦合电感的电路习题
(2)
(b)
将电感视为独立电压源,得网孔电流方程
R1I1 R1I3 US UL2
(3)
R2
j
1
C
I2
j1
C
I3
UL2
(4)
R1I1
j
1
C
I2 R1
j
1
C
I3
UL1
(5)
将(1)、 (2)式代入(3)、 (4)、 (5)式得
( R1 jL2 )I1 jL2 I2 ( R1 jM )I3 US
(a)
解:(1)求电流i1,原边等效电路如图(a) ,有
US
115 0
2
V
Z11 R1 jL1 20 j1130.4 Z22 R2 jL2 RL 42.08 j8.84
(M )2
432.40 24.12 422.03 j188.96 Z22
M 2
Z 22
M 2
Z 22
6
20 j
3
2.98
116.56
A
题10-15 图示电路 R1 50, L1 70mH , L2 25mH , M 25mH , C 1F
U 5000 V , 104 rad / s 。求各支路电流。
解法一:支路电流如图所示,则
I
Ib
I Ia Ib
1
jC
Ib
jL2 Ia
jMI
(b) (c)
(d)
求 。等效相量图如图(e)
Zeq
(e)
Req
100 j50
Zeq
100
0.4 j50
j0.8
+
_ Uoc
ZL
电路第十章含有耦合电感的电路
.. . . .. .. . . .. 一致,故1,4是同名端,(不2是,同名端,1,4是同名端,
3也是同名i1 端) i2 (2,3也是同名端i1 ) i2
1 23 4
1 23 4
同名端只与线圈的绕向有关,与电流方向无关。 只要知道线圈的绕向,就能标出同名端。
L L1L2 M2 L1 L2 2M
M2 L1L2
M L1L2 M L1 L2
2
几何平均值(小) 算术平均值(大)
除非两电感相同,一般:几何平均值< 算术平均值
∴用几何平均值求M更严格
∴互感M必须满足 M L1L2 的要求 ∴ M的最大值 Mmax L1L2
3.耦合系数 k M M max
最大值
i(t)
••
u ( t ) L1 L2
i(t)
u(t)
L1 -
di
M
dt +
L2
+
M
di
- dt
utL1d d ti Md d ti L2d d ti Md dti
L1
L2
2Mdi
dt
L
di dt
反接时,串联电感值为
LL1L22M
电感贮能 WL 12LiL2 0
即L一定为正值
L1L22M
M L1 L2 2
实际值
M L1 L 2
0k1
k 反应了磁通相耦合的程度
k=1 k→1 k<0.5 k=0
全耦合
线圈中电流产生的磁通全部与另一个线 圈交链达到使M无法再增加
紧耦合,强耦合
松耦合,弱耦合
无耦合
4.耦合电感的T型等效
第十章含有耦合电感的电路-精选文档
d di u L dt dt
+
u _
在此电感元件中,磁链Ψ和感 应电压u均由流经本电感元件的电 流所产生,此磁链感应电压分别称 为自感磁链和自感电压。
2、互感:如图所示表示两个耦合电感,电流i1在线 圈1和2中产生的磁通分别为Φ11和Φ21,则Φ21≤Φ11。 这种一个线圈的磁通交链于另一线圈的现象,称为 磁耦合。电流i1称为施感电流。Φ11称为线圈1的自感 磁通,Φ21称为耦合磁通或互感磁通。如果线圈2的 匝数为N2,并假设互感磁通Φ21与线圈2的每一匝都 交链,则互感磁链为Ψ21=N2Φ21。
§10-1 互感
耦合电感:耦合元件,储能元件,记忆元件。
一、耦合电感:为互感线圈的理想化电路模型
1 、自感:对于线性非时变电感元件,当电流的 参考方向与磁通的参考方向符合右螺旋定则时, 磁链Ψ与电流I满足Ψ=Li,L为与时间无关的正实 常数。
根据电磁感应定律和线圈的绕向,若电压的参考 正极性指向参考负极性的方向与产生它的磁通的参 考方向符合右螺旋定则时,也就是在电压和电流关 联参考方向下,则
输入阻抗Z为
Z Z Z ( 8 j 4 ) 8 . 94 26 . 57 1 2
为: 50 0 V 令U ,解得 I
50 0 I U / Z A 5 . 59 26 . 57 A 8 . 94 26 . 57
第十章 含有耦合电感的电路
内容提要
本章主要介绍耦合电感中的磁耦合 现象、互感和耦合因数、耦合电感的同 名端和耦合电感的磁通链方程、电压电 流关系;还介绍含有耦合电感电路的分 析计算及空心变压器、理想变压器的初 步概念。
§10-1 互感 §10-2 含有耦合电感电路的计算 §10-3 空心变压器
第10章 含有耦合电感的电路
2. 耦合电感的并联
i
M
①同侧并联
+
u
L1
di1 dt
M
di2 dt
u –
i1 * * i2
L1
L2
u
L2
di2 dt
M
di1 dt
i = i1 +i2
解得u, i 的关系:
u
(L1L2 M 2 ) L1 L2 2M
di dt
返回 上页 下页
等效电感:
Leq
(L1L2 M 2 ) L1 L2 2M
有了同名端,表示两个线圈相互作用时,就不
需考虑实际绕向,而只画出同名端及u、i参考方
向即可。
M
*
*
i1
+ u21 –
u21
M
di1 dt
M
* i1
* – u21 +
u21
M
di1 dt
返回 上页 下页
例 i1 M i2
+* *+ u_1 L1 L2 _u2
u1
L1
di1 dt
M
di2 dt
u2
M
di1 dt
第10章 含有耦合电感的电路
本章重点
10.1 互感 10.2 含有耦合电感电路的计算 10.3 耦合电感的功率 10.4 变压器原理 10.5 理想变压器
首页
重点
1.互感和互感电压 2.有互感电路的计算 3.变压器和理想变压器原理
返回
10.1 互感
耦合电感元件属于多端元件,在实际电路中, 如收音机、电视机中的中周线圈、振荡线圈,整 流电源里使用的变压器等都是耦合电感元件,熟 悉这类多端元件的特性,掌握包含这类多端元件 的电路问题的分析方法是非常必要的。
第10章电路邱关源课件PPT
电路第十章含有耦合电感的电路电路§1010--1 1 互互感1121i 111'22'L 2N 2L 1N 1i 222212ΨΨΨ+±=12111ΨΨΨ±=电路22122111i L Mi ΨMi i L Ψ+±=±=1111i L Ψ=2222i L Ψ=21212i M Ψ=12121i M Ψ=**ML 1L 2+−i 1i 2u 1u 2+−11'22'dt di Mdt di L dt d u 21111±=Ψ=dtdi L dt di M dt d u 22122+±=Ψ=ML 1L 2+−i 1i 2u 1u 2+−122122111i L Mi ΨMi i L Ψ+±=±=2111I M j I L j U &&&ωω+=2212I L j I M j U &&&ωω+=Mj Z M ω=121≤=L L Mk 22211112ΨΨΨΨ=k电路§1010--2 2 含有耦合电感电路的计算含有耦合电感电路的计算I L j R U &&)(111ω+=[]I M L L j R R U &&)22121(−+++=ω1R R 1L −+1u −+uM••i 1R R ML −21−+1u −+ui I L j R U &&)(222ω+=[]I M I M j L j R &&)(−=−+11ωω[]I M I M j L j R &&)(−=−+22ωω电路[])22121(M L L j R R U I−+++=ω&&))222111((M M L j R Z L j R Z −−+=+=ωω)22121(M L L j R R Z −+++=ω))222111((M M L j R Z L j R Z ++=++=ωω)22121(M L L j R R Z ++++=ω电路cos10002**12M1R 2+−iu s4522000°∠Z cos 22121×L L ∠2电路1R R 1L −+1u −+uM••i SS 826.05.125.782121=×===L L ML L M k ωωωΩ−∠=−=−+=o46.904.35.03)(111j M L j R Z ωΩ∠=+=−+=o4237.65.45)(222j M L j R Z ωΩ∠=+=+=o57.2694.84821j Z Z Z o &050∠=U57.2659.557.2694.8050−∠=∠∠==oo &&Z U I1212121Z I X jI R I S =+=AV 63.14025.1564237.659.52222⋅+=∠×==j Z I S oAV 12525057.2659.550*⋅+=∠×==j I U S o &&21S S S +=A V .....⋅−=−∠×=631575934690435952j o1R R 2L j ω1L j ω−+U&••I&1I &I &Mj ω2111I j I L j R U M &&&ωω++=)(1R R 2L j ω1L j ω−+U&••I&1I &I &Mj ω22212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++−=−+=2221I L j R I j U M &&&)(ωω++=2112I I I I I I &&&&&&−=−=[]I j I M L j R M &&m ωω±+=111)(1R R ML −1−+U&I&1I &I &ML −21R R ML +1−+U&I&1I &I &ML +222212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++±=±+=[]222I M L j R I j U M &m &&)(ωω++±=)()(1111I I j I L j R U M &&&&−±+=ωω电路410CL =ωH 05.0662410510411===−×××C L ωA87.36025.0240320010)(2111o o &&−∠=+∠=−+−+=j M L M L j R U I AB ωV13.53387.36025.0120)(12o o &&∠=−∠×=−=j I M L j U ED ωW2.0025.03202211=×==I R P电路+−U S500 V o13ΩIR 25Ω1j ωL 2I 1**j ωM+−U S500 V o13ΩIR 25Ω1j (+)ωL M 2I 1()22电路()+−U S500 V o13ΩIR 25Ω1j (+)ωL M 2I 1电路§1010--3 3 空心变压器空心变压器()21111I j I L j R U M &&&ωω++=11Z22Z MZ 2221112221111)(Y M Z U Y Z Z U I M ω+=−=&&&1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′2221)(0I jX R L j R I j L L M &&++++=ωω1222⋅−=I Z Z I M &1⋅I电路11222111112221112)(Y M jX R L j R U MY j Y Z Z U Y Z I L L M M ωωω++++−=−−=&&&−+1U &222)(Y M ω1I 12221112221111)(Y M Z U Y Z Z U I M ω+=−=&&&Z 2I −+111U MY j &ω1222⋅−=I Z Z I M &电路1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′Ω==50111j L j Z ωΩ+=++=123222j jX R L j Z L L ωΩ−=+=37.3184.7123400)(222j j Y M ωo &021001∠=U o &&2.675.337.3184.7502/100)(2221111−∠=−+=+=j j Y M Z U I ωo o &&84.12666.51232.675.3202212∠=+−∠×=−=j j Z I M j I ω)84.12610cos(266.5)2.6710cos(25.321oo +=−=t i t i电路cos3142115**+−u sa i 112L 1L 2R LM电路+−a b422Ω−Ωj189U 1I 1电路§1010--3 3 理想变压器理想变压器1N ••1−+1u ••2N ••−+u 21i n −••1−+1••11u n 2211N u N u =12211=+i N i N 122211=+i u i u 1N N电路11N ••1−+1u ••2N ••−+u 21in ••1−+1••11u n −22211nu u N N u −=−=212112ii i n N N ==电路11N ••1−+1u ••2N ••Z ••1−+1u 11I U Z in &&=1N ••1−+1u ••2N ••Z Ln in Z n I U n I U Z 221211=−==&&&&L n Z n I U n 2212=−=&&电路1−+s u ••Z −+2u −+1u 110:Ω+=+×==300300)33(1022j j Z n Z L in inZ −+sU &1I 13003001000220011j Z R U I in s ++∠=+=&&09.3644.0−∠=211I nI &&−=12I n I &&=A9.364.4−∠=电路21210I nI I &&&==1−+s u ••−+2u −+1u 1n sU U &&=1000221∠==s c U nU &&22I U Z in &&=Ω===1)1(12111R n I n U n &&9.364.433102202−∠=++∠=+=j Z Z U I L in oc &&in−+oc u 2i电路1••iI &−+1U &22••2I &−+2U &−+1u 1:2R 1I &ii I U R &&1=221212)11(1I U R R U R &&&−=++−11U U n &&=)(22112R U U I n I n I i &&&&&−−=−=121U U n &&=i I n R n nR nR U &&=−++)211(2121Ω==381ii I U R &&电路Ω−5j V 4=sU &Ω−=)5(222j n Z in Ω+−=5120141222n j j Y 05120122=+−n j j 22=n 2211Z n Z in =100=Ω=42Z 100421=n 51=n W 04.01004422m ax=×=×=ssUR U P电路)1(21==R R 21122111I L j I M j U I M j I L j U &&&&&&ωωωω+=+=21,1)2(L L M k ==1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′−+2U&2121u u L L =121212L L L L L L 221212221111I L j I L L j U I L L j I L j U &&&&&&ωωωω+=+=n=电路nL L L =∞→211211i ni −=212111I L L L j U I &&&−=ω2121I L L I &&−=n L L =21)3(221111I L L j I L j U &&&ωω+=电路M j Z L j R Z L j R Z M ωωω=+=+=222111221211I Z I Z U I Z I Z U M M &&&&&&+±=±=U Z Z Z Z Z I MM &m &22121−=U Z Z Z Z Z I MM &m &22112−=U Z Z Z Z Z Z I I I M M &m &&&2212121−+=+=22212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++±=±+=电路。
10第十章 含有耦合电感的电路PPT课件
图10-1(b)
对于图10-l(b)所示的情况有:
11112L1i1M12i2 22122M21i1L2i2
式中11、22表示电流在本身线圈形成的磁链,称为 自感磁链。12、21表示另一个线圈中电流产生的磁场在
本线圈中形成的磁链,称为互感磁链。也就是说每个线圈
根据以上叙述,定义一种称为耦合电感的双口电路元 件,其元件符号和电压电流关系分别如下所示:
u1
L1
d i1 dt
M
d i2 dt
u2
M
d i1 dt
L2
d i2 dt
u1
L1
d i1 dt
M
d i2 dt
u2
M
d i1 dt
L2
d
i2
d t
u1
L1
d i1 dt
M
d i2 dt
中的总磁链为自感磁链与互感磁链的代数和。
当电流i1和i2随时间变化时,线圈中磁场及其磁链也随 时间变化,将在线圈中产生感应电动势。
图(a)
对于图(a)的情况,根据电磁感应定律可以得到:
u1
d1
dt
d11
dt
d12
dt
L1
di1 dt
Mdi2 dt
u2
d2
dt
d21
dt
d22
dt
Mdi1 dt
L2
最后得到图(a)单口网络的等效电路为5电阻与10H电
感的串联。
§ 10.3 耦合电感的功率
当耦合电感中的施感电流变化时,将出现变化的 磁场,从而产生电场(互感电压),耦合电感通过 变化的电磁场进行电磁能的转换和传输,电磁能从 耦合电感一边传输到另一边。
电路第10章---含有耦合电感的电路讲解
§10.1 互感耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。
1. 互感两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流i 2 时,不仅在线圈2中产生磁通f 22,同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。
定义互磁链:图 10.1ψ12 = N 1φ12 ψ21 = N 2φ21当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:互感磁通链:上式中 M 12 和 M 21 称为互感系数,单位为(H )。
当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:需要指出的是:1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足M12 =M21 =M2)自感系数L 总为正值,互感系数 M 值有正有负。
正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。
2. 耦合因数工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义一般有:当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。
耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。
3. 耦合电感上的电压、电流关系当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。
根据电磁感应定律和楞次定律得每个线圈两端的电压为:即线圈两端的电压均包含自感电压和互感电压。
在正弦交流电路中,其相量形式的方程为注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。
电路邱关源第五版10第十章
di1 di2 u1 L1 M dt dt 0 1 t M i1 (t ) 0 u1 ( )d i2 (t ) L1 L1
理想变压器模型
考虑理想化条件: k 1 M L1 L2
L1 , L1 L2 N1 N 2 n
M L2 1 L1 L1 n
1 i1 (t ) i2 (t ) n
大小,不改变阻抗的性质。
n2Z
注意 理想变压器的阻抗变换只改变阻抗的
返 回 上 页 下 页
已知电源内阻RS=1k,负载电阻RL=10。为 例1 使RL获得最大功率,求理想变压器的变比n。 RS RS n:1 + + * * uS RL uS n2RL _ – 解 应用变阻抗性质 当 n2RL=RS 时匹配,即
M k 1 L1L2
def
F11= F21 ,F22 =F12
M M2 ( Mi1 )( Mi2 ) 12 21 k 1 L1L2 L1i1L2i2 11 22 L1L2
注意 耦合系数k与线圈的结构、相互几何位置、
空间磁介质有关。
返 回 上 页 下 页
例
i1
M
i2
i1 + * u1 L1 _
返 回 上 页 下 页
②反接串联 R1 L1 i
+ + u1 * M – + u
L2 R2 *u – 2 –
+ i R
u
–
L
u R1i L1 di M di L2 di M di R2i dt dt dt dt ( R1 R2 )i ( L1 L2 2M ) di Ri L di dt dt
10n2=1000
要点、考点与例题——第10章 含有耦合电感的电路
u1
=
R1i +
( L1
di dt
−
M
di ) dt
=
R1i + (L1
−
M ) di dt
u2
=
R2i
+ (L2
di dt
−
M
di ) dt
=
R2i
+
(L2
−
M)
di dt
网学天地()
由上式可作出如图 10-3(b)所示的无互感等效电路,无互感i2 dt
u 21
,
=
M
di1 dt
,称为互感电压,是邻近电感中电流变化引起的电压;
互感电压前的“+”、“-”的正确选取是写出电感端电压的关键,选取的原则:如果互感 电压“+”极性端子与产生它的电流流进的端子为一对同名端,互感电压前取“+”号,反 之,取“-”号。
当施感电流为同频率的正弦量时,在正弦稳态情况下,上式的有相量形式
def
k=
Ψ21 ⋅ Ψ21
Ψ11 Ψ22
对各向同性的线性磁介质因Ψ11 = L1i1 ,Ψ22 = L2i2 ,Ψ12 = Mi2 ,Ψ21 = Mi1 ,代入上
式有
k = Ψ12 ⋅ Ψ12 = Mi2 ⋅ Mi1 = M ≤ 1
Ψ11 Ψ22
L1i1 ⋅ L2i2
L1 L2
k 的大小与线圈的结构、两线圈的相互位置以及周围磁介质情况有关。如果两线圈靠得
根据阻抗的概念,对上式中可以令 Z11 = R1 + jωL1 ( Y11 = 1/ Z11 ),称原边回路阻抗
( 导 纳 ), Z 22 = R2 + jωL2 + RL + jX L ( Y22 = 1/ Z 22 ), 称 副 边 回 路 阻 抗 ( 导 纳 ),
第十章 含有耦合电感的电路-文档资料
U 1 R 1 jL 1 M I Z 1 I U 2 R 2 jL 2 M I Z 2 I
U R 1 R 2 j L 1 L 2 2 M I Z I
-
1'
L2 u2
-
2'
制作群
主 页 总目录 章目录 上一页 下一页 退 出
§10-2 含有耦合电感电路的计算
一、反向串联
i R1
L1
u1R1iL1ddtiMddti
R1iL1Mddti
i R1 L1- M
++
u
-
u1
-
+
M R2
u2
L2
-
++
u1
-+
R2
u2R2iL2d dtiMd dti
解:u1L 1d d it1M d d it25s0i1 nt0 V u2M d d it1L 2d d it2 15 si1 0nt0 V
正弦稳态情况下:
U 1jL 1I1jM I2
U 2jM I1jL 2I2
互感抗:M
1 i1
M
i2 2
+
+
u1 L1
u
-
L2- M
u2
-
R2iL2
Mdi
dt
去耦等效电路
制作群
主 页 总目录 章目录 上一页 下一页 退 出
§10-2 含有耦合电感电路的计算
d i d i
d i d i
u u 1 u 2 R 1 i L 1 d t M d t R 2 i L 2d t M d t
第十章--含有耦合电感的电路
正值表示自感磁链与互感磁链方向一致,互感起
增助作用,负值表示自感磁链与互感磁链方向相 反,互感起削弱作用。
2024年7月17日星期
11
三
3. 同名端的概念及其判断方法!
通过线圈的绕向、 位置和施感电流的
F12
参考方向,用右手
螺旋法则,就可以 F11 判定互感是“增助”
还是“削弱” 。
但实际的互感线圈 往往是封闭的,看 不出绕向;
三
§10-1 互感
1. 互感的概念 一个电感线圈的情况
L1 N1
i1产生的磁通为F11。
i1与F11的参考方向符 F11
合右手螺旋法则,为
关联的参考方向。
i1
1' -
u11
1 +
F11穿越自身线圈时,
产生的自感磁通链用
若u11与i1取关联参考方向
Y11表示:Y11= L1i1
当i1变化时,将产生 自感电压u11。
第十章 含有耦合电感的电路
学习要点 熟练掌握互感的概念; 具有耦合电感电路的计算方法:
①直接列写方程的支路法或回路法。 ②受控源替代法。 ③互感消去法。 掌握空心变压器和理想变压器的应用。
2024年7月17日星期
1
三
重点
互感和互感电压的概念及同名端的含义; 含有互感电路的计算; 空心变压器和理想变压器的电路模型。
名端要用不同的符号一对一对标记。
L2
M
L1 *
* L2
2'பைடு நூலகம்
1 i1
+
M
i2 2
+
M
L3 M
u1
-
L1
1'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z1 R1 j(L1 M ) 3 j0.5 Z2 R2 j(L2 M ) 5 j4.5
Z Z1 Z2 8 j4
i R1
++ u1
u
–
+
– – u2
R2
* L1
M
L2 *
.
令 U 500 , 则:
.
.
I U/ Z 5.59 26.57
各支路吸收的复功率为:
S1 I 2Z1 (93.75 j15.63)V A S2 I 2Z2 (156.25 j140.63)V A
电源发出的复功率S为
..
S=U I * (250 j125)V A S1 S2
2. 耦合电感的并联
+
同侧并联(同名端相连) 耦合电感并联
异侧并联(异名端相连)
•
U
I3
j M
I1 * * I2
j L1
j L2
(1)、同侧并联电路
R1
R2
•
•
•
U (R1 jL1)I 1 jM I 2
•
•
(b)k 1
§ 10-2 含有耦合电感电路的计算
1. 耦合电感的串联 (1) 顺接串联
i R1 L1
+ u1 *
+
M – +* u
L2 R2
u2 – –
i
u
R1i
L1
di dt
M
di dt
L2
di dt
M
di dt
R2i
+
(
R1
R2
)i
(L1L2来自2M)di dt
R u
Ri
L
di dt
去耦等效电路
–
L L1 L2 2M
L L1 L2 2M 0
M
1 2
( L1
L2
)
互感不大于两个自感的算术平均值。
互感的测量方法:
顺接一次,反接一次,就可以测出互感:
M L顺 L反 4
全耦合时 M L1 L2 L L1 L2 2M L1 L2 2 L1L2 ( L1 L2 )2
def
k
M
1
L1 L2
当 k=1 称全耦合: 漏磁 s1 = s2=0,即
一般有:
11= 21 , 22 = 12
k
M
M2
(Mi1 )( Mi 2 )
12 21 1
L1 L2
L1 L2
L1i1 L2 i2
11 22
耦合系数k与线圈的结构、相互几何位置、空间磁介质有关。
(a)k 0
11
21
31
N1
i1 *•
i2
N2 •△
i3
N3 *△
+ u11 – + u21 – + u31 –
u21
M21
di1 dt
u31
M 31
d i1 dt
线圈的同名端必须两两确定。
确定同名端的方法:
(1) 当两个线圈中电流同时由同名端流入(或流出)时,两 个电流产生的磁场相互增强。
例i
1* 1'
L
R R1 R2
L L1 L2 2M
(2) 反接串联
i
i R1 L1 M
L2 R2
+ R
+ u1 * – +
+
u
* u2 –
–
u
L –
u
R1i
L1
di dt
M
di dt
L2
di dt
M
di dt
R2 i
( R1
R2 )i
(L1
L2
2M ) di dt
Ri
L di dt
R R1 R2
第10章 含有耦合电感的电路
重 点
1.互感和互感电压 2.有互感电路的计算 3.空心变压器和理想变压器
§ 10-1 互 感
一、耦合电感中的磁链和同名端
1、耦合电感中的总磁链 11
21
线圈1中通入电流i1时,
在线圈1中产生磁通
(magnetic flux),同时, 有部分磁通穿过临
N1
i1
N2
+ u11 – + u21 –
当 L1=L2 时 , M=L
L= 4M 顺接
0
反接
例 图示电路中,正弦电压的U=50V,R1=3 ,L1=7.5 ,
R2=5 ,L2=12.5 , M=8 。求该耦合电感的耦合因
数 k 和该电路中吸收的复功率。
解 耦合因数 k 为:
k M
M
L1 L2
(L1 )(L2 )
8
0.826
7.5 12.5
当施感电流为同频率正弦量时,其电压、电流方程可用相量 表示,由图得
i1 M i2
+* u_1 L1
*+ L2 _u2
•
•
•
•
•
U 1 jL1 I 1 jM I 2 jxL1 I 1 j | ZM | I 2
•
•
•
•
•
U 2 jM I 1 jL2 I 2 jxL2 I 2 j | ZM | I 1
近线圈2,这部分磁通称为互感磁通。两线圈间有磁的耦合。
当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁 链的代数和:
1 11 12 L1i1 M12i2
2 22 21 L2i2 M21i1
称M12、M21为互感系数,单位亨(H)。
自感磁通链
互感磁通链
11 = L1 i1,
21 = M21 i1,
式中
ZM jM ,| ZM | M
称为互感抗, 可用电流控制 电 压 源CCVS 表 示 互 感 电 压, 如图所示。
•
I1
+
j L1
•
U1
+
•
jωM I 2
–
–
•
I2
j L2
+ • jωMI 1
–
+
•
U2
–
2. 耦合系数 (coupling coefficient)
用耦合系数k 表示两个线圈
磁耦合的紧密程度。
当断开S时,如何判定?
二、耦合线圈的电压电流关系和耦合系数
1、电压电流关系
设电压与电流取关联参考方向,则
u1
d
dt
1
L1
di1 dt
M
di2 dt
u11
u12
u2
d
dt
2
L2
di2 dt
M
di1 dt
u22
u21
式中u11,u22称为自感电压,u12, u21称为互感电压。
注:
互感电压前的“+”或“-”号选取原则:如果 互感电压“+”极性端与产生的电流流进的端子 为一对同名端,互感前应取“+”号,反之取 “-”号。
•
U (R2 jL2)I 2 jM I 1
•
•
•
I3 I1 I2
•
•
•
U jM I 3 [R1 j(L1 M)]I 1
22 = L2 i2,
12 = M12 i2
2、同名端
为了便于反映磁通“增助”或 “削弱 ”作用和简化图形表示,采用同名端
i1 M i2
+* u_1 L1
*+ L2 _u2
标记方法。
同名端 注意
当两个电流分别从两个线圈的对应端子同时流 入或流出,若所产生的磁通相互加强时,则这 两个对应端子称为两互感线圈的同名端。
2
1•*
2
*
2' 1'
2'*
3
•
3'
(2) 当随时间增大的时变电流从一线圈的一端流入时,将 会引起另一线圈相应同名端的电位升高。
同名端的实验测定:
R S1i
如图电路,当闭合开关S时,
*
i 增加,
1'
di dt
0,
u22'
M
di dt
0
*2
+
V
–
2'
电压表正偏。
当两组线圈装在黑盒里,只引出四个端线组,要 确定其同名端,就可以利用上面的结论来加以判断。