第六章实数全章学案(共7课时)

合集下载

七年级数学下册第六章实数教案(7套)(新版)新人教版

七年级数学下册第六章实数教案(7套)(新版)新人教版

第六章 实数6.1平方根 【教学目标】 知识与技能1. 了解算术平方根的概念。

2. 会用根号表示正数的算术平方根。

3. 了解开方与乘方的互逆运 算;会用平方运算求某些非负数的算术平方根。

过程与方法通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

情感、态度与价值观通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。

【教学重难点】重点: 算术平方根的概念和求法难点: 会用平方运算求某些非负数的算术平方根 【导学过程】 【知识回顾】写出下列各数是哪个正数的平方① 16 ② 49 ③ 100 ④ 94 ⑤ 169 ⑥2581⑦ 2.5 ⑧ 2.25 【新知探究】 探究一、问题1:(P40)提问:怎样算出画框的边长?依据是什么?如何用式子表示? 探究二、算术平方根的概念1、归纳:一般地, 叫做a 的算术平方根.a 的算术平方根记为a ,读作“ ”,a 叫做 . 规定:0的算术平方根是 .也就是,在等式2x =a (x ≥0)中,规定 x=2、 试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.3、 想一想:下列式子表示什么意思?并求出它们的值?1.25探究三、例1 求下列各数的算术平方根:(1) 100; (2) 1; (3) 6449; (4) 0.0001探究四、算术平方根的有意义的条件 (1)负数有算术平方根吗?(2)、a 是什么数?(3),a 中的a 可以取任何数吗?【知识梳理】本节课你学到了什么?有什么收获和体会?还有什么困惑?1.一般的说,一个 数x 的平方等于a,即x 2=a,那么这个 数x 就叫着a 的 。

2. a 的算术平方根记为 ; 0的算术平方根是 。

3. 一个 数越大,这个 数的算术平方根就越 。

【随堂练习】3. 4的算术平方根是 ;2581的算术平方根是 ; 2 97的算术平方根是 ; 2.25的算术平方根是 ;1000的算术平方根是 。

最新人教版初中数学七年级下册第六章《实数》复习教案

最新人教版初中数学七年级下册第六章《实数》复习教案

最新人教版初中数学七年级下册第六章《实数》复习教案第六章《实数》复习课教学设计一、教学目标1、理解平方根、算数平方根、立方根的概念;理解乘方与开方互为逆运算。

2、理解无理数及实数的有关概念;知道实数与数轴上的点一一对应;理解实数的分类。

3、学生能运用开方运算求复杂算式的平方根或立方根。

4、学生能利用已知平方根立方根求值。

5、学生能利用数形结合解决问题。

二、教学重、难点1、平方根和算术平方根、立方根的概念、性质,无理数与实数的意义理解与应用;2、对数即是形,形也是数的认识与理解。

3、灵活运用已学知识解决问题。

三、教学准备多媒体课件、视频、学案四、教学过程二、课中环节一:组内互助,答疑解惑1、小组内合作交流:解决自主学习过程中遇到的疑难问题。

2、小组代表提出问题。

3、小组之间交流合作:小组无法解决的问题,组与组之间进行解决,教师实时点拨。

4、课前学习达标检测(1):若121x的值为()(2):下列说法中,正确的有()①任何实数的平方根都有两个,且他们互为相反数;②无理数就是带根号的数;③数轴上的所有点都表示实数;④负数的立方根仍为负数。

环节二:巩固提高,归纳提升1、概括提升学案中不易解决的几种问题的类型,形成本节课学习目标并展示学习目标。

2、展示疑难问题一,利用开方运算求复杂算式的平方根和立方根①的算术平方根是_____②的立方根_____③|-0.64|的平方根是_______3、展示疑难问题二,利用已知平方根立方根求值。

①已知3x-4是25的算术平方根,求x的值_____=16-,求x的1、学生组内交流,集思广益,互帮互助,解决自主学习过程中遇到的疑难问题。

2、学生归纳提出疑难问题。

3、组间学生交流答疑解惑4、各层级学生独立完成,各尽其能学生了解本节课的学习目标学生解决问题,完成后提交展示,学生交流解题思路。

小组合作交流,学生点评,分析讲解方法和思路。

所有同学完成后提交展示弄清解析过程,存在困难。

人教版七年级数学下册第6章实数(教案)

人教版七年级数学下册第6章实数(教案)
-突破方法:通过大量练习和错例分析,帮助学生掌握运算顺序和规则。
-平方根与立方根的求解:学生可能不熟悉平方根和立方根的求解方法,特别是对于复杂实数。
-突破方法:通过图形和数轴的辅助,直观展示平方根和立方根的概念,并提供多样的练习题。
-实数与数轴的应用:将实数与数轴结合解决实际问题时,学生可能不知道如何操作。
2.提升学生的逻辑思维与推理能力:在学习实数的性质与运算过程中,培养学生逻辑思维和推理能力,使他们能够运用所学知识解决问题。
3.增强学生的空间观念与数形结合思想:通。
4.培养学生的数据分析与实际问题解决能力:在学习实数在实际问题中的应用时,培养学生数据分析能力,使他们能够运用所学知识解决生活中的数学问题。
人教版七年级数学下册第6章实数(教案)
一、教学内容
人教版七年级数学下册第6章“实数”主要围绕以下内容展开:
1.实数的概念与分类:理解实数的定义,掌握实数的分类(有理数、无理数)。
2.实数的性质:探讨实数的性质,如符号、绝对值、相反数、倒数等。
3.实数的运算:掌握实数的加减乘除运算,以及混合运算的法则和技巧。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和运算这两个重点。对于难点部分,如无理数的理解,我会通过具体例子和数轴上的表示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如计算圆的周长。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸片来估算无理数√2的值。
回顾整个教学过程,我认为以下几个方面需要改进:
1.对于无理数的讲解,我应该准备更多生动的例子和实际操作,以帮助学生更好地理解这一概念。
2.在实践活动和小组讨论中,要关注学生的个体差异,鼓励他们独立思考,提高解决问题的能力。

【最新】人教版七年级数学下册第六章《实数》学案

【最新】人教版七年级数学下册第六章《实数》学案

新人教版七年级数学下册第六章《实数》学案感知目标学习目标知识与能力:了解无理数和实数的概念,知道实数和数轴上的点一一对应,;了解实数的运算法则及运算律,会进行实数的运算,过程与方法:能估算无理数的大小,会用计算器进行实数的运算情感态度与价值观:发展学生的数感重点难点教学重点:实数的意义和实数的分类;实数的运算法则及运算律教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算教学过程教师活动学生活动复备标注时间分配启动课堂预习复习反馈情境导入探究使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,478,911,119,59探求新知一、无理数概念我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3 3.0=,30.65-=-,475.8758=,90.8111=&&,111.29=&,50.59=&观察通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=L也是无理数结论有理数和无理数统称为实数⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数实数也可以这样分类:学生归纳任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数试一试把实数分类像有理数一样,无理数也有正负之分。

例如2,33,π是正无理数,2-,33-,π-是负无理数。

由于非0有理数和无理数都有正负之分当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数 我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢? 探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少? 2、 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示 的实数大 轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数总结 1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗? 总结 数a 的相反数是a -,这里a 表示任意一个实数。

七年级下册数学学案第六章《实数》导学案

七年级下册数学学案第六章《实数》导学案

第6章实数6.1平方根(1)【学习目标】1.了解数的算术平方根的定义,会用根号表示一个数的算术平方根,并理解算术平方根的双重非负性2.能利用算术平方根的定义求一个非负数的算术平方根【学习重点】了解算术平方根的概念、性质、会用根号表示一个正数的算术平方根【学习难点】理解算术平方根的双重非负性[探究研讨]【活动1】学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?191636正方形的面积边长这个问题实际上是已知一个正数的平方,求这个正数的问题(问题导入)自学教材,回答问题:1. 一般地,如果一个___ 数x的平方等于a,即=a,那么这个______叫做a的_________.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:______的算术平方根是0.记作=2.由以上定义可知如果=a,那么x就叫a的算术平方根吗?判断下列语句是否正确?①5是25的算术平方根( ) ②-6是36的算术平方根()③0.01是0.1的算术平方根( ) ④-5是-25的算术平方根()3.3的算术平方根可表示为 ,4的算术平方根可表示为 ,你还能表示出那些数的算术平方根?写在下面,和同座交流一下 4.试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.【活动2】例:求下列各数的算术平方根:(1)100;(2) ;(3) 0.0001 ;⑷ 0;[跟踪训练]1、 1.非负数的算术平方根表示为___,225的算术平方根是____,的算术平方根____,0的算术平方根是____2.的算术平方根是( )A.B.C.D.3.若是49的算术平方根,则=( )A. 7B. -7C. 49D.-494.小明房间的面积为10.8米2,房间地面恰好由120块相同的正方形地砖铺成,每块地砖的边长是 .[变式训练]想一想:下列式子表示什么意思?你能求出它们的值吗?⑴ ⑵ ⑶ ⑷[跟踪训练]1.2.的算术平方根是_____,3.若,则的算术平方根是( )A. 49B. 53C.7 D .【活动3】思考:-4有算术算术平方根吗?为什么?总结:1.正数有 的算术平方根0的算术平方根是负数2.对于:a 0具有双重非负性[跟踪训练]1.下列哪些数有算术平方根?0.03, -, π, 0, (-3)2,(-1)32.下列各式中无意义的是( )A.B.C.D.3. 下列运算正确的是( )A.B.C.D.4.若下列各式有意义,在后面的横线上写出x的取值范围: ⑴⑵5.若,则a= ,b= ,.[提升能力]1.一个自然数的算术平方根为,那么与这个自然数相邻的下一个自然数的算术平方根是_______2.一个正方形的面积扩大为原来的4倍,它的边长变为原来的 倍,面积扩大为原来的9倍,它的边长变为原来的 倍,面积扩大为原来的n倍,它的边长变为原来的 倍.3.如图:ba那么,有意义吗?4.要使代数式有意义,则的取值范围是( )A. B. C. D.5.若,求的值。

新人教七年级数学第六章《实数》教学设计

新人教七年级数学第六章《实数》教学设计

新人教版七年级数学第六章《实数》章复习学习目标:1.归纳和整理本章知识点,形成系统知识;2.强化对平方根、算术平方根、立方根、实数等相关概念的理解;3.能够实行简单的实数相关运算。

学习重点:1.强化对本章所有概念的理解;2.能够熟练地实行相关的实数运算。

学习难点:实数大小的比较。

一、复习内容:出示本章知识结构图互为有理数逆实数运无理数算讨论并叫学生回答后,准确填写下表:你a知道算术平方根、平方根、立方根的联系和区别吗?巩固提升1.说出以下各数的平方根和算术平方根:(1)169 (2)0.16 (3)21425(4)102(5)|-279|2.说出以下各数的立方根:(1)-0.008 (2)0.512 (3)-2764(4)—1558正整数自然数有理数整数 0负整数负分数分数正分数正无理数无理数负无理数无限不循环小数1.圆周率π及一些含有π的数一般有三种情况2.开方开不尽的数3.有一定的规律,但不循环的无限小数有理数和无理数统称为实数。

专题复习:把以下各数填入相对应的集合内,14,,π,—52,,0,0.3737737773…(相邻两个3之间的7的个数逐次加1)有理数集合无理数集合判断:以下说法是否准确:1.实数不是有理数就是无理数。

()2.无限小数都是无理数。

()3.无理数都是无限小数。

()4.带根号的数都是无理数。

()5.两个无理数之和一定是无理数。

()6.所有的有理数都能够在数轴上表示,反过来,数轴上所有的点都表示有理数。

()应对挑战,激发学生兴趣a的取值分为3种情况的化简;a为非负数的化简;a为全体实数的化简;a为全体实数准确取绝对值并化简:323222--++)3222-=2()2332-=--)(原式2332322--++-=2332322+-++-=3332222-+-++=324-=巩固练习:第一组题目1.计算2.解方程第二组题目2-(1-(23125=(1)(x-1)()2318x-=(2)21.当x________时,2x-1没有平方根;2.一个正数x的两个平方根分别是a+1和a-3,则x=___,a=_____. 课堂小结:本章我们学习了平方根和立方根,并通过开平方、开立方运算理解了一些不同于有理数的数,在此基础上引入无理数,使数的范围有有理数扩充到实数。

七年级下册数学人教版第六章实数全章学案(共7课时)

七年级下册数学人教版第六章实数全章学案(共7课时)

教具(课
件、实验
多媒体课件、直尺、三角尺
仪器等)
教学过程
教学环节教学活动
引导
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同
教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.
平行线的性质平行线的判定
因为a∥b, 因为∠1=∠2,
所以∠1=∠2 所以a∥b.
因为a∥b, 因为∠2=∠3,
所以∠2=∠3, 所以a∥b.
因为a∥b, 因为∠2+∠4=180°,
所以∠2+∠4=180°, 所以a∥b.
6.教师引导学生理清平行线的性质与平行线判定的区别.
平行.( ) 二、填空题.
1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______,
∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.
87
21
D
A
学生对知的认识
归纳小结
4
3D
C
2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.
E
1
D。

新人教版七年级下册第六章6.3《实数》教案

新人教版七年级下册第六章6.3《实数》教案

《实数》教学设计一、学习目标1、了解无理数、实数的概念和分类,知道实数和数轴上的点一一对应,能估算无理数的大小。

2、了解实数的运算法则及运算律,准确地进行实数范围内的运算。

二、新课导入1的平方根是 __,算术平方根是 .2、一个数的立方根等于它本身,这个数是 .3、 2.078=0.2708=,则y =( )A.0.8966 B.0.008966C.89.66 D.0.00008966三、自主学习认真阅读课本第53页至第54页的内容。

Ⅰ、完成下面练习,并体验知识点的形成过程。

1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3=______,25=______,35-=______, 427=______,119 =______,911=______。

我们发现,上面的有理数都可以写成________ 或者 的形式。

归纳 事实上,任何一个 都可以写成有限小数或无限循环小数的形式。

反过来, 任何__________________________也都是有理数。

观察 我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做 _ __。

例如 , , , 等都是 ____ 。

3.14159265π=也是 。

结论 有理数和无理数统称为 。

试一试 我们学过的数可以这样分类:{实数像有理数一样,无理数也有正负之分。

,π是,,π-是。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:{四、合作探究从课本图6.3-1中可以看出OO'的长是,所以O'对应的数是.总结(1)每个有理数都可以用数轴上的点来表示。

事实上,每一个也都可以用数轴上的表示出来。

这就是说,数轴上的点有些表示数,有些表示数。

(2)当从有理数扩充到实数以后,实数与数轴上的点就是___ 的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的每一个点都是表示一个。

(3)与有理数一样,对于数轴上的任意两个点,边的点所表示的实数总比_ 边的点表示的实数。

人教版七年级下册数学第6章《实数》优秀教学案例(教案)

人教版七年级下册数学第6章《实数》优秀教学案例(教案)
五、案例亮点
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”

新人教版数学七年级下册第六章《实数》全章教案

新人教版数学七年级下册第六章《实数》全章教案
4. 表示的意义是什么?它的值是多少?用等式怎样表示?
5.144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出问题








问题1:你能叙述算术平方根的概念吗?
一般地:如果一个正数 的平方等于a,即 =a,那么这个正数 叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
年级
七年级
课题
6.1平方根(2)
课型
新授




知识
技能
1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
2.用计算器求一个非负数的算术平方根.
过程
方法
通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
情感
态度
通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。
问题(四)
两种运算有什么不同?
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数a的平方根的运算,叫开平方,其中a叫被开方数.。
学生思考,小组讨论,个别回答
问题是知识能力生长点,通过富有实际意义的问题,激发学生原有认知,促使学生主动地进行探索和思考,让他们体会数学的韵味.。




问题(五)
(2)0的平方根和算术平方根都是0。
区别
(1)定义不同:
“如果一个数 的平方等于a,那么这个数 叫做a的平方根”,
“如果一个正数x的平方等于a,即 ,那么这个正数x叫做a的算术平方根”。

实数(七年级数学下册第六章全章导学案)

实数(七年级数学下册第六章全章导学案)

第6章 实数6.1平方根(1)【学习目标】1.了解数的算术平方根的定义,会用根号表示一个数的算术平方根,并理解算术平方根的双重非负性2.能利用算术平方根的定义求一个非负数的算术平方根【学习重点】了解算术平方根的概念、性质、会用根号表示一个正数的算术平方根 【学习难点】理解算术平方根的双重非负性 [探究研讨]【活动1】学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?自学教材,回答问题:1. 一般地,如果一个___ 数x 的平方等于a ,即2x =a ,那么这个______叫做a 的_________.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:______的算术平方根是0. 记作0=2.由以上定义可知如果2x =a ,那么x 就叫a 的算术平方根吗?判断下列语句是否正确? ①5是25的算术平方根( ) ②-6是36的算术平方根( )③0.01是0.1的算术平方根( ) ④-5是-25的算术平方根( )3.3的算术平方根可表示为 ,4的算术平方根可表示为 ,你还能表示出那些数的算术平方根?写在下面,和同座交流一下4.试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.【活动2】例:求下列各数的算术平方根: (1)100;(2) 6449;(3) 0.0001 ;⑷ 0;[跟踪训练]1、 1.非负数a 的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是____2.41的算术平方根是( ) A .161 B .81 C .21 D .21±3.若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-494.小明房间的面积为10.8米2,房间地面恰好由120块相同的正方形地砖铺成,每块地砖的边长是 .[变式训练]想一想:下列式子表示什么意思?你能求出它们的值吗?[跟踪训练]____,_____===_____,3.7=,则x 的算术平方根是( )【活动3】思考:-4有算术算术平方根吗?为什么?总结:1.正数有 的算术平方根 0的算术平方根是 负数 2.对于a :a 0[跟踪训练]1.下列哪些数有算术平方根? 0.03, -161, π, 0, (-3)2,(-1)3具有双重非负性2.下列各式中无意义的是( ) A .7-B .7 C.7- D .()27--3. 下列运算正确的是( )A .33-=B .33-=-C=D3=-4.若下列各式有意义,在后面的横线上写出x 的取值范围:⑵x -5 5.若20a -=,则a= ,b= ,2a b -= .[提升能力]1.一个自然数的算术平方根为a ,那么与这个自然数相邻的下一个自然数的算术平方根是_______2.一个正方形的面积扩大为原来的4倍,它的边长变为原来的 倍,面积扩大为原来的9倍,它的边长变为原来的 倍,面积扩大为原来的n 倍,它的边长变为原来的 倍.3.那么,b a -有意义吗?4.要使代数式3x 的取值范围是( ) A. 2x ≠ B. 2x ≥ C. 2x > D. 2x ≤ 5.若()2130x y -++=,求,,x y z 的值。

七年级下册数学学案第六章《实数》导学案

七年级下册数学学案第六章《实数》导学案

第6章 实数6.1平方根(1)【学习目标】1.了解数的算术平方根的定义,会用根号表示一个数的算术平方根,并理解算术平方根的双重非负性2.能利用算术平方根的定义求一个非负数的算术平方根【学习重点】了解算术平方根的概念、性质、会用根号表示一个正数的算术平方根 【学习难点】理解算术平方根的双重非负性 [探究研讨]【活动1】学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?自学教材,回答问题:1. 一般地,如果一个___ 数x 的平方等于a ,即2x =a ,那么这个______叫做a 的_________.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:______的算术平方根是0. 记作0=2.由以上定义可知如果2x =a ,那么x 就叫a 的算术平方根吗?判断下列语句是否正确? ①5是25的算术平方根( ) ②-6是36的算术平方根( )③0.01是0.1的算术平方根( ) ④-5是-25的算术平方根( )3.3的算术平方根可表示为 ,4的算术平方根可表示为 ,你还能表示出那些数的算术平方根?写在下面,和同座交流一下4.试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.【活动2】例:求下列各数的算术平方根: (1)100;(2) 6449;(3) 0.0001 ;⑷ 0;[跟踪训练]1、 1.非负数a 的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是____2.41的算术平方根是( ) A .161 B .81 C .21 D .21±3.若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-494.小明房间的面积为10.8米2,房间地面恰好由120块相同的正方形地砖铺成,每块地砖的边长是 .[变式训练]想一想:下列式子表示什么意思?你能求出它们的值吗?[跟踪训练]____,_____===_____,3.7=,则x 的算术平方根是( )【活动3】思考:-4有算术算术平方根吗?为什么?总结:1.正数有 的算术平方根 0的算术平方根是 负数 2.对于a :a 0[跟踪训练]1.下列哪些数有算术平方根? 0.03, -161, π, 0, (-3)2,(-1)3具有双重非负性2.下列各式中无意义的是( ) A .7-B .7 C.7- D .()27--3. 下列运算正确的是( )A .33-=B .33-=- C=D3=-4.若下列各式有意义,在后面的横线上写出x 的取值范围:⑵x -55.若20a -=,则a= ,b= ,2a b -= .[提升能力]1.一个自然数的算术平方根为a ,那么与这个自然数相邻的下一个自然数的算术平方根是_______2.一个正方形的面积扩大为原来的4倍,它的边长变为原来的 倍,面积扩大为原来的9倍,它的边长变为原来的 倍,面积扩大为原来的n 倍,它的边长变为原来的 倍.3.那么,b a -有意义吗?4.要使代数式3x 的取值范围是( ) A. 2x ≠ B. 2x ≥ C. 2x > D. 2x ≤ 5.若()2130x y -++=,求,,x y z 的值。

【最新】人教版七年级数学下册第六章《实数》学案

【最新】人教版七年级数学下册第六章《实数》学案
当一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数
总结1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些 表示无理数
讨论当数从有理数扩充到实数以后,有理数关于相反 数和绝对值的意义同样适合于实数吗?
总结数 的相反数是 ,这里 表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0




应用迁移,巩固提高
例1把下列各数分别填入相应的集合里:
正有理数{}负有理数{}
正无理数{}负无理数{}
备选例题下列实数中是无理数的为()
A. 0 B. C. D.
例2..计算下列各式的值(1)
教学难点:体会数轴上的点与实数是一一 对应的;准确地进行实数范围内的运算
教学过程
教师活动
学生活动
复备标注
时间
分配




预习
复习
反馈
情境
导入
探究 使用计算器计算,把下列有理数写成小数 的形式,你有什么发现?
3, , , , ,




一、无理数概念
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
新人教版七年级数学下册第六章《实数》学案








知识与能力:了解无理数和实数的概念,知道实数和数轴上的点一一对应,;了解实数的运算法则及运算律,会进行实数的运算,
过程与方法:能估算无理数的大小,会用计 算器进行实数的运算
情感态度与价值观:发展学生的数感
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1平方根(第一课时)学习目标:1、 理解数的算术平方根的概念,并会用符号表示。

2、 理解平方与开平方是互为逆运算。

3、 会求一些非负数的算术平方根。

自学指导:认真学习课本40—46页的内容,完成下列要求:1、a 中被开方数a 的范围怎样。

0的算术平方根的意义。

2、完成例1,注意例1的书写格式。

3、学习例3的内容,注意50与7是怎样比较的。

4、自学后完成展示内容,20分钟后进行展示。

展示内容:1、 ∵ 22 = ∴ 4的算术平方根是 即∵ 2)43( = ∴169的算术平方根是 即 2、∵正数a 的算术平方根是a ,∴2的算术平方根是 ∵4的算术平方根是2,∴4 = 3、求下列各数的算术平方根:⑴ 0.0025 ⑵ 121 ⑶ 23 ⑷ 2(3)- ⑸ 74、求下列各式的值: (1)1 (2)259(3)()2-5、计算下列各式: (1)49 — 49 (2)1691—144 + 81(3)25×3616、求下列各等式中的正数x(1)2x = 169 (2) 42x — 121 = 07、比较下列各组数的大小。

(1)140与12 (2)215—与0.56.1 平方根(第二课时)一、学习目标 1、 理解平方根的概念 2、 了解开平方的定义 3、 掌握平方根的性质 二、自学指导认真阅读40-46页内容,完成下列要求:1、 说明:一个正数a 的算术平方根有__个,平方根有__个,并且互为____,0的平方根是___。

2、 负数有没有平方根,为什么? 3、 注意根号前的符号4、 自学20分钟后,进行展示活动 三、展示内容1、 填表:2、 计算下列各式的值:(1) (2)- (3)±(4)-3、 平方根起源于正方形的面积,若一个正方形的面积为A ,那么这个正方形的边长为多少?4、 判断下列说法是否正确(1)5是25的算术平方根( ) (2)65是3625的一个平方根( ) (3)()42-的平方根是-4( )(4)0的平方根与算术平方根都是0( ) 5、下列各式是否有意义,为什么?(1) -3(2)3-(3)()22-(4)10216、求下列各式的x的值:(1)2x=25(2)2x-81=0(3)252x=36(4)22x-18=06.2 立方根学习目标:1、理解并掌握立方根的概念,会用符号表示一个数的立方根。

2、会求一个数的立方根。

自学指导:自学课本49—52页内容,完成下列要求:1、理解立方根的概念,理解立方与开立方是互为逆运算。

2、独立完成49页探究内容,组内合作交流,归纳出正数、负数、0的立方根的特点。

与—3a的相等关系。

3、理解3a4、自学后完成展示内容,20分钟后进行展示。

展示内容:1、如果一个数的立方根等于,那么这个数叫做的或。

2、求一个数的的运算,叫做。

与互为逆运算。

3、正数的立方根是 数,负数的立方根是 数,0的立方根是 。

4、符号3a 中,3是 ,3a 中的 不能省略。

5、3a - —3a6、课本79页练习1、3、4题.7、求下列各数的立方根: (1)—8 (2)6427(3) ±125 (4) 81×9 8、求下列各式的值。

(1)—327102(2)—36427— (3)3064.0-(4)3121081⨯-(5)—3112598-6.3实数(第一课时)学习目标:1、了解实数的意义,能对实数按要求进行分类。

2、了解实数范围内,相反数、倒数、绝对值的意义。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

学习重点:理解实数的概念。

学习难点:正确理解实数的概念。

一、学前准备有理数 有理数二、探究新知1、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。

反过来,任何______小数或____________小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数, ____________小数又叫无理数, 3.14159265π= 也是无理数结论: _______和_______统称为实数你能举出一些无理数吗?2、试一试把实数分类π是____无理数,π-是____无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:实数3、我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______这样,无理数可以用数轴上的点表示出来(2)总结 ①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________ 当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______ 4、讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数a 的相反数是______,这里a 表示任意____________。

一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______ 三、学以致用例1、把下列各数分别填入相应的集合里:332278,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7378π---- 正有理数{ } 负有理数{ }正无理数{ } 负无理数{ }2、下列实数中是无理数的为( )A. 0 B. 3.5- D.3、的相反数是 ,绝对值4、绝对值等于 的数是 , 的平方是5、6、求绝对值练习:一、判断下列说法是否正确:1.实数不是有理数就是无理数。

( )2.无限小数都是无理数。

( )3.无理数都是无限小数。

( )4.带根号的数都是无理数。

( )5.两个无理数之和一定是无理数。

( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

( )二、填空1、2、3、比较大小=_________4、四、总结反思 这节课你有什么新发现?知道了哪些新知识? 无理数的特征:1.圆周率及一些含有的数 2.开不尽方的数3.有一定的规律,但循环的无限小数 注意:带根号的数不一定是无理数 五、自我测试1、 把下列各数填入相应的集合内:有理数集合{ } 无理数集合{ } 整数集合{ } 分数集合{ } 实数集合{ } 2、下列各数中,是无理数的是( )A. 1.732- B. 1.414 C.3 D. 3.143、已知四个命题,正确的有( )⑴有理数与无理数之和是无理数 ⑵有理数与无理数之积是无理数 ⑶无理数与无理数之积是无理数 ⑷无理数与无理数之积是无理数 A. 1个 B. 2个 C. 3个 D.4个4、若实数a 满足1aa=-,则( )A. 0a >B. 0a <C. 0a ≥D. 0a ≤ 5、下列说法正确的有( )⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数 ⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数都是负实数 ⑸非负实数中最小的数是0A. 2个B. 3个C. 4个D.5个62的相反数是_________ ,绝对值是_________⑶若(22x =,则x = _________⑵π-=_______7x =_____6.3实数(第二课时)了解实数的运算法则及运算律,会进行实数的运算1、 明确有理数与实数的对比 一、 自学指导自学课本84-96页内容 1、 回顾复习有理数的绝对值2、 小组交流课本84戊思考题,归纳实数的相反数和绝对值的结果3、 明白有理数的运算法则及运算性质在进行实数的运算中,同样适用 二、 展示内容1、 写出下列各数的相反数:(1)-6 (2)-3.14 (3)一2、||=___;若|a |=,则a =___.3、计算下列各式的值:(1)(+)-(2)3+2(3)(-)-2(-)4、 课本86页1、2、3、4课题:实数复习(第一课时)一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义:练习:1、—8—64 2、大于几个基本公式:(注意字母的取值范围)2)(a = ;2a = ; 33)(a = ; 3a -=练习:的值求、若332,01a a a +<; 的值)(,求、若332)(2m n n m n m -+-<无理数的定义: 实数的定义: 实数与 上的点是一一对应的练习:1、判断下列说法是否正确: 1.实数不是有理数就是无理数。

( ) 2.无限小数都是无理数。

( ) 3.无理数都是无限小数。

( ) 4.带根号的数都是无理数。

( )5.两个无理数之和一定是无理数。

( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

( )7.平面直角坐标系中的点与有序实数对之间是一一对应的。

( )2、把下列各数中,有理数为 ;无理数为3737737773.085094320225233、、、、、、、、、---π(相邻两个3之间的7逐渐加1个)三、知识巩固1、x 取何值时,下列各式有意义(1)x -4 : ;(2)34x +: ;(3)212-+x x :2、4)3(92=-y ()01253273=++x 3232223--++-四、知识提高1、已知732.13≈,477.530≈,(1)≈300 ;(2)≈3.0 ; (3)0.03的平方根约为 ;(4)若77.54≈x ,则=x练习:已知442.133≈,107.3303≈,694.63003≈,求(1)≈33.0 ; (2)3000的立方根约为 ;(3)07.313≈x ,则=x 2、若()x x -=-222,则x 的取值范围是⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧_________________________________________________________________________________实数a 3、已知cb a 、、位置如图所示,试化简 :(1)()22c b ac b a a --+-- (2)()22a b c b c b a -+-+-+4、已知115+的小数部分为m ,115-的小数部分为n ,则=+n m五、当堂反馈1、下列说法正确的是( )A 、16的平方根是4±B 、6-表示6的算术平方根的相反数C 、 任何数都有平方根D 、2a -一定没有平方根2、若335=-m ,则=m3、若0=+x x ,则x 的取值范围是 ;()x x -=-4433,则x 的取值范围是4、已知x x y 21121-+-+=,求y x 32+的平方根5、已知等腰三角形的两边长b a ,满足()013325322=-+++-b a b a ,求三角形的周长6、如果一个数的平方根是1+a 和72-a ,求这个数(选作)1、若b a ,为实数,则下列命题正确的是( ) A 、22,b a b a >>则若 B 、22,b a b a >>则若C 、22,b a b a >>则若D 、22,0b a b a a >>>则且若2、已知a a a =-+-43,求a 的值。

相关文档
最新文档