[2020理数]第十一章 第四节 古典概型与几何概型
§14.4 古典概型与几何概型
“围棋”社团被抽取的同学中有 2 名女生,求至少有 1 名女同学被选担任监督职务
的概率.
解析
【解析】(1)设抽样比为 x,则由分层抽样可知,从“街舞”“围棋”“武术”三个社团 抽取的人数分别为 320x,240x,200x,则由题意得 320x-240x=2,解得 x=410,
故从“街舞”“围棋”“武术”三个社团抽取的人数分别为 320×410=8,240×410=6, 200×410=5.
.
答案
ቤተ መጻሕፍቲ ባይዱ
三、几何概型 1.定义:若每个事件发生的概率只与构成该事件区域的 长度 (面积或体积) 成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有 无限多个 . (2)等可能性:每个结果的发生具有 等可能性 .
构成事件������的区域长度(面积或体积) 3.几何概型的概率公式 P(A)= 试验的全部结果所构成的区域长度(面积. 或体积)
������
2.利用古典概型求概率的关键是要正确求出基本事件的总数和随机事件包 含的基本事件的个数,对于较复杂的题目,计数时要正确分类,分类时应不重不漏, 要正确选择列举法、列表法、树状图法等.
【追踪训练 1】(2020 届天津高考模拟)根据调查,某学校开设了“街舞”“围
棋”“武术”三个社团,三个社团参加的人数如下表所示:
(2)从抽出的 6 人中,任选 2 人参加一对一的对抗比赛,基本事件总数为 n=C62=15, 这 2 人来自同一年龄组包含的基本事件个数为 m=C32+C22=4, ∴这 2 人来自同一年龄组的概率 P=������������=145.
解析
点拨:1.求古典概型概率的步骤 (1)判断本试验的结果是否为等可能事件,设出所求事件 A; (2)分别求出基本事件的总数 n 与所求事件 A 中所包含的基本事件个数 m; (3)利用公式 P(A)=������,求出事件 A 的概率.
高三数学总复习 古典概型与几何概型 知识讲解 新人教A版
高考总复习:古典概型与几何概型【考纲要求】1、理解古典概型及其概率计算公式;了解随机数的意义,能运用模拟方法估计概率;2、会计算一些随机事件所含的基本事件数及事件发生的概率;了解几何概型的意义。
【知识网络】【考点梳理】知识点一、古典概型1. 定义具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。
(2)等可能性:每个基本事件发生的可能性是均等的。
3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。
如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即nm A P )(。
所以古典概型计算事件A 的概率计算公式为:试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。
5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。
利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。
知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。
满足以上条件的试验称为几何概型。
2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。
3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。
2020版高考数学大一轮复习第11章概率第2讲古典概型与几何概型课件文
对于事件A,先将数字4放在五个不同数的中间位置,再考虑分别从 数字1,2,3和5,6,7,8中各取两个数字,则事件A包含的基本事件种数 为 C C =3×6=18.由古典概型的概率计算公式,得P(A)= 18 = 56
2 2 4 3
9 28
.
考法2 几何概型的求法
1.与长度、角度有关的几何概型
C.
与
D.
之间的区间长度为 = .
由几何概型的概率计算公式,得P=
= .故选B.
文科数学 第十一章:概率
(2)[2019吉林百校联考] 太极图是以黑白两个鱼形纹组成的图案,它形象 地表达了阴阳轮转,展现了一种相互转化、相对统一的形式美.按照太极图 的构图方法,在如图所示的平面直角坐标系中,圆O被y=3sin x的图象分割 为两个对称的鱼形图案,其中小圆的半径均为1,现在在大圆内随机取一点, 则此点取自阴影部分的概率为( )
考点1 古典概型
考点2 几何概型
考点3 随机模拟
考点1 古典概型(重点)
1.基本事件的特点
(1)任何两个基本事件都是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型的特点
文科数学 第十一章:概率
3.古典概型的概率计算公式 P(A)= .
注意:下列三类试验不是古典概型:(1)基本事件的个数有限,但非等可能
机模拟产生了20组如下的随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该运动员射击4次至少击中3次的概率为
.
1.3古典概型与几何概型
所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放
2020版高考数学北师大版(理)一轮复习课件:12.2 古典概型与几何概型
随堂巩固
知识梳理
考点自诊
-8-
4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内 切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正 方形内随机取一点,则此点取自黑色部分的概率是( B )
A.
1 4
B.
π 8
C.
1 2
D.
π 4
随堂巩固
知识梳理
考点自诊
-9-
解析:不妨设正方形边长为 2,则圆半径为 1,正方形的面积为 2×2=4, 圆的面积为 π×12=π.由图形的对称性,可知图中黑色部分的面积为
随堂巩固
知识梳理
考点自诊
-5-
1.判断下列结论是否正确,正确的画“√”,错误的画“×”. (1)在一次试验中,其基本事件的发生一定是等可能的.( × ) (2)在几何概型定义中的区域可以是线段、平面图形、立体图形 .( √ ) (3)与面积有关的几何概型的概率与几何图形的形状有关.( × )
(4)在古典概型中,每个基本事件的概率都是 ;如果某个事件 A 包 括的结果有 m 个,则 P(A)= . ( √ ) ������
1 p=7. ������ ������ 3 8
-16考点1
考点2
考点3
考点4
考点5
考点6
古典概型的交汇问题(多考向) 考向1 古典概型与平面向量的交汇
例 2 连掷两次骰子得到的点数分别为 m 和 n,记向量 a=(m,n)与 π 向量 b=(1,-1)的夹角为 θ,则 θ∈ 0, 的概率是( C )
构成事件������的区域长度(面积或体积)
(3)公式:P(A)= 试验的全部结果所构成的区域长度(面积或体积) . 4.随机模拟方法 使用计算机或者其他方式进行的模拟试验,以便通过这个试验求 出随机事件的概率的近似值的方法就是随机模拟方法.
古典概率与几何概率的区别
古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。
几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。
一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。
三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。
古典概型和几何概型
一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。
古典概型与几何概型
2.直线与圆有公共点,即圆心到直线的距离小于或等于半径,由此 得出a≤b,到此基本事件就清楚了,事件A包含的基本事件也清楚了.
中任取两个元素a,b,且a·b≠0,则方程
双曲线的概率为
.
������2 ������2
+
������������22=1表示焦点在x轴上的
考点1
考点2
考点3
考点4
考点5 知识方法 易错易混
(2)(2015江西南昌一模)将a,b,c,d四封不同的信随机放入A,B,C,D
4个不同的信封里,每个信封至少有一封信.其中a没有放入A中的概
率是
.
关闭
将四封不同的信随机放入 4 个不同的信封中,每个信封至少有一封
信的放法有A44=24 种,其中信 a 放入 A 中的结果有A33=6 种,故“信 a
;a⊥b的
概率为
.
关闭
由题意,得(x,y)所有的基本事件共有C31 ·C31=9 个.
设“a∥b”为事件 A,则 xy=-3.事件 A 包含的基本事件有(-1,3),故 a∥b
的概率为 P(A)=1;
9
设“a⊥b”为事件 B,则 y=3x.事件 B 包含的基本事件有(1,3),(3,9),故 a
⊥1 b
.
关闭
设圆的半径为 R,由题意知圆内接三角形为等腰直角三角形,其直角
边长为√2R,则所求事件的概率为
1
P=������������阴 圆
古典概型与几何概型知识点总结
古典概型与几何概型知识点总结古典概型和几何概型是概率论中最基础的概率模型,它们分别适用于简单事件和几何事件的计算。
以下是古典概型和几何概型的知识点总结:一、古典概型:1.古典概型是指事件的样本空间具有有限个数的元素,样本点的概率相等。
2.样本空间是指实验中所有可能的结果的集合,例如掷一枚骰子的样本空间为{1,2,3,4,5,6}。
3.事件是样本空间的子集,例如“掷一枚骰子,出现的点数为偶数”的事件为{2,4,6}。
4.古典概型的概率计算公式为:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A包含的样本点个数,n(S)为样本空间的样本点个数。
5.古典概型的概率计算要求样本点的概率相等,且样本点的个数有限。
二、几何概型:1.几何概型是指事件的样本空间是一个几何图形,而不是有限个元素。
2.在几何概型中,事件的概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
3.几何概型的概率计算需要使用几何图形的面积或体积的计算方法,例如计算矩形的面积为长乘以宽,计算圆的面积为π乘以半径的平方。
4.几何概型可以应用于连续变量的概率计算,例如计算一些范围内的事件发生的概率。
5.几何概型的概率计算要求事件与样本空间之间存在其中一种几何关系,例如事件发生的可能性与事件所占的几何图形的面积或体积成正比。
综上所述,古典概型适用于简单事件且样本空间的样本点个数有限的情况,其概率计算公式为P(A)=n(A)/n(S);几何概型适用于事件的样本空间是一个几何图形的情况,概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
掌握古典概型和几何概型的知识点,能够帮助我们更好地理解和计算事件的概率,为概率论的进一步学习奠定基础。
高中数学 第十一章11.3 几何概型
基础知识 题型分类 思想方法 练出高分
题型分类·深度剖析
题型二 与面积有关的几何概型
思维启迪 解析 探究提高
【例 2】 设有关于 x 的一元二次方 程 x2+2ax+b2=0. (1)若 a 是从 0,1,2,3 四个数中任取 的一个数,b 是从 0,1,2 三个数中 任取的一个数, 求上述方程有实根 的概率; (2)若 a 是从区间[0,3]任取的一个 数,b 是从区间[0,2]任取的一个 数,求上述方程有实根的概率.
由 lg m 有意义知 m>0, 即使 lg m 有意义的范围是(0,4),
4-0 4 故所求概率为 P= = . 4--1 5
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 与长度有关的几何概型
【例 1】 在集合 A={m|关于 x 的 思维启迪 解析 答案 探究提高 3 2 方程 x +mx+ m+1=0 无实 由 Δ=m2-43m+1<0 得-1<m<4. 4 4
题型一 与长度有关的几何概型
【例 1】 在集合 A={m|关于 x 的 思维启迪 解析 答案 探究提高 3 解答几何概型问题的关键在于弄 2 方程 x +mx+ m+1=0 无实 4 清题中的考察对象和对象的活动 根}中随机地取一元素 m,恰使 范围.当考察对象为点,点的活 4 5 式子 lg m 有意义的概率为___. 动范围在线段上时,用线段长度 比计算;当考察对象为线时,一
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三 与角度、体积有关的几何概型
思维启迪 解析
古典概型和几何概型(一轮复习数学)
(2)先后掷两枚相同的骰 子,则向上的点数之和 为5的概率为
1 A. 18 1 B. 9 1 C. 6 1 D. 12
(3)某种饮料每箱装 6听,其中2听不合格,质检人员从 中随机抽取 2听,检测出都是合格产 品的概率为
1 A. 5 2 B. 5 3 C. 5 4 D. 5
类型二:古典概型的求 法
类型三:几何概型的求 法(与面积有关问题) 例1. 一只受伤的丹顶鹤在如 图所示(直角梯形)的 草原上空飞过,
其中AD 2,DC 2,BC 1,它可能随机落在草原 上 任何一处(点)。若落 在扇形区域ADE以外丹顶鹤能生 还,该丹顶鹤生还的概 率是 10 10
例2. 如图,圆C内切于扇形AOB,AOB
1 A. 5 2 B. 5 3 C. 5 4 D. 5
例4.如图所示,边长为 2的正方形中有一封闭曲 线围成的阴影 区域。在正方形中随机 撒一粒豆子,它落在阴 影区域内的概率 2 为 ,则阴影区域的面积为 3
4 A. 3
8 B. 3
2 C. 3
D.无法计算
类型二:几何概型的求 法(与长度、角度有关 问题) 例1. 如图所示,在直角坐标 系内,射线 OT落在30角的终边上,
3 C. 10 2 D. 5
(2)袋中有五张卡片,其 中红色卡片三张,标号 分别为 1,2 3;蓝色卡片两张,标号 分别为 1,2. .从以上五张卡片中任取 2两张,求这两张卡片不 同且标号
之和小于4的概率. .向袋中再放入一张标号 为0的绿色卡片,从这六张 卡片中
任取两张,求这两张卡 片颜色不同且标号之和 小于4的概率.
类型一:古典概型基本 概念 例1( . 1 )判断正误:
“在适宜条件下种下一 粒种子观察它是否发芽 ”属于古典概型, 其基本事件是“发芽与 不发芽”
几何概型与古典概型的区别
与长度有关的几何概型 [例 1] (2012·辽宁高考)在长为 12 cm 的线段 AB 上任取
一点 C.现作一矩形,邻边长分别等于线段 AC,CB 的长,则
该矩形面积大于 20 cm2 的概率为
1
1
A.6
B.3
()
2
4
C.3
D.5
1.在区间-π2,π2上随机取一个数 x,则 cos x 的值介于 0 到12之 间的概率为________.
求解与长度有关的几何概型的两点注意 (1)求解几何概型问题,解题的突破口为弄清是长度 之比、面积之比还是体积之比; (2)求与长度有关的几何概型的概率的方法,是把题 中所表示的几何模型转化为线段的长度,然后求解,应 特别注意准确表示所确定的线段的长度.
与面积(体积)有关的几何概型
[例 2] (1)已知平面区域 U={(x,y)|x+y≤6,x≥0,
2.已知集合 A={x|-1<x<5},B=xx3- -2x>0 ,在集合 A 中 任取一个元素 x,则事件“x∈A∩B”的概率是_______.
在长为 12 cm 的线段 AB 上任取一点 C,并以线段 AC 为边作正方形,则这个正方形的面积介于 36 cm2 与 81 cm2 之间的概率是多少?
y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域 U 内
随机投一点 P,则点 P 落入区域 A 的概率为________. (2)(2012·湖北高考)如图所示,在圆心角
为直角的扇形 OAB 中,分别以 OA,OB 为
直径作两个半圆,在扇形 OAB 内随机取一
点,则此点取自阴影部分的概率是 ( )
B.9
1
1
4.点CA.4为周长等于 3 的圆周上一个D.定2 点,若在该圆周上随
古典概型和几何概型的区别
古典概型和几何概型的区别
相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的。
不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关。
(1)试验中所有可能出现的基本事件有无限多个。
(2)每个基本事件出现的可能性相等。
(3)几何概型求事件A的概率公式:
PA=构成事件A的区域长度面积或体积/实验的全部结果所构成的区域长度面积或体积(1)试验中所有可能出现的基本事件是有限的。
(2)每个基本事件出现的可能性相等。
(3)古典概型求事件A的概率公式:
PA=事件A可能发生的结果数/实验发生的所有等可能的结果数
例题:某人午觉醒来发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。
分析:收音机每小时报时一次,某人午觉醒来的时刻在两次整点报时之间都是等可能的,且醒来的时刻有无限多个的,因而适合几何概型。
感谢您的阅读,祝您生活愉快。
12.21古典概型、几何概型共35页PPT资料
课堂互动讲练
例2 袋中装有大小相同的10个小球,其中
6个红色,4个白色,从中依次不放回地任 取出3个,求:
(1)取出3球恰好2红1白的概率; (2)取出3球依次为红、白、红的概率; (3)第三次取到红球的概率.
课堂互动讲练
【解】 (1)取出 3 球所有可能结 果有 C103 个,其中 2 红 1 白的可能结 果有 C62C41 个,所以取出 3 球恰好 2 红 1 白的概率 P1=CC621C0341=12.
A.π2
B.π1
2
1
C.3
D.3
答案:A
三基能力强化
3.(教材习题改编)在两个袋内,分别 装着写有0,1,2,3,4,5六个数字的6张卡片, 现从每个袋中各任取一张卡片,则两数之 和等于5的概率为( )
1 A.3
1
答C案.9 :B
1 B.6
1 D.12
三基能力强化
4.(2009年高考辽宁卷改编)ABCD为长 方形,AB=2,BC=1,O为AB的中点,在长 方形ABCD内随机取一点,取到的点到O的距
课堂互动讲练
互动探究
在本例中,把“每次取出后不放回 ”这一条件换成“每次取出后放回”,其余 不变,求取出的两件中恰好有一件次品的 概率.
课堂互动讲练
解:总的结果为(a1,a1)(a1,a2),(a1, b1)(a2,a1),(a2,a2),(a2,b1),(b1, a1)(b1,∴aP2)(,A)(=b149,. b1),而事件A不变,
课堂互动讲练
【解】 每次取一件,取后不放 回地连续取两次,其一切可能的结果 为(a1,a2),(a1,b1),(a2,a1),(a2, b1),(b1,a1),(b1,a2),其中小括号 内左边的字母表示第1次取出的产品, 右边的字母表示第2次取出的产品, 由6个基本事件组成,而且可以认为 这些基本事件的出现是等可能的.用 A表示“取出的两件中,恰好有
高中数学课件:古典概型与几何概型
所以 a 和 b 的组合有 36 种.
若方程 ax2+bx+1=0 有实数解,
则 Δ=b2-4a≥0,所以 b2≥4a.
当 b=1 时,没有 a 符合条件;当 b=2 时,a 可取 1;当 b=3 时,
a 可取 1,2;当 b=4 时,a 可取 1,2,3,4;当 b=5 时,a 可取 1,2,3,4,5,6;
客必然在(t-5,t]内来到车站,故 Ω={x|t-5<x≤t},
欲使乘客候车时间不超过 3 min,必有 t-3≤x≤t,
所以 A={x|t-3≤x≤t},所以 P(A)=ΩA的的度度量量=35.
所以乘客候车时间不超过 3 min 的概率为35.
答案:35
2.某人午觉醒来,他打开收音机,想听电台报时,则他等待的
[答案] D
[解题方略] 与长度有关的几何概型的求法
解答关于长度的几何概型问题,只要将所有基本事件及事件 A 包含的基本事件转化为相应长度,即可利用几何概型的概率计 算公式求解.解题的关键是构建事件的区域(长度).
考法(二) 与面积有关的几何概型 [例 2] (1)图 1 是某宾馆地毯上的图案,它是一个轴对称图 形.可从中抽象出一个正八边形,且在该正八边形中有一个边长 和该正八边形的边长相等的正方形,如图 2 所示.若向图 2 的正 八边形中任意地投掷一个点,则该点落在正方形内的概率是
B.14
1
1
C.15
D.18
解析:不超过 30 的所有素数为 2,3,5,7,11,13,17,19,23,29,共 10 个,随机选取两个不同的数,共有 C210=45 种情况,而和为 30 的有 7+23,11+19,13+17 这 3 种情况,所以所求概率 P=435=115. 答案:C
10.3 随机事件、古典概型与几何概型
§10.3随机事件、古典概型与几何概型知识诠释思维发散一、事件1.必然事件:我们把在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称.2.不可能事件:我们把在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称.3.随机事件:我们把在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称.注:必然事件与不可能事件统统称为相对于条件的确定事件,要辩证地看待“在某条件S 下”.对随机事件概念的理解应包含以下三方面:①随机事件是指在一定条件下所出现的某种结果,随着条件的改变,结果也会不同;②随机事件可以重复地进行大量的试验,每次试验的结果不一定相同,且无法预测下一次结果,但随着试验的重复进行,结果呈现规律性;③必然事件和不可能事件是随机事件的两种特例.随机事件的发生有其随意性,它在一次试验中发生与否是随机的,但随机中又含有规律性,这种规律便是概率的体现.二、“频率”与“概率”概念1.频率:在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=为事件A出现的;2.概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的.三、古典概型1.古典概型概念我们把具有:①试验中所有可能出现的基本事件只有;②每个基本事件出现的可能性,两个特点的概率模型称为古典概率模型,简称为.2.古典概型的概率公式如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是,如果某个事件A包含的结果有m个基本事件,那么事件A的概率P(A)=.四、几何概型1.定义:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为.2.特点:①:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;②:在这个随机试验中,每个试验结果出现的可能性相等,即基本事件发生是等可能的.3.几何概型的概率计算在几何概型中,事件A的概率的计算公式如下:P(A)=.1.设a是抛掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实数根的概率为()(A).(B).(C).(D).2.已知平面区域D={(x,y)|-1≤x≤1,-1≤y≤1},在区域D内任取一点,则取到的点位于直线y=kx(k∈R)下方的概率为.3.在一球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为()(A).(B).(C).(D).核心突围技能聚合题型1基本事件及事件的概率例1有两个正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x,y)表示结果,其中x表示第1个正四面体玩具出现的点数,y表示第2个正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.变式训练1盒中有3只灯泡,其中2只是正品,1只是次品.(1)从中取出1只,然后放回,再取1只,求连续2次取出的都是正品的概率;(2)从中一次任取出2只,求2只都是正品的概率.题型2古典概型的概率例2袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)取出的两球都是白球;(2)取出的两球1个是白球,另1个是红球.变式训练2把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,已知方程组解答下列各题:(1)求方程组只有一个解的概率;(2)求方程组只有正数解的概率.题型3几何概型的概率例3(1)如图,在一个长为π,宽为2的矩形OABC内,曲线y=sin x(0≤x≤π)与x 轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是()(A).(B).(C).(D).(2)有一段长为10米的木棍,现要截成两段,则每段不小于3米的概率是.变式训练3(1)如图,设T是直线x=-1,x=2与函数y=x+2的图象在x轴上方围成的直角梯形区域,S 是T内函数y=x2图象下方的点构成的区域(图中阴影部分).向T中随机投一点,则该点落入S 中的概率为()(A).(B).(C).(D).(2)某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,则乘客候车时间不超过6分钟的概率是.题型4古典概型与统计的综合应用例4某日用品按行业质量标准分成五个等级,等级系数X依次为1、2、3、4、5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1 2 3 4 5f a0.2 0.45 b c(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件.求a、b、c的值;(2)在(1)的条件下,将等级系数为4的3件记为x1、x2、x3,等级系数为5的2件记为y1、y2.现从这五件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.变式训练4以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.1.必然事件U的概率为1,记为P(U)=1;不可能事件V的概率为0,记为P(V)=0;而任意事件A的概率满足0≤P(A)≤1.2.随机事件A发生的频率为,其中频率中的m,n均随试验次数的变化而变化,但频率总是接近于事件A的概率.3.几何概型的计算关键是将基本事件总数和有关事件总数进行度量.度量值通常是长度、面积、体积等.4.古典概型与几何概型的相同点:古典概型与几何概型都具有等可能性的特征;不同点:古典概型要求可能结果的总数必须有限.例(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.【学生解答】(1)P==.(2)m、n组成的数对的所有结果共有16个,满足n<m+2的结果有11个.∴P1=.【正确解答】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.[2分]从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.[4分]因此所求事件的概率为P==.[6分](2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[8分]又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=.[10分]故满足条件n<m+2的事件的概率为1-P1=1-=.[12分]【点评】(1)根据题意,正确写出基本事件是解决本类问题的关键,在写基本事件时可以利用列表、画树状图等方法,以防遗漏.(2)本题解答时,存在格式不规范,思维不流畅的严重问题.如该生在解答时,缺少必要的文字说明,没有按要求列出基本事件.在第(2)问中,由于不能将事件n<m+2的概率转化成n≥m+2的概率,导致数据复杂、易错.所以按要求规范解答是做好此类题目的基本要求.参考答案§10.3随机事件、古典概型与几何概型知识梳理一、1.必然事件2.不可能事件3.随机事件二、1.频率2.概率三、1.①有限个②相等古典概型2.四、1.几何概型2.①无限性②等可能性3.基础自测1.A 2.3.D典例剖析例1(1)(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(2)(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(3)(1,1),(2,2),(3,3),(4,4)变式训练1(1)(2)例2(1)(2)变式训练2(1)(2)例3(1)A(2)0.4变式训练3(1)B(2)例4(1)a=0.1,b=0.15,c=0.1(2)所有可能结果为{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2},概率为0.4变式训练4(1)平均数为,方差为(2)。
古典概型与几何概型
设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的
区域用A表示(A⊆Ω),则P(A)=②
A的度量 Ω的度量
.
4.几何概型与古典概型的区别与联系 (1)共同点:基本事件都是③ 等可能的 . (2)不同点:基本事件的个数一个是无限的,一个是有限的.基本事件可以 抽象为点,对于几何概型,这些点尽管是无限的,但它们所占据的区域却 是有限的,根据等可能性,这个点落在该区域的概率与该区域的度量成 正比,而与该区域的位置和形状无关.
= =6, C2 4
∴取出的2个集合中各有三个元素的概率P= = .故选A.
m 1 n 6
方法 2 几何概型的概率求法
1.判断试验是否为几何概型,要切实理解并掌握几何概型的两个基本特
点:无限性和等可能性. 2.求解几何概型问题的关键在于弄清题中的考察对象和对象的活动范 围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考 察的对象在某块区域时,用面积比计算;当考察对象在某个空间时,用体 积比计算. 3.在解决面积型几何概型时,要充分借助线性规划的可行域、定积分等 相关知识进行求解.
高考理数
§11.2 古典概型与几何概型
知识清单
考点一
1.古典概型的两个特点
(1)有限性:试验中所有可能出现的基本事件只有有限个. (2)等可能性:每个基本事件出现的可能性相等. 2.古典概型的概率公式 (1)在基本事件总数为n的古典概型中,每个基本事件发生的概率都是相 等的,即每个基本事件的概率都是 .
1 A. 6 1 B. 7
1 C. 8
1 D. 9
解题导引
解析 令ln(x2+1)=0,得x=0,
e 1 , 令ln(x2+1)=1,得x2+1=e,∴x=±
高中理数课件第十一章 第四节 古典概型与几何概型
5.(2018·郑州质检)按照国家环保部发布的新修订的《环境空气质 量标准》,规定:PM2.5 的年平均浓度不得超过 35 微克/立方 米.国家环保部门在 2016 年 10 月 1 日到 2017 年 1 月 30 日这 120 天对全国的 PM2.5 平均浓度的监测数据统计如下:
[解] (1)由题意知,从 6 个国家中任选两个国家,其一切可能的 结果组成的基本事件有:{A1,A2},{A1,A3},{A2,A3},{A1,B1}, {A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3, B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共 15 个.所选两个 国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,A3}, {A2,A3},共 3 个,则所求事件的概率为:P=135=15.
其重量,属于古典概型.
(× )
(4)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,
每位同学参加各个小组的可能性相同,则这两位同学参加同一
个兴趣小组的概率为13.
( √)
2.填空题 (1)一个口袋内装有 2 个白球和 3 个黑球,则在先摸出 1 个白 球后放回的条件下,再摸出 1 个白球的概率是________.
讲练区 研透高考· 完成情况
[全析考法]
古典概型的求法
[典例] (2017·山东高考)某旅游爱好者计划从 3 个亚洲国 家 A1,A2,A3 和 3 个欧洲国家 B1,B2,B3 中选择 2 个国家去旅 游.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 古典概型与几何概型[考纲要求]1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用模拟方法估计概率.4.了解几何概型的意义.突破点一 古典概型[基本知识]1.基本事件的特点(1)任何两个基本事件都是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.3.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于古典概型.()(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.()答案:(1)×(2)×(3)×(4)√二、填空题1.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为________.答案:2 52.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.答案:9 103.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.答案:5 6[典例](2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.[解](1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G} ,{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以事件M发生的概率P(M)=5 21.[方法技巧]1.求古典概型概率的步骤(1)判断本试验的结果是否为等可能事件,设出所求事件A;(2)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;(3)利用公式P(A)=mn,求出事件A的概率.2.求基本事件个数的三种方法(1)列举法:把所有的基本事件一一列举出来,此方法适用于情况相对简单的试验题.(2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄清基本事件的总数,以及要求的事件所包含的基本事件数.(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.[针对训练]1.(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112 B.114C.115 D.118解析:选C不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为3 45=115.故选C.2.(2019·大同一中月考)甲、乙两人玩一种游戏,在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率.(2)这种游戏规则公平吗?试说明理由.解:(1)设“两个编号和为8”为事件A,则事件A包括的基本事件有(2,6),(3,5),(4,4),(5,3),(6,2),共5个.又甲、乙两人取出的数字共有6×6=36个等可能的结果,故P(A)=5 36.(2)这种游戏规则是公平的.设甲赢为事件B,乙赢为事件C,由题可知甲赢即两编号和为偶数所包含的基本事件数有(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6),共18个.所以甲赢的概率P(B)=1836=12,故乙赢的概率P(C)=1-12=12=P(B),所以这种游戏规则是公平的.突破点二几何概型[基本知识]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个;(2)等可能性:每个试验结果的发生具有等可能性.3.几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[基本能力]一、判断题(对的打“√”,错的打“×”)(1)在一个正方形区域内任取一点的概率是零.()(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.()答案:(1)√(2)√(3)√二、填空题1.已知球O内切于棱长为2的正方体,若在正方体内任取一点,则这一点不在球内的概率为________.答案:1-π62.已知四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为________.答案:1-π43.已知函数f(x)=2x(x<0),其值域为D,在区间(-1,2)上随机取一个数x,则x∈D的概率是________.答案:13[全析考法]考法一 与长度、角度有关的几何概型[例1] (1)(2019·成都毕业班摸底)在区间[-4,1]上随机地取一个实数x ,若x 满足|x |<a 的概率为45,则实数a 的值为( ) A.12B .1C .2D .3(2)(2019·福州四校联考)如图,在圆心角为90°的扇形AOB 中,以圆心O 为起点在上任取一点C 作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率是( )A.13B.23C.12D.16[解析] (1)设集合A ={x ||x |<a }=(-a ,a )(a >0),若0<a ≤1,则A ⊆[-4,1],由几何概型的意义,得P (A )=a -(-a )1-(-4)=45,解得a =2,不符合题意,若a >1,则P (A )=1-(-a )1-(-4)=45,解得a =3,符合题意,故选D.(2)记事件T 是“作射线OC ,使得∠AOC 和∠BOC 都不小于30°”,如图,记的三等分点为M ,N ,连接OM ,ON ,则∠AON =∠BOM =∠MON =30°,则符合条件的射线OC 应落在扇形MON 中,所以P (T )=∠MON ∠AOB =30°90°=13,故选A. [答案] (1)D (2)A[方法技巧]1.与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,可直接用概率的计算公式求解.2.与角度有关的几何概型当涉及射线的转动,扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.考法二 与面积有关的几何概型[例2] (1)(2019·惠州调研)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图是赵爽的弦图.弦图是一个以勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .866B .500C .300D .134(2)(2019·齐齐哈尔八中模拟)如图,四边形ABCD 为正方形,G 为线段BC的中点,四边形AEFG 与四边形DGHI 也为正方形,连接EB ,CI ,则向多边形AEFGHID 中投掷一点,该点落在阴影部分内的概率为( )A.13B.25C.38D.12[解析] (1)设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32× 1 000≈134.(2)设正方形ABCD 的边长为1,则可求得S 总=3,S 阴影=2×12×52×1×25=1,所以所求概率为P =13,故选A. [答案] (1)D (2)A[方法技巧]求解与面积有关的几何概型的关键点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.考法三 与体积有关的几何概型[例3] (2019·陕西部分学校摸底)在球O 内任取一点P ,则点P 在球O 的内接正四面体中的概率是( )A.112πB.312πC.239πD.36π[解析] 设球O 的半径为R ,球O 的内接正四面体的棱长为2a ,所以正四面体的高为233a ,所以R 2=⎝⎛⎭⎫63a 2+⎝⎛⎭⎫23a 3-R 2,即3a =2R ,所以正四面体的棱长为26R 3,底面面积为12×26R 3×2R =233R 2,高为4R 3,所以正四面体的体积为8327R 3,又球O 的体积为 4π3R 3,所以P 点在球O 的内接正四面体中的概率为239π,故选C. [答案] C [方法技巧] 求解与体积有关的几何概型的关键点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.[集训冲关]1.[考法一]已知函数f (x )=3sin x +3cos x ,当x ∈[0,π]时,f (x )≥ 3的概率为( ) A.13B.12C.15D.14解析:选B f (x )=3sin x +3cos x =23sin ⎝⎛⎭⎫x +π3, ∵x ∈[0,π],∴x +π3∈⎣⎡⎦⎤π3,4π3,令f (x )≥ 3, 得sin ⎝⎛⎭⎫x +π3≥12,得π3≤x +π3≤5π6,∴0≤x ≤π2, ∴f (x )≥ 3的概率为12. 2.[考法三]在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×43π×13=23π,则点P 到点O 的距离大于1的概率为:1-23π8=1-π12. 答案:1-π123.[考法二]某人随机地在如图所示的正三角形及其外接圆区域内部投针(不包括三角形边界及圆的外界),则针扎到阴影区域(不包括边界)的概率为________.解析:设正三角形的边长为a ,圆的半径为R ,则正三角形的面积为34a 2. 由正弦定理得2R =a sin 60°,即R =33a .所以圆的面积S =πR 2=13πa 2.由几何概型的概率计算公式得概率P=34a213πa2=334π.答案:334π突破点三概率与统计的综合问题[典例](2019·广西南宁毕业班摸底)广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2018年某校社会实践小组对某小区参与广场舞的群众进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们的年龄分成6组:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到如图所示的频率分布直方图.(1)计算这40名广场舞者中年龄分布在[40,70)的人数;(2)若从年龄在[20,40)的广场舞者中任选2名,求这2名广场舞者中恰有一人年龄在[30,40)的概率.[解](1)由题知,这40名广场舞者中年龄分布在[40,70)的人数为(0.02+0.03+0.025)×10×40=30.(2)由频率分布直方图可知,年龄在[20,30)的有2人,分别记为a1,a2,年龄在[30,40)的有4人,分别记为b1,b2,b3,b4.现从这6人中任选2人,共有如下15种选法:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4) ,(b3,b4).其中恰有一人年龄在[30,40)的有8种,故这2名广场舞者中恰有一人年龄在[30,40)的概率P=8 15.[方法技巧]破解概率与统计图表综合问题的“三步曲”[针对训练] (2019·贵阳摸底)某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名毕业生进行问卷调查(满分100分),得到如图所示的茎叶图.(1)计算男生打分的平均分,观察茎叶图,评价男、女生打分的分散程度;(2)从打分在80分以上的毕业生中随机抽取3人,求有2女1男被抽中的概率. 解:(1)男生打分的平均分为110×(55+53+62+65+71+70+73+74+86+81)=69(分).由茎叶图知,女生打分比较集中,男生打分比较分散.(2)由图可知打分在80分以上的有3女2男,记3名女生分别为A 1,A 2,A 3,2名男生分别为B 1,B 2,从中随机抽取3人的基本事件为A 1A 2A 3,A 1A 2B 1,A 1A 2B 2,A 1A 3B 1,A 1A 3B 2,A 1B 1B 2,A 2B 1B 2,A 2A 3B 1,A 2A 3B 2,A 3B 1B 2,共10个,记“有2女1男被抽中”为事件A ,则A包含的基本事件为A 1A 2B 1,A 1A 2B 2,A 1A 3B 1,A 1A 3B 2,A 2A 3B 1,A 2A 3B 2,共6个,故有2女1男被抽中的概率为35.[课时跟踪检测] 1.(2019·长沙长郡中学选拔性考试)长郡中学要从师生推荐的参加讲课比赛的3名男教师和2名女教师中,任选2人参加讲课比赛,则选取的2人恰为一男一女的概率为( )A.25 B.35 C.13D.23解析:选B 从3名男教师和2名女教师中任选2人参加讲课比赛,基本事件总数为10,选取的2人恰为一男一女包含的基本事件个数为6,故选取的2人恰为一男一女的概率为P=m n =610=35.故选B. 2.(2019·贵阳模拟)某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则这三个项目都有人参加的概率为( )A.89B.49C.29D.827解析:选B 基本事件总数n =34=81,这三个项目都有人参加所包含的基本事件个数m =C 24A 33=36,故这三个项目都有人参加的概率为P =m n =3681=49. 3.(2019·广东五校联考)从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为( )A.23 B.13 C.19D.18解析:选C 从1~9这9个自然数中任取7个不同的数的取法共有C 79=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C 34=4种选法,故这7个数的平均数是5的概率为436=19,选C.4.(2019·成都外国语学校月考)《九章算术》中有如下问题:今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:已知直角三角形的两直角边长分别为8步和15步,问其内切圆的直径为多少步.现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A.3π10B.3π20 C .1-3π10D .1-3π20解析:选D 直角三角形的斜边长为82+152=17, 设内切圆的半径为r ,则8-r +15-r =17,解得r =3. ∴内切圆的面积为πr 2=9π, ∴豆子落在内切圆外的概率P =1-9π12×8×15=1-3π20.5.(2019·长春质检)如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为( )A.14B.13C.27D.38解析:选A 设OA =3,则AB =33,AP =3,由余弦定理可求得OP =3,则∠AOP =30°,所以扇形AOC 的面积为3π4,又扇形AOB 的面积为3π,从而所求概率为3π43π=14.6.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A .2-33πB .4-63πC .413-32πD .423解析:选B 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24×⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B.7.已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A.79B.13C.59D.23解析:选D f ′(x )=x 2+2ax +b 2,要使函数f (x )有两个极值点,则有Δ=(2a )2-4b 2>0,即a 2>b 2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.满足a 2>b 2的有6个基本事件,即(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),所以所求事件的概率为69=23.8.(2019·安阳模拟)在边长为a 的正三角形内任取一点P ,则点P 到三个顶点的距离均大于a2的概率是( ) A .1112-36πB .1-36πC .13D .14解析:选B 如图,正△ABC 的边长为a ,分别以它的三个顶点为圆心,a2为半径,在△ABC 内部画圆弧,得到三个扇形,则点P 在这三个扇形外,因此所求概率为34a 2-12×π×⎝⎛⎭⎫a 2234a 2=1-36π,故选B.9.(2019·石家庄毕业班摸底)一个三位数,个位、十位、百位上的数字依次为x ,y ,z ,当且仅当y >x ,y >z 时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为( )A.23B.13C.16D.112解析:选B 从集合{1,2,3,4}中取出三个不相同的数组成一个三位数共有24个结果:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432,其中是“凸数”的是132,142,143,231,241,243,341,342,共8个结果,所以这个三位数是“凸数”的概率为824=13,故选B.10.(2018·全国卷Ⅰ)如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3解析:选A 法一:∵S △ABC =12AB ·AC ,以AB 为直径的半圆的面积为12π·⎝⎛⎭⎫AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·⎝⎛⎭⎫AC 22=π8AC 2,以BC 为直径的半圆的面积为12π·⎝⎛⎭⎫BC 22=π8BC 2,∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC ,S Ⅱ=⎝⎛⎭⎫π8AB 2+π8AC 2-⎝⎛⎭⎫π8BC 2-12AB ·AC2∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=S ⅠS 总,p 2=S ⅡS 总, ∴p 1=p 2.故选A.法二:不妨设△ABC 为等腰直角三角形, AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积, 为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2, 区域Ⅲ的面积S 3=π×(2)22-2=π-2.根据几何概型的概率计算公式, 得p 1=p 2=2π+2,p 3=π-2π+2, 所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.11.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x -甲,x -乙,则x -甲>x -乙的概率是________.解析:设污损处的数字为m ,由15(84+85+87+90+m +99)=15(86+87+91+92+94),得m =5,即当m =5时,甲、乙两人的平均成绩相等.m 的取值有0,1,2,3,…,9,共10种可能,其中,当m =6,7,8,9时,x -甲>x -乙,故所求概率为410=25.512.(2018·湖北武汉模拟)某路公交车在6:30,7:00,7:30准时发车,小明同学在6:50至7:30之间到达该车站乘车,且到达该站的时刻是随机的,则他等车时间不超过10分钟的概率为________.解析:小明同学在6:50至7:30之间到达该车站乘车,总时长为40分钟,公交车在6:30,7:00,7:30准时发车,他等车时间不超过10分钟,则必须在6:50至7:00或7:20至7:30之间到达,时长为20分钟,则他等车时间不超过10分钟的概率P =2040=12.答案:1213.(2019·南京模拟)口袋中有形状、大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为________.解析:从袋中一次随机摸出2个球,共有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6个基本事件,其中摸出的2个球的编号之和大于4包含的基本事件有{1,4},{2,3},{2,4},{3,4},共4个,因此摸出的2个球的编号之和大于4的概率为46=23.答案:2314.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12. (1)求n 的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记“2≤a +b ≤3”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率. 解:(1)依题意共有小球n +2个,标号为2的小球n 个,从袋子中随机抽取1个小球,取到标号为2的小球概率为n n +2=12,得n =2.(2)①从袋子中不放回地随机抽取2个小球,(a ,b )所有可能的结果为(0,1),(0,2),(0,2),(1,2),(1,2),(2,2),(1,0),(2,0),(2,0),(2,1),(2,1),(2,2),共有12种,而满足2≤a +b ≤3的结果有8种,故P (A )=812=23. ②由①可知,(a -b )2≤4,故x 2+y 2>4,(x ,y )可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={}(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R , 由几何概型得概率为P =22-14π·2222=1-π4.15.(2019·昆明适应性检测)某校为了解高一学生周末的阅读时间,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末阅读时间(单位:h),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.(1)求图中a 的值;(2)估计该校高一学生周末阅读时间的中位数;(3)在[1,1.5),[1.5,2)这两组中采用分层抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的2人恰好都在同一个组的概率.解:(1)由频率分布直方图可知,周末阅读时间在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4, 4.5]的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,由1-(0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5×a +0.5×a .解得a =0.30. (2)设中位数为m h.因为前5组的频率之和为0.04+0.08+0.15+0.20+0.25=0.72>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.20=0.47<0.5,所以2≤m <2.5. 由0.50×(m -2)=0.5-0.47,解得m =2.06.故可估计该校高一学生周末阅读时间的中位数为2.06 h.(3)由题意得周末阅读时间在[1,1.5),[1.5,2)中的学生分别有15人、20人,按分层抽样的方法应分别抽取3人、4人,分别记作A ,B ,C 及a ,b ,c ,d ,从7人中随机抽取2人,共有AB ,AC ,Aa ,Ab ,Ac ,Ad ,BC ,Ba ,Bb ,Bc ,Bd ,Ca ,Cb ,Cc ,Cd ,ab ,ac ,ad ,bc ,bd ,cd ,共21种,抽取的2人在同一组的有AB ,AC ,BC ,ab ,ac ,ad ,bc ,bd ,cd ,共9种,故所求概率P =921=37.。