电磁学B 课程教学大纲

合集下载

《电磁学》教学大纲

《电磁学》教学大纲

《电磁学》教学大纲一、课程基本信息1.课程中文名称:电磁学2.类别:必修3.专业:物理学教育4.学时:108学时5.学分:6学分(含实践学分2学分)二、课程的地位、作用和任务电磁学是师范专科学校物理教育专业的一门重要的主干课程。

通过本课程的学习,使学生全面了解电磁运动的基本现象,系统地掌握电磁运动的基本概念及基本规律,初步具备分析解决电磁学问题的能力;了解经典电磁学的运用范围和电磁学发展史上某些重大发现和发明过程的物理思想和方法;了解电磁学研究的发展前沿以及它与其他学科的联系,注意理论联系实际,让学生初步学会用电磁学知识解决一些生产及生活中的实际问题。

三、理论教学内容与任务基本要求第一章真空中的静电场( 10 学时)(一)要求l、掌握静电场的基本概念,基本规律;掌握描述“场”和解决“场”问题的方法和途径2、明确电荷是物质的一种属性,阐明电荷的量子性和守恒定律:掌握电荷之间的相互作用规律3、掌握电场强度、电位这两个重要概念以及它们所遵循的叠加原理4、能熟练地计算有关静电学的有关问题5、演示实验:(1)摩擦起电,电荷之间的相互作用,电荷的检验;(2)电力线的分布(二)要点:l、电荷2、库仑定律3、电场电场强度4、静电场的高斯定理5、电位电位差静电场的环路定理*6、电场强度与电位的微分关系(三)难点1、电场、电位和电能量等概念;2、求解电场、电位分布的方法第二章导体周围的静电场(6学时)(一)要求1、正确理解并掌握导体静电平衡的条件2、掌握导体静电平衡的性质:初步掌握求解导体静电平衡问题的方法3、理解电容及电容器的概念:掌握平衡板电容器、球形电容器、圆柱形电容器计算公式以及电容器串、并联的计算方法4、理解电场能的概念并会计算真空中的静电场能5、演示实验:(1)导体表面上电荷的分布;(2)静电感应起电;(3)静电屏蔽(二)要点:1、导体的静电平衡条件2、导体静电平衡的性质3、封闭导体腔内外的电场4、电容及电容器*5、静电计静电感应起电机6、带电体的能量(三)难点:根据导体静电平衡条件和导体的静电平衡性质求解导体静电平第三章静电场中的电介质( 6 学时)(一)要求1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系3、掌握有介质时电场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别4、了解静电场的能量及能量密度5、演示实验:介质对电容器电容的影响(二)要点:1、电介质的极化2、极化强度矢量3、有介质时的静电场方程*4、静电场的边值关系5、静电场的能量和能量密度(三)难点:求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等第四章稳恒电流和电路(8 学时)(一)要求1、理解稳恒电流的概念以及与其相对应的稳恒电场:了解稳恒电路的特点及串、并联电阻的计算2、透彻分析并掌握电流密度矢量及电场这两个概念的物理意义3、掌握欧姆定律(不含源电路、一段含源电路和全电路的欧姆定律)和焦耳定律;会计算电功及电功率4、掌握用基尔霍夫定律计算一些典型的复杂电路的方法5、演示实验:(1)电源电动势的测量;(2)影响导体电阻的因素;(3)惠斯登电桥(二)要点:1、电流稳恒电流电流密度矢量2、欧姆定律及其微分形式3、焦耳定律电功率*4、电阻的串联和并联*5、气体导电、液体导电6、电源和电动势7、闭合回路及含源支路的欧姆定律8、基尔霍夫定律*9、温差电现象(三)难点:l、电动势的概念2、用基尔霍夫定律求解复杂的电路第五章稳恒电流的磁场( 10 学时)(一)要求l、理解掌握磁感应强度B 的物理意义2、在理解毕奥—萨伐尔定理物理意义的基础上能熟练地用它来计算载流导体的磁感应强度的分布3、掌握磁场中的高斯定理和安培环路定理;并会用安培环路定理计算具有轴对称的电流所产生的磁场4、掌握洛仑兹力公式及安培公式,并会用它们进行有关的计算5、演示实验:(1)磁感应线的演示(2)载流导线之间的相互作用(二)要点:l、基本磁现象2、磁感应强度、磁感应线3、毕奥—萨伐尔定律4、磁通量、磁场的高斯定理5、安培环路定理6、磁场对平行载流导线及带电粒子的作用7、平行载流导线的相互作用安培的定义(三)难点:1、磁感应强度的定义2、求解磁感应强度分布的具体问题第六章磁场对运动电荷和电流的作用(6学时)(一)要求1、掌握洛仑兹力公式,并会用右手螺旋法则判断洛仑兹力的方向2、掌握带电粒子在磁场中的运动情况3、了解回旋加速器的工作原理4、掌握安培力公式,并会用它们进行有关计算5、掌握磁场对载流导线的作用6、演示实验:(1)汤姆逊实验;(2)霍尔效应(二)要点:1、洛仑兹力2、汤姆逊实验*3、霍耳效应4、安培定律磁场对载流导线的作用(三)难点:洛仑兹力和安培力的概念及有关计算第七章磁介质( 6 学时)(一)要求1、理解磁化的概念和描述磁化的宏观量M 的定义式;掌握磁化电流与磁化强度矢量M 之间的关系2、了解磁介质呈现顺磁性和抗磁性的原因;掌握铁磁质的三大特点:①高值,②非线性,③磁滞现象3、掌握介质中的安培环路定理及其应用;了解H 、M 、B 三者之间的联系和区别4、了解磁路概念及相应的计算5、演示实验:介质对磁场的影响(二)要点:1、磁介质的磁化磁化强度矢量磁化电流2、磁介质存在时的安培环路定理3、顺磁性与抗磁性4、铁磁质* 5、磁路及其计算(三)难点:磁化强度矢量的物理意义以及求解磁化电流的第八章电磁感应和暂态过程( 12学时)(一)要求1、理解电磁感应现象的物理意义;掌握电磁感应的法拉第—楞次定律2、解感生电场的物理意义3、熟练地掌握计算动生电动势和感生电动势的方法,并能正确判断它们的方向4、了解自感现象和互感现象以及它们的应用,掌握自感系数L和互感系数M的物理意义和计算方法5、了解涡流,趋肤效应以及磁场的能量6、能正确写出RL、RC 串并联电路暂态过程的微分方程,掌握其解的形式和物理意义。

《电磁学》课程教学大纲

《电磁学》课程教学大纲

《电磁学》课程教学大纲课程名称:电磁学课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56 学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标《电磁学》是物理专业开设的专业必修课中的专业基础课。

是物理学的重要组成部分,是研究电磁现象的基本规律及其应用的一门基础学科。

电磁学知识范围很广,与生产技术和日常生活有着密切的关系。

它研究的内容包括静电现象、电流现象、磁现象、电磁感应现象、电磁辐射、电磁场与电磁波等。

是学生学习《电动力学》的基础之一。

课程教学目标1:系统深入地掌握电磁学的基本现象、基本概念和基本规律。

课程教学目标2:具有一定的分析和解决电磁学问题的能力,为后继课程奠定必要的基础。

课程教学目标3:了解电磁学发展史上某些重大发现和发明过程中的物理思想和实验方法,了解电磁学的发展与其它学科的关系等。

课程教学目标4:培养运用数学工具的能力,能运用数学语言表达物理思想和进行逻辑推理,基本概念、基本规律的数学表述与论证,运用积分方法对连续分布的场强、电势和电流的磁场实行分解求和的分析,以及对推理得到的数学结果进行物理理解等。

磁学的发展与其它学科的关系,努力培养学生的辩证唯物主义世界观。

培养学生分析、处理和研究与电磁学相关问题的能力和素养。

三、先修课程高等数学;力学四、课程教学重、难点重点:1.静电场、导体与电介质2. 稳恒磁场、磁介质难点:1. 高斯定理和安培环路定理的证明2. 导体静电问题的讨论3. 涡旋电场、位移电流假说4. 暂态过程五、课程教学方法与教学手段讲授式、讨论式六、课程教学内容第一章静电场(14学时)1.教学内容(1)基本静电现象、电荷;(2)库仑定律与静电迭加原理;(3)电场与电场强度、场强迭加原理;(4)电偶极子;(5)高斯定理;(6)电势;2.重、难点提示(1)高斯定理;(2)电势;第二章静电场中的导体和电介质(10 学时) 1.教学内容(1)静电场中的导体;(2)空腔导体的静电平衡;(3)电容器及其电容;(4)带电体系的静电能;(5)电介质及其极化;(6)有介质时的静电场;(7)电场能量和能量密度;2.重、难点提示(1)空腔导体的静电平衡;(2)电介质及其极化;第三章稳恒电流(4 学时)1.教学内容(1)电流的稳恒条件和导电规律;(2)电源及电动势;2.重、难点提示(1)电流的稳恒条件和导电规律;第四章稳恒磁场(4 学时)1.教学内容(1)基本磁现象;(2)稳恒磁场的基本定律;(3)磁场的高斯定理;(4)安培环路定理及其应用;。

《电磁学》教学大纲

《电磁学》教学大纲

《电磁学》教学大纲执笔人:胡文弢董永胜审稿人:胡文弢课程代码:070208课程名称:电磁学授课对象:物理学专业专科生课程性质:物理学专业基础课(考试)Ⅰ学科特点和教学目标一、学科特点1、本课程属于物理学专业基础课,是物理学的一个重要分支,是所有理工科课程的基础。

本课程以经典力学为基础,以实验事实为依据,采用矢量代数和矢量分析方法,以场的观点,去研究电磁场与带电粒子的相互作用基本规律和在生产实践中的一些应用。

2、本课程具有理论逻辑性强、实验性强、数学形式优美和应用性广的显著特点。

3、本课程的理论基础建立于19世纪后期,它在微观和宏观世界的研究中发挥作用,是电机、电视机、收录机、电子计算机、雷达等的基本原理;与空间技术、激光技术、超导技术乃至信息技术密切相关;电工学、电子学、无线电学、自动控制、等离子体物理学和磁流体力学等技术学科和新学科都是基于电磁学而发展创立;光学、生物学、化学乃到生命科学等大领域学科也无不与电磁学密切相关;现代物理所获得的许多新成果,要用于技术转化成生产力,也不能没有电磁学理论的辅助。

4、目前本课程的应用和发展主要有两个方面:一是在工程技术应用方面,麦克斯韦方程组经常而普遍地用来解决各式各样的实际问题;二是在理论基础研究方面,正不断努力推广电磁理论,使其成为更一般理论的一种特殊情况。

二、教学目标1、在具体教学过程中,根据不同章节的不同内容,可适当引进现代化教学手段,要因材施教,采用灵活有效的教学方法,既要使学生掌握电磁学的理论精髓,又要使学生体会和领略实验对物理学科的重要性和必要性,还要使学生学会采用必要的高等数学方法去分析和研究电磁学问题,培养学生的物理思维能力和解决实际电磁学问题的能力。

2、电磁学应致力于对基本概念、基本规律的正确、严格的阐述,对某些难点作较详细的分析和深入的讨论,但也要注意因现代物理学发展条件的改变,某些概念可能有拓宽和演变,要充分利用电磁学与某些问题的联系,寻找与电磁学有关的物理学和其他自然科学的新发展,寻找适合的延伸点,介绍电磁学与工程、技术学科的密切相关的某些重要应用,要适当介绍一些电磁学定律建立的某些历史以及有价值的背景资料,以提高学生科学素养,培养历史唯物主义和辩证唯物主义的基本观点。

电磁学教学大纲

电磁学教学大纲

教学大纲《电磁学》课程教学大纲课程名称:电磁学/ Electromagnetics课程代码:0807004023 开课学期:秋学时/学分:64学时/4.0学分先修课程:《高等数学》、《力学》;适用专业:物理学(师范)开课院(系):物理与电子工程学院一、课程的性质与任务《电磁学》是为物理专业本科学生开设的专业必修课之一,在教学计划中列为KCP课程。

本课程的任务是使学生掌握电磁学的基本原理和方法,为进一步学习电动力学、电工学和电子线路等课程和今后应用电磁学知识打下良好的基础。

通过本门课的教学也应使学生在运用高等数学解决问题的能力,运用从特殊到一般,从局部到全局的分析认识事物的能力,用类比的方法研究和理解问题的能力,从复杂现象中抽象出本质建立物理图象或物理模型能力等方面得到初步训练。

二、课程的教学内容、基本要求及学时分配(一)教学内容及学时分配第一部分、绪论(1学时)第二部分、静电场(13学时)1 电荷;2 库仑定律(库仑定律、电荷的单位、库仑定律的矢量形式、叠加原理)3 电场(电场强度、场强的计算)4 高斯定理(E通量、高斯定理、用高斯定理求场强);5 电场线(电场线、电场线的性质);6 电势(静电场的环路定理、电势和电势差、电势的计算、等势面、电势与场强的微分关系)第三部分、导体周围的静电场(7学时)1静电场中的导体(静电平衡、带电导体所受的静电力、孤立导体形状对电荷分布的影响、导体静电平衡问题的讨论方法、平行板导体组例题)2 封闭金属壳内外的静电场;.3 电容器及其电容4 带电体系的静电能第四部分、静电场中的电介质(6学时)1概述;2偶极子;3电介质及其极化;4极化电荷;5有电介质时的高斯定理;6有介质时的静电场方程第五部分、稳恒电流和电路(9学时)1恒定电流;2直流电路3欧姆定律和焦耳定律4电源和电动势5基尔霍夫方程组第六部分、稳恒电流的磁场(12学时)1磁现象及其与电现象的联系2毕奥-萨伐尔定律3磁场的高斯定理;4安培环路定理5带电粒子在电磁场中的运动6磁场对载流导体的作用;7用磁矩表示载流线圈的磁场,磁偶极子第七部分、电磁感应与暂态过程(10学时)1电磁感应;2楞次定律;3动生电动势;4感生电动势和感生电场5自感;6互感;7涡电流8磁能第八部分、磁介质(4学时)1磁介质存在时的静磁场的基本规律2顺磁质与抗磁质的磁化;3铁磁性与铁磁质;4磁场的能量;第九部分、电磁场与电磁波(2学时)1位移电流与麦克斯韦方程组2平面电磁波;(二)基本要求该课程主要讲授静电场、静电场中的导体和电介质、稳恒电流的磁场、电磁感应、电磁场和电磁波、交直流电路等内容。

电磁学B_课程教学大纲-兰州大学物理学院

电磁学B_课程教学大纲-兰州大学物理学院

电磁学B 课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:电磁学;所属专业:物理学;课程性质:大类平台课(B类);学分:3分。

(二)课程简介、目标与任务;电磁学课程是十九世纪从发展到成熟的一门物理基础课程,与力学一样是自然科学的重要基础课之一。

电磁学发展成熟后在辐射和麦克斯韦方程与惯性坐标系领域的问题和挑战为二十世纪的量子力学、相对论的发展提供了基础,学好电磁学是学好其它自然学科的基本保证。

本课程所讲授的内容为基本电磁现象的实验定律和相关的导出定理以及它们在相应领域,特别实在电路理论中的应用。

深刻认识电磁现象的基本性质,掌握电磁学的基本理论和重要的如电势、磁矢势的概念,学会电磁学研究和处理问题方法。

课程还适时地将电磁学的理论与其它学科及有关自然现象相联系,以期获得对于电磁学理论较为全面的理解。

从基本的实验事实出发,归纳出理论上的定律,并用数学对之进行准确严密的描述,继之再应用于广泛的科技领域这一物理学的思维模式和研究方法在电磁学中也得到了充分的体现。

通过本课程的学习应使学生在提高科学素养,培养严密的思维能力,熟练应用数学工具等诸方面获得全面的进步。

本课程针对我校物理学院材料物理系学生编写。

由于我校属于“211”工程院校系统,物理学院为理科学生培养基地,教材的使用考虑到与全国接轨。

整个课程总学时54,基本上每小节两学时。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:高等数学,力学。

微积分知识及矢量运算是计算电磁场分布问题、学好电磁学的前提。

(四)教材与主要参考书。

教材:赵凯华《新概念物理教程-电磁学》,主要参考书:麦克斯韦《电磁通论》二、课程内容与安排(一)教学方法与学时分配教学方法:采用板书与ppt结合方式教学;时间允许时适当合作型教学。

第一章真空中的静电场(8学时)第二章静电场中的导体和电介质(8学时)第三章稳衡电流(6学时)第四章稳衡磁场(10学时)第五章电磁感应(8学时)第六章磁介质(4学时)第七章交流电路(6学时)第八章麦克斯韦方程组和电磁波(4学时)(二)内容及基本要求第一章真空中的静电场(8学时)§1-1 静电的基本现象和基本规律§1-2 电场和电场强度§1-3 静电场的高斯定理§1-4 静电场的电势和梯度教学内容:电荷,电荷的量子化,库仑定律,静电场强度及分布求解,高斯定理,电势,静电能。

电磁学教学大纲

电磁学教学大纲

《电磁学》教学大纲课程编号:SC2121102课程名称:电磁学英文名称:Electromagnetism学时:54 学分: 3.5课程类型:必修课程性质:学科基础课适用专业:应用物理学、电子信息科学与技术先修课程:高等数学、力学、热学开课学期: 3 开课院系:理学院一、课程的教学目标与任务电磁学是应用物理学专业的基础课程,通过电磁学的教学,应该使学生全面系统地掌握电磁运动的基本现象、基本概念和基本规律,具有一定的分析和解决电磁学问题的能力,为后续课程的学习奠定较为扎实的基础。

电磁学的任务是使学生牢固掌握有关静电场、静电场中的导体和电介质、稳恒磁场、电磁感应的基本原理和规律,使学生了解麦克斯韦电磁学理论的基本内容和电磁波的基本概念。

通过对电磁学内容和研究方法的学习,培养学生分析问题解决问题的能力,建立科学的世界观和方法论。

二、本课程与其它课程的联系和分工前期课程:高等数学、力学、热学后期课程:光学、电动力学、热力学与统计物理等三、课程内容及基本要求(一)静电场恒定电流场(23学时)内容包括:静电现象、电荷,库仑定律;电场与电场强度、场强迭加原理,电偶极子;高斯定理;电势及其梯度;静电场中的导体;静电能;电容和电容器;静电场边值问题的唯一性定理;恒定电流场。

1.基本要求(1)掌握应用高斯定理计算电场分布的条件和方法,用电势定义求空间电势分布的方法;掌握电势与场强的积分关系,理解场强与电势的微分关系。

能熟练运用迭加原理计算简单、典型带电体及其组合体的电场、电势分布。

(2)理解库仑定律及其适用条件、场的概念、场强迭加原理及其物理意义,理解电通量的概念,理解静电场的环路定律和高斯定理,了解电势梯度的物理意义,了解带电体、带电体组的静电能及其计算方法。

(3)掌握并能够熟练运用导体的静电平衡条件;掌握电容的物理意义,并会计算电容器的电容(4)理解静电平衡状态下导体上电荷分布的特点,理解电容器储能的概念,并会计算电容器的储能;(5)理解静电场边值问题的唯一性定理。

电磁学课程大纲

电磁学课程大纲

《电磁学》课程理论教学大纲一、课程编码及课程名称课程编码:321300414课程名称:电磁学(Electromagnetism )二、学时、学分及适用专业总学时数:68 学分:4 适用专业:物理学(本科)三、课程教学目标通过本门课程的教学,使学生系统地掌握电磁学的基本概念和基本理论,了解电磁学在现代科学技术领域中的应用现状和发展前景,培养学生分析问题和解决问题的能力,科学思维能力,自学能力,以及对科学问题的探索和创新精神。

为学生将来从事科学研究、教学和其它工作打下良好的基础。

四、课程的性质和任务电磁学是理科物理类各专业的一门重要基础课。

电磁学课程为后继课程,比如:光学、原子物理学、电动力学、量子力学、电路等课程的学习和专业训练提供必要的准备。

电磁学已渗透到物理学的各个领域,成为研究物质过程必不可少的基础。

通过本门课程的教学,要求:使学生能全面地认识和理解电磁运动的基本现象和基本概念,系统地掌握电磁运动的基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础。

通过对电磁学发展史上某些重大的发现和发明的介绍,使学生了解物理学思想和实验方法,培养学生的辩证唯物主义世界观,使学生获得科学方法论上的教益。

五、课程教学的基本要求在教学中,通过课堂讲授、实验(另计学时)、演示实验、习题课和课程讨论等教学方式,阐明电磁学的基本概念、规律和研究方法,并结合科学研究和生产实际穿插介绍电磁学的最新研究成果及应用实例,以达到预期的教学目的。

在教学过程中重视理论联系实际,加强演示实验和注意与实验课的配合,从而处理好:定性与定量、理论体系与实验方法、基础理论与近代科学成就等之间的关系。

在教学中要注重培养学生运用微分、积分、矢量场论等数学工具解决物理问题的能力。

进一步提高科学知识、科学方法、科学态度和科学精神等科学素质。

六、课程教学内容第一章静电场(12学时)(一)本章教学基本要求通过本章教学,使学生掌握描述静电场的两个基本概念:场强和电位,描述电场性质的两个基本定理:高斯定理,环路定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁学B 课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:电磁学;所属专业:物理学;课程性质:大类平台课(B类);学分:3分。

(二)课程简介、目标与任务;电磁学课程是十九世纪从发展到成熟的一门物理基础课程,与力学一样是自然科学的重要基础课之一。

电磁学发展成熟后在辐射和麦克斯韦方程与惯性坐标系领域的问题和挑战为二十世纪的量子力学、相对论的发展提供了基础,学好电磁学是学好其它自然学科的基本保证。

本课程所讲授的内容为基本电磁现象的实验定律和相关的导出定理以及它们在相应领域,特别实在电路理论中的应用。

深刻认识电磁现象的基本性质,掌握电磁学的基本理论和重要的如电势、磁矢势的概念,学会电磁学研究和处理问题方法。

课程还适时地将电磁学的理论与其它学科及有关自然现象相联系,以期获得对于电磁学理论较为全面的理解。

从基本的实验事实出发,归纳出理论上的定律,并用数学对之进行准确严密的描述,继之再应用于广泛的科技领域这一物理学的思维模式和研究方法在电磁学中也得到了充分的体现。

通过本课程的学习应使学生在提高科学素养,培养严密的思维能力,熟练应用数学工具等诸方面获得全面的进步。

本课程针对我校物理学院材料物理系学生编写。

由于我校属于“211”工程院校系统,物理学院为理科学生培养基地,教材的使用考虑到与全国接轨。

整个课程总学时54,基本上每小节两学时。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:高等数学,力学。

微积分知识及矢量运算是计算电磁场分布问题、学好电磁学的前提。

(四)教材与主要参考书。

教材:赵凯华《新概念物理教程-电磁学》,主要参考书:麦克斯韦《电磁通论》二、课程内容与安排(一)教学方法与学时分配教学方法:采用板书与ppt结合方式教学;时间允许时适当合作型教学。

第一章真空中的静电场(8学时)第二章静电场中的导体和电介质(8学时)第三章稳衡电流(6学时)第四章稳衡磁场(10学时)第五章电磁感应(8学时)第六章磁介质(4学时)第七章交流电路(6学时)第八章麦克斯韦方程组和电磁波(4学时)(二)内容及基本要求第一章真空中的静电场(8学时)§1-1 静电的基本现象和基本规律§1-2 电场和电场强度§1-3 静电场的高斯定理§1-4 静电场的电势和梯度教学内容:电荷,电荷的量子化,库仑定律,静电场强度及分布求解,高斯定理,电势,静电能。

【重点掌握】:电场强度的定义,连续带电体的电场分布的通用求解方法,用高斯定律求解有特定对称性分布的带电体的电场分布,静电场的环路定理和高斯定理的物理意义。

【掌握】:基本粒子的电荷守恒,电场的概念,电场的叠加原理,电偶极子的定义及电场分布,立体角的概念,电势和电势差的概念,静电场的保守性质,用电势梯度计算空间电场分布的方法,电势的叠加方法。

【了解】:库仑定律及其适用条件,场的概念及叠加原理,电通量的概念,高斯定理的证明,等势面和等势体,电势梯度在直角和极坐标系中的表达,自能和互能的概念,带电体的静电能和受力问题。

【难点】:场强和电势的微分关系,电势梯度的物理意义。

第二章静电场中的导体和电介质(8学时)§2-1静电场中的导体§2-2电容和电容器§2-3 静电场中的电介质§2-4 静电场的能量和能量密度教学内容:静电场中的导体,封闭金属壳内外的静电场,电容及电容器,静电场中的电介质,静电场的能量。

【重点掌握】:静电平衡后,导体中电荷的分布和空间电场分布计算;电介质存在时高斯定理的推导过程及应用。

【掌握】:导体的静电平衡条件,静电平衡后导体上电荷分布的特点,带点体系的电容,平行板电容器的电容、静电能,电介质极化强度矢量的物理意义,电介质极化强度与极化电荷面密度的关系;电位移矢量的定义,运用电介质存在的高斯定理求解带电体系的空间电场分布。

【了解】:电容的物理意义,平行板电容器,球形电容器,平行板电容器串并联电容的求解,带电体系的电能及其计算方法,静电屏蔽现象及应用;极化的微观机理解释,电介质的极化率和相对介电常数,介质两侧电场的性质,静电场的能量和能量密度。

第三章稳衡电流(6学时)§3-1 稳衡电流的导电规律§3-2 电源及其电动势§3-3 复杂直流电路的求解方法教学内容:稳恒电流的条件,电流密度矢量,稳恒电流的导电规律,金属导电的经典微观解释,电源电动势,全电路欧姆定律,基尔霍夫第一、第二定律,温差电现象。

【重点掌握】:稳恒电流的成立条件,电源电动势的概念,基尔霍夫第一、第二定律及在直流电路中的应用。

【掌握】:电流密度矢量的概念,欧姆定律的微分形式及应用,非静电力与电源电动势的关系,闭合电路的欧姆定律,电源的路端电压。

【了解】:电阻率的概念,电功率,焦耳定律,电流连续性方程的物理意义,电源电动势的概念,利用场的观点阐释稳定电路的性质,金属导电的经典微观解释,温差电现象。

【难点】:金属导电的经典电子论。

第四章稳衡磁场(10学时)§4-1 磁场的基本规律§4-2 载流回路的磁场§4-3 磁场的“高斯定理”和环路定理§4-4 磁矢势教学内容:基本磁现象,毕奥-萨伐尔定律,磁场的高斯定理,安培环路定理,带电粒子在磁场中的运动,磁场对载流导体和带电粒子的作用【重点掌握】:毕奥-萨伐尔定律在载流直导线、载流圆环、载流螺线管上的应用,磁感应强度的有旋性,磁场的高斯定理,安培环路定理及物理意义,安培力的计算公式。

【掌握】:磁感应强度、磁通量的概念,磁通量的求解方法,毕奥-萨伐尔定律的微分形式,安培环路定理计算磁感应强度的应用,均匀磁场和非均匀磁场中带电体所受安培力的计算方法,洛仑兹力及计算方法,霍尔效应的原理。

【了解】:磁感应线,磁矩的概念,平面载流线圈的磁矩和所受的磁力矩问题,运动电荷在均匀磁场中的运动规律,洛仑兹力与安培力的关系,回旋加速器的原理。

【难点】:安培环路定理求解电流分布对称物体的空间磁场分布,磁矢势。

第五章电磁感应(8学时)§5-1 电磁感应定律§5-2 感应电动势§5-3 自感和互感§5-4 暂态过程教学内容:电磁感应现象,楞次定律,动生电动势,感生电动势和感生电场,涡旋电场,自感,互感,RL、RC、RLC暂态电路、灵敏电流计。

【重点掌握】:动生电动势、感生电动势的求解方法。

【掌握】:法拉第电磁感应定律及应用,动生电动势和感生电动势的计算方法,电动机原理,感生涡旋电场的概念及与静电场的区别,电子感应加速器原理,自感系数的求解方法。

【了解】:法拉第电磁感应定律的普遍适用性,电动势,楞次定律,RL、RC、RLC电路的求解方法及暂态过程,磁场的能量、自感电动势与互感电动势,自感系数与互感系数的关系,能量密度及求解方法,灵敏电流计的原理。

【难点】:感生涡旋电场及感生电动势的求解。

第六章磁介质(4学时)§6-1 分子电流观点§6-2 磁荷观点§6-3 介质的磁化规律教学内容:分子电流观点,磁荷观点,磁介质的磁化机理及描述,铁磁物质的磁化规律,顺磁物质和抗磁物质的磁化现象,磁路定理,磁场的能量和能量密度。

【重点掌握】:有磁介质时的安培环路定理及应用。

【掌握】:磁化强度矢量的概念和表达,磁场强度的定义,磁偶极子,磁路定理及应用,磁场能量及其求解方法。

【了解】:用分子电流观点和磁荷观点解释磁介质的磁化现象,磁化电流与磁场强度的关系,介质的铁磁性、顺磁性、抗磁性及经典解释,铁磁性的宏观特性,磁化特征,磁畴的概念,磁化率、磁导率的定义,铁磁材料的分类和应用。

【一般了解】:磁极化强度矢量及与磁荷的关系,磁荷观点及与分子电流观点的等效性。

【难点】:抗磁性的经典解释,磁畴结构的成因。

第七章交流电路(6学时)§7-1 简谐交流电§7-2 交流电路的阻抗元件§7-3 交流电路的矢量解法§7-4 交流电路的复数解法§7-5 交流电路的功率§7-6 谐振电路教学内容:简谐波的形式,矢量和复数表示,阻抗的概念,电阻、电感和电容的阻抗,交流电路的矢量解法、复数解法,滤波电路和相移电路,交流电的功率和功率因数,提高功率因数的方法,理想变压器的电压和电流变比公式,三相发电机,三相交流电的性质、接法。

【重点掌握】:电容和电感器件的阻抗特征,交流电的相位差,实现滤波和相移的方法,三相电路中负载的接法。

【掌握】:简谐交流电的表示方法,矢量图解法求解RL、RC、RLC电路的阻抗特征,RLC谐振电路及Q值得内涵,交流电路的欧姆定律和复阻抗,交流电路的复数解法【了解】:阻抗的概念,交流电桥,有功功率和无功功率,三相交流电功率第八章麦克斯韦方程组和电磁波(4学时)§8-1 麦克斯韦方程组§8-2 平面电磁波教学内容:位移电流,麦克斯韦方程组,平面电磁波的性质,偶极振子的辐射,电磁波谱,电磁场的能量密度和动量。

【重点掌握】:位移电流的内涵,麦克斯韦方程组的积分及微分形式【掌握】:位移电流假设,平面电磁波的形式、性质,电磁波的能流密度。

【了解】:平面电磁波的波动方程,电磁波的发射,电磁场的动量。

【难点】:位移电流的物理意义。

制定人:乔亮审定人:批准人:日期:。

相关文档
最新文档