离心式压缩机喘振分析及解决措施
离心机喘振的解决方法
![离心机喘振的解决方法](https://img.taocdn.com/s3/m/eac1fdb8a1116c175f0e7cd184254b35eefd1a01.png)
离心机喘振的解决方法
离心机是工业中常用的设备之一,但在使用中会出现一些问题,其中之一就是喘振现象。
喘振会造成设备的振动、噪音、甚至损坏,因此需要采取措施进行解决。
喘振的原因:
1.离心机叶轮或转子的不平衡或变形等问题。
2.系统的不稳定性,例如管道系统的质量不好或者管道的设计不合理,会导致气流过程中的不稳定。
3.离心机进口与出口之间的压力差异,有时候管道系统可能会堵塞导致压差增大。
解决方法:
1.增加离心机的支撑或是减小转子质量,使叶轮达到平衡状态,避免因叶轮不平衡造成的喘振。
2.管道系统质量要好,设计要合理,必要时可以加装阀门、减小管道长度、增加管道直径等方式来减少气体流动过程中的摩擦因素。
3.设置进口和出口通道,加强进出口的管道,减少管道堵塞的可能,降
低压力差。
4.调整离心机的工作条件,如调整叶轮转速、减少进口流量等方式来避免喘振。
5.安装机器振动监测仪器,及时监测离心机的工作情况,发现问题及时处理。
总之,离心机喘振是一种不可避免的现象,但是采取措施可以有效地解决喘振问题,避免设备运转中的故障和损害。
离心式压缩机喘振产生的原因分析及解决方案
![离心式压缩机喘振产生的原因分析及解决方案](https://img.taocdn.com/s3/m/19075360ae45b307e87101f69e3143323968f5e1.png)
离心式压缩机喘振产生的原因及解决方案一一离心式压缩机是工业生产中的重要设备,其具有排气量大、结构简单紧凑等优点,但也存在一些缺点如稳定工况区间较窄、容易发生喘振。
喘振给压缩机带来危害极大,为了保障压缩机稳定运行,必须应用有效的防喘振控制。
本文主要介绍了离心式压缩机喘振产生的原因,详细叙述了压缩机防喘振的意义与方法,以离心式空气压缩机为例,基于霍尼韦尔DCS系统如何实现防喘振控制。
离心式压缩机的工作原理随着我国工业的迅速发展,工业气体的需求日益增长,离心式压缩机因其优秀的性能及较大的排气量而被广泛应用于工业生产中。
在离心式压缩机中,汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体会被甩到工作轮后面的扩压器中去。
而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部分进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。
气体因离心作用增加了压力,以很高的速度离开工作轮,经扩压器后速度逐渐降低,动能转变为静压能,压力增加,同时气体温度相应升高,在单级压缩不能达到压力要求的情况下,需要经过多级压缩,压缩前需要经过气体冷却器冷却,经过这种多级冷却多级压缩后,最终达到气体压缩的目的。
喘振产生的原因喘振是目前离心式压缩机容易发生的通病。
离心式压缩机的操作工况偏离设计工况导致入口流量减小,使得压缩机内部叶轮、扩压器等部件气流方向发生变化,在叶片非工作面上出现气流的旋转脱离,造成叶轮通道中气流无法通过。
该工况下,压缩机出口压力及与压缩机联合工作的管网压力会出现不稳定波动,进而使得压缩机出口气体反复倒流即“喘振”现象。
另外,压缩机的吸入气体温度发生变化时,其特性曲线也将改变,如图1、图2所示,这是压缩机在某一恒定转速情况下,因吸入气体温度变化时的一组特性曲线。
曲线表明随着温度的升高,压缩机易进入喘振区。
图1离心压缩机的性能曲线图2温度对性能曲线的影响喘振现象的发生,由于气体反复倒流,会打破压缩机原有的运动平衡,导致转子的振动增大,在旋转中与定子接触摩擦,通常监控上的表现为压缩机出口的压力反复波动,轴承温度逐渐升高。
离心式压缩机喘振现象与调节方法
![离心式压缩机喘振现象与调节方法](https://img.taocdn.com/s3/m/3645d70d5901020207409cb3.png)
离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。
判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。
压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。
当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。
二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。
如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。
图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。
(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。
(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。
离心式压缩机喘振原因分析及防治措施
![离心式压缩机喘振原因分析及防治措施](https://img.taocdn.com/s3/m/cca1a8aad0f34693daef5ef7ba0d4a7302766c1e.png)
总654期第十期2018年10月河南科技Henan Science and Technology离心式压缩机喘振原因分析及防治措施刘天娇(河南协成工程技术有限公司,河南开封475000)摘要:喘振是离心式压缩机的一种固有特性,对工况的稳定性有较大影响,并易造成压缩机损坏。
基于此,本文通过研究发现管网系统压力过高、吸入流量不足、操作错误、放喘振系统未投自动,都有可能造成喘振。
对此,笔者提出相应的防喘振措施。
关键词:喘振;离心式压缩机;防喘振控制中图分类号:TH452文献标识码:A文章编号:1003-5168(2018)28-0061-02 Cause Analysis and Prevention Measures of Centrifugal Compressor SurgeLIU Tianjiao(Henan Xiecheng Engineering Technology Co.,Ltd.,Kaifeng Henan475000)Abstract:Surge is an inherent characteristic of centrifugal compressor,which has a great influence on the stability of working conditions and is easy to cause damage to the compressor.Based on this,this paper found that high pressure, insufficient suction flow,wrong operation,and no automatic ventilation system could cause surge.In this regard,the author put forward corresponding anti surge measures.Keywords:surge;centrifugal compressor;anti surge control离心式压缩机是用于压缩和输送化学生产中的各种气体的重要装置,与活塞式压缩机相比,具有气量大、结构紧凑、体积小、振动小、无需中间罐、运行平衡等优点。
离心式压缩机喘振的原因分析及处理
![离心式压缩机喘振的原因分析及处理](https://img.taocdn.com/s3/m/a71a03f110661ed9ad51f3f9.png)
离心式压缩机喘振的原因分析及处理摘要:离心式压缩机喘振现象的发生主要取决于管网的特性曲线和离心式压缩机的特性曲线。
本文对离心式压缩机特点、喘振现象、产生的危害、判断方法、发生原因进行了总结,并提出了相应的预防措施。
关键词:压缩机;喘振;预防措施喘振是离心压缩机特有的一种现象,它是危害压缩机结构的主要原因之一,在工艺流程中应尽力避免压缩机喘振现象的出现。
根据石化企业压缩机机组现场应用反馈,机组发生喘振现象比较普遍,有些机组甚至频繁发生喘振,给企业安稳生产及经济效益造成了一定的影响。
1.喘振原因喘振作为离心式压缩机运行中的一-种特殊现象,易造成气流往复强烈冲击,严重影响压缩机运行部件,是造成运行事故的主要因素。
喘振是离心式压缩机本身固有的特性,导致喘振产生的因素有两方面:内在因素是由于离心式压缩机中的气流在一定的条件下出现了“旋转脱离”这种状况:而外在因素是由于离心式压缩机管网系统的特性。
2.离心机的特点离心式压缩机是具有处理气量大、体积小、结构简单、运转平稳、维修方便等特点,应用范围广。
但由于离心机本身结构所限,仍然存在短板,在压力高、流量小的场合会发生喘振,且不能从设计上予以消除。
3.离心式压缩机喘振的危害、现象及判断3.1喘振的危害喘振是当离心式压缩机的进口流量减少至一定程度时所发生的一种非正常工况下的振动,气体流量、进出口压力出现波动,从而引起压缩机转速及工艺气在系统中产生周期性振荡现象。
喘振的危害:(1)由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅波动,破坏了工艺系统的稳定性;(2)使压缩机叶片发生强烈振动,叶轮应力大幅增加,噪声加剧;(3)引起动静部件的摩擦与碰撞,使压缩机的轴发生弯曲变形,严重时会产生轴向窜动,使轴向推力增大,发生烧毁止推轴瓦甚至扫膛事故;(4)加剧轴承、轴瓦的磨损,破坏润滑油膜的稳定性,使轴瓦合金产生疲劳裂纹,甚至发生烧瓦抱轴等事故;(5)损坏压缩机的机械密封及轴封,使压缩机效率降低,同时由于密封的损坏会造成工艺气泄漏,极易引发火灾、爆炸等事故;(6)影响驱动机的正常运转,干扰操作人员的正常操作,使一些仪表、仪器的测量准确性降低甚至损坏。
离心式压缩机喘振现象与调节方法
![离心式压缩机喘振现象与调节方法](https://img.taocdn.com/s3/m/3645d70d5901020207409cb3.png)
离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。
判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。
压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。
当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。
二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。
如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。
图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。
(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。
(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。
离心式压缩机的喘振原因与预防措施分析
![离心式压缩机的喘振原因与预防措施分析](https://img.taocdn.com/s3/m/d80d9acf4793daef5ef7ba0d4a7302768e996fb2.png)
离心式压缩机的喘振原因与预防措施分析摘要:离心式压缩机是通过叶轮带动气流,增大气流的速度,把气流中的能量转换成气压,从而提高气体的压强。
其优点是单级流量大,压力比高,气体介质密封效果好。
离心式压缩机具有较强的压力、流量相关性,其稳态工作区间较小,且极易产生喘振现象,为了保证离心式压缩机的安全、稳定工作,需要对喘振现象进行有效的控制。
通过对压缩机特性曲线的测试,可以得到满足特定工况的压缩机抗喘振特性曲线,该防喘振系统控制下的机组应是最安全和经济的。
关键词:预防喘振;离心式压缩机;故障分析1.离心式压缩机喘振原理离心式压缩机是一种利用叶轮高速转动来持续提高气压的转动设备。
气体压力主要是通过扩散阀和推进器来提高的。
当压缩机内的气体速度下降到一定程度时,将引起压缩机内叶轮的转动、分离,并在叶轮内产生大量的气体漩涡。
在这种情况下,由于阻塞严重,会使压缩机出口的压力大大下降。
因为管网的容积很大,所以出现在管网上的气体压力快速降低的可能性很小。
一般情况下,管网内的气压比压缩机出口气压高的多,造成管网内气压回流。
直到压缩机出口的气压和管道内的气压相同,这种回流现象才会发生。
此后,在人工转动叶轮的作用下,气压逐渐上升。
在管网内气压快速升高后,气压又会逐步下降,使系统内再一次发生回流,导致系统内出现大幅的气体喘振及周期的低频现象。
这就是压缩机的喘振现象。
2.离心式压缩机喘振的影响因素2.1内部因素离心式压缩机产生喘振的内在原因有两个:一个是叶轮,另一个是介质。
如果进气体速小于规定的数值,则会使压缩机的风向发生偏移。
如果有非常大的偏离,也可能造成分离。
这时,气体将滞留于叶轮流道内,使压缩机内压下降。
但是,在工程管道中,由于背压的存在,出口的压力不会下降,从而引起气体的回流,从而补充气体的流动,最终达到正常水平。
若持续降低且补给不充分,仍然存在回流现象。
长此以往,设备内的空气将产生喘振,这就是造成离心式压缩机喘振的内部因素。
离心式压缩机喘振故障原因分析及预防措施
![离心式压缩机喘振故障原因分析及预防措施](https://img.taocdn.com/s3/m/10773e43f524ccbff0218451.png)
离心式压缩机喘振故障原因分析及预防措施离心式压缩机喘振故障原因分析及预防措施【摘要】本文介绍了离心式压缩机的喘振原理和喘振的形成表现形式,并结合喘振现象对压缩机的喘振故障原因进行了分析,提出了压缩机喘振故障的控制和预防措施。
【关键词】离心式;压缩机;喘振;故障前言喘振是离心式压缩机固有的特性,它是在一定的操作条件下,由被压缩气体的气流扰动引起的一种非正常现象。
在化工生产中为了保证压缩机的稳定运行,我们对离心式压缩机喘振原因进行了分析,并采取了相应的防范措施,最终解决了压缩机组的喘振问题,确保了机组的长周期稳定运行。
一、离心式压缩机的喘振原理喘振是离心式压缩机运行在某一工况下产生的特有现象。
离心式压缩机是一种利用叶轮的高速旋转来提高气体压力的转动设备,气体的升压过程主要在叶轮和扩压器内完成。
当压缩机内气体流量降低至某一值时,压缩机叶轮的叶道就会出现气流旋转脱离现象,旋转脱离的气流在叶道中形成气流漩涡,占据了大部分叶道,这时气流就会受到严重阻塞,致使压缩机出口压力明显下降。
管网具有一定的容积,由于管网中的气体压力不可能很快下降,于是就会出现管网中的气体压力反而大于压缩机出口压力的现象,使管网中的气体倒流,直到管网中的气体压力下降至与压缩机出口压力相同时,气体倒流才停止。
随后在旋转叶轮的作用下气体的压力升高,当气体压力大于管网压力时,气体正向流动并向管网供气。
管网中的气体压力迅速回升,气体流量又下降,系统中的气流再次出现倒流,气体在压缩机组和管网系统中反复出现正流、倒流,使整个系统发生了周期性的低频、大振幅的气流振荡现象,这种现象就称为压缩机的喘振。
喘振造成的后果非常严重,不仅降低压缩机的工作效率,使设备出现异常噪声和强烈振动,而且会损坏压缩机的轴承和密封,甚至发生转子和固定部件的碰撞,导致设备严重受损。
二、离心式压缩机喘振故障原因分析压缩机喘振本质上是因为进入压缩机的流量不足以使压缩机产生足够的压力,以至于外部系统的压力大于压缩机内部的压力,因此,产生喘振故障主要可以通过以下几个方面来分析。
离心式制冷压缩机喘振分析及解决措施
![离心式制冷压缩机喘振分析及解决措施](https://img.taocdn.com/s3/m/1946bf777fd5360cba1adbe8.png)
1 1.1 负荷过低喘振是离心式压缩机的固有特性。
当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。
但是系统管网的压力没有瞬间相应地降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向系统管网流动。
如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。
离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。
压缩机排量减小,叶轮达到压头的能力也减小,此时就会发生喘振现象。
1.2冷凝压力过高当机组负荷过高时,冷却水温度不能及时降低,就会造成冷凝温度增高,冷凝压力也就随之增高,当增加至接近于排气压力时,冷凝器内部分制冷剂气体会倒流,此时也会发生喘振。
2避开喘振点的措施2.1改变压缩机转速对压缩机加装变频驱动装置,将恒速转动改为变速转动。
在低负荷状态运行时,通过同时调节导流叶片开度和电机转速,调节机组运行状态,可控制离心机组迅速避开喘振点,避免喘振对机组的伤害,确保机组运行安全。
2.2降低冷凝温度发生喘振时,一般会认为是吸入口压力过低造成的,但机组在80%以上负荷运转时也会产生喘振,则是由于冷凝压力过高引起的,这时就要想法降低冷却水温度来降低冷凝压力。
(补充低温水,可以利用自来水或者井水。
)2.3热气旁通机组在低负荷状态下运行时发生喘振,压比和负荷是影响喘振的两大要素。
当负荷小到某一极限时,或者当压比大到某一极限点时,都会发生喘振。
为避免上述现象发生,可用热气旁通来进行喘振防护,从冷凝器至蒸发器连接一根连接管,当运行点到达喘振保护点而未达到喘振点时,通过控制系统打开热气旁通电磁阀,从冷凝器将高温气体排到蒸发器,降低了压比,同时提高了排气量,从而避免了喘振的发生。
离心式压缩机喘振的分析和处理方法
![离心式压缩机喘振的分析和处理方法](https://img.taocdn.com/s3/m/3677f73c83c4bb4cf7ecd1ec.png)
离心式压缩机喘振的分析和处理方法摘要:本文就离心式压缩机为主要描述对象,分析了喘振的原因和主要问题,并针对这些原因提出了消除喘振的方法。
就喘振现象的发生机理以及影响因素,本文做出了详细论述,旨在为减轻喘振来提高离心式压缩机的性能。
关键词:离心式压缩机喘振分析前言离心式压缩机具有很多特点,诸如效率高,排气量大以及气体不受油污污染以及运转平稳等,成为目前应用广泛的速度式压缩机种类之一。
在工业生产上,离心压缩机的安全性能起重要作用。
但离心压缩机容易发生喘振,作为一种有着较大危害的固有现象,喘振对压缩机的使用寿命有很大的损害,应该受到重视。
1.离心式压缩机的喘振机理由实际物体的高速转动带来气体的转动,从而形成离心力,这一过程实现了能量的传递,气体获得动能和压力能。
叶轮中高速转动的气体在扩压器内实现动能向压力能的转化。
所以说主要的压缩过程在叶轮和扩压器内。
这也是离心式压缩机的基本工作原理。
当时机情况偏离设计工况时,会出现气流量减小的情况,以致进入叶轮和扩压器的气体反向流动,冲向工作面,增加了非工作面边缘的扩压度,导致气流边界分层,最终形成了漩涡区。
在越靠近叶轮出口的地方,这种漩涡现象越严重,波及的范围也更大。
这是与偏离设计工况的程度成正相关关系的,因为偏离程度越大,气流量也就越小,工作面和非工作面之间出现的气流边界分层现象也就原来越严重。
而在离心式压缩机的实际构造中,由于叶轮中叶片的不完全对称性,导致气流流动的不均匀,气流边界分层可能会出现在不确定的某个叶道中。
当气流量减小到某一临界值时,叶轮的旋转会将整个分层现象扩张到更广的区域,此时气流向叶轮旋转的反向流动,气流旋涡开始形成,并出现在叶轮的外圆和内圆中,发生旋转失速的情况。
旋转失速的情况下,叶道中的气流无法通过,排气管中的高压气体会向压力下降的级里流动,及时填补了级流量不足的空缺,促使压缩机恢复运转,将倒流的气体重新排放出去。
此时又出现了级中气流量不足的情况,然后高压气体又流向低压区域的级里,促使叶轮正常工作。
离心式压缩机喘振分析和处理
![离心式压缩机喘振分析和处理](https://img.taocdn.com/s3/m/d02612d2aa00b52acfc7cafa.png)
离心式压缩机喘振分析和处理摘要喘振一直都是困扰离心式压缩机实现安全平稳运行的难题,喘振会造成机组部件损坏,影响设备使用寿命,带来严重的直接和间接经济损失,压缩机防喘振工作显得极为重要。
本文分析了喘振发生的原因,阐述了喘振的现象和判断方法,并结合实例介绍了防喘振技术在生产中的应用,总结了处理离心式压缩机喘振的多种方法,为不同工艺流程中改变操作思路、处理和避免压缩机喘振提供参考。
关键词离心式压缩机;喘振;现象;处理中图分类号TH452 文献标识码 A 文章编号1673-9671-(2012)082-0186-02离心式压缩机是在气体压缩装置中的关键设备,该设备的运行状态良好与否直接影响压缩装置能否稳定运行,而压缩机的喘振是不利于压缩机安全稳定运行的一个重要问题。
本文就离心式压缩机喘振的现象、原因、判断和处理进行了分析和总结。
1 喘振的现象和发生喘振的原因1.1 喘振的现象每一台压缩机都有其特定的性能曲线,转速与流量、排出压力须匹配在一定范围内,压缩机才能稳定运行,如图1中虚线1右侧部分就是压缩机稳定运行区域。
当因为某种原因导致压缩机的吸入流量、排出压力与转速的匹配关系脱离了这一区域时,气体在压缩机叶轮上将出现“旋转脱离”的现象,流体流动状态趋于恶化,吸入排出流量、出口压力出现明显的脉冲式起伏变化,同时伴随着压缩机体和管道系统的周期性振动和噪音,如同人在剧烈地喘息,这一现象称为压缩机的“喘振”。
图1中虚线1所表示的工况点是压缩机发生喘振的临界点,虚线1左侧部分的工况点代表压缩机的喘振区。
喘振是压缩机的固有特性,是对于压缩机的使用寿命和生产装置的长周期运行十分不利的因素,因此防喘振是所有压缩机组实现长期稳定运行必须要解决的一个关键问题,是日常操作需重点关注的问题之一。
纵轴p1/p2:压缩比;横轴Q:吸入流量;n1、n2:转速,n2>n1;a1:临界点;a2:最佳工况点;曲线1:喘振临界线;曲线2:最佳工况线图1 离心式压缩机特性曲线图1.2 喘振的原因喘振是压缩机的固有特性,压缩机运行时,叶轮将气体吸入、升压、提速并排出缸体,流体的各项参数均发生变化,但是处于一个动态的平衡中,当压缩机的工况点处于喘振区时,气体在叶轮上发生旋转脱离,叶轮向单位质量流体提供的总能量减少(压缩气体的动能和压力能),低于压缩机出口管网气体具有的总能量,叶轮排出的气体无法抵消出口管网压力而正常向后流动,气体流通的平衡被打破,如同逆水行舟,不进则退。
离心式压缩机振动故障的诊断及解决措施
![离心式压缩机振动故障的诊断及解决措施](https://img.taocdn.com/s3/m/5a7b0ba76394dd88d0d233d4b14e852458fb39a5.png)
离心式压缩机振动故障的诊断及解决措施汇报人:日期:CATALOGUE目录•引言•离心式压缩机振动故障的诊断•振动故障的原因分析•离心式压缩机振动故障的解决措施•案例分析•结论与展望引言01离心式压缩机的基本结构和工作原理离心式压缩机的特点和应用领域离心式压缩机的概述振动故障的危害振动故障对离心式压缩机的危害振动故障对操作人员和设备周围环境的影响离心式压缩机振动故障的诊断02离心式压缩机振动故障的原因多种多样,包括机械不平衡、气动不平衡、转子不对中、轴承磨损等。
因此,对于振动故障的诊断,需要采用多种方法,包括信号处理、机器学习以及其他技术。
信号处理方法主要包括频谱分析、波形分析、轴心轨迹等,可以用于识别机械不平衡和气动不平衡等故障。
机器学习算法则可以通过学习样本数据,自动识别和预测振动故障,提高诊断准确率。
其他技术,如轴颈测量和激光对中等,也可以用于诊断转子不对中和轴承磨损等故障。
诊断方法概述VS频谱分析01通过对振动信号进行频谱分析,可以将振动信号分解成不同频率的分量,从而识别出不同性质的振动故障。
例如,对于机械不平衡故障,可以在频谱上看到以转子转速频率为基频的振动分量。
波形分析02波形分析可以用于识别不同性质的振动故障。
例如,对于气动不平衡故障,可以在波形上看到周期性的波动,其频率与气动力的频率相等。
轴心轨迹03轴心轨迹可以用于识别转子不平衡和不对中等故障。
通过测量轴心位置的变化,可以绘制出轴心轨迹图,从而识别出转子不平衡和不对中的位置和大小。
支持向量机(SVM)SVM是一种有监督学习算法,可以用于分类和回归问题。
在振动故障诊断中,可以使用SVM对采集的振动信号进行分类,判断是否存在故障,并预测故障的类型和程度。
随机森林(RF)RF是一种集成学习方法,将多个决策树的结果进行集成,提高预测精度和稳定性。
在振动故障诊断中,可以使用RF对采集的振动信号进行分类或回归分析,预测故障的类型和程度。
神经网络神经网络是一种模拟人脑神经元网络结构的计算模型,具有强大的自学习和自适应能力。
离心压缩机异常振动、异常噪音、喘振原因与处理方法
![离心压缩机异常振动、异常噪音、喘振原因与处理方法](https://img.taocdn.com/s3/m/38137508f11dc281e53a580216fc700aba685272.png)
1、压缩机的异常振动和异常噪音:
可能的原因
处理方法
①、机组找正精度被破坏,不对中。
检查机组振动情况,轴向振幅大,振动频率与转速相同,有时为其2倍、3倍……卸下联轴器,使原动机单独转动,如果原动机无异常振动,则可能为不对中,应重新找正。
②、转子不平衡。
检查振动情况,若径向振幅大,振动频率为n,振幅与不平衡量及n2成正比;此时应检查转子,看是否有污垢或破损,必要时转子重新动平衡。
⑦、防喘装置或机构工作失准或失灵。
定期检查防喘装置的工作情况,发现失灵、失准或卡涩,动作不灵,应及时修理调整。
⑧、防喘整定值不准。
严格整定防喘数值,并定期试验,发现数值不准及时校正。
⑨、升速、升压过快。
运行工况变化,升速、升压不可过猛、过快,应当缓慢均匀。
⑩、降速未先降压。
降速之前应先降压,合理操作才能避免发生喘振。
④、压缩机出口气体系统压力超间。
压缩机减速或停机时气体未放空或未回流,出口逆止阀失灵或不严,气体倒灌,应查明原因,采取相应措施。
⑤、工况变化时放空阀或回流阀未及时打开。
进口流量减少或转速下降,或转速急速升高时,应查明特性线,及时打开防喘的放空阀或回流阀。
⑥、防喘装置未投自动。
正常运行时防喘装置应投自动。
⑮、气体管道对机壳有附加应力。
气体管路应很好固定,防止有过大的应力作用在压缩机气缸上;管路应有足够的弹性补偿,以应付热膨胀。
⑯、压缩机附近有机器工作。
将它的基础、基座互相分离,并增加连结管的弹性。
⑰、压缩机负荷急剧变化。
调节节流阀开度。
⑱、部件松动。
紧固零部件,增加防松设施。
2、离心压缩机喘振:
压缩机喘振原因分析及处理措施
![压缩机喘振原因分析及处理措施](https://img.taocdn.com/s3/m/dab67583dc3383c4bb4cf7ec4afe04a1b171b053.png)
《装备维修技术》2021年第12期—391—压缩机喘振原因分析及处理措施黄立富(河南省濮阳市中国石化中原石油化工有限责任公司,河南濮阳457000)摘要:离心空压机的主要故障是喘振,喘振对于离心压缩机有着很严重的危害。
喘振分为真喘振和假喘振。
是叶片式压缩机在流量减少到一定程度时所发生的一种非正常工况下的振动。
喘振时空压机会发生一种如同喘息病患者呼吸时的“呼哧、呼哧”的噪音。
并使整个机组振动增大,喘振使压缩机的转子等元件受交变动应力,级间压力失调引起强烈振动,碳环密封和轴承损坏,导致级间温度过高,等恶性事故。
需要深入的研究一下喘振现象,以便于采取措施,消除喘振现象,确保装置安全生产平稳运行。
关键词:压缩机喘振原因分析处理措施一、喘振的表现形式离心式压缩机发生喘振时,现象如下:1:压缩机出口压力不断升高,随后急剧下降2:空压机流量急剧下降,大幅度波动,有可能发生空气到流3:机器产生强烈振动,同时发出呼哧噪声。
二、离心空压机喘振原理研究结果表明,喘振是离心压缩机运行某一工况下产生的特有现象,离心式压缩机是一种利用叶轮的高速旋转来提高气体压力的转动设备,气体的升压过程主要在叶轮和扩压器内完成,当压缩机气体流量降低至某一值时,压缩机叶轮的叶道就会出现气流旋转脱离现象,旋转脱离的气流在叶道中形成气流旋涡,占据大部分叶道,这时气体就会受到严重阻塞,致使压缩机出口压力明显下降。
管网具有一定的容积,由于管网中的气体压力不可能很快下降,于是就会出现管网中的气体压力大于压缩机出口压力的现象,使管网中气体倒流,直到管网中的气体压力下降与压缩机出口压力相同时,气体倒流才停止,随后在旋转叶轮作用下气体压力升高,当气体压力大于管网压力时,气体正向流动并向管网供气。
管网气体压力迅速上升。
气体流量再次下降,系统中的气体再次出现倒流,气体在压缩机组和管网系统中反复出现逆流现象,使整个系统发生了周期性低频、大振幅的气流振动现象,这种现象称之为喘振。
离心式压缩机喘振分析及消除喘振的方法
![离心式压缩机喘振分析及消除喘振的方法](https://img.taocdn.com/s3/m/fd2848e0710abb68a98271fe910ef12d2af9a916.png)
离心式压缩机喘振分析及消除喘振的方法摘要:化学工业中一些化学反应过程需要在高压下进行,如:费托合成反应、合成氨反应、乙烯的本体聚合等,为了克服管道的阻力,需要提高气体的压力。
而气体输送量较大,对相关气体的输送机械出口压力要求较高。
在大型化工生产装置中,离心式压缩机是压缩和输送各种气体的关键设备,对整个系统稳定运行具有一定决定作用,压缩机的安全、稳定、良好运行直接影响着整个系统生产稳定性。
在实际生产运行中,随着系统长周期运行,压缩机因各种因素导致故障而影响其正常运行效果,甚至影响整个系统的安全稳定运行。
基于此,本篇文章对离心式压缩机喘振分析及消除喘振的方法进行研究,以供参考。
关键词:离心式压缩机;喘振分析;消除喘振;方法引言随着当下我国社会的不断发展,各种化工业生产也取得了较大的进步,而离心式压缩机也广泛运用于各行各业的生产中。
但是有关其喘振的故障问题却层出不穷,生产线的正常运转要依靠离心式压缩机的工作。
基于此,本文将结合故障分析进行探讨同时提出相应的节能化处理方式,以供参考与借鉴。
1离心压缩机本体结构及工作原理离心压缩机也称为透平式压缩机,是一种多级离心压缩机,机壳为水平剖分式,其外观图如图1所示,其主要构造如图2所示,其工作原理与离心式鼓风机相同。
压缩机主要由定子、转子及支撑轴承、推力轴承、轴端密封等组成,其中压缩机的转子包括主轴、轮、轴套、轴螺母、隔套、平衡盘和推力盘等,转子与定子之间设有密封元件。
1—吸气室;2—叶轮;3—扩压器;4—弯道;5—回流器;6—蜗壳;7—前轴封;8—后轴封;9—轴封;10—气封;11—平衡盘;12—径向轴承;13—温度计;14—隔板;15—止推轴承。
离心式压缩机是通过叶轮旋转带动流经叶轮的空气旋转,使气体受到离心力。
气体在离心力的作用下产生一定压力,获得速度,空气被甩到叶轮后面的扩压器(如图1中的2和3所示)中去。
空气经扩压器逐渐降低速度,动能转变为静压能,使气体压力进一步提高。
离心式压缩机的喘振分析与控制
![离心式压缩机的喘振分析与控制](https://img.taocdn.com/s3/m/7cd295e14afe04a1b071dea9.png)
离 心 式 压 缩 机 的 喘 振 现 象 多 发 生 于机 组开 工 、停工 和 生产 负荷 调整 时 ,因为这 期 间 的吸人 流量 、压力 比 和转 速会 频 繁 的发生 改变 ,在 开 工 、 停工 和 生产 负荷 调整 期 间 ,上有 系统 共赢 的原 料 量会 较 大的变 化 ,需要 及 时调 整转 速 和返 回线 开度 ,以确保 压
工业技术 ) ) ) ) )
离 心式压缩机 的喘振 分析 与控制
杨鹏 飞
( 中国石油西部管道独 山子输 油气分公 司 ,新 疆 克拉玛依 8 3 3 6 0 0 )
摘 要 :离心式压缩机是一种 叶片旋转式压缩机 。具 有效率 高、排 气量 大、体积小、结构 简单 、气体 不受油污 染 以及正 常工况下运行平稳 、压缩 气流无脉动 等优 点 ,被广泛应用 于石 油、冶金 、化 工等行 业。 离心式压缩机的安 全 可靠运行 对工业生产有着极 为重要 的意义。由于 离心式压缩机对 气体流量 、温度 、压 力变化较 为敏 感 ,容 易发 生喘振现 象。喘振对 离心压缩机有较 大的危 害 ,是压缩机损坏的主要诱 因之一 。本 文将 对 离心式压缩机发 生喘振 的机理和影 响因素、喘振 的危 害和判断 以及 防喘振控制措施进行分析和探讨 。 关键词 :离心式压缩机 ;喘振 ;机 理 ;影响 因的运 行 工况 点 面 : 异 常的周 期性 吼声 ,甚 至 出现爆 音 ; 左 移 ,进 入 喘振 区 ,从 而导 致压 缩机 ① 喘 振会 使气 流强 烈 的脉 动 以及 ②压 缩机 的进 口流 量 和出 口压力 发生 发生喘振 现象 。 周期 性 的震荡 ,会 导致 供气 参数 ( 流 周期性 的大 幅度脉 动 ,流量 指示 值 急 ( 2)压缩 机的转速 偏高 。当压 缩 量 、转速 等 )的大幅 度上 下波 动 ,这 剧 下 降 ;③ 压 缩 机 发 生 喘 振 时 ,轴 机 的转速 达 到喘振 临界 点 时 ,在 压缩 会破坏工艺系统 的稳定性运行 。 承 、机体 的振 动 幅度会 明显 增 大 ,机 ② 喘振 现 象 的发生 会使 叶片 产生 组会发生强烈的振动 。 比和 吸人 流量 不改 变 的情况 下 ,如果 压 缩机 的转 速 加大 ,则 会使 压缩 机运 强烈 的震 动 ,叶轮 的应 力也 会大 大地 二 、针 对 喘振 的防 止措施 和 控制 行 曲线 中的运 行 工况点 上移 ,进 入 喘 增加 ,使噪声加剧 。 有如下措施 : 振 区 ,使 压缩机发生喘振 。 ③ 喘 振 会 加 剧 轴 颈 和 轴 承 的磨 ① 在压 缩机 的 出 口管线 上可 设置 ( 3)压缩 机排 出 口的管网压力过 损 ,破坏 润滑 油膜 的稳 定性 ,导 致轴 自动 防 喘振控 制 阀 ,而 且 防喘振 控制 高 。 当吸人 流 量达 到喘 振 临界点 时 , 承 合 金 产 生 疲 劳 裂 纹 ,甚 至 烧 毁 轴 阀 的尺寸 和型 号应 根据 压缩机 的操 作 在 吸 人流 量 和转 速 不发 生改 变 的情况 承 。 条件 和性 能来 选取 ,除 此之 外 ,防喘
如何应对离心机振喘问题解决方案篇 离心机解决方案
![如何应对离心机振喘问题解决方案篇 离心机解决方案](https://img.taocdn.com/s3/m/82459a2cfe00bed5b9f3f90f76c66137ee064f84.png)
如何应对离心机振喘问题解决方案篇离心机解决方案一如前文所提及的,离心机存在振喘问题将会引发严重的问题。
对此,离心机的操们在详细了解离心机常见问题的同时,更应掌握相关解决方法。
问题一:蒸发压力过低查出主要原因,针对性补救,例如制冷剂不足添加制冷剂、制冷量负荷小、关闭能量调节叶片等。
问题二:冷凝器结垢清除传热面的污垢和清洗冷却塔。
问题三:制冷系统中存在空气当离心机采用K11制冷剂时,一般液体温度超过28℃ 时,表明系统中有空气存在。
此时,可启动抽气回收装置,将不凝性气体排出,一般将制冷剂R11的压力抽到稍低于制冷荆液体温度相对应的饱和压力,即28℃以下的对应压力:117.68KMP以下即可。
问题四:启动后发生喘振进行反喘振调节。
为了防止喘振,可将部分被压缩后的蒸气,由排气管旁通到蒸发器。
另外,减少蒸气密度和启动时的压力,可减小启动功率。
问题五:停机时喘振此时应注意主电机有无反转现象,并尽可能关小导叶角度,降低离心机排气口压力。
除此之外,在离心机的操作过程中,操更应保持冷凝压力和蒸发压力的稳定,使离心机制冷量高于喘振点对应制冷量,以防喘振。
低速离心机的维护介绍低速离心机结构设计合理,有效的消除了卫生死角,结构件过渡圆滑,表面经抛光处理,外部结构件、紧固件和转鼓都采用丌锈钢制造。
外壳为翻盖式,可对离心机外壳不转鼓夹层空间进行彻底清洗。
低速离心机应使用独立的插座,保证电压稳定;如用户电压不稳定,必须连接稳压电源,台式高速离心机如较长时间未使用;在使用前应将离心机盖开启一段时间,大容量离心机以免损坏离心机;台式离心机要放在结实、式高速离心机经长期使用,磨损属正常现象。
稳固、水平的台面上.必须定期用专用的上光油对转子、吊篮及套管等进行维护,以避免腐蚀,套管等处碎屑清除干净,否则会损伤离心机。
可在腔体上部涂一层凡士林,放转子运行数分钟,碎屑即很容易与凡士林一起清除。
式高速离心机的工作台应平整坚固,工作间应整齐清洁,干燥并通风良好。
【分享】离心压缩机喘振起因及解决对策
![【分享】离心压缩机喘振起因及解决对策](https://img.taocdn.com/s3/m/48d7af0fa31614791711cc7931b765ce04087a57.png)
【分享】离心压缩机喘振起因及解决对策离心式压缩机是以叶片旋转式为主的压缩机,随着叶轮的高速旋转作用和通过扩压器的扩压,提高了介质气体压力,离心式压缩机的稳定运行是工业生产的重要保障。
本文说明了喘振的判断方法,对喘振原因进行了详细的分析,并给出了防喘振条件及措施,为离心式压缩机喘振的治理打下了坚实的基础。
随着我国工业生产水平的提高,离心式压缩机的应用越来越广泛,其有点突出,得到了大家的认可。
但是离心式压缩机在运行的过程中容易发生喘振的现象,严重影响了工业生产的安全性和稳定性。
因此如何分析喘振的发生原因并采取有效的治理措施成为了工作人员需要解决的问题。
下面就此进行讨论分析。
图101喘振的判断方法离心式压缩机一旦发生喘振现象,则机组和管网的运行状态会有以下较为明显的特征:(1) 压缩机和管网之间发生周期性的振荡,并产生时高时低的噪声,严重时机组甚至会发生剧烈的“吼叫”声。
(2) 机壳和轴承发生强烈的振动,且振动不稳定,时大时小,并发出强烈的、周期性的气流声;喘振的振动频率一般较低。
(3) 气体介质的出口压力和入口流量大幅度的变化,发生周期性的脉动,严重时还可能产生气体倒流的现象,这是较危险的工况。
(4) 拖动压缩机的电机的电流表和功率表指针会产生大幅度的波动,并随着喘振强度的增加而逐渐增大。
因此,在生产过程中,通过对离心式压缩机运行的声音、进口压力和流量、振动幅度仪表的观察,就可以有效地判断出喘振是否发生。
02喘振原因的分析 2.1 喘振发生的内因研究表明,喘振发生的内部原因与叶轮结构及叶道内介质气体有着密切的关系。
当进口气体流量瞬时降低,低过了所允许的最低工况点时,压缩机内的气流流动方向与叶片进口安装角出现很大的偏差,造成叶道内的气流出现严重的“旋转脱离”,使气体在叶道中滞流,致使压缩机压力突然降低,然而出口系统的压力并没有瞬时下降,这就使排气管内压力高的气体流回压缩机,使叶道内的流量又得以补充,并恢复正常工作,当压缩机内的流量再次减小时,系统气体又会出现倒流,如此反复,系统中的气流便产生了周期性的振荡,并伴随着强烈的噪声,这就形成了压缩机的喘振。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离心式压缩机喘振分析及解决措施
摘要:论述了离心式压缩机喘振机理、影响因素、危害及判断,以及本车间气压机组发生喘振时的处理措施。
关键词:离心式压缩机喘振机理影响因素危害判断措施
0 引言
离心压缩机是速度式压缩机中的一种,由于具有排气量大,效率高,结构简单,体积小,气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点,目前已广泛应用于石油、化工、冶金、动力、制冷等行业。
离心压缩机的安全可靠运行对工业生产有着非常重要的意义。
然而,离心压缩机对气体的压力、流量、温度变化较敏感,易发生喘振。
喘振是离心压缩机固有的一种现象,具有较大的危害性,是压缩机损坏的主要诱因之一。
早在1945年于英国首先发现了离心压缩机的喘振现象并引起了人们的注意。
1 离心式压缩机的喘振机理及影响因素
1.1 离心式压缩机的喘振机理离心压缩机工作的基本原理是利用高速旋转的叶轮带动气体一起旋转而产生离心力,从而将能量传递给气体,使气体压力升高,速度增大,气体获得了压力能和动能。
在叶轮后部设置有通流截面逐渐扩大的扩压元件(扩压器),从叶轮流出的高速气体在扩压器内进行降速增压,使气体的部分动能转变为压力能。
可见,离心压缩机的压缩过程主要在叶轮和扩压器内完成。
当离心压缩机的操作工况发生变动,而偏离设计工况时,如果气体流量减小则进人叶轮或扩压器流道的气流方向发生变化,气流向着叶片的凸面
(工作面)冲击,在叶片的凹面(非工作面)的前缘部分,产生很大的局部扩压度,于是在叶片非工作面上出现气流边界层分离现象,形成旋涡区,并向叶轮出口处逐渐扩大。
气量越小,则分离现象越严重,气流的分离区域就越大。
由于叶片形状和安装位置不可能完全相同及气流流过叶片时的不均匀性,使得气流的边界层分离可能先在叶轮(或叶片扩压器)的某个叶道中出现,当流量减少到一定程度,随着叶轮的连续旋转和气流的连续性,这种边界层分离现象将扩大到整个流道,而且气流分离沿着叶轮旋转的反方向扩展,以至叶道中形成气流旋涡,从叶轮外圆折回到叶轮内圆,此现象称为旋转脱离,又称为旋转失速。
发生旋转脱离时叶道中气流通不过去,级的压力突然下降,排气管内较高压力的气体便倒流回级里来。
瞬间,倒流回级中的气体补充了级流量的不足,叶轮又恢复正常工作,重
新把倒流回来的气体压出去。
这样又使级中流量减小,于是压力又突然下降,级后的压力气体又倒流回级中来,如此周而复始,在系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。
2 喘振的危害及判断
2.1 喘振的危害喘振现象对压缩机十分有害,主要表现在以下几个方面:①喘振时由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅度地波动,破坏了工艺系统的稳定性。
②会使叶片强烈振动,叶轮应力大大增加,噪声加剧。
③引起动静部件的摩擦与碰撞,使压缩机的轴产生弯曲变形,严重时会产生轴向窜动,碰坏叶轮。
④加剧轴承、轴颈的磨损,破坏润滑油膜的稳定性,使轴承合金
产生疲劳裂纹,甚至烧毁。
⑤损坏压缩机的级间密封及轴封,使压缩机效率降低,甚至造成爆炸、火灾等事故。
⑥影响与压缩机相连的其他设备的正常运转,于扰操作人员的正常工作,使一些测量仪表仪器准确性降低,甚至失灵。
一般机组的排气量、压力比、排气压力和气体的密度越大,发生的喘振越严重,危害越大。
2.2 喘振的判断由于喘振的危害较大,操作人员应能及时判别,压缩机的喘振一般可从以下几个方面判别:①听测压缩机出口管路气流的噪声。
当压缩机接近喘振工况时,排气管道中会发生周期性时高时低“呼哧呼哧”的噪声。
当进人喘振工况时,噪声立即大增,甚至出现爆音。
②观测压缩机出口压力和进口流量的变化。
喘振时,会出现周期性的、大幅度的脉动,从而引起测量仪表指针大幅度地摆动。
③观测压缩机的机体和轴承的振动情况。
喘振时,机体、轴承的振动振幅显著增大,机组发生强烈的振动。
3 压缩机的喘振预防及解决措施
三催化车间的气压机组是由美国DRESS-RAND公司制造的3M8-9两段压缩机和4U背压式汽轮机组成,该机组安装在公司120万吨/年催化裂化装置内,机组主要用来压缩气体、控制反应压力。
当汽轮机调速系统出现故障可导致压缩机转数急剧下降,压缩机出口压力下降,从而使管网中高压气体倒流回压缩机引起喘振。
3.1 为了防止喘振发生,在操作中应注意到:①防喘振系统未投自动的情况下,机组的操作状态必须远离喘振区,留有足够的防喘余度。
②气压机开停与调整时,必须严守“升压先升速,降速先降压”的原
则。
操作中应缓慢、均匀,多次交替完成升压和变速。
③反映、分馏岗位应努力平稳操作,控制好冷后温度,力求控制富气参数在设计范围内。
④操作中必须密切观察主蒸汽和背压蒸汽参数,发现不利趋势及时联系加以调整。
3.2 气压机不同工况下喘振现象的处理措施。
①针对低流量工况,应立即适量打开反飞动阀。
②针对出口阻塞工况,应立即适当打开出口放火炬阀。
③针对由气体参数变化出现的喘振工况,应首先打开出口放火炬消除喘振状态后,再调整操作改变气体参数。
④发生喘振工况时,气压机岗位操作员在情况判断不明的情况下,应先开出口放火炬消除喘振状态,再进行针对性处理的原则来操作。
4 结论
喘振是离心式压缩机固有的特性,具有较大的危害。
喘振现象的发生取决于管网的特性曲线和离心压缩机的特性曲线。
喘振形成的原因在于倒流与供气的周期性地交替进行。
应当结合生产实践,逐步弄清喘振的机理,掌握喘振的主要影响因素,熟悉常见的喘振实例,采取有效的防喘振控制措施,提高离心压缩机抗喘振性能和运行可靠性。