代数式求值经典题型1-(含详细答案)
代数式求值经典题型(含详细答案)
代数式求值经典题型【编著】黄勇权经典题型:1、x+x 1=3,求代数式x2-2x 1的值。
2、已知a+b=3ab ,求代数式b 1a 1+的值。
3、已知x 2-5x+1=0,求代数式x 1x +的值。
4、已知x-y=3,求代数式(x+1)2-2x+y(y-2x )的值。
5、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。
6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y 3x y -x ++的值。
8、已知5-x =4y-4-y 2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。
【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。
解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x1-x )( =(x+x 1)22x 12x +-=(x+x 1)4x12x 22-++ =(x+x 1)4x 1x 2-+)(将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。
解:b 1a 1+=ab b a +将a+b=3ab 代入式中=3 3、已知x2-5x+1=0,求代数式:x1x +的值。
解:因x 2-5x+1=0,等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=54、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x)的值。
解:(x+1)2-2x+y(y-2x)去括号,展开得=x2+2x+1-2x+y2-2xy合并同类项,+2x与-2x抵消=x2+1+y2-2xy把+1移到最后,22此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。
代数式求值-初中数学习题集含答案
代数式求值(北京习题集)(教师版)一.选择题(共6小题)1.(2019秋•海淀区校级期中)历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如2x =-时,多项式2()56f x x x =+-的值记为(2)f -,那么(2)f -等于( ) A .8B .12-C .20-D .02.(2018秋•平谷区期末)如果23x y -=,那么代数式42x y -+的值为( ) A .1-B .4C .4-D .13.(2019秋•海淀区校级期中)已知当2x =时,代数式33ax bx -+的值为5,则当2x =-时,33ax bx -+的值为() A .5B .5-C .1D .1-4.(2018秋•房山区期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有( )A .6个B .5个C .4个D .3个5.(2018秋•西城区期末)如果2220x x --=,那么2631x x --的值等于( ) A .5B .3C .7-D .9-6.(2018秋•海淀区期末)若2x =时42x mx n +-的值为6,则当2x =-时42x mx n +-的值为( ) A .6-B .0C .6D .26二.填空题(共4小题)7.(2019秋•门头沟区期末)如图,这是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.如果输出3y =,那么输入的x 的值为 .8.(2019秋•北京期中)已知250x x +-=,则代数式2331x x ++的值为 .9.(2019秋•海淀区校级期中)已知2x y +=,则322x y --的值是 . 10.(2018秋•滨海县期末)已知222x x +=,则多项式2243x x +-的值为 . 三.解答题(共5小题)11.(2018秋•海淀区校级期中)已知关于x 的多项式32ax bx cx d +++,其中a ,b .c 为互为互不相等的整数,且4abc =-(1)则a b c ++的值为 .(2)若a b c <<,当1x =时,这个多项式的值为5,求d 的值. 12.(2018秋•海淀区校级期中)间读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算.将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表. 北京市居民用水阶梯水价表 单位:元/立方米(1)若小明家去年第一,二,三,四季度用水量分别是50,60,90,50立方米,则小明家第三季度应缴纳的水费为 .(2)截至9月底,小明家今年共纳水费935元,则小明家共用水 立方米.(3)若小明家明年预计用水x 立方米,且总量不超过240立方米,则应缴纳的水费多少元?(用含x 的代数式表示) 13.(2018秋•延庆区期中)定义:任意两个数a ,b ,按规则ac a b b=-+得到一个新数c ,称所得的新数c 为数a ,b 的“机智数”. (1)若1a =,2b =,直接写出a ,b 的“机智数” c ;(2)如果,221a m m =++,2b m m =+,求a ,b 的“机智数” c ; (3)若(2)中的c 值为一个整数,则m 的整数值是多少?14.(2017秋•西城区校级期中)当2x =时,代数式31ax bx -+的值等于17-,求:当1x =-时,代数式31235ax bx --的值.15.(2017秋•海淀区校级期中)关于x 的多项式322(1)43k k x kx x x ++++-是关于x 的二次多项式. (1)求k 的值.(2)若该多项式的值2,且[]a 表示不超过a 的最大整数,例如[2.3]2=,请在此规定下求21[20172]2k x x --的值.代数式求值(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2019秋•海淀区校级期中)历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如2x =-时,多项式2()56f x x x =+-的值记为(2)f -,那么(2)f -等于( ) A .8B .12-C .20-D .0【分析】把2x =-代入256x x +-,求出(2)f -等于多少即可. 【解答】解:当2x =-时,2()56f x x x =+- 2(2)5(2)6=-+⨯-- 4106=--12=-故选:B .【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.2.(2018秋•平谷区期末)如果23x y -=,那么代数式42x y -+的值为( ) A .1-B .4C .4-D .1【分析】将2x y -的值整体代入到424(2)x y x y -+=--即可. 【解答】解:当23x y -=时, 424(2)431x y x y -+=--=-=,故选:D .【点评】本题主要考查代数式的求值,运用整体代入思想是解题的关键.3.(2019秋•海淀区校级期中)已知当2x =时,代数式33ax bx -+的值为5,则当2x =-时,33ax bx -+的值为() A .5B .5-C .1D .1-【分析】首先根据当2x =时,代数式33ax bx -+的值为5,求出82a b -的值是多少;然后应用代入法,求出当2x =-时,33ax bx -+的值为多少即可.【解答】解:当2x =时,代数式33ax bx -+的值为5,822a b ∴-=,当2x =-时, 33ax bx -+ 823a b =-++(82)3a b =--+ 23=-+1=故选:C .【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.4.(2018秋•房山区期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有( )A .6个B .5个C .4个D .3个【分析】根据程序框图,得出满足题意x 的值即可. 【解答】解:把23x =代入得:313x +=; 把3x =代入得:3110x +=; 把10x =代入得:3131x +=; 把31x =代入得:3194x +=; 把94x =代入得:31283200x +=>, 则满足条件的x 不同值为23,3,10,31,94,共5个. 故选:B .【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键. 5.(2018秋•西城区期末)如果2220x x --=,那么2631x x --的值等于( ) A .5B .3C .7-D .9-【分析】由2220x x --=得222x x -=,将其代入226313(2)1x x x x --=--计算可得. 【解答】解:2220x x --=,则226313(2)1x x x x --=-- 321=⨯- 61=- 5=,故选:A .【点评】本题考查了求代数式的值的应用,能整体代入是解此题的关键.6.(2018秋•海淀区期末)若2x =时42x mx n +-的值为6,则当2x =-时42x mx n +-的值为( ) A .6-B .0C .6D .26【分析】把2x =代入求出4m n -的值,再将2x =-代入计算即可求出所求. 【解答】解:把2x =代入得:1646m n +-=, 解得:410m n -=-,则当2x =-时,原式16416106m n =+-=-=, 故选:C .【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 二.填空题(共4小题)7.(2019秋•门头沟区期末)如图,这是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.如果输出3y =,那么输入的x 的值为 5或6 .【分析】x 的取值可分为两种情况,偶数或者奇数,分别列出这两种情况下的等式再计算即可. 【解答】解: ①当x 是偶数,32x=,解得6x = ②当x 是奇数,132x +=,解得5x = 所以,x 的值是5或6. 故答案为5或6.【点评】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.8.(2019秋•北京期中)已知250x x +-=,则代数式2331x x ++的值为 16 .【分析】由250x x +-=得到:25x x +=,将25x x +=整体代入所求的式子即可求出答案. 【解答】解:由250x x +-=得到:25x x +=, 则223313()135116x x x x ++=++=⨯+=, 故答案为:16.【点评】本题考查代数式求值,解题的关键是将25x x +=整体代入,本题属于基础题型. 9.(2019秋•海淀区校级期中)已知2x y +=,则322x y --的值是 1- . 【分析】将要求大V 代数式变形,再将2x y +=整体代入求值即可. 【解答】解:2x y +=32232()x y x y ∴--=-+ 322=-⨯ 34=-1=-故答案为:1-.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键. 10.(2018秋•滨海县期末)已知222x x +=,则多项式2243x x +-的值为 1 . 【分析】先变形,再整体代入求出即可. 【解答】解:222x x +=,222432(2)32231x x x x ∴+-=+-=⨯-=, 故答案为:1.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键. 三.解答题(共5小题)11.(2018秋•海淀区校级期中)已知关于x 的多项式32ax bx cx d +++,其中a ,b .c 为互为互不相等的整数,且4abc =-(1)则a b c ++的值为 1或4 .(2)若a b c <<,当1x =时,这个多项式的值为5,求d 的值.【分析】(1)根据题中的条件确定出a ,b ,c 组成的三个整数,确定出a b c ++的值即可;(2)根据a ,b ,c 的大小确定出各自的值,代入多项式,把1x =代入使其代数式的值为5,即可求出d 的值. 【解答】解:(1)关于x 的多项式32ax bx cx d +++,其中a ,b .c 为互为互不相等的整数,且4abc =-,∴这三个数由2-,1,2组成或1-,1,4组成,则1a b c ++=或4; (2)a b c <<,2a ∴=-,1b =,2c =,多项式为3222x x x d -+++,把1x =代入得:2125d -+++=, 解得:4d =.【点评】此题考查了代数式求值,以及多项式,熟练掌握运算法则是解本题的关键. 12.(2018秋•海淀区校级期中)间读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算.将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表. 北京市居民用水阶梯水价表 单位:元/立方米(1)若小明家去年第一,二,三,四季度用水量分别是50,60,90,50立方米,则小明家第三季度应缴纳的水费为 550元 .(2)截至9月底,小明家今年共纳水费935元,则小明家共用水 立方米.(3)若小明家明年预计用水x 立方米,且总量不超过240立方米,则应缴纳的水费多少元?(用含x 的代数式表示) 【分析】(1)小明家第三季度用水量90立方米,应缴纳的水费为905450⨯=(元); (2)(3)根据阶梯收费的意义正确列出代数式即可. 【解答】解:(1)小明家第三季度用水量90立方米,第一阶梯水量150506040--=(立方米),第二阶梯用水量904050-=(立方米) 应缴纳的水费为405507550⨯+⨯=(元). 故答案为550;(2)设小明家共用水x 立方米, 15057(260151)935⨯+⨯->,∴小明家用水少于260立方米,15057(150)935x ∴⨯+-=,解得176x ≈(立方米) 故答案为176;(3)当150x 时,应缴纳的水费为5x ,当151240x 时,应缴纳的水费为15057(150)7300x x ⨯+-=-.【点评】本题考查了列代数式与代数式求值,正确理解阶梯收费的意义是解题的关键. 13.(2018秋•延庆区期中)定义:任意两个数a ,b ,按规则ac a b b=-+得到一个新数c ,称所得的新数c 为数a ,b 的“机智数”. (1)若1a =,2b =,直接写出a ,b 的“机智数” c ;(2)如果,221a m m =++,2b m m =+,求a ,b 的“机智数” c ; (3)若(2)中的c 值为一个整数,则m 的整数值是多少? 【分析】(1)根据题意和a 、b 的值可以求得“机智数” c ;(2)根据题意,可以求得221a m m =++,2b m m =+时的“机智数” c ; (3)根据(2)中的结论和分式有意义的条件可以求得m 的值. 【解答】解:(1)1a =,2b =,ac a b b=-+, 131222c ∴=-+=, 即a ,b 的“机智数” c 是32; (2)221a m m =++,2b m m =+,ac a b b =-+, 2222211(21)()m m c m m m m m m m m++∴=-++++=-+; (3)2222211(21)()m m c m m m m m m m m ++=-++++=-+,1c m m=-为一个整数, 1m ∴=或1m =-(舍去), 即m 的整数值是1.【点评】本题考查代数式求值,解答本题的关键是明确题意,利用因式分解的方法解答.14.(2017秋•西城区校级期中)当2x =时,代数式31ax bx -+的值等于17-,求:当1x =-时,代数式31235ax bx --的值.【分析】先代入求出49a b -=-,再把1x =-代入,变形后再代入,即可求出答案. 【解答】解:当2x =时,代数式31ax bx -+的值等于17-,∴代入得:82117a b -+=-,即49a b -=-, 当1x =-时,31235ax bx -- 1235a b =-+-3(4)5a b =--- 3(9)5=-⨯-+ 32=.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.15.(2017秋•海淀区校级期中)关于x 的多项式322(1)43k k x kx x x ++++-是关于x 的二次多项式. (1)求k 的值.(2)若该多项式的值2,且[]a 表示不超过a 的最大整数,例如[2.3]2=,请在此规定下求21[20172]2k x x --的值.【分析】(1)由多项式是关于x 的二次多项式知三次项系数为0、二次项系数不为0,据此求得k 的值; (2)由多项式的值为2知245x x +=,结合(1)中0k =及新定义计算可得. 【解答】解:(1)是关于x 的二次多项式, (1)0k k ∴+=, 0k ∴=或1k =-,当1k =-时,220kx x +=,此时变为x 的一次多项式, 1k ∴=-不合题意,舍去, 0k ∴=.(2)多项式的值为2, 2432x x ∴+-=, 245x x ∴+=,由(1)0k =,∴22211115[20172][02][(4)][5][]322222k x x x x x x --=--=-+=-⨯=-=-. 【点评】本题主要考查代数式的求值,解题的关键是掌握多项式的定义及代数式的求值、整体思想的运用.。
代数式求值经典题型1-(含详细答案)
题
.
. .
.
【第 1 步】
解 因为 x、y 互为相反数,
所以,x+y=0--------(1)
第
【第 2 步】
5
题
2x² -3x +2 +7xy-3y+5y²
把 x+y=0 代入上式,得 上式=(2x+5)×0 - 3×0 +2
=2
. 把 2x2,7xy,5y2,结合,-3x,-3y 结合,
=( 2x²+7xy+5y²)+( -3x -3y)+2
. 把 x²移到等号的左边 .
题
x² +xy -xy -y - x² = -2x
. 合并同类项 .
(x² - x²)+(xy-xy)-y= -2x
-y = -2x
y = 2x
.
x²+xy-y² 代数式 y²+2xy 把 y = 2x 代入
x²+x·(2x)-(2x)² = (2x)²+2x·(2x)
两边同时平方,x²-2xy+y²=5
将(1)、(2)代入上式,得
把-2xy 移到等号右边,
上式=( 5)² [( 5)² +4xy]
得,x²+y²=5 +2xy------(2)
第 4
【第 2 步】
题
(x²- y²)² - 10(x²+y²)
-10 (5 +2xy) =5(5+4xy)-10(5 +2xy) =25+20xy-50- 20xy
题
温馨提示 选B
本题有一定难度,请同学们自己先做一遍,实在 做不出来,再看答案。
代数式求值(习题及答案)
代数式求值(习题)➢ 例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简➢ 巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx +-的值是10,则当5x =时,代数式25ax bx ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.➢ 思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】➢巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b➢思考小结-11。
初一上册数学代数式求值试题
初一上册数学代数式求值试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为( )A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为( )A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为( )A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是( )A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为( )A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x ﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为( )A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是( )A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是( )A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为( )A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式 ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是( )A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4= a﹣3b+4=7,解得 a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为( )A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。
代数式化简求值的三种考法—2023-2024学年七年级数学上册(人教版)(解析版)
代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。
代数式求值-初中数学习题集含答案
A.8
B. 12
C. 20
D.0
【分析】把 x 2 代入 x2 5x 6 ,求出 f (2) 等于多少即可.
【解答】解:当 x 2 时,
f (x) x2 5x 6
(2)2 5 (2) 6
4 10 6 12 故选: B . 【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可 以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给 代数式不化简;③已知条件和所给代数式都要化简.
的值.
第 2 页(共 11 页)
15.(2017 秋•海淀区校级期中)关于 x 的多项式 k(k 1)x3 kx2 x2 4x 3 是关于 x 的二次多项式. (1)求 k 的值. (2)若该多项式的值 2,且 [a] 表示不超过 a 的最大整数,例如 [2.3] 2 ,请在此规定下求 [2017k 1 x2 2x] 的
故选: D . 【点评】本题主要考查代数式的求值,运用整体代入思想是解题的关键. 3.(2019 秋•海淀区校级期中)已知当 x 2 时,代数式 ax3 bx 3 的值为 5,则当 x 2 时, ax3 bx 3 的值为 (
)
A.5
B. 5
C.1
D. 1
4.(2018 秋•房山区期末)按下面的程序计算,若开始输入的值 x 为正数,最后输出的结果为 283,则满足条件的 x
不同值最多有 ( )
A.6 个
B.5 个
C.4 个
D.3 个
5.(2018 秋•西城区期末)如果 2x2 x 2 0 ,那么 6x2 3x 1 的值等于 ( )
A.5
B.3
C. 7
代数式求值经典题型1-(含详细答案)
初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值已知a²+a-3=0求代数式13a3+52a2的值已知x - 1x= 2,求代数式x²- 1x²的值已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值若x²-2x -2=0,求代数式x4+410x²的值。
已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²已知x-y=2求代数式x3-6xy-y3已知3x²-x-1 =0,求代数式6x3+7x²-5x-2018题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值已知x+y =3,x²+y²=6求代数式2x²+2x²y+2xy+xy²+y3的值(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)已知x2-3x+1=0,求代数式x² - 1 x²已知x、y是正数,且x - y=3,xy= 5,Array求代数式x3+x2y+x2y+y3的值。
代数式求值经典题型1~(含详细答案解析)
初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值已知a²+a-3=0求代数式13a3+52a2的值已知x - 1x= 2,求代数式x²- 1x²的值已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值若x²-2x -2=0,求代数式x4+410x²的值。
已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²已知x-y=2求代数式x3-6xy-y3已知3x²-x-1 =0,求代数式6x3+7x²-5x-2018题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)已知x2-3x+1=0,求代数式x² - 1 x²。
代数式求值经典题型1-(含详细答案)
初中数学《代数式求值》(~\第113a 3 +52a 2原式=13a(a 2 +4a)将4a拆分成:a+3a=13a[ (a2+a ) +3a]已知a2+a-3=0 即a2+a=3 将它代入上式原式=13a (3+3a )将3提取出来=39a (a+1 )将a乘进括号里面=39 (a2+a )(1)1x21)X1(X + )X1已知x-X2,将其代入(1 )上式=X))X-)X(X- (1)=21代数式X2 - 的值为X2r ----------------------------------已知x - y 二\(5求代数式 (x2- y 2 )2-10 (x2+y 2)的值1I温馨提示本题有一定难度,请同学们自己先做一遍,实在做不出来,再看答案。
z \ =(x-y ) 2 X2 -2xy+y 2+4xy ) -10 (x2+y 2)=(x-y )2[ (x-y ) 2+4xy卜10 (x2+y 2)将(1 )、(2 )代入上式,得上式=(頁)2 [(頁)2 +4xy]-10 (5 +2xy )=5 (5+4xy ) -10 (5 +2xy )=25+20xy-50- 20xy=-25答案:代数式 (x2- y 2) 2 - 10 (x2+y 2)的值是-25£若x、y互为相反数,求代数式2x 2 -3x +2 +7xy-3y+5y 2 的值£若x、y互为相反数,【第2步】2x 2 -3x +2 +7xy-3y+5y2.把 2x 2, 7xy , 5y 2,结合,-3x , -3y 结合,(2x 2+7xy+5y2)+ ( -3x -3y ) +2所以,x+y=0把x+y=O 代入上式,得 上式=(2x+5 )X 0- 3 X 0 +2(1)=2.用十字叉乘法提取-3答案:2(2x+5y ) (x+y ) -3 (x+y ) +2x 2 -2x -2=0X4+4求代数式的值10x 2本题有一定难度,请同学们自己先做一遍,实在做不出来,再看答案。
(专题精选)初中数学代数式经典测试题含答案解析
(专题精选)初中数学代数式经典测试题含答案解析一、选择题1.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】根据同类项的概念求解. 【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=, n 2∴=,m 2=. 则m n 4+=. 故选D . 【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.2.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ). A .1 B .4C .x 6D .8x 3【答案】B 【解析】 【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案. 【详解】∵4x 4+ 4x 2+1=(2x+1)2, ∴A=1,不符合题意, ∵4x 4+ 4x 2+ 4不是完全平方式, ∴A=4,符合题意, ∵4x 4+ 4x 2+ x 6=(2x+x 3)2, ∴A= x 6,不符合题意, ∵4x 4+ 4x 2+8x 3=(2x 2+2x )2, ∴A=8x 3,不符合题意. 故选B . 【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.3.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40【答案】B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n+个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.5.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个()A.400 B.401 C.402 D.403【答案】D【解析】【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.6.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)【答案】A【解析】试题分析:根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数 根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数. 故选A .考点:坐标确定位置.7.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b - B .29bC .29aD .22a b -【答案】B 【解析】 【分析】根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b + ∴阴影部分的面积为:22(2)8(2)a b ab a b +-=- ∵35a b =,即53a b =∴阴影部分的面积为:222(2)()39b b a b -=-=故选:B . 【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18 B .p =-5,q =18 C .p =-5,q =-18D .p =5,q =-18【答案】A 【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项, ∴p-5=0,7-5p+q=0, 解得p=5,q=18. 故选A .9.下列运算正确的是( ). A .()2222x y x xy y -=-- B .224a a a += C .226a a a ⋅= D .()2224xy x y =【答案】D 【解析】 【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案. 【详解】解:A.、()2222x y x xy y -=-+,故本选项错误; B.、2222a a a +=,故本选项错误; C.、224a a a ⋅=,故本选项错误; D 、 ()2224xy x y =,故本选项正确;故选:D . 【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.10.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C 【解析】 【分析】根据前4个图形中五角星的个数得到规律,即可列式得到答案. 【详解】 观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+, 第2个图形中一共是7个五角星,即7321=⨯+, 第3个图形中一共是10个五角星,即10331=⨯+, 第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +, 故选:C. 【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.11.下列运算中,正确的是( ) A .236x x x ⋅= B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B 【解析】 【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可. 【详解】x 2•x 3=x 5,故选项A 不合题意; (ab )3=a 3b 3,故选项B 符合题意; (2a )3=8a 6,故选项C 不合题意;3−2=19,故选项D 不合题意. 故选:B . 【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.下列运算中正确的是( ) A .2235a a a += B .222(2)4a b a b +=+ C .236236a a a ⋅= D .()()22224a b a b a b -+=-【答案】D 【解析】 【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确. 故选D . 【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.13.若3,2x y xy +==, 则()()5235x xy y +--的值为( )A .12B .11C .10D .9【答案】B 【解析】 【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11, 故选:B. 【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.14.下列算式能用平方差公式计算的是( ) A .(2)(2)a b b a +- B .11(1)(1)22x x +--C .(3)(3)x y x y --+D .()()m n m n ---+【答案】D 【解析】 【分析】利用平方差公式的结构特征判断即可. 【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2, 故选D . 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D 【解析】 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a 2+8a+16)-(a 2+2a+1) =a 2+8a+16-a 2-2a-1 =6a+15. 故选D .16.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A 【解析】 【分析】根据题意,每个选项进行计算,即可判断. 【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意; C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A . 【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.已知x=2y+3,则代数式9-8y+4x 的值是( ) A .3 B .21C .5D .-15【答案】B 【解析】 【分析】直接将已知变形进而代入原式求出答案. 【详解】 解:∵x=2y+3 ∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21 故选:B 【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.若55+55+55+55+55=25n ,则n 的值为( ) A .10 B .6C .5D .3【答案】D 【解析】 【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案. 【详解】解:∵55+55+55+55+55=25n , ∴55×5=52n , 则56=52n , 解得:n =3. 故选D . 【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:+⨯=元,若一年内例如,购买A类会员年卡,一年内健身20次,消费1500100203500在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x次,分别用含x的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x次,由题意可知:50≤x≤60则购买A类会员年卡,需要消费(1500+100x)元;购买B类会员年卡,需要消费(3000+60x)元;购买C类会员年卡,需要消费(4000+40x)元;不购买会员卡年卡,需要消费180x元;当x=50时,购买A类会员年卡,需要消费1500+100×50=6500元;购买B类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.。
代数式求值(作业及答案)
代数式求值(作业)例:若23a b -=,则代数式2(2)422000b a a b --++的值是 _____________.【思路分析】观察已知,发现字母a ,b 的值无法确定,因此无法直接带入所求进行求解,需要考虑是否能够整体代入.接着,把2a b -当做一个整体,对所求式子进行变形,使之出现整体. 原式=()2(2)222000a b a b ---+最后整体代入并整理,232320002003=-⨯+=原式1. 化简:223122(1)3(2)6223m n m m n n n ⎡⎤⎛⎫-+---+ ⎪⎢⎥⎣⎦⎝⎭.2. 若关于x 的多项式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值.3. 已知2x y =,则代数式45x y x y -+的值是_____________.4. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是______. 5. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________.6. 已知113x y+=,求代数式33x xy y x xy y ++-+的值.7. 已知当5x =时,代数式25ax bx +-的值是10,则当5x =时,代数式25ax bx ++的值是____________.8. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a 的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为____________________.10. 20x y -+是有最大值,还是有最小值?这个值是多少?此时x 与y 的关系如何?【参考答案】1.5--m2.1m=-时,原式2 m=-,原式3=--,当1m=-3.14.115.76.57.208.17-9.1000100++c a b-+有最大值,最大值为20,此时x与y互为相反数10.20x y。
初一:代数式的求值专题
代数式的求值类型一、利用分类讨论方法【例1】已知|[ =7,间=12,求代数式x+y的值.变式练习:1、已知|乂-1|=2,|丫|=3,且乂与丫互为相反数,求3 X 2 7y . 4 y的值2、|x|=4,|y|=6,求代数式|x+y|的值3、已知凶=1,| y = 1,求代数式x 2—2町+ y 2的值;类型二、利用数形结合的思想方法【例】有理数a, b,c在数轴上的位置如图所示:试试代数式I a+b | — | b—1 | — | a—c | — | 1 一c] 的值.变式练习:1、有理数a, b, c在数轴上对应点如图所示,化简|b+a| + |a+c| + |c-b|I 111rC B0 A2、已知a, b, c在数轴上的位置如图所示,化简|a| + |c-b| + |a-c| + |b-a|a 0 c b题型三、利用非负数的性质【例 D 已知(a—3)2+|—b+5 | + | c — 2 |=0.计算 2a+b+c 的值.【例2】若实数a、b满足a2b2+a2+b2-4ab+1=0,求b + a之值。
a b变式练习:1、已知:|3x-5| + |2y+8|=0 求x+y2、若205x|2x-7| 与30x| 2y-8 |互为相反数,求xy+x题型四、利用新定义【例1】用“★”定义新运算:对于任意实数a, b,都有a*b=b2+i.例如,7*4 = 42+1 = 17, 那么5*3=;当川为实数时,m*(m*2)=.变式练习:1、定义新运算为a4b =( a + 1 )刊,求的值。
6A ( 3A4 )2、假定m^n表示m的3倍减去n的2倍,即mOn=3m-2n o (2)已知乂。
(4。
1) =7,求x的值。
3、规定a * b = 1 - -, a **b = 2-1, 则(6 * 8)**(8 * 6)的值为; b a题型五、巧用变形降次【例】已知X2 —x—1 = 0,试求代数式一X3+2X+2008的值.变式练习:设m 2 + m — 1 = 0,则U m 3 + 2 m 2 +1997 =题型六、整体代入法当单个字母的取值未知的情况下,可借助“整体代入,,求代数式的值。
最新中考数学复习专项练习--代数式求值(含解析)
代数式求值(含解析)一、单选题1.如图,若输入x的值为﹣5,则输出的结果y为()A. -6B. 5C. -5D. 62.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A. 1B. 2C. 5D. 73.设某代数式为A,若存在实数x0使得代数式A的值为负数,则代数式A可以是()A. |3﹣x|B. x2+xC. D. x2﹣2x+14.若,,则代数式的值是()A. 2B. -2C. 1D. -15.已知2y﹣x=2,则2x﹣4y的值为()A. 4B. -4C. 8D. -86.已知,则的值是()A. B.C. D.7.已知x2﹣2x﹣5=0,则2x2﹣4x的值为()A. -10B. 10C. ﹣2或10D. 2或﹣108.设a,b是非零有理数,且(a+b)2=0,则的值为()A. B. 3C. 1D. -19.已知:a﹣3b=2,则6﹣2a+6b的值为()A. 2B. -2C. 4D. -410.已知代数式的值是5,则代数式的值是()A. 6B. -6C. 11D. -911.已知=3,则代数式的值是()A. B.C. D.12.若3x=6,2y=4则5x+4y 的值为()A. 18B. 15C. 9D. 613.如果a﹣2b=﹣3,则代数式5﹣a+2b的值是()A. -1B. 8C. 2D. -214.当x=1时,代数式ax5+bx3+1的值为6,则x=﹣1时,ax5+bx3+1的值是()A. ﹣6B. ﹣5C. 4D. ﹣4二、填空题15.若x的值满足2x2+3x+7=8,则4x2+6x﹣9=________16.当a=3,b=﹣1时,代数式的值是________.17.若3a2﹣a﹣2=0,则5+2a﹣6a2=________.18.若2a﹣3b2=5,则6﹣2a+3b2=________.19.若,则________。
三、计算题20.先化简,再求值:3(x+2)2﹣2(x﹣2)(x+2),其中x=﹣.21.先化简,再求值:(x+1)(x-1)-(x+1)2,其中x=-222.先化简再求值:,其中a=-,b=-2.23.已知:a﹣b=2,ab=1,求(a﹣2b)2+3a(a﹣b)的值.四、解答题24.当x=-,y=5时,求代数式6x2﹣y+3的值25.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款多少元(用含x的代数式表示);若该客户按方案②购买,需付款多少元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?五、综合题26.阅读理解:由面积都是1的小正方格组成的方格平面叫做格点平面.而纵横两组平行线的交点叫做格点.如图1中,有9个格点,如果一个正方形的每个顶点都在格点上,那么这个正方形称为格点正方形.(1)探索发现:按照图形完成下表:格点正方形内格点数格点正方形面积关于格点正方形的面积S,从上述表格中你发现了什么规律?(2)继续猜想:类比格点正方形的概念,如果一个长方形的每个顶点都在格点上,那么这个长方形称为格点长方形,对于格点长方形的面积,你认为也有类似(1)中的规律吗?试以图5中格点长方形为例来说明.27.化简求值:(1)已知x=-1,求x2+3x-1的值;(2)已知,求值.答案解析部分一、单选题1.如图,若输入x的值为﹣5,则输出的结果y为()A. -6B. 5C. -5D. 6【答案】D【考点】代数式求值【解析】【解答】解:已知x=﹣5<0,∴y=﹣x+1=﹣(﹣5)+1=6.故选D.【分析】由已知输入x的值为﹣5,所以由图示得y=﹣x+1,求出y.2.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A. 1B. 2C. 5D. 7【答案】A【考点】代数式求值【解析】【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.【分析】直接利用已知a﹣b=2,再将原式变形代入a﹣b=2求出答案.3.设某代数式为A,若存在实数x0使得代数式A的值为负数,则代数式A可以是()A. |3﹣x|B. x2+xC. D. x2﹣2x+1【答案】B【考点】代数式求值【解析】【解答】解:对于任意的x,都有|3﹣x|≥0,,x2﹣2x+1=(x﹣1)2≥0,因为x2+x=(x+0.5)2﹣0.25,所以对于任意的x的取值,代数式A的值可以为正数、负数或0,即存在实数x0使得代数式A的值为负数.故选:B.【分析】首先根据对于任意的x,都有|3﹣x|≥0,,x2﹣2x+1=(x﹣1)2≥0,所以对于任意的实数x0,代数式A的值都为非负数;然后判断出x2+x=(x+0.5)2﹣0.25,对于任意的x的取值,代数式A的值可以为正数、负数或0,即存在实数x0使得代数式A的值为负数,据此解答即可.4.若,,则代数式的值是()A. 2B. -2C. 1D. -1【答案】D【考点】代数式求值【解析】【分析】 ,把,代入上式即可。
专题05_整式及代数式求值技巧(解析版)
专题05整式及代数式求值题型考点1:根据整式的概念求某些字母的值时,一般需要列出关于这个字母的方程.解此类问题经常利用的是单项式或多项式的次数概念;同类项的概念;单项式的系数不等于0;多项式某项的系数等于0或不等于0等.巧用单项式的次数、系数求字母的值1.若-m 3x 3y |n -2|是关于x ,y 的单项式,且系数是56,次数是7,则m =________,n =________.【答案】-52;6或-2 【解析】:单项式-m 3x 3·y |n -2|的系数是-m 3,即-m 3=56,则m =-52.次数是7,则|n -2|=7-3=4,即n -2=±4,解得n =6或-2.2.已知(a -2)x 2y |a|+1是关于x ,y 的五次单项式,求(a +1)2的值.【答案】解:因为(a -2)x 2y|a|+1是关于x ,y 的五次单项式,所以a -2≠0且2+|a|+1=5.所以a =-2.所以(a +1)2=(-2+1)2=1.巧用多项式的项、次数求字母的值3.多项式-m 2n 2+m 3-12n -23的各项是________________________,是____次______项式.【答案】-m 2n 2,m 3,-12n ,-23;四;四 4.若(m -3)x 2-2x -(m +2)是关于x 的一次多项式,则m =________;若它是关于x 的二次三项式,则m 应满足的条件是____________________.【答案】3;m ≠3且m ≠-25.若化简关于x ,y 的整式x 3+2a(x 2+xy)-bx 2-xy +y 2,得到的结果是一个三次二项式,求a 3+b 2的值.【答案】解:x 3-2a(x 2+xy)-bx 2-xy +y 2=x 3+(2a -b)x 2+(2a -1)xy +y 2,因为这个关于x ,y 的整式是一个三次二项式,所以2a -b =0,2a -1=0. 所以a =12,b =1. 所以a 3+b 2=⎝ ⎛⎭⎪⎫123+12=98.巧用与多项式的某些项无关求字母的值6.已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3项和x2项,求m+2n 的值.【答案】解:依题意可知,-(m+5)=0,n-1=0,则m=-5,n=1,所以m+2n=-5+2×1=-3.7.当k为何值时,关于x,y的多项式x2+2kxy-3y2-6xy-y中不含xy项?【答案】解:x2+2kxy-3y2-6xy-y=x2+(2k-6)xy-3y2-y,因为此多项式中不含xy项,所以xy项的系数为0,即2k-6=0.所以k=3.所以当k=3时,关于x,y的多项式x2+2kxy-3y2-6xy-y中不含xy项.巧用同类项求字母的值8.若-2x3y m与5x n y2是同类项,则m=______,n=________.【答案】2;39.若关于x,y的单项式(2+m)x a y4与4x2y b+5的和等于0,求3m+2a+4b的值.【答案】解:由题意得2+m=-4,a=2,b+5=4,所以m=-6,a=2,b=-1.所以3m+2a+4b=3×(-6)+2×2+4×(-1)=-18.考点2:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.直接代入求值1.若a=49,b=109,则ab-9a的值为________.【答案】4 9002.当a=3,b=2或a=-2,b=-1或a=4,b=-3时,(1)求a2+2ab+b2,(a+b)2的值;(2)从中你发现了怎样的规律?【答案】解:(1)当a=3,b=2时,a2+2ab+b2=32+2×3×2+22=25,(a+b)2=(3+2)2=25;当a=-2,b=-1时,a2+2ab+b2=(-2)2+2×(-2)×(-1)+(-1)2=9,(a+b)2=[(-2)+(-1)]2=9;当a =4,b =-3时,a 2+2ab +b 2=42+2×4×(-3)+(-3)2=1,(a +b)2=(4-3)2=1.(2)a 2+2ab +b 2=(a +b)2. 题型2: 先化简再代入求值3.已知A =1-x 2,B =x 2-4x -3,C =5x 2+4,求多项式A -2[A -B -2(B -C)]的值,其中x =-1.【答案】解:原式=A -2A +2B +4(B -C)=A -2A +2B +4B -4C =-A +6B -4C. 因为A =1-x 2,B =x 2-4x -3,C =5x 2+4,所以原式=x 2-1+6x 2-24x -18-4(5x 2+4)=-13x 2-24x -35.当x =-1时,原式=-13x 2-24x -35=-13×(-1)2-24×(-1)-35=-13+24-35=-24. 题型3: 特征条件代入求值4.已知|x -2|+(y +1)2=0,求-2(2x -3y 2)+5(x -y 2)-1的值.【答案】解:由条件|x -2|+(y +1)2=0,得x -2=0且y +1=0,所以x =2,y =-1.原式=-4x +6y 2+5x -5y 2-1=x +y 2-1.当x =2,y =-1时,原式=x +y 2-1=2+(-1)2-1=2. 题型4: 整体代入求值5.已知2x -3y =5,求6x -9y -5的值.【答案】解:6x -9y -5=3(2x -3y)-5=3×5-5=10.6.已知当x =2时,多项式ax 3-bx +1的值是-17,那么当x =-1时,多项式12ax -3bx 3-5的值是多少?【答案】解:因为当x =2时,多项式ax 3-bx +1的值是-17,所以8a -2b +1=-17.所以8a -2b =-18.当x =-1时,12ax -3bx 3-5=-12a +3b -5=(-12a +3b)-5=-32(8a -2b)-5=-32×(-18)-5=22. 题型5: 整体加减求值7.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.【答案】解:由x2-xy=-3,得2x2-2xy=-6①;由2xy-y2=-8,得6xy-3y2=-24②.①+②,得(2x2-2xy)+(6xy-3y2)=(-6)+(-24)=-30,即2x2+4xy-3y2=-30.8.已知m2-mn=21,mn-n2=-12.求下列代数式的值:(1)m2-n2;(2)m2-2mn+n2.【答案】解:(1)因为m2-mn=21,mn-n2=-12,所以m2-n2=(m2-mn)+(mn-n2)=21-12=9.(2)因为m2-mn=21,mn-n2=-12,所以m2-2mn+n2=(m2-mn)-(mn-n2)=21-(-12)=21+12=33.取特殊值代入求值(特殊值法)9.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.【答案】解:令x=0,得(0+1)3=d,所以d=1.再令x=1,得(1+1)3=a+b+c+d,所以a+b+c+d=8.所以a+b+c=8-1=7.。
初中数学代数式求值专题训练及答案
初中数学代数式求值专题训练及答案1、若2x+3y+z=1,2x+y+3z=3,求代数式 x+2y 的值。
2、已知:2023(1+3x)= 1,求代数式 7+6x 的值。
3、已知 a a= 3243,求代数式√a2+√a3+√a4的值。
4、若x2 + xy +y2 = 2xy +y2 = 3,求代数式(x+1)(y-2) + 3的值。
5、已知(x+13)2= 2023,求代数式(x -27)(x+53)的值。
6、已知x +2y=12,求代数式x2 - 4y2 + 48y的值。
7、已知x2 -3x +1=0,求代数式x2 + 1a2的值。
8、已知x2 -4x +1=0,求代数式x4 - 56x+ 2024的值。
9、已知x+ 1a =3,y+ 1a=1,z+ 1a==3,求代数式x yz的值。
10、已知x4 +x2 +1=0,求代数式x3 +1的值。
11、已知x=1,求代数式(x+2)(2x+1)-x2 +6的值。
12、若x>y>0,x2 + y2 =5xy,求代数式a2−a2aa的值。
13、已知2x2 +10=(x+2)(x+3),求代数式3x+6的值。
14、已知x=√8−2√15,求代数式x+1a的值。
15、已知x=2,求代数式7x2+(2x+3)(x-2)+12的值。
参考答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y的值解:因为2x+3y+z=1-- ----① 2x+y+3z=3-------②①+②,得4x+4y+4z=4即:x+y+z=1-----------③①-③,得x+2y=0故:代数式x+2y的值是02、已知:2023(1+3x)= 1,求代数式7+6x的值。
因为,要使得2023(1+3x)= 1成立,所以1+3x=0,即:x= - 13所以:7+3x =7 + 6×(- 13) =5故:代数式7+6x的值是53、已知 a a= 3243,求代数式√a2+√a3+√a4的值。
代数式求值经典题型(含详细答案)
.页脚初中数学《代 数 式 求 值》已知 a+b=2 ,a-b=3求代数式a (a+2b )+b (2a-b )的值页脚页脚已知a²+a-3=0求代数式13a3+52a2的值页脚页脚.页脚已知x -1x= 2,求代数式x²-1x²的值.页脚页脚页脚若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值页脚页脚页脚页脚页脚页脚页脚.页脚已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy页脚求代数式x²+ 2y(x+1)+(y-1)²页脚页脚有理数,求代数式3x3+ 2y2x+(2y+3x)²页脚页脚页脚.页脚已知x-y=2求代数式x3-6xy-y3. 页脚页脚求代数式6x3+7x²-5x-2018页脚页脚.页脚题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 -ca)2 的值页脚已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值页脚页脚页脚页脚页脚页脚页脚页脚已知x2-3x+1=0,求代数式x² - 1x²的值,页脚页脚。
数学竞赛中的代数式求值经典问题
数学竞赛中的代数式求值经典问题题型一、代数式恒等变形1.若abc=1,则111a b cab a bc b ca c ++++++++的值是( )A .1.B .0.C .-1.D .-2. 解析:abc=1,则a ,b ,c 均不为0.选A .2.若x 3+y 3=1000,且x 2y-xy 2=-496,则(x 3-y 3)+(4xy 2-2x 2y)-2(xy 2-y 3)=______.解析:由于x 3+y 3=1000,且x 2y-xy 2=-496,因此要把(x 3-y 3)+(4xy 2-2x 2y)-2(xy 2-y 3)分组、凑项表示为含x 3+y 3及x 2y-xy 2的形式,以便代入求值,为此有(x 3-y 3)+(4xy 2-2x 2y)-2(xy 2-y 3)=x 3+y 3+2xy 2-2x 2y=(x 3+y 3)-2(x 2y-xy 2)=1000-2(-496)=19923.若m +n -p =0,则⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n m p p m n p n m 111111---+-的值等于______. 解析:3-,111111()()()()()()111 3m n p n p m p m n m m n n n pn p m p m n m p n p m nn n m m p p-+--+=-+---=-+--+=---=-提示:4.若x-y=2,x 2+y 2=4,则x 1992+y 1992的值是 ( )A .4B .19922C .21992D .41992解析:由x-y=2 ①平方得x 2-2xy+y 2=4 ②又已知x 2+y 2=4③所以x ,y 中至少有一个为0,但x 2+y 2=4.因此,x ,y 中只能有一个为0,另一个为2或-2.无论哪种情况,都有x1992+y1992=01992+(±2)1992=21992,选C .5.在等式y=ax 2+bx+c 中,当x=1时,y=-2,当x=-1时,y=20,则ab+bc+9b 2=______. 解析:以x=1,y=-2代入y=a 2+bx+c 得a+b+c=-2 ① 以x=-1,y=20代入y=ax 2+bx+c 得a-b+c=20 ② ①-②,2b=-22,所以b=-11.因此a+c=9.于是 ab+bc+9b 2=b(a+c)+9b 2=(-11)×(9)+9×112=990.6.已知a +b =-3,a 2b +ab 2=-30,则a 2-ab +b 2+11=____50______.7.已知aa 1+=-2,则441a a += 2 ; 441a a -= 0 .8.如果m -m1=-3,那么m 3-31m =____________.解析:36-,提示:32232211111()(1)()[()3](3)[(3)3]36m m m m m m m m m m-=-++=--+=-⨯-+= 9.三个互不相等的有理数,既可表示为1,a+b,a 的形式,又可表示为0,ba,b, 的形式,则a 1992+b 1993=________.解析:由于三个互不相等的有理数,既可表示为1,下,只能是b=1.于是a=-1.所以,a1992+b1993=(-1)1992+(1)1993=1+1=2.10.如图6,D点在Rt△ABC的直角边上BC上,且BD=2,DC=3,若AB=m,AD=n,那么22m n= .解析:勾股定理:m2=BC2+AC2=52+AC2 n2=DC2+AC2=32+AC2 可得:m2 - n2 =1611.已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b )的值.分析:已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406.形式很对称,很容易诱使你将ax+by=7两边平方,再减去ax2+by2=49,…想利用乘法公式算出xy,但一试发现此路不通.由于受所作某些训练题型模式的影响,很多同学仍企图走此路,以致最后陷入死胡同.事实上,ax+by平方后必出现a2x2与b2y2,而ax2+by2中,a,b都不是平方,这一特点已经表明利用乘法公式去消项的方法很难走通.应及时转向,通过一项一项表示,往一起凑这个最基本的方式去做.解:显然ax2=49-by2,by2=49-ax2ax3=49x-bxy2,by3=49y-ax2y相加得133=ax3+by3=49(x+y)-xy(ax+by)即49(x+y)-7xy=1337(x+y)-xy=19 ①同理ax3=133-by3,by3=133-ax3 ax4=133x-bxy3,by4=133y-ax3y相加得406=ax4+by4=133(x+y)-xy(ax2+by2) 即133(x+y)-49xy=40619(x+y)-7xy=58 ②由①、②联立,设x+y=u,xy=v得7u-v=1919u-7v=58,解得u=2.5,v=-1.5即x+y=2.5,xy=-1.5由ax=7-by,by=7-ax得ax2=7x-bxy,by2=7y-axy相加得49=ax2+by2=7(x+y)-xy(a+b) 所以 1.5(a+b)=49-7×2.5∴a+b=21此时即可求得=4987.5-9-178.5=4800说明:本题虽然所用知识单元块均在初一学过,但解此题需要考生有较强的应变能力与观察综合能力,并且计算也要很细心,因此本题属于对学生数学素质综合检查的题目.本题改编自下面的问题“已知ax+by=8,ax 2+by 2=22,ax 3+by 3=62,ax 4+by 4=178,试求1995(x+y)+6xy 之值”.有兴趣的读者不防解一解看.答案是10011.再想一想,满足题设条件的a 与b 两数之和a+b 等于多少?你能独立地求出a+b 之值吗?(答a+b=3)题型二、多项式的带余除法1.设m 2+m -1=0,则m 3+2m 2+1997=______. 解析:原式=m 3+m 2-m +m 2+m -1+1998=m (m 2+m -1)+(m 2+m -1)+1998 =(m 2+m -1)(m +1)+1998 由于m 2+m -1=0,∴ 原式=1998. 2.如果x 2+x -1=0,则x 3+2x 2+3= 4 .3.若=+++=-+1855,013232x x x x x 则____20______4.如果223x x +=,那么432781315x x x x ++-+=_____18_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学
《代数式求值》
已知a+b= 2 ,a-b=3
求代数式a(a+2b)+b(2a-b)的值
~
已知a²+a-3=0
求代数式13a3+52a2的值
~
已知x - 1
x= 2,
求代数式x²- 1
x²的值
{
已知x - y = 5
求代数式(x²- y²)²- 10(x²+y²)的值
=(x-y)²(x²-2xy+y²+4xy)-10(x²+y²)
( ?
若x、y互为相反数,
!
¥
若x²-2x -2=0,@
求代数式x4+4
10x²的值。
·
已知x(x+y)-y(x+1)=x(x-2)
求代数式x²+xy-y²y²+2xy
已知x+y= -2
求代数式x²+ 2y(x+1)+(y-1)²
@
有理数,
[
求代数式3x3+ 2y2x+(2y+3x)²
;
?
求代数式x3-6xy-y3
~
求代数式6x3+7x²-5x-2018
…
题目:已知a-b= -1,b-c=2,
求代数式(a+b+c)(a-b-c)(1 - c
a)2 的值
【
已知x、y是正数,且x=
7y²
2x+5y,
求代数式4x²-2x+xy +2y-5y²+3 的值
、
已知x+y =3,x²+y²=6
求代数式2x²+2x²y+2xy+xy²+y3的值
(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:
4x²y²+4xy+1=4,
.
即(2xy+1)²=4 ,两边同时开方,
2xy+1= ±2
因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)
故2xy+1=2 ,即xy= 1
2
--------------(3)
把(3)代入到(2),得,
x²+ 2×1
2
+y²=3 则有:x²+y²=2----(4)
!
' 已知x2-3x+1=0,
求代数式x² -
1
x²的值,
已知x、y是正数,且x - y=3,xy= 5,Array
求代数式x3+x2y+x2y+y3的值。