小升初常考-长方体和正方体题型
2020六年级下册数学小升初长方体正方体总复习试题
长方体和正方体一、知识点概括总结:一、长方体和正方体的特点长方体 正方体长方体正方体同样点 6 个面、 12 条棱、 8 个极点。
同样点6 个面、 12 条棱、 8 个极点。
6 个面都是长方形(有时有 2 个相 6 个面都是正方形, 6 个面完整相对的面是正方形) ,相对面完整相不同点6 个面都是长方形(有时有 2 个相 等。
个面完整相 等。
6 个面都是正方形, 6对的面是正方形) ,相对面完整相 等。
等。
相对棱的长度相等。
不同点12 条棱长度都相等。
相对棱的长度相等。
12 条棱长度都相等。
(正方体是特别的长方体)1、长方体长、宽、高的含义:订交于一个极点的三条棱的长度,分别叫做长方体的长、宽、高。
2、正方体棱长的含义:正方体的每条棱的长度,都叫做正方体的棱长。
二、长方体和正方体的平面睁开图1、长方体沿着不同的棱睁开,所得的平面图形不同样,能够有多种形状的平面图形。
2、将正方体沿不同的棱睁开,会获得不同形状的睁开图。
一些平面图形经过折叠也能够围建立体图形。
三、长方体和正方体的表面积1、表面积的定义: 一个物体表面积全部面的面积之和叫做它的表面积。
长方形(或正方体)六个面的总面积叫做它的表面积。
2、长方形的表面积=(长×宽+宽×高 +长×高)×2字母表示:S=( ab+ah+bh )× 23、正方形的表面积=棱长×棱长×6计算公式:S=6a2解决问题时,应详细问题详细剖析四、解决问题粉刷房间往常粉刷四壁及棚顶(去掉门窗等面积)制作鱼缸一般需要计算五个面(没有上边)的面积和五、体积1、体积的含义:物体所占空间的大小叫做物体的体积。
2、长方体的体积 =长×宽×高字母表示:V=abh3、正方体的体积 =棱长×棱长×棱长字母表示:V=Sh4、体积单位之间的进率:相邻的体积单位之间的进率是1000,1 立方米 =1000 立方分米 1 立方分米 =1000 立方厘米5、方的含义:生活中,计量沙、土、石子等的体积时,经常把“立方米”简称“方”。
完整版)长方体正方体经典题型汇总
完整版)长方体正方体经典题型汇总1.这个长方体的棱长总和是64分米。
2.这个长方体框架的高是15分米。
3.需要42厘米长的塑料带。
4.这个正方体的棱长是4厘米。
5.这个长方体的棱长总和是30分米。
6.这个长方体框架的高是20厘米。
7.这个正方体的棱长是28米÷4=7米。
8.这个长方体的棱长总和是21厘米。
9.每个正方体木块的棱长总和是40厘米。
1.至少需要36平方分米铁皮。
2.这张商标纸的面积是320平方厘米。
3.原来正方形铁皮的面积是625平方厘米。
4.这个长方体的表面积是162平方厘米。
5.粉刷水泥的面积是63平方米,需要252千克水泥。
6.至少需要480平方厘米铁皮,12节需要5760平方厘米铁皮。
7.20个这样的长方体需要400平方厘米的硬纸。
1.商标纸面积问题:一盒饼干长20厘米,宽15厘米,高30厘米。
要在它的四周贴上高6厘米的商标纸,求商标纸的面积。
解:首先计算长方体的表面积,即2(长×宽+长×高+宽×高),得到2(20×15+20×30+15×30)=2700平方厘米。
然后计算加上商标纸后的长方体的表面积,即2[(20+2×6)×(15+2×6)+(20+2×6)×(30+2×6)+(15+2×6)×(30+2×6)] =2×(32×27+32×42+27×42)=2×3024=6048平方厘米。
商标纸的面积即为加上商标纸后的表面积减去原表面积,即6048-2700=3348平方厘米。
2.侧面积问题:一个长方体侧面积是360平方厘米,高是9厘米,长是宽的3倍。
求它的表面积。
解:由题可得,长方体的宽为120/9=40厘米,长为3×40=120厘米。
因此,长方体的表面积为2(40×9+120×9+40×120)=2×(360+1080+4800)=2×6240=平方厘米。
小升初常考 长方体和正方体题型
小升初常考的长方体和正方体学生姓名年级小五学科数学授课教师日期时段核心内容面积,体积,容积课型教学目标1、掌握正方体和长方体的特点;2、掌握表面积的应用;3、掌握体积单位及体积的应用;4、掌握排水法求体积的方法;重、难点实际应用【知识导图】【互动导学】【导学】一:长方体和正方体的认识【知识点1】:长方体和正方体的特征【例1】:正方体的展开图1、下列三个图形中,不能拼成正方体的是()① ② ③2、右图是一个正方体的展开图。
在这个正方体中,与面相对的是( )面,与面相对的是( ), ( )面与( )面是相对的面。
3、下图中哪两个字所在的面,是正方体中相对的面?4. 右图是正方体的一个平面展开图,将它折成正方体后, (1)1号面和( )号面相对; (2)2号面和( )号面相对; (3)3号面和( )号面相对。
【例3】:长方体的展开图(1)这是一个长方体的展开图,前面的面积是( )平方厘米,右面的面积是( )平方厘米, 上面的面积是( )厘米。
da bce f后(2)右图是一个长方体的展开图,这个长方体上面的面是 ( ),右面的面是( )。
A 、长4cm ,宽2cmB 、长4cm ,宽1.5cmC 、长2cm ,宽1.5cmD 、边长2cm(3)沿下图中的虚线折叠,可以围成一个长方体。
围成的这个长方体的体积是多少立方厘米?【例题】4:一个正方体的6个面分别涂着红、黄、蓝、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。
练习1:根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么?【例题】5:一个装书的纸皮箱,长55厘米,宽35厘米,高20厘米,如果要用封口纸条把这箱书封扎好(如图),需用多长的封口纸条?(接头处不计)黄4 红2蓝5 黑4 蓝白 绿 白红 F 4 D 2A 5B 6A 2C ECD【知识点2】:正方体的染色问题(1)三个面都染色:必定在顶点上;(2)两个面染色:必定在棱上;(3)一个面染色:必定在面上。
小升初数学知识点专练——长方体和正方体
浙江省2023年小升初知识点专练——长方体和正方体一、单选题1.如图,从这个长方体中截取一个最大的正方体,这个正方体的棱长总和是()cm。
A.72B.52C.48D.362.一根铁丝刚好可以焊成一个长20cm,宽和高都是14cm的长方体框架,如果用这根铁丝刚好焊成正方体框架,它的棱长应该是()cm。
(焊接处忽略不计)A.15.B.16C.17D.183.下面图形中,能沿着虚线折成正方体的是()A.B.C.D.4.正方体的棱长扩大6倍,它的表面积扩大____,体积扩大____。
()A.6倍216倍B.12倍216倍C.36倍216倍D.6倍6倍5.华华有7根a厘米长和10根b厘米长的小棒(a≠b),她用其中的12根搭成一个长方体框架。
长方体框架的棱长和是()A.6a+6b B.7a+9b C.4a+8b D.6a+8b6.小明看到平放在桌上的一摞练习本歪了,就把它们摆放整齐(示意图如下),这个过程中,这摞练习本的表面积和体积()。
A.都不变B.都变大C.都变小D.表面积变大,体积变小7.一个长6分米,宽4分米,高5分米的长方体盒子,最多能放()个棱长是2分米的正方体的木块。
A.15B.14C.13D.128.用两个长4厘米,宽3厘米,高2厘来的长方体拼成个大长方体,这个大长方体的表面积最大是()平方厘米。
A.104B.98C.92D.88二、填空题9.正方体的棱长扩大到原来的5倍,它的表面积扩大到原来的倍,它一个面的面积扩大到原来的倍,它的体积扩大到原来倍.10.要做一个长6分米、宽4分米、高2分米的无盖玻璃鱼缸,用角钢做它的框架,至少需要角钢分米,把它放在桌面上,占平方分米.11.把1.2米的长方体材料(如图),平均锯成3段,表面积比原来增加2.4平方分米,原来这根木料的体积是立方分米。
12.一个长方体的体积是80立方厘米,它的长是4厘米,宽是5厘米,高是,它的表面积是,如果把这个长方体削成一个最大的正方体,正方体的体积是。
浙教版2023年小升初数学长方体和正方体知识点专练(含答案)
浙教版2023年小升初数学长方体和正方体知识点专练(含答案)一、单选题1.3个棱长是1厘米的正方体小方块排成一行后,它的表面积是()A.18平方厘米B.16平方厘米C.14平方厘米2.一个正方体的木料,它的底面积是10平方厘米,把它横截成4段相同的长方体,表面积增加()平方厘米。
A.60B.40C.303.观察下边展开图应该正方体的展开图A.B.C.4.把一个表面积是96平方米的正方体锯成两个长方体后,表面积增加了()平方米。
A.8B.16C.325.一个长方体的长是4厘米,宽是3.5厘米,高是1.5厘米,它的底面的面积是()平方厘米。
A.6B.14C.5.25D.216.用同样的金属制成一个棱长5dm的正方体油桶和一个长12.5dm、宽5dm、深2dm的长方体油桶,它们的体积相比()。
A.正方体大B.长方体大C.同样大D.无法比较7.一个长方体相交于同一个顶点的三条棱,长度的比是3:2:1,这三条棱长的和是12厘米,体积是()立方厘米。
A.48B.96C.24D.3848.一个长方体无盖鱼缸的长是30厘米,宽20厘米,高25厘米,这个鱼缸的用料是()A.21平方厘米B.31平方分米C.31平方厘米二、填空题9.把一个正方体锯成两个完全一样的长方体,每个长方体的表面积是24平方厘米,原来正方体的表面积是平方厘米。
10.把4个棱长是2dm的正方体顺次拼成一排,变成一个长方体,则表面积减少dm2.11.至少要个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是3厘米,那么这样一个大正方体的表面积是平方厘米,体积是立方厘米。
12.一个长方体的前面和上面的面积之和是39平方厘米,它的长、宽、高都是质数,那么长方体的体积是.13.做一个下面规格的抽屉,至少需要平方米的木板。
(图中单位:厘米)14.图中小正方体的棱长是1厘米.下图的表面积是.(图中单位:厘米)15.用3个棱长是1厘米的小正方体拼成一个长方体.这个长方体的表面积是。
小学数学-有答案-小升初总复习数学专项练习试卷:长方体和正方体
小升初总复习数学专项练习试卷:长方体和正方体一、填空1. 我们学过的几何图形有________、________、________、________、________.2. ________叫做周长。
3. ________叫面积。
4. 长方形的周长=________,字母表示:________.5. 正方形的周长=________,字母表示:________.6. 三角形的周长=________,平行四边形的周长=________,梯形的周长=________.7. 长方形的面积=________;字母表示:s=________.8. 正方形的面积=________;字母表示:s=________.9. 长方体的表面积=________;字母表示:s=________;长方体的体积=________;字母表示:v=________.10. 正方体的表面积=________;字母表示:s=________;正方体的体积=________;字母表示v=________.二、有关计算棱长:有关计算棱长:(1)一个长方体的长6厘米,宽5厘米,高4厘米。
它的棱长和是多少?(2)长方体的棱长和是60厘米,长6厘米,宽5厘米。
高是多少?(3)长方体的棱长和是60厘米,长6厘米,高4厘米。
宽是多少?(4)长方体的棱长和是60厘米,宽5厘米,高4厘米。
长是多少?(1)正方体的棱长是8厘米。
它的棱长和是多少?(2)正方体的棱长和是96厘米。
它的棱长是多少?一个正方体礼盒,棱长为1.5dm,包装这个礼品盒至少要用多少平方分米的包装纸?(接头不计。
)用一根长48厘米的铁丝围成一个长方体,这个长方体长5厘米,宽4厘米,它的高是多少厘米?一个长方体的长是15厘米,宽是12厘米,棱长总和是148厘米,它的高是多少?两根同样长的铁丝焊一个长方体和正方体,长方体长7厘米,宽5厘米,高3厘米,正方体的棱长是多少厘米?三、表面积:一个长方体的长8厘米,宽5厘米,高3厘米。
小升初数学必考题长方体和正方体专题解析
1. 下图可折叠成一个正方体。
依据图意,请你在图上写出另四个正方形分别为哪几个面。
解析既然图中已确定了“后面”、“下面”,从而也就固定了其他四个面的位置。
“后面”的两侧应为正方体的左右面,如下图:再看,与“下面”相对的面为上图右上角的这个正方形,即正方体的“上面”;与“后面”相对的面为上图左下角的正方形,即正方体的“前面”。
如下图:2.下图由五个正方形拼成,如果再添一个同样大小的正方形,应该放置在哪儿,才可将下图折叠成一个正方体?请将添加的正方形拼入下图。
解析可折叠成正方体的六个正方形的摆放结构有3类情况。
其一,以4个正方形(在同一条直线上)为主体,另两个正方形必须分布在两侧,。
其二,以三个正方形为主体,有以下四种结构:其三,以两个正方形为主体,其结构如阶梯状:再回到本题,如果添加一个正方形,使其成为4个正方形为主体,有以下2种添加方法:如果添加一个正方形,使其成为3个正方形为主体,有以下2种添加方法:所以,此题有以上四个答案3.用长299mm,宽为253mm的长方形装饰板拼一个正方形,至少要用多少块?解析由题意知,最少装饰板块数,只能拼出最小的正方形。
这个正方形边长应是装饰板长与宽的最小公倍数。
299与253的公因数不明显,最好用“碾转相除法"(本园地有相关知识专题讲解,可查阅)先求出二者的最大公因数。
299÷253=1 (46)253÷46=5 (23)46÷23=2 (整除为止)最后的除数23就是299与253的最大公因数。
再求299与253的最小公倍数:23×13×11=3289因而,拼出的正方形的边长应为3289mm。
由上式知,用装饰板长299mm拼出正方形边长3289mm所需块数为13;用装饰板宽253mm拼出正方形边长3289mm所需块数为11。
因此,要拼一个边长为3289mm的正方形所用装饰板至少的块数为:13×11=143块4. 一个长方体前面的面积为105平方厘米,右面的面积为56平方厘米,求这个长方体的表面积。
长方体、正方体必考题型练习题
A.正方体大 B.球大 C.长方体大 D.一样大
一个正方体的铁块的棱长是4分米,把它熔铸成 一个最大的圆柱,圆柱的体积( )立方分米。
用一只棱长6厘米的正方体容器盛满水后,倒入
一只长12厘米,宽6厘米,高5厘米的长方体水箱
里,水面高
厘米
几个物体锻造成一个物体,体积不变 把8块边长是1分米的正方体铁块熔成一个大
C、长方体的长宽各扩大3倍,高缩小3倍
D、长方体的长不变,宽和高各扩大3倍。
长方体的长缩小3倍,宽扩大3倍,要使体积扩大3
倍,那么高应该
。
长方体的体积=长×宽×高
如果长方体的长、宽、高分别扩大到原来的2 倍,3倍,4倍,则体积扩大 到 原来 的 倍
一根长方体的木料的体积是20立方分米,横截 面积是4平方分米,木料长是( )
6.一个长方体的礼品盒,长20厘米、宽15厘米、 高10厘米,现在要用红绸带进行十字形捆扎 (最大的面朝上),打结处20厘米,一共需要
绸带
厘米。
正方体的棱长总和=棱长×12
1.一个正方体的棱长是6厘米,它的棱长总和
是 厘米,表面积是
。
2.正方体的棱长之和是36分米,它的棱长是 分米,体积是 立方分米 。
边长是6dm的正方体,它的表面积和体积比较
(
)
容积与容积单位
3.06m3=
dm3 3.8L=
m3
250ml=
L
4.05dm3=
L
ml
7.5L=
ml
56cm2=
dm2
785ml=
cm3=
dm3
(★★★★★):一个长方体的水槽,横截 面是一个长5分米,宽3分米的长方形,如果
(完整版)长方体与正方体题目加答案
1. 一个长方体的长、宽、高分别为卫米、勺米、4米。
如果高增加2米,新的长方体体积比原来增加()立方米,表面积增加()平方米。
考查目的:计算长方体的表面积和体积。
答案,-1_r〔解析:因为长方体的底面大小不变(长、宽不变),高增加2米,新的长方体体积比原来增加的体积,即为同样底面积且高为2米的长方体的体积,根据“长方体的体积=长乂宽X高”可求得新长方体体积比原来增加的体积。
表面积增加的部分是高为2米的新长方体4个侧面的面积,即(2也+ 2^)x2 = 4(应十技)。
2.棱长1厘米的小正方体至少需要()个可拼成一个较大的正方体。
需要()个这样的小正方体可拼成一个棱长为1分米的大正方体,如果把这些小正方体依次排成一排,可以排成()米考查目的:长方体和正方体的特征,体积单位和长度单位之间的进率答案:8,1000, 10解析:每个小正方体的棱长都是1厘米,则其体积是1立方厘米,可以用它组成棱长是2厘米的正方体,这样就需要2X2X2 = 8 (个)小正方体。
棱长1 分米的大正方体体积是1立方分米,需要1 000个棱长1厘米的小正方体拼成,将这些小正方体依次排成一排,长度就是1 000个棱长1厘米的小正方体的边长 之和。
正方形都相同)后,沿虚线折起来,做成没有盖子的长方体铁盒,该铁盒的长是( )cm,宽是( )cm ,高是( )cm,表面积是( ) cm 2,容积是( )cm 3°(铁皮厚度不计) ;; 20 cm|| I ■■P ------------------- 40 cm --------------------- 彳考查目的:计算长方体的表面积和体积。
答案:30,10,5,700, 1 500。
解析:结合题意观察图形可知,这个铁盒的长、宽、高分别是( 40-5X 2) 厘米、(20-5X 2)厘米、5厘米,再利用长方体的表面积公式 &=(辭十皿十航汽2 和长方体的体积公式F = “品分别计算即可。
《长方体和正方体》主要题型
《长方体和正方体》主要题型一、长方体和正方体之间相互等量转换知识点:一定要清楚不变的量是什么练习:1、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?2、已知一本书是长方体形状,它的长是10厘米,宽是3厘米,高是8厘米,现在有一个与这本书表面积相同的正方体,求这个正方体的棱长之和二、棱长的变化引起表面积和体积的变化。
知识点:要清楚哪一条棱在变,哪一条棱不变练习:1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?2、一个长方体,高截去2厘米,表面积就减少了48平方厘米,剩下部分成为一个正方体,求原长方体的体积?3、一个长方体,如果长减少2厘米就成了一个正方体,而且表面积要减少56平方厘米。
原来这个长方体的体积是多少立方厘米?4、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少()平方分米?体积比原来减少()立方分米?三、段的变化知识点:截1次,产生2个面(即表面积增加了2个面)练习:1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米?2、将一个长3米的长方体木料平均截成3段,表面积一共增加了0.36平方分米,这根木料的体积是多少立方分米?四、正方体拼知识点:拼表面积发生变化,体积不变练习:1、用8个棱长都是2厘米的正方体拼成一个长方体(包括正方体),拼成的长方体的表面积最多是多少平方厘米?最少是多少平方厘米?2、用12个棱长都是2厘米的正方体拼成一个长方体,一共有多少种拼法,每种拼法拼成的长方体的表面分别是多少?3、用四个棱长都是3厘米的正方体拼成一个长方体,拼成的长方体的表面积可能是多少?五、长方体切、拼1、将一个长8厘米,宽6厘米,高5厘米的长方体切成两个小长方体,表面积最多增加多少平方厘米?最少增加多少平方厘米?2、将三个长8厘米,宽6厘米,高5厘米的长方体拼成一个大长方体,表面积最多减少多少平方厘米?最少减少多少平方厘米?3、把一个长16 厘米,宽12厘米,高8厘米的长方体木块,锯成若干个小正方体,(没有剩余)至少可以锯成多少个这样的小正方体?表面积一共增加多少平方方厘米?六、挖知识点:清楚是哪一个位置被挖走,比较前后增加了几个面,减少了几个面1、用8个小正方体木块拼成一个大的正方体,如果拿走1个小方块,它的表面积和原来比( )。
小升初数学《长方形和正方形》专项试题及答案
小升初数学《长方形和正方形》专项试题一、选择题1.一个平行四边形相邻的两条边分别是6cm、4cm,量得一条边上的高是5cm,这个平行四边形的面积是()平方厘米。
A.36 B.24 C.20 D.152.一个平行四边形的底扩大3倍,高扩大2倍,面积就扩大()A.5倍B.6倍C.不变3.4个完全相同的正方形拼成一个长方形(如图).图中阴影三角形的面积的大小是( ).A.甲>乙>丙B.乙>甲>丙C.甲=乙=丙4.正方体的棱长扩大到原来的2倍,它的表面积扩大到原来的()倍.A.2 B.4 C.8 D.125.两个表面积都是24平方厘米的正方体,拼成一个长方体.这个长方体的表面积是()平方厘米.A.48 B.44 C.40 D.166.一个正方体的棱长扩大到原来的3倍,它的体积就扩大到原来的()。
A.3倍B.6倍C.9倍D.27倍7.做一个铁皮烟囱需要多少铁皮,就是求烟囱的()A.表面积B.体积C.侧面积8.把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。
A.扩大到原来的3倍B.缩小为原来的13C.不变D.扩大到原来的9倍9.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积10.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4 B.602.88 C.628 D.904.3211.下面说法正确的是()。
A.圆锥的体积等于圆柱体积的1 3B.把0.56扩大到它的100倍是56C.书的总页数一定,未读的页数与已读的页数成正比例12.把一个棱长1厘米的正方体切成两个完全一样的长方体后,表面积比原来增加()A.50% B.16C.1313.一底面是正方形的长方体,把它的侧面展开后,正好是一个边长为8分米的正方形,原来长方体的体积是()立方分米.A.32 B.64 C.1614.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90 B.100 C.110 D.12015.奇思用和两种图形拼成了一个图案(如图),这个图案的面积是()dm2.A.10 B.8 C.616.如下图所示,有()对面积相等的三角形。
小升初小学数学应用题基础练习《长方体和正方体表面积及体积》答案详解
《长方体和正方体表面积及体积》1.(2019春•邓州市期末)一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m 的正方体货箱,最多能装()个.A.12B.18C.36【解答】解:1226÷=,÷=,422÷≈,32162112⨯⨯=(个).答:最多能装12个.故选:A.2.(2019•郴州模拟)一个无盖玻璃鱼缸的形状是正方体,棱长4分米.制作这个鱼缸时至少需要玻璃( )平方分米.A.80B.64C.96⨯⨯=-(平方分米)【解答】解:44580答:制作这个鱼缸时至少需要玻璃80平方分米.故选:A.3.(2019春•交城县期中)用两个棱长为1分米的小正方体拼成一个长方体,发生了什么变化?() A.体积变大,表面积变小B.体积变小,表面积变大C.体积不变,表面积变大D.体积不变,表面积变小【解答】解:原来2个小正方体的表面积是:⨯⨯⨯=(平方分米);611212⨯⨯⨯=(立方分米);体积是:11122新长方体的长是2分米,宽是1分米,高是1分米;⨯⨯+⨯⨯+⨯⨯表面积是:122122112=++,442=(平方分米);10⨯⨯=(立方分米);体积是:2112>平方分米,表面积变小了;12平方分米10=立方分米,体积不变.2立方分米2故选:D.4.(2017秋•江都区期末)一个长方体的盒子,从里面量,长8分米、宽5分米、高4分米.如果把棱长2分米的正方体木块放到这个盒子里,最多能放()个.A.12B.16C.20D.24÷=(个)【解答】解:824⋯(分米)÷=(排)1522÷=(层)422⨯⨯=(个)42216答:最多能放16个.故选:B.5.(2018•萧山区模拟)一长方体的铁皮烟囱,底面是边长为40厘米的正方形,高2米.做这样一个烟囱至少需要铁皮()A.320平方米B.352000平方厘米C.3.2平方米D.3.52平方米=米,【解答】解:40厘米0.4⨯⨯=(平方米),0.442 3.2答:做这样一个烟囱至少需要铁皮3.2平方米.故选:C.6.一个长方体纸箱,从里面量长64cm,宽40cm,高34cm,内装棱长8cm的正方体,可以装()盒.A.140B.160C.170D.200÷=(个)【解答】解:6488÷=(个)4085÷≈(个)3484854⨯⨯=⨯404=(个)160答:最多可以装160盒这样的正方体.故选:B.7.把一个棱长为6cm的正方体框架改做成一个长9cm、宽5cm的长方体框架,这个长方体框架的高是( )cm.A.4B.6C.7D.10⨯=(厘米)【解答】解:12672÷--72495=--1895=(厘米)4答:这个长方体框架的高是4厘米.故选:A.8.(2019春•天河区期末)小强家的书房长5米、宽4米、高3米.要在书房四面的墙壁和房顶都贴上墙纸,除去门窗面积6.5平方米,这个房间至少需要贴墙纸67.5平方米.⨯+⨯⨯+⨯⨯-【解答】解:54532342 6.5=++-203024 6.5=(平方米)67.5答:这个房间至少需要贴墙纸67.5平方米.故答案为:67.5.9.(2019春•高州市期中)一个长体长为6cm,宽为4cm,高为2cm,它的棱长总和是48厘米,六个面最大的面是平方厘米,这个长方体的表面积是平方厘米.++⨯【解答】解:(642)4124=⨯=(厘米)48⨯=(平方厘米)6424⨯+⨯+⨯⨯(646242)2=++⨯(24128)2=⨯442=(平方厘米)88答:它的棱长之和是48厘米,最大的面的面积是24平方厘米,表面积是88平方厘米.故答案为:48,24,88.10.(2019春•镇康县期中)一个长方体通风管横截面的周长是17.5dm,长3m,制作这样一节通风管至少需要用铁皮 5.252m.=米,【解答】解:17.5分米 1.75⨯=(平方米);1.753 5.25答:制作这一节通风管要用铁皮5.25平方米.故答案为:5.25.11.(2019春•镇康县期中)用铁丝做一个棱长6dm的正方体框架,至少要用铁丝72分米,如果将它改为长8dm,宽5dm的长方体,这个长方体的高是分米.⨯=(分米)【解答】解:61272÷-+724(85)1813=-=(分米)5答:至少需要72分米的铁丝,做成长方体的高为5分米.故答案为:72;5.12.(2018春•建瓯市月考)五(2)班讲台桌的外形类似是一个正方体,它的棱长是10分米,那么它的表面积是5平方米,体积是立方米.=米【解答】解:10分米1⨯⨯=(平方米)1155⨯⨯=(立方米)1111答:它的表面积是5平方米,体积是1立方米.13.(2017秋•海安县期末)一种长3米的长方体通气管的横截面是边长2分米的正方形,制作10根这样的通气管至少需要24平方米.=米【解答】解:2分米0.2⨯⨯3(0.24)=⨯30.8=(平方米)2.4⨯=(平方米)2.41024答:制作10根这样的通气管至少需要24平方米.故答案为:24.14.(2017秋•海安县期末)一根2米长的长方体落水管,横截面是边长为8厘米的正方形,做这个落水管至少需要6400平方厘米的铁皮.=厘米【解答】解:2米20084200⨯⨯=⨯322006400=(平方厘米);答:做这个落水管至少需要6400平方厘米的铁皮.故答案为:6400.15.(2017•吉水县)用木料做一个长5厘米,宽是4厘米,高是0.3分米的长方体,需要60立方厘米的木料,如果要在长方体木块的表面涂一层油漆,涂油漆的面积是平方厘米.=厘米,【解答】解:0.3分米3⨯⨯=(立方厘米);54360⨯+⨯+⨯⨯(545343)2=++⨯(201512)2=⨯472=(平方厘米);94答:需要60立方厘米的木料,涂油漆的面积是94平方厘米.16.一个正方体的玻璃鱼缸,棱长是2dm,制作这个鱼缸至少需要玻璃224dm.⨯(判断对错).⨯⨯=(立方分米)【解答】解:22520答:制作这个鱼缸至少需要玻璃20立方分米.所以原题说法错误;故答案为:⨯.17.某种饮料采用长方形塑封纸盒包装,从外面量盒子长6厘米,宽4厘米,高10厘米(厚度忽略不计).这种饮品的净含量不可能超过240毫升.√.(判断对错)=立方厘米【解答】解:1毫升1⨯⨯=(立方厘米)6410240=毫升240立方厘米240答:这个饮料盒的体积是240立方厘米.所以“这种饮品的净含量不可能超过240毫升”是正确的.故答案为:√.18.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4 4.54⨯⨯.√.(判断对错)⨯⨯【解答】解:0.4 4.54=⨯1.84=(平方米).7.2答:油漆面积是7.2平方米.故答案为:√.19.(2018秋•江都区期末)如图的领奖台是4个棱长为50厘米的正方体拼合而成的.(1)如果要把领奖台的表面涂漆,需要涂漆的面积是多少平方米?(底面不涂)(2)这个领奖台的体积是多少立方米?=米【解答】解:(1)50厘米0.5⨯⨯+⨯+⨯0.50.5(34222)=⨯0.2515=(平方米)3.75答:需要涂漆的面积是3.75平方米.⨯⨯⨯(2)0.50.50.54=⨯0.1254=(立方米)0.5答:这个领奖台的体积是0.5立方米.20.(2019春•南充期末)学校要做一个长58厘米、宽42厘米、高39厘米的建议箱,如果在所有的棱上粘上一圈胶带,至少需要多长的胶带?【解答】解:(584239)4++⨯=⨯1394=(厘米)556=(米)5.56答:至少需要5.56米长的胶带.21.(2019•芜湖模拟)挖一个长10m、宽8m、深2m的蓄水池.(1)这个蓄水池占地多少平方米?(2)给这个蓄水池的四周和底部抹上水泥,抹水泥部分的面积是多少平方米?(3)这个蓄水池最多蓄水多少立方米?⨯=(平方米)【解答】解:(1)10880答:这个蓄水池占地80平方米.⨯+⨯+⨯⨯-⨯(2)(10810282)2108=++⨯-(802016)280=⨯-116280=-23280=(平方米)152答:抹水泥面的面积是152平方米.⨯⨯(3)1082=⨯802=(立方米)160答:这个蓄水池最多蓄水160立方米.22.(2019•西安模拟)阿迪力老师买了一个长方体玻璃鱼缸(玻璃的厚度忽略不计),长8分米,宽4分米,高5分米.(1)把鱼缸放在柜子上,需要在柜子上留出多大的面积?(2)做这个鱼缸至少要用多少平方分米的玻璃?(3)这个鱼缸最多能盛水多少升?⨯=(平方分米)【解答】解:(1)8432答:把鱼缸放在柜子上,需要在柜子上留出32平方分米的面积.⨯+⨯⨯+⨯⨯(2)84852452328040=++=(平方分米)152答:做这个鱼缸至少要用152平方分米的玻璃.⨯⨯=(立方分米)(3)845160答:这个鱼缸最多能盛水160立方分米.23.(2019春•镇康县期中)把一段长3.6m、宽6cm、厚3cm的长方体木料,锯成棱长为3cm的小正方体.可以锯成多少个这样的小正方体?=厘米【解答】解:3.6米360⨯⨯÷⨯⨯36063(111)=÷64801=(个)6480答:可以锯成6480个小正方体.24.(2019春•龙岗区校级月考)一个长方体的长是25厘米,宽是16厘米,高是20厘米,制作一个这样的框架,至少要多少厘米长的木条?(接口处不算)++⨯【解答】解:(251620)4=⨯614=(厘米)244答:至少需要244厘米长的木条.25.(2019春•武侯区期中)王老师家挖一个长12米、宽8米、深5米的长方体水池.(1)在水池四周和底部贴上瓷砖,贴瓷砖的面积是多少平方米?(2)该水池能蓄水多少立方米?⨯+⨯⨯+⨯⨯【解答】解:(1)1281252852=++9612080=(平方米);296答:贴瓷砖的面积是296平方米.⨯⨯=(立方米);(2)1285480答:该水池能蓄水480立方米.26.(2019春•榆树市校级期末)新华小学要修建操场,在操场上铺厚1.5cm砂石,操场长100m、宽50m.(1)需要多少立方米的砂石?(2)甲车每次运31.5m砂石,至少需要运多少次?(3)如果甲车运了20次后,改用乙车,乙车每次运32.5m,还要运多少次?=米,【解答】解:(1)1.5厘米0.015⨯⨯100500.015=⨯50000.01575=(立方米);答:需要75立方米砂石.÷=(次);(2)75 1.550答:至少需要50次.-⨯÷(3)(50 1.520) 2.5=-÷(5030) 2.520 2.5=÷=(次);8答:还需要运8次.27.(2019春•通州区期末)用一根长96厘米的铁丝焊一个尽可能大的正方体框架.如果在它的表面糊上一层纸,糊纸的面积是多少平方厘米?【解答】】解:正方体的棱长为:96128÷=(厘米)正方体的表面积为:⨯⨯886=⨯646=(平方厘米)384答:糊纸的面积是384平方厘米.28.(2019春•武侯区期末)(1)用铁皮制作一个棱长4分米的正方体无盖水箱.至少需要铁皮多少平方分米?(2)一个淘气的孩子在这个水箱的侧面扎破了一个洞,洞口下沿距水箱底部2.2分米(如图所示),如果向这个空水箱缓慢的倒入32升水,水是否会由这个洞口漏出?【解答】解:(1)445⨯⨯165=⨯80=(平方分米)答:至少需要铁皮80平方分米.(2)44 2.235.2⨯⨯=(立方分米)35.2立方米35.2=升3235.2<所以水不会由这个洞口漏出答:水不会由这个洞口漏出.29.(2019春•邹城市期末)一辆汽车的油箱从里面量,长6分米,宽5分米,高3分米.如果每升汽油重0.72千克,这个油箱最多能装汽油多少千克?【解答】解:65390⨯⨯=(立方分米)90=(升)0.729064.8⨯=(千克)答:这个油箱最多能装汽油64.8千克.30.(2019春•皇姑区期末)健身中心要建造一个长50m ,宽20m ,深2m 的游泳池.(1)一共要挖土多少3m ?(2)如果在游泳池的四周和底部貼上瓷砖,至少要贴多少2m 瓷砖?【解答】解:(1)502022000⨯⨯=(立方米)答:一共要挖土2000立方米.(2)5020(502202)2⨯+⨯+⨯⨯10001402=+⨯=+1000280=(平方米)1280答:至少要贴是1280平方米瓷砖.31.(2018秋•徐州期末)建筑工地用混凝土浇筑一个长方体的柱子,柱子高3米,地面是边长为0.5米的正方形.浇铸这根柱子至少需要混凝土多少立方米?如果在柱子的四周贴上瓷砖,贴瓷砖的面积是多少平方米?⨯⨯【解答】解:0.50.53=⨯0.253=(立方米)0.7530.54⨯⨯=⨯1.54=(平方米)6答:浇注这根柱子至少需要混凝土0.75立方米;如果在柱子的四周贴上瓷砖,贴瓷砖的面积是6平方米.32.(2018春•松桃县期末)学校要粉刷多媒体教室,经测量多媒体教室的长是9米,宽是7米,高是3米,门窗面积是12.6平方米.求需要粉刷的面积是多少平方米?⨯+⨯⨯+⨯⨯-【解答】解:9793273212.6=++-63544212.6=-15912.6=(平方米)146.4答:需要粉刷的面积是146.4平方米.33.(2017春•新泰市期末)一个无盖的长方体玻璃鱼缸,长5分米,宽4分米,高3分米.(1)做这个鱼缸至少需要玻璃多少平方分米?(1)在鱼缸里注入40升水,水深多少分米?(玻璃的厚度忽略不计).⨯+⨯+⨯⨯【解答】解:(1)45(3453)220(1215)2=++⨯=+205474=(平方分米)答:做这个鱼缸至少需要玻璃74平方分米.=立方分米,(2)40升40÷⨯40(45)=÷4020=(分米)2答:水深2分米.34.(2017秋•东海县期中)有一个花坛,高0.5米,底面是边长1.3米的正方形.四周用砖砌成,厚度是0.3米,中间填满泥土.(1)花坛所占的空间有多大?(2)花坛里大约有多少立方米泥土?⨯⨯=(立方米)【解答】解:(1)1.3 1.30.50.845答:花坛所占的空间是0.845立方米.-⨯⨯-⨯⨯(2)(1.30.32)(1.30.32)0.5=⨯⨯0.70.70.5=(立方米)0.245答:花坛里大约有0.245立方米的泥土.35.(2019春•郸城县期末)一只长方体的玻璃缸,长8dm,宽6dm,高4dm,水深3dm,如果投入一块棱长为4dm的正方体铁块,缸里的水溢出多少升?⨯⨯+⨯⨯-⨯⨯【解答】解:444863864=+-64144192=(立方分米)16=(升)16答:缸里的水溢出16升.36.(2019•天津模拟)一个长方体容器装一些水,底面长3分米,宽2分米,高1.5分米,将一块土豆放入水中后,水面升高了0.2分米,这个土豆的体积是多少立方分米?【解答】解:由题意得:土豆的体积等于上升的水的体积为:⨯⨯=(立方分米).320.2 1.2答:这个土豆的体积是1.2立方分米.37.(2019春•武侯区月考)(1)如图(1),要给礼盒包装一下,至少需要多少平方厘米的包装纸?(不算接头处.)(2)如图(2),如果包装后再用彩带捆扎一下,结头处需彩带子5cm,那么捆扎这个礼盒至少需要多长的彩带?⨯+⨯+⨯⨯【解答】解:(1)(12812686)2=++⨯(967248)2=⨯2162=(平方厘米)432答:至少需要432平方厘米的包装纸.⨯+⨯+⨯+(2)82122645=+++1624245=(厘米)69答:彩带的长度是69厘米.38.(2019•北京模拟)用一根240cm长的铁丝做一个长方体框架,使它的长、宽、高的比是1:1:2,再把它的五个面糊上纸(如图,底面不糊纸),做一个长方体孔明灯.①至少需要多少平方厘米的纸?②这个孔明灯的容积是多少立方厘米?【解答】解:①240460÷=(厘米) 1124++=160154⨯=(厘米)160154⨯=(厘米)260304⨯=(厘米)151515304⨯+⨯⨯2254504=+⨯2251800=+2025=(平方厘米)答:至少需要2025平方厘米的纸. ②1515306750⨯⨯=(立方厘米); 答:个孔明灯的容积是6750立方厘米.。
长方体和正方体基本题型归纳
长方体和正方体基本题型归纳1.鱼缸表面积问题:一个长90厘米、宽30厘米、高60厘米的长方体无盖玻璃鱼缸,制作这个鱼缸至少需要多大面积的玻璃?2.排气管道问题:一节横截面为正方形,边长为2厘米的排气管道长1米,制作这样一节排气管道至少需要多少平方米的铁皮?3.粉刷房间问题:一间长5米、宽4米、高3米的房间,门窗面积为8平方米,这间房的粉刷面积是多少?4.加工机套问题:制作1000个洗衣机机套(没有低面),每台洗衣机的长、宽、高分别为59.5厘米、42.5厘米、80厘米,至少需要多少平方米的布料?5.游泳池贴瓷砖问题:一个长50米、宽25米、深2.5米的游泳池,四周和低面都需要贴瓷砖,共需要多少平方米的瓷砖?6.长方体体积问题:一个底面积为20平方厘米、高为8厘米的长方体,体积是多少?7.截长方体成正方体问题:将一个长12厘米、宽10厘米、高5厘米的长方体截成一个体积最大的正方体,这个正方体的体积是多少?8.长方体表面积问题:一根2米长的长方体木块,平均截成两段后表面积增加了0.6平方米,原来长方体木块的体积是多少?9.游泳池注水问题:往一个长50米、宽30米的游泳池中注水,如果每小时能注水200平方米,多少时间才能使水深达2.4米?10.蓄水池问题:挖一个长10米、宽8米、深5米的长方体蓄水池,其占地面积、蓄水量、贴瓷砖面积和水位线长度分别是多少?11.长方体体积问题:一个长3米、宽0.5米、厚0.12米的长方体木料,其体积是多少?合多少立方分米?12.土坑问题:建筑工地要挖一个长50米、宽30米、深0.5米的长方体土坑,挖出多少方的土?13.方木体积问题:家具厂订购500根横截面面积为24平方分米、长为3米的方木,这些木料共多少方?14.围墙问题:一道长15厘米、厚24厘米、高3米的围墙需要多少块砖?15.木地板问题:一间长5米、宽3米的房间地面铺设了2厘米厚的木地板,至少需要多少立方米的木材。
小学数学-有答案-小升初复习试卷:长方体与正方体
小升初复习试卷:长方体与正方体一、填空题:(24分,每题2分)1. 1020立方厘米=________立方分米5.05升=________ 升________ 毫升3立方分米70立方厘米=________ 毫升3平方千米=________公顷。
520.73立方分米=________升________毫升4.06公顷=________平方米。
2. 我在正面看到的是,它可能是________.3. 一个长方体和正方体的棱长之和相等,已知长方体的长是6厘米,宽是4厘米,高是2厘米,正方体的体积是________立方厘米。
4. 1立方分米的1个正方体可以分成________个1立方厘米的小正方体,如果把这些小正方体排成一排,一共长________分米。
5. 将棱长是1分米的正方体铁块镕铸成一个底面是长方形(长20厘米、宽10厘米)的长方体铁块。
这个长方体铁块的表面积是________平方厘米。
6. 一个长方体的长是8分米,把它分成两个相等的正方体后,表面积比原来增加________.7. 一个长方体的表面积是40平方厘米,把它平均分开,正好成为两个相等的正方体,每个正方体的表面积是________ 平方厘米;体积是________立方厘米。
8. 把6个棱长1厘米的正方体木块拼成一个长方体,这个长方体的体积是________立方厘米,表面积是________平方厘米或________平方厘米。
9. 把一个长24厘米,宽18厘米,高9厘米的长方体木块截成同样大小的正方体木块(不许有剩余),最少可以截成________块。
10. 有一个长10厘米、宽8厘米、高5厘米的长方体木块,这个长方体的体积是________立方厘米,如果把它锯成棱长是3厘米的小正方体木块,共可以锯成________块。
11. 一个长方体,体积是200立方分米,若将它沿横截方向截成5段,表面积就增加160平方分米,这个长方体的长是________ 分米。
长方体和正方体知识点+例题+习题
长⽅体和正⽅体知识点+例题+习题第1节长⽅体和正⽅体的认识典型例题例1.⼀个长⽅体长8厘⽶,宽6厘⽶,⾼4厘⽶,它的棱长总和是多少厘⽶?分析:根据长⽅体的特征,它相对的棱(3组,每组4条)的长度相等,那么长⽅体的棱长和等于长、宽、⾼的4倍.解:(8+6+4)×4=18×4=72(厘⽶)答:它的棱长总和是72厘⽶.例2.⽤⼀根48厘⽶的铁丝焊接成⼀个最⼤的正⽅体框架,这个框架的每条边应该是多少厘⽶?分析:根据正⽅体的特征,它的12条棱长都相等,把48厘⽶平均分成12份,每份就是⼀条棱的长度.解:48÷12=4(厘⽶)答:这个框架的每条边应该是4厘⽶.例3.⽤棱长1厘⽶的⼩正⽅体摆成稍⼤⼀些的正⽅体,⾄少需要多少个⼩正⽅体?分析:题⽬要求⾄少要多少个棱长为1厘⽶的⼩正⽅体,那么拼成的棱长应尽量⼩,所以应该考虑棱长为2的⽴⽅体,体积是8⽴⽅厘⽶,所以要8个.解:2×2×2=8(个)答:⾄少需要8个⼩正⽅体.例4.将下⾯的硬纸板按照虚线折成⼀个⽴⽅体,哪个⾯与哪个⾯相对?分析:通过实验可以看到带有标号的⾯7与10,⾯8与11,⾯9与12是相对的⾯.例5.⼀个正⽅体的六个⾯上,分别写着“1”“2”“3”“4”“5”“6”.根据下⾯摆放的三种情况,判断出每个对⾯上的数字是⼏?分析:正⽅体有6个⾯,每⼀个⾯有⼀个相对的⾯,⽽与其余四个⾯相邻.解题时我们如果抓住这⼀特征,确定某⼀个⾯与哪四个⾯相邻,于是就不难判断出这⼀⾯相对的⾯上的数字是⼏了.即排除包括⾃⼰在内的五个数字,剩下的就是与某⼀⾯相对的⾯上数字了.先以“3”为例:从上⾯左图可以看出,“3”⾯与“2”⾯、“1”⾯相邻;从中图可以看出.“3”⾯⼜与“4”⾯、“5”⾯相邻.这就是说,“3”⾯与“1”⾯、“2”⾯、“4”⾯和“5”⾯这四个⾯相邻.那么,就可以很快知道,“3”⾯与“6”⾯相对.再来看“1”⾯:从上⾯左图可看出,“1”⾯与“2”⾯“3”⾯相邻;从右图可看出,“1”⾯⼜与“6”⾯“4”⾯相邻,这就是说,与“1”相邻的四个⾯,是“2”⾯、“3”⾯、“4”⾯和“6”⾯,那么,与“1”⾯相对的⾯就只能是“5”⾯了.最后看“4”⾯:从上⾯中图可以看出,“4”⾯与“3”⾯、“5”⾯相邻;从右图可以看出,“4”⾯⼜与“1”⾯“6”⾯相邻.这就是说,与“4”⾯相邻的四个⾯,是“1”⾯、“3”⾯、“5”⾯和“6”⾯,于是可知,与“4”⾯相对是⾯是“2”⾯.所以题⽬的结论是:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.解:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.习题精选⼀、填空.1.长⽅体有()个⾯,它们⼀般都是()形,也可能有()个⾯是正⽅形.2.长⽅体的上⾯和下⾯、前⾯和后⾯、左⾯和右⾯都叫做(),它们的⾯积().3.长⽅体的12条棱,每相对的()条棱算作⼀组,12条棱可以分成()组.4.正⽅体有()个⾯,每个⾯都是()形,⾯积都().5.⼀个正⽅体的棱长是6厘⽶,它的棱长总和是().6.⼀个长⽅体的长是1.5分⽶,宽是1.2分⽶,⾼是1分⽶,它的棱长和是()分⽶.7.⼀个长⽅体的棱长总和是80厘⽶,其中长是10厘⽶,宽是7厘⽶,⾼是()厘⽶.8.把两个棱长1厘⽶的正⽅体拼成⼀个长⽅体,这个长⽅体的棱长总和是()厘⽶.⼆、判断题.1.长⽅体和正⽅体都有6个⾯,12条棱,8个顶点.()2.长⽅体的6个⾯不可能有正⽅形.()3.长⽅体的12条棱中,长、宽、⾼各有4条.()4.正⽅体不仅相对的⾯的⾯积相等,⽽且所有相邻的⾯的⾯积也都相等.()5.长⽅体(不包括正⽅体)除了相对的⾯相等,也可能有两个相邻的⾯相等.()6.⼀个长⽅体长12厘⽶,宽8厘⽶,⾼7厘⽶,把它切成⼀个尽可能⼤的正⽅体,这个正⽅体的棱长是8厘⽶.()三、选择题.1.下列物体中,形状不是长⽅体的是()①⽕柴盒②红砖③茶杯④⽊箱2.长⽅体的12条棱中,⾼有()条.①4②6③8④123.下列三个图形中,能拼成正⽅体的是()4.把⼀个棱长3分⽶的正⽅体切成两个相等的长⽅体,增加的两个⾯的总⾯积是()平⽅分⽶.①18②9③36④以上答案都不对参考答案⼀、填空.1.6 长⽅形 22.相对⾯相等3.4 34.6 正⽅形相等5.72厘⽶6.14.87.38.16⼆、判断题.1.√ 2.× 3.√4.√ 5.√ 6.×三、选择题.1.③2.①3.①和③4.①第2节长⽅体和正⽅体的表⾯积例1.⼀种有盖的长⽅体铁⽪盒,长8厘⽶,宽5厘⽶,⾼3厘⽶.做25个这样的盒⼦⾄少需要多少平⽅⽶铁⽪?(不计接⼝⾯积)分析:根据长⽅体表⾯积的计算⽅法,先求出⼀个盒⼦需要的铁⽪数量,然后就可以求出25个这样的盒⼦需要的铁⽪数量.解:(8×5+8×3+5×3)×2×25=158×25=3950(平⽅厘⽶)=0.395(平⽅⽶)答:⾄少需要0.395平⽅⽶的铁⽪.例2.⼀个长⽅体,表⾯积是456平⽅厘⽶,它的底⾯是⼀个边长为4厘⽶的正⽅形,它的⾼是多少厘⽶?分析:题⽬中给出这个长⽅体底⾯是⼀个边长为4厘⽶的正⽅形,说明这个长⽅体是有两个相对的⾯是正⽅形的,其余4个⾯是⾯积相等的长⽅形,只要我们求出⼀个长⽅形⾯的⾯积,再⽤⾯积除以底⾯的边长,就算出了长⽅体的⾼了.这也是利⽤长⽅体的特征,逆解题⽬.解:456-4×4×2=424(平⽅厘⽶)424÷4=106(平⽅厘⽶)106÷4=26.5(厘⽶)答:它的⾼是26.5厘⽶.例3.⼀个教室长8⽶,宽6⽶,⾼3.5⽶,要粉刷教室的墙壁和天花板.门窗和⿊板的⾯积是22平⽅⽶,平均每平⽅⽶⽤涂料0.25千克,粉刷这个教室共需要涂料多少千克?分析:求需要涂料多少千克,必须先求出实际粉刷的⾯积.长⽅体的表⾯积去掉门窗、⿊板和地⾯的⾯积就是实际粉刷的⾯积.解:(1)粉刷的⾯积为:(8×6+8×3.5+6×3.5)×2-8×6-22=(48+28+21)×2-48-22=97×2-48-22=194-48-22=124(平⽅⽶)(2)需要涂料的重量为:0.25×124=31(千克)答:粉刷这个教室共需要涂料31千克.例4.将⼀个长12厘⽶,宽9厘⽶,⾼5厘⽶的长⽅体,切成两个长⽅体,两个长⽅体表⾯积的总和最多是多少平⽅厘⽶?最少是多少平⽅厘⽶?分析:切割长⽅体⼀次,原来的表⾯积增加两个⾯的⾯积,要使切开后的两个长⽅体表⾯积的总和最多(少),必须使横截⾯的⾯积最⼤(⼩).解:(12×9+12×5+9×5)×2+12×9×2=(108+60+45)×2+216=213×2+216=642(平⽅厘⽶)(12×9+12×5+9×5)×2+9×5×2=(108+60+45)×2+90=213×2+90=516(平⽅厘⽶)答:两个长⽅体表⾯积的总和最多是642平⽅厘⽶,最少是516平⽅厘⽶.例5.⼀个正⽅体,棱长的总和是96厘⽶.这个正⽅体的表⾯积是多少?分析:因为正⽅体的12根棱长都相等,所以可知,这个正⽅体的棱长是96÷12=8(厘⽶).⼜由于正⽅体有相等的6个⾯,每个都是正⽅形.解:8×8×6=384(平⽅厘⽶)答:这个正⽅体的表⾯积是384平⽅厘⽶.例6.做两个同样的正⽅体纸盒,⼀个有盖⼀个⽆盖,有盖纸盒⽤的纸板是⽆盖纸盒的多少倍?分析:有盖纸盒的表⾯积是它的⼀个⾯⾯积的6倍,⽆盖纸盒的表⾯积是它的⼀个⾯⾯积的5倍,⽽两个同样的正⽅体纸盒的⾯的⾯积是相等的,所以有盖纸盒⽤的纸板是⽆盖纸盒的6÷5=1.2倍.解:6÷5=1.2答:有盖纸盒⽤的纸板是⽆盖纸盒的1.2倍.习题精选⼀、填空题1.(1)下图上、下每个⾯的长()厘⽶,宽()厘⽶,⾯积是();(2)前、后每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是();(3)左、右每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是().(4)它的表⾯积是().2.(1)下图中上⾯的⾯积是(),前⾯的⾯积是(),右⾯的⾯积是();(2)计算它的表⾯积的算式是().⼆、计算题求下⾯各长⽅体的表⾯积:1.长6⽶,宽3⽶,⾼2⽶.2.长8分⽶,宽4.5分⽶,⾼2分⽶.3.长和宽都是6厘⽶,⾼3.4厘⽶.三、应⽤题1.做⼀个长⽅体的纸箱,长0.8⽶,宽0.6⽶,⾼0.4⽶.做这个纸箱⾄少需要纸板多少平⽅⽶?2.⼀个正⽅体的⽊箱,棱长5分⽶,在它的表⾯涂漆,涂漆的⾯积是多少?如果每平⽅分⽶⽤漆8克,涂这个⽊箱要⽤漆多少克?合多少千克?3.⼀个长⽅体的铁⽪盒,长25厘⽶,宽20厘⽶,⾼8厘⽶.做这个铁⽪盒⾄少要⽤多少平⽅厘⽶铁⽪?参考答案⼀、1.(1)下图上、下每个⾯的长( 9 )厘⽶,宽( 3 )厘⽶,⾯积是(27平⽅厘⽶);(2)前、后每个⾯的长是( 9 )厘⽶,宽是( 4 )厘⽶,⾯积是(36平⽅厘⽶);(3)左、右每个⾯的长是( 4 )厘⽶,宽是( 3 )厘⽶,⾯积是(12平⽅厘⽶).(4)它的表⾯积是:9×3+9×4+4×3)×2=150(平⽅厘⽶).2.(1)下图中上⾯的⾯积是(36平⽅分⽶),前⾯的⾯积是(48平⽅分⽶),右⾯的⾯积是(48平⽅分⽶);(2)计算它的表⾯积的算式是:6×6×2+6×8×4=264(平⽅分⽶).⼆、1.(6×3+6×2+3×2)×2=72(平⽅⽶)2.(8×4.5+8×2+4.5×2)×2=122(平⽅分⽶)3.6×6×2+6×3.4×4=153.6(平⽅厘⽶)三、1.(0.8×0.6+0.8×0.4+0.6×0.4)×2=2.08(平⽅⽶)答:⾄少需要纸板2.08平⽅⽶.2.5×5×6=150(平⽅分⽶)答:涂漆的⾯积是150平⽅分⽶.8×150=1200(克)=1.2(千克)答:要⽤漆1200克,合1.2千克.3.(25×20+25×8+20×8)×2=1720(平⽅厘⽶)答:⾄少要⽤1720平⽅厘⽶铁⽪.第3节长⽅体和正⽅体的体积(⼀)典型例题例1.把⼀个棱长6分⽶的正⽅体钢坯,锻造成⼀个宽3分⽶,⾼2分⽶的长⽅体钢件,这个钢件长多少分⽶?分析:把正⽅体钢坯锻造成长⽅体钢件,形状改变了,但是体积没有改变,即正⽅体的体积和长⽅体的体积相等.已知长⽅体的宽和⾼,⽤体积除以宽,要再除以⾼,就可以求出长.解:6×6×6÷3÷2=216÷3÷2=36(分⽶)答:这个钢件的长是36分⽶.例2.⼀个正⽅体的铁⽪油箱,从⾥⾯量得棱长为6分⽶,⾥⾯装满汽油.如果把这箱汽油全部倒⼊⼀个长10分⽶、宽8分⽶、⾼5分⽶的长⽅体铁⽪油箱中,那么,油⾯离箱⼝还有多少分⽶?分析:根据题意,可先求得正⽅体铁⽪油箱的汽油体积为:6×6×6=216(⽴⽅分⽶)⽽长⽅体油箱底⾯积是10×8=80(平⽅分⽶),所以,汽油在长⽅体铁⽪油箱⾥的⾼度是216÷80=2.7(分⽶).因此,油⾯离油箱⼝的⾼度就是:5-2.7=2.3(分⽶)答:油⾯离油箱⼝还有2.3分⽶.例3.⼀段⽅钢长3⽶,横截⾯是⼀个边长为0.4分⽶的正⽅形.如果1⽴⽅分⽶的钢重7.8千克,那么这段⽅钢有多重?分析:题⽬中的长度单位不统⼀,为计算的⽅便,可都化成以分⽶为单位来进⾏计算.解:3⽶=30分⽶0.4×0.4×30=4.8(⽴⽅分⽶)7.8×4.8=37.44(千克)答:这段⽅钢的重量是37.44千克.例4.有沙⼟12⽴⽅⽶,要铺在长5⽶,宽4⽶的房间⾥,可以铺多厚?分析:此题要把12⽴⽅⽶的沙⼟铺在房间⾥,也就是铺成⼀个长5⽶、宽4⽶、厚⽶的长⽅体,我们就可以⽤⽅程法求出所求问题了.这题是⼀道利⽤体积计算公式逆解的题.遇到此类题⽤⽅程法解即可.解:设可铺⽶厚.4×5×=12=0.6答:可以铺0.6⽶厚.例5.⼀个长⽅体的底⾯长6厘⽶,长是宽的1.2倍,宽⽐⾼少0.5厘⽶,这个长⽅体的体积是多少⽴⽅厘⽶?分析:这道题要求的是长⽅体的体积,求体积就必须知道长⽅形的长、宽、⾼.此题只直接给出了长,宽和⾼是间接给出的,因此应先⽤求⼀倍量的⽅法求出宽,再根据“求⽐⼀个数多⼏的数是多少”的题型算出⾼,最后⽤公式V=abh算出体积就可以了.解:6÷1.2=5(厘⽶)5+0.5=5.5(厘⽶)6×5×5.5=165(平⽅厘⽶)答:这个长⽅体的体积是165平⽅厘⽶.例6.在长为12厘⽶、宽为10厘⽶、8厘⽶深的玻璃缸中放⼊⼀⽯块并没⼊⽔中,这时⽔⾯上升2厘⽶.⽯块的体积是多少?分析:把⽯块浸没在装⽔的长⽅体玻璃缸中,⽯块占有⼀定的空间,从⽽使⽔的体积增⼤,它的具体表现就是⽔⾯上升,不管⽯块的形状如何,只要求出增加的体积就可以了(即⽯块的体积).解:12×10×2=240(⽴⽅厘⽶)答:⽯块的体积是240⽴⽅厘⽶.例7.把棱长6厘⽶的正⽅体铁块锻造成宽和⾼都是4厘⽶的长⽅体铁条,能锻造出多长?分析:我们不难看出,棱长6厘⽶的正⽅体和要锻造的长⽅体的体积相等,只不过形状不⼀样,这类题叫等积变形题.只要求出正⽅体的体积就是长⽅体的体积了.解:6×6×6÷4÷4=13.5(厘⽶)答:能锻造13.5厘⽶长.习题精选⼀、填空题1.物体所占空间的⼤⼩叫做物体的().2.计量体积要⽤()单位,常⽤的体积单位有()()和().3.棱长1厘⽶的正⽅体体积是(),棱长1分⽶的正⽅体体积是(),棱长1⽶的正⽅体体积是().4.长⽅体的体积=(),正⽅体的体积=().5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(),⾯积是375(),体积是1125().(2)⼀块橡⽪的体积是6(),⼀只卫⽣保健箱的体积是30(),⼀堆钢材的体积是4().⼆、判断题1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.()2.⼀个游泳池的容积是1000毫升.()3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.()4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.()5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.()三、计算题看图计算下⾯长⽅体和正⽅体的体积.1.2.3.四、应⽤题1.⼀个长⽅体⽊箱,长7分⽶,宽4分⽶,⾼3.5分⽶.这个⽊箱的体积是多少?2.⼀块⽅砖的厚是5厘⽶,长和宽都是30厘⽶.求这块⽅砖的体积.3.⼀块正⽅体⽯料,棱长是0.8⽶.这块⽯料的体积是多少⽴⽅分⽶?五、提⾼题1.下图是由棱长为1厘⽶的⼩正⽅体拼摆⽽成的.这个拼摆⽽成的形体的表⾯积是多少平⽅厘⽶?体积是多少⽴⽅厘⽶?⾄少再摆上⼏个⼩正⽅体后就可以拼摆成⼀个正⽅体?2.⼀个长⽅体玻璃容器,长5分⽶,宽4分⽶,⾼6分⽶,向容器中倒⼊30升⽔,再把⼀块⽯头放⼊⽔中,这时量得容器内的⽔深20厘⽶,⽯头的体积是多少⽴⽅分⽶?参考答案⼀、1.物体所占空间的⼤⼩叫做物体的(体积).2.计量体积要⽤(体积)单位,常⽤的体积单位有(⽴⽅厘⽶)(⽴⽅分⽶)和(⽴⽅⽶).3.棱长1厘⽶的正⽅体体积是(1⽴⽅厘⽶),棱长1分⽶的正⽅体体积是(1⽴⽅分⽶),棱长1⽶的正⽅体体积是(1⽴⽅⽶).4.长⽅体的体积=(长×宽×⾼),正⽅体的体积=(棱长×棱长×棱长).5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(厘⽶),⾯积是375(平⽅厘⽶),体积是1125(⽴⽅厘⽶).(2)⼀块橡⽪的体积是6(⽴⽅厘⽶),⼀只卫⽣保健箱的体积是30(⽴⽅分⽶),⼀堆钢材的体积是4(⽴⽅⽶).⼆、1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.(× )2.⼀个游泳池的容积是1000毫升.(× )3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.(√ )4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.(× )5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.(√ )三、1.48×5=240(⽴⽅厘⽶)2.0.36×0.6=0.216(⽴⽅⽶)3.9×8=72(⽴⽅分⽶)四、1.7×4×3.8=98(⽴⽅分⽶)答:这个⽊箱的体积是98⽴⽅分⽶.2.30×30×5=4500(⽴⽅厘⽶)答:这块⽅砖的体积是4500⽴⽅厘⽶.3.0.8×0.8×0.8=0.512(⽴⽅⽶)答:这块⽯料的体积是512⽴⽅分⽶.五、1.(1×1)×48=48(平⽅厘⽶)(1×1×1)×18=18(⽴⽅厘⽶)答:表⾯积是48平⽅厘⽶,体积是18⽴⽅厘⽶,⾄少再摆上9个⼩正⽅体就可以拼成⼀个正⽅体.2.5×4×[2-30÷(5×4)] =10(⽴⽅分⽶)或5×4×2-30=10(⽴⽅分⽶)答:⽯头的体积是10⽴⽅分⽶.2-3长⽅体和正⽅体的体积(⼆)典型例题例1.⼀个长⽅体沙坑的长是8⽶,宽是4.2⽶,深是0.6⽶,每⽴⽅⽶沙⼟重1.75吨,填平这个沙坑共要⽤沙⼟多少吨?分析:已知每⽴⽅⽶沙⼟重1.75吨,求共要⽤沙⼟多少吨,必须先求出共要沙⼟多少⽴⽅⽶,即先求出沙坑的容积.解: 1.75×(8×4.2×0.6)=1.75×20.16=35.28(吨)答:共要沙⼟35.28吨.例2.长⽅体货仓1个,长50⽶,宽30⽶,⾼5⽶,这个货仓可以容纳8⽴⽅⽶的正⽅体货箱多少个?分析:已知正⽅体货箱的体积是8⽴⽅⽶,可以知道正⽅体货箱的棱长为2⽶.货仓的长是50⽶,所以⼀排可以摆放50÷2=25个,宽是30⽶,可以摆放30÷2=15排,⾼是5⽶,可以摆放5÷2=2层 (1)⽶,所以⼀共可以摆放25×15×2=750个.(如图)解:50÷2=25(个)30÷2=15(排)5÷2=2层……1⽶25×15×2=750(个)答:可以容纳8⽴⽅⽶的正⽅体货箱750个.说明:如果此题先计算长⽅体货仓的体积(50×30×5=7500⽴⽅⽶),然后再除以⽴⽅体的体积8⽴⽅⽶(7500÷8=937.5个)是不对的.因为货仓的⾼是5⽶,⽴⽅体的棱长2⽶,只能摆放2层,上⾯的1⽶实际上是空的,没有摆放货箱.例3.⼀只底⾯是正⽅形的长⽅体铁箱,如果把它的侧⾯展开,正好得到⼀个边长是60厘⽶的正⽅形.(1)这只铁箱的容积是多少升?(2)如果铁箱内装半箱⽔,求与⽔接触的⾯的⾯积.分析:(1)根据侧⾯展开后是⼀个边长为60厘⽶的正⽅形,可以得出长⽅形的底⾯(正⽅形)的周长是60厘⽶,⾼也是60厘⽶.由底⾯(正⽅形)的周长可以求出底⾯的⾯积.从⽽求出容积.(2)与⽔接触的⾯的⾯积是原长⽅体的侧⾯积的⼀半加上⼀个底⾯积.⽽侧⾯积是边长60厘⽶的正⽅形的⾯积,底⾯积上⾯已经求出.解:(1)×60=225×60=13500(⽴⽅厘⽶)(2)60×60÷2+=1800+225=2025(平⽅厘⽶)答:这只铁箱的容积是13.5升,如果装半箱⽔,与⽔接触的⾯积是2.25平⽅厘⽶.例4.有⼀个空的长⽅体容器和⼀个⽔深24厘⽶的长⽅体容器,将容器的⽔倒⼀部分到,使两容器⽔的⾼度相同,这时两容器相同的⽔深为⼏厘⽶?分析1:容器的底⾯积是40×30,容器的底⾯积是30×20,40×30÷(30×20)=2,即的底⾯积是的底⾯积的2倍,中的⽔倒⼀部分到使、两容器⽔的⾼度相同,所以这个⽔深为24÷(2+1)=8厘⽶.解法1:24÷[40×30÷(30×20)+1 ]=24÷3=8(厘⽶)分析2:设这个相同的⽔深为厘⽶,则中倒出的⽔深为(24-)厘⽶,倒出的⽔为30×20×(24-)⽴⽅厘⽶,这些⽔就全部在中,中的⽔有40×30×⽴⽅厘⽶,故可得⽅程.解法2:设这个相同的⽔深为厘⽶.40×30×=30×20×(24-)24-=40×30×÷(30×20)24-=23=24=8答:这个相同的⽔深是8厘⽶.例5.⼀个正⽅体⽊头,棱长是6厘⽶,在6个⾯的中央各挖⼀个长、宽、⾼都是2厘⽶的洞孔,这时它的表⾯积、体积各是多少?分析:表⾯积等于正⽅体表⾯积加上6个洞孔的4个⾯的⾯积;体积等于正⽅体的体积减去6个洞孔的体积.解:表⾯积为:6×6×6+2×2×4×6=216+96=312(平⽅厘⽶)体积为:6×6×6-2×2×2×6=216-48=168(⽴⽅厘⽶)答:表⾯积为312平⽅厘⽶,体积为168⽴⽅厘⽶.例6.有⼀块宽为22厘⽶的长⽅形铁⽪,在四⾓上剪去边长为5厘⽶的正⽅形后(如图⼀),将它焊成⼀个⽆盖的长⽅体盒⼦(如图⼆),已知这个盒⼦的体积是2160⽴⽅厘⽶,求原来这块铁⽪的⾯积是多少平⽅厘⽶?分析:已知盒⼦的体积是2160⽴⽅厘⽶,⾼为5厘⽶,这个盒⼦的底⾯积就可以求出,⽽这个盒⼦的底⾯长⽅形的宽为22-5×2=12(厘⽶),所以这底⾯长⽅形的长也可以求出.解:长⽅体盒⼦的长为:2160÷5÷(22-5×2)=432÷12=36(厘⽶)铁⽪的⾯积为:(36+5×2)×22=46×22=1012(平⽅厘⽶)答:原来这块铁⽪的⾯积是1012平⽅厘⽶.习题精选⼀⼀、填空.1、40⽴⽅⽶=()⽴⽅分⽶4⽴⽅分⽶5⽴⽅厘⽶=()⽴⽅分⽶30⽴⽅分⽶=()⽴⽅⽶0.85升=()毫升2100毫升=()⽴⽅厘⽶=()⽴⽅分⽶0.3升=()毫升=()⽴⽅厘⽶2、⼀个正⽅体的棱长和是12分⽶,它的体积是()⽴⽅分⽶.3、⼀个长⽅体的体积是30⽴⽅厘⽶,长是5厘⽶,⾼是3厘⽶,宽是()厘⽶.4、⼀个长⽅体的底⾯积是0.2平⽅⽶,⾼是8分⽶,它的体积是()⽴⽅分⽶.5、表⾯积是54平⽅厘⽶的正⽅体,它的体积是()⽴⽅厘⽶.6、正⽅体的棱长缩⼩3倍,它的体积就缩⼩()倍.7、⼀个长⽅体框架长8厘⽶,宽6厘⽶,⾼4厘⽶,做这个框架共要()厘⽶铁丝,是求长⽅体(),在表⾯贴上塑料板,共要()塑料板是求(),在⾥⾯能盛()升⽔是求(),这个盒⼦有()⽴⽅⽶是求().8、长⽅体的长是6厘⽶,宽是4厘⽶,⾼是2厘⽶,它的棱长总和是()厘⽶,六个⾯种最⼤的⾯积是()平⽅厘⽶,表⾯积是()平⽅厘⽶,体积是()⽴⽅厘⽶.⼆、判断.1、体积单位⽐⾯积单位⼤,⾯积单位⽐长度单位⼤.()2、正⽅体和长⽅体的体积都可以⽤底⾯积乘⾼来进⾏计算.()3、表⾯积相等的两个长⽅体,它们的体积⼀定相等.()4、长⽅体的体积就是长⽅体的容积.()5、如果⼀个长⽅体能锯成四个完全⼀样的正⽅体,那么长⽅体前⾯的⾯积是底⾯积的4倍.()三、选择.1、正⽅体的棱长扩⼤2倍,则体积扩⼤()倍.①2 ②4 ③6 ④82、⼀根长⽅体⽊料,长1.5⽶,宽和厚都是2分⽶,把它锯成4段,表⾯积最少增加()平⽅分⽶.①8 ②16 ③24 ④323、⼀个长⽅体的长、宽、⾼都扩⼤2倍,它的体积扩⼤()倍.①2 ②4 ③6 ④84、表⾯积相等的长⽅体和正⽅体的体积相⽐,().①正⽅体体积⼤②长⽅体体积⼤③相等5、将⼀个正⽅体钢坯锻造成长⽅体,正⽅体和长⽅体().①体积相等,表⾯积不相等②体积和表⾯积都不相等.③表⾯积相等,体积不相等.6、⼀个菜窖能容纳6⽴⽅⽶⽩菜,这个菜窖的()是6⽴⽅⽶.①体积②容积③表⾯积参考答案⼀、填空.1、40000; 4.005; 850; 2100、2.1; 300、3002、13、24、16005、276、277、72、棱长和、208、表⾯积、0.192、容积、0.192、体积8、48、24、88、48⼆、判断.1、×2、√3、×4、×5、×三、选择.1、④2、③3、④4、①5、①6、②⼆⼀、填表.⼆、计算下图的体积(单位:分⽶).三、应⽤题.1、⼀块⽔泥砖长8厘⽶,宽6厘⽶,厚4厘⽶,它的体积是多少⽴⽅厘⽶?2、⼀个正⽅体⽊块,棱长6分⽶,已知每⽴⽅分⽶⽊重0.4千克,这个⽊块重多少千克?3、把⼀块棱长是20厘⽶的正⽅体钢坯,锻造成底⾯积是16平⽅厘⽶的长⽅体钢材,长⽅体钢材长多少厘⽶?参考答案⼀、填表.⼆、计算下图的体积.(单位:分⽶)1、8×4×5=160(⽴⽅分⽶)2、3×3×7=63(⽴⽅分⽶)3、2.5×2.5×2.5=15.625(⽴⽅分⽶)三、应⽤题.1、8×6×4=192(⽴⽅厘⽶)答:它的体积是192⽴⽅厘⽶.2、6×6×6=216(⽴⽅分⽶)0.4×216=86.4(千克)答:这个⽊块重86.4千克.3、20×20×20÷16=8000÷16=500(厘⽶)答:钢材长500厘⽶.。
专题20《长方体和正方体》2022年小升初数学真题汇编专项复习(全国通用)
专题20《长方体和正方体》2022年小升初数学真题汇编专项复习(全国通用)考试时间:60分钟满分:100分一、填空题(共10题;共19分)1.把一个长8分米、宽6分米、高10分米的长方体木块削成一个最大的圆锥。
这个圆锥的体积是立方分米,削去部分的体积是立方分米。
2.一个游泳池长50米,宽25米,高3米,如果往游泳池中放2.5米深的水,一共放水立方米,合立方分米,合升.3.把一个长方体木块的高截去2厘米后剩下部分是一个正方体,这时表面积比原来减少56平方厘米。
这个正方体的表面积是平方厘米,体积是立方厘米。
4.一个圆柱,它的底面积不变,如果高增加2 cm,表面积就增加62.8 c㎡,那么这个圆柱的底面积是c㎡。
5.一个长方体,长6分米,宽和高都是2分米,这个长方体底面的面积是平方分米,这个长方体右面的面积是平方分米,它的体积是立方分米.6.将3个棱长为3厘米的正方体拼成一个长方体后,长方体的表面积比原来三个正方体的表面积之和减少了。
7.一个长方体的高减小2厘米后,成为一个正方体,那么表面积就减小48平方厘米,这个正方体的体积是立方厘米.8.把一个棱长是6dm的正方体铁块锻造成一个长方体后,长方体的底面积是24dm2,那么它的高是()dm。
9.一个长方体玻璃水箱,长15厘米,宽10厘米,高20厘米。
小明向空水箱中慢慢注水,水在长方体水箱中形成长方体。
当长方体水箱中第一次出现正方形面时,小明注入了毫升的水;当第二次出现正方形面时,水与玻璃的接触面积是平方厘米。
10.下图是用棱长1厘米的小正方体拼成的,下图中物体表面积是平方厘米,体积是立方厘米。
至少再加个小正方体,就变成一大的正方体。
二、单选题(共8题;共16分)11.一个长方体形状的玻璃容器,从里面量长为50厘米,宽为40厘米,高为45厘米。
向容器里注水,当容器内的水体第1次出现正方形面时,容器里有水()升。
A.90B.100C.80D.8112.下面()能围成正方体。
小升初常考 长方体和正方体题型
小升初常考的长方体和正方体学生姓名年级小五学科数学授课教师日期时段核心内容面积,体积,容积课型教学目标1、掌握正方体和长方体的特点;2、掌握表面积的应用;3、掌握体积单位及体积的应用;4、掌握排水法求体积的方法;重、难点实际应用【知识导图】【互动导学】【导学】一:长方体和正方体的认识【知识点1】:长方体和正方体的特征【例1】:正方体的展开图1、下列三个图形中,不能拼成正方体的是()① ② ③2、右图是一个正方体的展开图。
在这个正方体中,与面相对的是( )面,与面相对的是( ), ( )面与( )面是相对的面。
3、下图中哪两个字所在的面,是正方体中相对的面?4. 右图是正方体的一个平面展开图,将它折成正方体后, (1)1号面和( )号面相对; (2)2号面和( )号面相对; (3)3号面和( )号面相对。
【例3】:长方体的展开图(1)这是一个长方体的展开图,前面的面积是( )平方厘米,右面的面积是( )平方厘米, 上面的面积是( )厘米。
(2)右图是一个长方体的展开图,这个长方体上面的面是 ( ),右面的面是( )。
da bce f后A 、长4cm ,宽2cmB 、长4cm ,宽C 、长2cm ,宽D 、边长2cm(3)沿下图中的虚线折叠,可以围成一个长方体。
围成的这个长方体的体积是多少立方厘米?【例题】4:一个正方体的6个面分别涂着红、黄、蓝、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。
练习1:根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么【例题】5:一个装书的纸皮箱,长55厘米,宽35厘米,高20厘米,如果要用封口纸条把这箱书封扎好(如图),需用多长的封口纸条(接头处不计)黄红蓝黑蓝白 绿白红 F D2A5 BA2C ECD【知识点2】:正方体的染色问题(1)三个面都染色:必定在顶点上;(2)两个面染色:必定在棱上;(3)一个面染色:必定在面上。
小升初数学长方体正方体专项练习试题
小升初数学长方体正方体专项练习试题米,宽0.8米,高11.5米。
(1)这12根立柱一共占地多少平方米?(2)这12根立柱所占空间有多大?(3)在每根立柱的四周和上面贴大理石,每根立柱贴大理石的面积至少是多少平方米?4.在一个长50厘米,宽40厘米,高30厘米的玻璃鱼缸里放入一块石头,石头沉入水底。
结果水面上升了3.5厘米。
这块石头的体积是多少?巩固练习一、填空1.a3表示( ),2a表示( )。
0.13=( ),03=( )。
2.用铁丝焊接一个长6cm、宽4cm、高3cm的长方体框架,要准备6cm的铁丝( )根,4cm的铁丝( )根。
至少需要铁丝( )cm。
如果用纸把这个长方体表面贴起来做成纸盒,需要纸至少( )cm2。
这个纸盒的体积是( )cm2。
3.冰箱的体积大约是1.2( ); 文具盒的体积大约是180( );纯净水桶的容积大约是20( ); 茶叶罐的容积大约是850( )。
4.挖一个长8( )、宽6( )、深2( )的长方体蓄水池。
这个蓄水池的占地面积是( ),最多可以蓄水( )。
新|课|标|第|一| 网5.1.04立方米=( )立方分米 2700平方分米=( )平方米4.2立方米=( )升 52毫升=( )立方分米6.一段方钢长2米,横截面面积是50平方厘米。
它的体积是( )立方厘米。
7.棱长1分米的正方体,底面积是( )dm2,表面积是( )dm2,体积是( )dm3。
如果将它切成体积是1cm3的小正方体,可以切( )个。
将这些小正方体排成一排,长( )米。
8.一根长60厘米的铁丝做成一个正方体框架,在这个框架上围上硬纸做成盒子,需要硬纸( )平方厘米,这个盒子的体积是( )立方厘米。
9.一根方木长20分米,把它锯成两段后,表面积增加了8平方分米,这根方木的体积是( )立方分米。
10.用1立方厘米的小正方体摆一个大正方体至少需要( )个。
如果摆一个棱长6厘米的正方体,需要( )个,摆成的正方体的底面积是( )平方厘米。
小升初必考计算题-立体图形
立体图形题型1:长方体的表面积例1:食堂的长方体烟囱是用铁皮制成的,求用了多少铁皮,就是求 ( )。
A.体积 B.表面积 C.四个面的面积 D.五个面的面积【答案】C例2:把一个棱长是4dm的正方体,分成相等的两个长方体后,表面积增加了________平方分米。
【分析】切成两个相等的长方体后,表面积会增加两个正方形的面,由此计算即可。
4×4×2=32(平方分米)【答案】4×4×2=32(平方分米)故答案为32例3:制作一个长、宽、高分别是5厘米、4厘米、3厘米的长方体纸盒,需要准备(______)种大小不同的长方形,其中最大的长方形的面积是(_______)平方厘米,最小的是(_______)平方厘米。
【分析】长方体是由六个面组成,分成3组,每组二个面是相同的,所以是准备3种大小不同的长方形。
这里求的“最大的长方形的面积”是指一个“面”的面积,最大的是面积是5×4=20平方厘米,最小的是4×3=12平方厘米。
【答案】3 20 12例4:一间教室长9m,宽6m,高4m,要粉刷房顶和四壁,扣除门窗和黑板的面积26m2。
若每平方米用涂料0.45kg,粉刷这间教室需要涂料多少千克?【分析】粉刷教室只有5个面,一个底面和四个侧面,根据长方体表面积公式计算出表面积,减去门窗和黑板的面积就是需要粉刷的面积,再乘每平方米需要涂料的质量即可求出需要涂料的总重量.【答案】解:(9×6+6×4×2+4×9×2-26)×0.45=(54+48+72-26)×0.45=148×0.45=66.6(kg)答:粉刷这间教室需要涂料66.6千克。
题型2:正方体的表面积例5:两个正方体的棱长比是3∶5,它们的表面积比是( )。
A.9∶25 B.3∶5 C.18∶30【答案】A例6:一个正方体的棱长和48dm,正方体表面积是(______)dm2.【分析】由棱长和求棱长,再求表面积解:棱长为48÷12=4dm,表面积为4×4×6=96dm2.【答案】96例7:木工做一只棱长是5分米的正方体无盖木箱至少用木板多少平方分米?【答案】解:5χ5χ5=125平方分米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初常考的长方体和正方体学生姓名年级小五学科数学授课教师日期时段核心内容面积,体积,容积课型教学目标1、掌握正方体和长方体的特点;2、掌握表面积的应用;3、掌握体积单位及体积的应用;4、掌握排水法求体积的方法;重、难点实际应用【知识导图】【互动导学】【导学】一:长方体和正方体的认识【知识点1】:长方体和正方体的特征【例1】:正方体的展开图1、下列三个图形中,不能拼成正方体的是()①②③2、右图是一个正方体的展开图。
在这个正方体中,与面相对的是( )面,与面相对的是( ), ( )面与( )面是相对的面。
3、下图中哪两个字所在的面,是正方体中相对的面?4. 右图是正方体的一个平面展开图,将它折成正方体后, (1)1号面和( )号面相对; (2)2号面和( )号面相对; (3)3号面和( )号面相对。
【例3】:长方体的展开图(1)这是一个长方体的展开图,前面的面积是( )平方厘米,右面的面积是( )平方厘米, 上面的面积是( )厘米。
(2)右图是一个长方体的展开图,这个长方体上面的面是 ( ),右面的面是( )。
A 、长4cm ,宽2cmB 、长4cm ,宽C 、长2cm ,宽D 、边长2cm(3)沿下图中的虚线折叠,可以围成一个长方体。
围成的这个长方体的体积是多少立方厘米?da bcef后【例题】4:一个正方体的6个面分别涂着红、黄、蓝、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。
练习1:根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么【例题】5:一个装书的纸皮箱,长55厘米,宽35厘米,高20厘米,如果要用封口纸条把这箱书封扎好(如图),需用多长的封口纸条(接头处不计)【知识点2】:正方体的染色问题 (1)三个面都染色:必定在顶点上; (2)两个面染色:必定在棱上; (3)一个面染色:必定在面上。
黄4 红2蓝5 黑4 蓝白 绿 白红 F4 D2A5 B 6A2C ECD【例题】1:一个棱长10厘米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
问:在这些小正方体中,(1)3个面涂有红色的有多少个?(2)2个面涂有红色的有多少个?(3)1个面涂有红色的有多少个?(4)6个面都没有涂色的有多少个练习1:下图由9个棱长为1厘米的正方体搭成的,将这个立体图形表面涂上红色。
其中只有三面涂上红色的正方体有()个,只有四面涂上红色的正方体有()个。
【导学】二:长方体和正方体的表面积和体积【知识点1】:长方体和正方体的表面积和体积变化规律【例题】1:变化规律(1)一个长方体的长、宽、高都扩大2倍,它的表面积就(),体积扩大()倍。
(2)一个正方体的棱长扩大2倍,则表面积就(),体积扩大()倍。
(3)大正方体棱长是小正方体棱长的2倍,大正方体表面积是小正方体表面积的()倍。
【知识点2】:长方体正方体的切割与拼接【例题】1:一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少练习1:有一个长方体,如果把高增加3cm后,就变成一个正方体,表面积就会增加96cm2。
求这个长方体的体积。
练习2:把一个长方体截去一个高为8厘米的长方形后,剩下的部分是一个正方体。
正方体的表面积比原来长方体的表面积减少320平方厘米。
求原来长方体的体积。
练习3:一个长方体木块,从上部和下部分别增加高为3厘米和2厘米的长方体,变成一个正方体,表面积增加了360平方厘米。
原来长方体的体积是多少立方厘米【例题】2:把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了多少平方厘米。
练习1:一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积【例题】3:把一个正方体木块锯成3个大小一样的小长方体后,表面积增加了36平方厘米。
原来正方体的表面积是多少练习1:把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。
练习2:用两个棱长是3厘米的正方体,拼成一个长方体,它的表面积比两个正方体的表面积少多少平方厘米,这个长方体的表面积是多少平方厘米。
练习3:把一根长2米的方木(底面是正方形)锯成三段,表面积增加平方分米,原来这根方木的体积是多少立方分米【例题】4:把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块练习1:一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的小正方体,表面积增加了多少平方厘米练习2:有一个棱长是1米的正方体木块,如果把它锯成相等的8个小正方体,表面积增加多少平方米?【例题】5:把一个长为10分米,宽为6分米,高为8分米的长方形,切割成相等的两个长方体,有几种切法,那中增加的表面积最多哪种增加的表面积最少练习1:把两个相同的长方体拼成一个大的长方体,已知小长方体的长是8cm,宽是6cm,高是3cm。
有几种拼法,分别求出拼成的大长方形的面积练习2:用两个长6厘米,宽3厘米,高1厘米的长方体拼成一个表面积尽可能小的正方体,这个拼成的长方体的表面积是()平方厘米。
练习3:用4个棱长是3厘米的正方体,拼成一个长方体,有几种拼法,每种拼法长方体的表面积比四个正方体的表面积和减少了多少平方厘米。
练习4:一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米【例题】6:练习如下图,一个正方体被切成12个大大小小的长方体,这些长方体表面积的总和是350平方厘米,求原来正方体的表面积和体积。
练习1:一张长方形铁皮,长25分米,宽20分米。
在这张长方形铁皮的四个角上各剪去一个边长是5分米的正方形,然后折成一个长方体铁盒,这个铁盒的体积是多少【知识点2】打孔问题【例题1】一个长方体被挖掉一小块(如图),下面说法完全正确的是()。
A.体积减少,表面积也减少。
B.体积减少,表面积增加。
C.体积减少,表面积不变。
【例题2】求下面零件的表面积。
(单位:厘米)练习1:一个棱长为4分米的正方体,分别在前后、左右、上下各面的中心位置,挖去一个棱长为1练习2:下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米【知识点3】组合图形问题【例题1】一个零件形状大小如下图:算一算,它的表面积是多少平方厘米(单位:厘米)【知识点4】三视图法求面积【例1】右图是由棱长1厘米的正方体拼成的图形,它的表面积是()㎝²,体积是()㎝³。
至少需要这样的小正方体()个才能拼成一个大的正方体。
【例2】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米练习1:如图,棱长分别为厘米、厘米、厘米、厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是多少平方厘米(希望杯真题)【导学】三:排水法求不规则物体的体积【例题】1:一个密封的玻璃缸,存水的空间长为6dm,宽为4dm,高为5dm,缸里的水深为3dm。
现将缸竖起来,现在的水深是多少练习1:有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。
现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。
问水面高多少【例题】2:在一个棱长2分米的正方体的玻璃容器里,向容器里倒入5升水,再把一块石头投入水中,这时量得容器内水深15厘米,石头的体积是多少立方厘米练习1:把一个土豆放入长15厘米,宽10厘米的长方体容器里,水面由12厘米上升到16厘米,土豆的体积是多少【例题】3:一个长方体的容器,底面积是16平方分米,装的水高6分米,现放入一个体积是24立方分米的铁块。
这时的水面高多少练习1:把一个体积为80立方厘米的铁块浸在底面积为20平方厘米的长方体容器中,水面高度为10厘米,如果把铁块捞出后,水面高多少练习2:有一个边长为5cm的正方体铁块,浸没在一个盛水的长方体容器中。
取出铁块后,水面下降了,求这个长方体的底面积是多少平方厘米【例题】4:有甲、乙、丙三个正方体水池,它们内边长分别是5米、3米、1米,把两堆碎石分别沉没在乙、丙两个水池的水里,它们的水面分别升高了4厘米和2厘米。
如果将这两堆碎石都沉没在甲水池的水里,甲水池的水面升高了多少厘米练习1:一个长方体容器内装满水。
现有大、中、小三个铁球,第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次把中球取出,把小球和大球一起沉入水中。
已知每次从容器中溢出的水量情况是:第二次是第一次的3倍,第三次是第一次的倍。
求大球的体积是小球的多少倍【例题】5:用一个底面是边长8厘米的正方形,高为16厘米的长方体容器,测量一个球形铁块的体积,容器中装的水距杯口还有2厘米。
当铁块放入容器中,有部分水溢出,当把铁块取出后,水面下降5厘米,求球形铁块的体积。
练习1:一个长方体玻璃缸,从里面量长为8dm,宽为6dm,高为4dm,里面的水深。
现在要放进去一个棱长为4dm的正方体铁块,玻璃缸内的水会溢出来多少练习2:有一个正方体容器,边长为25厘米,里面注满了水,有一根长50厘米,横截面是12平房里面的长方体铁棒,先将铁棒垂直插入水中,水会溢出多少立方厘米练习3:有一个长方体水箱,从里面量长40厘米、宽30厘米、高35厘米,箱中水面高10厘米。
放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。
这时水面高多少厘米作业1、一个礼品盒长35厘米,宽22厘米,高20厘米。
把它用红丝带进行包装(如图),其中打结用了40厘米丝带。
这个礼品盒至少需要多少厘米长的红丝带?2、一个棱长14厘米的正方体木块,表面涂满了黄色,把它切成棱长2厘米的小正方体。
问:在这些小正方体中,(1)3个面涂有黄色的有多少个?(2)2个面涂有黄色的有多少个?(3)1个面涂有黄色的有多少个?(4)6个面都没有黄色的有多少个3、一个长10厘米,宽为6厘米,高为8cm的长方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
问:在这些小正方体中,(1)3个面涂有红色的有多少个?(2)2个面涂有红色的有多少个?(3)1个面涂有红色的有多少个?(4)6个面都没有红色的有多少个4、有三块完全一样的长方体积木,它们长8厘米、宽4厘米、高2厘米,现把三块积木搭成一个大的长方体,怎样搭表面积最大最大是多少平方厘米?5、把棱长6厘米的正方体铁块锻造成宽和高都是4厘米的长方体铁条,能锻造出多长的铁条6、有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。