材料弹性模量及泊松比测试实验教案

合集下载

拉伸时材料弹性模量e和泊松比的测定

拉伸时材料弹性模量e和泊松比的测定

实验三电测法测定材料的弹性模量和泊松比弹性模量E 和泊松比μ是各种材料的基本力学参数,测试工作十分重要,测试方法也很多,如杠杆引伸仪法、电测法、自动检测法,本次实验用的是电测法。

一、 实验目的在比例极限内,验证胡克定律,用应变电测法测定材料的弹性模量E 和泊松比μ。

二、 实验仪器设备和试样1. 材料力学多功能实验台2. 静态电阻应变仪3. 游标卡尺4. 矩形长方体扁试件三、 预习要求1. 预习本节实验内容和材料力学书上的相关内容。

2. 阅读并熟悉电测法基本原理和电阻应变仪的使用操作。

四、实验原理和方法材料在比例极限范围内,正应力σ和线应ε变呈线性关系,即:εσE =比例系数E 称为材料的弹性模量,可由式3-1计算,即:εσ=E (3-1) 设试件的初始横截面面积为o A ,在轴向拉力F 作用下,横截面上的正应力为: o A F =σ 把上式代入式(3-1)中可得:εo A F E = (3-2) 只要测得试件所受的荷载F 和与之对应的应变ε,就可由式(3-2)算出弹性模量E 。

受拉试件轴向伸长,必然引起横向收缩。

设轴向应变为ε,横向应变为ε'。

试验表明,在弹性范围内,两者之比为一常数。

该常数称为横向变形系数或泊松比,用μ表示,即:εεμ'= 轴向应变ε和横向应变ε'的测试方法如下图所示。

在板试件中央前后的两面沿着试件轴线方向粘贴应变片1R 和'1R ,沿着试件横向粘贴应变片2R 和'2R 。

为了消除试件初曲率和加载可能存在偏心引起的弯曲影响,采用全桥接线法。

分别是测量轴向应变ε和横向应变ε'的测量电桥。

根据应变电测法原理基础,试件的轴向应变和横向应变是每台应变仪应变值读数的一半,即:r εε21= '='r εε21 实验时,为了验证胡克定律,采用等量逐级加载法,分别测量在相同荷载增量F ∆作用下的轴向应变增量ε∆和横向应变增量ε'∆。

材料弹性常数E、μ测定——电测法测定弹性模量E及泊松比μ

材料弹性常数E、μ测定——电测法测定弹性模量E及泊松比μ

实验名称:材料弹性常数 E、μ的测定班级: 姓名: 学号: 同组者:一、实验目的测量金属材料的弹性模量E和泊松比μ;验证单向受力胡克定律;学习电测法的根本原理和电阻应变仪的根本操作。

二、实验仪器和设备1.微机控制电子万能试验机;2.电阻应变仪;3.游标卡尺。

三、试件中碳钢矩形截面试件,名义尺寸为bt=(166)mm;2材料的屈服极限s 360MPa。

四、实验原理和方法1、实验原理:材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:E〔1〕上式中的比例系数E称为材料的弹性模量。

由以上关系,可以得到:P〔2〕EA材料在比例极限内,横向应变与纵向应变之比的绝对值为一常数:〔3〕上式中的常数称为材料的横向变形系数或泊松比。

本实验采用增量法,即逐级加载,分别测量在各相同载荷增量P作用下,产生的应变增量i 于是式〔2〕和式〔3〕分别写为:P〔4〕EiA0ii〔5〕ii根据每级载荷得到的 E i和i,求平均值:n EiE i1〔6〕nnii1〔7〕n以上即为实验所得材料的弹性模量和泊松比。

上式中n为加载级数。

2、实验方法〔1〕、电测法电测法根本原理:电测法是以电阻应变片为传感器, 通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。

试验时,将应变片粘贴在构件外表需测应变的部位, 并使应变片的纵向沿需测应变的方向。

当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。

这时,敏感栅的电阻由初始值R变为R+ R。

在一定范围内,敏感栅的电阻变化率R/R与正应变ε成正比,即:RR k上式中,比例常数k为应变片的灵敏系数。

故只要测出敏感栅的电阻变化率,即可确定相应的应变。

电阻应变仪测点桥的原理:电桥B、D端的输出电压为:UBDR1R4R2R3UR2)(R3R4)(R1当每一电阻分别改变R1, R2, R3,R4时,B、D端的输出电压变为:U(R1R1)(R4R4)(R2R2)(R3R3 )U(R1R1R2R2)(R3R3R4R4)略去高阶小量,上式可写为:U BD U R1R2 2(R1R2R3R4) (R1R2)R1R2R3R4在测试时,一般四个电阻的初始值相等,那么上式变为:UBD U(R1R2R3R4) 4R1R2R3R4得到:kUUBD(1234)4电阻应变仪的根本测量电路如果将应变仪的读数按应变标定,那么应变仪的读数为:4U BD(1234)kU〔2〕、加载方法——增量法与重复加载法增量法可以验证力与变形之间的线性关系,假设各级载荷增量P 相同,相应的应变增量也应大致相等,这就验证了虎克定律,如右图所示。

材料弹性常数E、μ的测定——电测法测定弹性模量E和泊松比μ

材料弹性常数E、μ的测定——电测法测定弹性模量E和泊松比μ

实验名称:材料弹性常数E 、μ的测定班级: 姓名: 学号: 同组者:一、实验目的1. 测量金属材料的弹性模量E 和泊松比μ;2. 验证单向受力胡克定律;3. 学习电测法的基本原理和电阻应变仪的基本操作。

二、实验仪器和设备1. 微机控制电子万能试验机;2. 电阻应变仪;3. 游标卡尺。

三、试件中碳钢矩形截面试件,名义尺寸为b ⨯t = (16⨯6)mm 2; 材料的屈服极限MPa s 360=σ。

四、实验原理和方法1、实验原理:材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:εσE = (1)上式中的比例系数E 称为材料的弹性模量。

由以上关系,可以得到:P E A σεε== (2) 材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数:εεμ'=(3) 上式中的常数μ称为材料的横向变形系数或泊松比。

本实验采用增量法,即逐级加载,分别测量在各相同载荷增量∆P 作用下,产生的应变增量∆εi 。

于是式(2)和式(3)分别写为:ii A PE ε∆∆=0 (4) ii i εεμ∆'∆= (5)根据每级载荷得到的E i 和μi ,求平均值:n E E ni i∑==1(6)nni i∑==1μμ (7)以上即为实验所得材料的弹性模量和泊松比。

上式中n 为加载级数。

2、实验方法(1)、电测法 电测法基本原理:电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。

试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需测应变的方向。

当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。

这时,敏感栅的电阻由初始值R 变为R+ΔR 。

在一定范围内,敏感栅的电阻变化率ΔR/R 与正应变ε成正比,即:Rk Rε∆= 上式中,比例常数k 为应变片的灵敏系数。

故只要测出敏感栅的电阻变化率,即可确定相应的应变。

电测法测定弹性模量和泊松比

电测法测定弹性模量和泊松比

一、实验目的1. 测量金属材料的弹性模量E 和泊松比μ;2. 验证单向受力虎克定律;3. 学习电测法的基本原理和电阻应变仪的基本操作。

二、实验仪器和设备1. 微机控制电子万能试验机;2. 电阻应变仪;3. 游标卡尺。

三、试件中碳钢矩形截面试件,名义尺寸为b ⨯t = (30⨯7.5)mm 2。

材料的屈服极限MPa s 360=σ。

四、实验原理和方法1、实验原理材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:εσE =(1)上式中的比例系数E 称为材料的弹性模量。

由以上关系,可以得到:PE A σεε== (2)材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数:εεμ'=(3) 上式中的常数μ称为材料的横向变形系数或泊松比。

本实验采用增量法,即逐级加载,分别测量在各相同载荷增量∆P 作用下,产生的应变增量∆εi 。

于是式(2)和式(3)分别写为:ii A PE ε∆∆=0 (4) ii i εεμ∆'∆=(5) 根据每级载荷得到的E i 和μi ,求平均值:n E E ni i∑==1(6)nni i∑==1μμ (7)以上即为实验所得材料的弹性模量和泊松比。

上式中n 为加载级数。

2、实验方法2.1电测法电测法基本原理:电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。

试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需测应变的方向。

当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。

这时,敏感栅的电阻由初始值R 变为R+ΔR 。

在一定范围内,敏感栅的电阻变化率ΔR/R 与正应变ε成正比,即:Rk Rε∆= 上式中,比例常数k 为应变片的灵敏系数。

故只要测出敏感栅的电阻变化率,即可确定相应的应变。

构件的应变值一般都很小,相应的应变片的电阻变化率也很小,需要用专门的仪器进行测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其基本测量电路为一惠斯通电桥。

材料弹性模量及泊松比的测定实验报告

材料弹性模量及泊松比的测定实验报告

材料弹性模量及泊松比的测定实验报告实验报告:材料弹性模量及泊松比的测定摘要:本实验旨在测定材料弹性模量及泊松比。

通过应力-应变曲线的测试和一系列实验数据的计算,得出了实验室中使用的材料的弹性模量和泊松比。

研究表明,该材料的弹性模量为 (数值) GPa,泊松比为 (数值)。

介绍:弹性模量和泊松比分别是材料学中的两个关键参数。

前者是一个材料的柔韧性和刚性的直接衡量,后者则是该材料规模下的变形能力。

通过测量这些参数,研究人员可以精确地了解材料的物理性质,从而促进工业和科学在各个领域实现应用。

方法和实验:采用标准测量方法,分别进行了弹性模量和泊松比的测试。

我们使用了实验室中标准化的设备,包括试样夹、应变计和拉伸机等等。

首先,我们将试样夹紧在两个夹具之间,并应用标准的拉伸力以测量应变。

随着施加的拉力增加,试样的应变会逐渐增加。

在此期间,应变计可以帮助测量应变的大小。

我们测试了不同施加的拉力,并记录了相应的应变值。

随后,我们使用应力-应变图分析了每个测试的数据。

通过计算纵向应力值,可以非常准确地得出材料的弹性模量。

根据一组关键的数学公式,我们还计算出了泊松比。

结果和讨论:经过多次测试和计算,我们得出了该试样的弹性模量和泊松比。

实验表明,该材料的弹性模量为 (数值) GPa,泊松比为 (数值)。

这两个值是十分重要的,因为他们可以描述出材料的一些关键物理特性,如材料的硬度、柔韧性、伸长性和脆性等等。

总结:本次实验结果表明,该材料的弹性模量和泊松比非常接近理论数值,从而验证了该实验方法的准确性。

这个实验为进一步研究和探索材料学提供了有力的数据和理论基础。

弹性模量和泊松比实验

弹性模量和泊松比实验
加载级数一般不少于5级。
2.材料在受拉伸或压缩时,不仅沿纵向 发生纵向变形,在横向也会同时发生缩 短或增大的横向变形。由材料力学知,在 弹性变形范围内,横向应变εy和纵向应 变εx成正比关系,这一比值称为材料的 泊松比。
y x
实验时,如同时测出纵向应变和横向应 变,则可由上式计算出泊松比μ
9.使试件上夹头夹紧后,开始加 载,单击“开始”。
10.每加一次载荷,持荷30秒,读出 并记下各测点的应变数值和载荷数值
11.第一遍测试结束后,界面如图8所示, 然后单击“下一步”。重新回到图2界面。 再按上述操作步骤重新开始实验,共做四 次。
12.将后三次的测试结果代入有 关公式进行计算,用最小二乘法 求出E,μ。
6.输入学号、姓名,图3,然后单击 “下一步”。
测量试样尺寸
用游标卡尺测量试 件截面积尺寸,分 别测量试样标距的 两端和中间截面积 尺寸,计算截面积 面积,取三次的平 均值作为初始横截 面面积。
7.输入试样宽度和厚度,图4。然后 单击“下一步”。
8.按界面提示要求进行载荷调零 和重设标距。
(四) 实验原理
1.测定材料弹性模量E一般采用比例极 限内的拉伸试验,材料在比例极限内服 从虎克定律,其荷载与变形关系为:
L PL0 EA0
E P 1
A0
为了验证力与变形的线性关系,采用增 量法逐级加载,分别测量在相同载荷增 量 ΔP作用下试件所产生的应变增量 Δε。
最大应力值要在材料的比例极限内进行 测试,故最大的应力值不能超过材料的 比例极限,
弹性模量E和泊松比µ的测定
(一) 实验目的 1.用电测方法测定低碳钢的弹性模量E 及泊松比µ; 2.验证虎克定律; 3.掌握电测方法的组桥原理与应用。

电测法测量材料弹性模量与泊松比

电测法测量材料弹性模量与泊松比

实验一、电测法测定材料弹性模量E、μ
一、实验目的
1、学习电测方法。

2、电测法测定材料的弹性模量E、μ。

二、实验仪器设备
1、弯曲梁实验装置。

2、数字式电阻应变仪。

三、实验装置与实验原理
图 1 图 4
1 、实验装置
见图1和图4,拔下销子3,卸下加载横梁8,卸下传感器9,从传感器上旋下加载压头7,然后将万向接头旋到加载系统5上,再将传感器旋到万向接头上,传感器下端与上夹头连接,下夹头安装在试验机架底座的孔内(注意:螺母不要旋紧,留有一定的活动距离,使其起到万向接头的作用;另外保护试件,以免试件被压弯),接着调整好上、下夹头之间的距离,将E、μ试件放入上、下夹头内,对准孔,插入销子,就可进行试验了。

图 5 图 6
2、实验原理
试件上沿着试件轴向和横向各粘贴两片应变片,补偿块上粘贴四片应变片见图5,按图6
接两个测量桥,对试件加载,记录载荷P ,并分别记录测得的轴向应变εP 和横向应变εP /

由公式 P A P E ε= 计算出弹性模量E ,由公式 p
p εεμ/= 计算出泊松比μ。

试验一---弹性模量和泊松比的测定实验

试验一---弹性模量和泊松比的测定实验

试验一弹性模量和泊松比的测定实验弹性模量和泊松比的测定实验大纲1. 通过材料弹性模量和泊松比的测定实验,使学生掌握测定材料变形的基本方法,学会拟定实验加载方案,验证虎克定律。

2. 电测材料的弹性模量和泊松比,使学生学会用电阻应变计和电阻应变仪测量材料的变形。

主要设备:材料试验机或多功能电测实验装置;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。

拉伸弹性模量(E)及泊松比(μ)的测定指导书一、实验目的1 、用电测法测量低碳钢的弹性模量 E 和泊松比μ2 、在弹性范围内验证虎克定律二、实验设备1 、电子式万能材料试验机2 、XL 2101C 程控静态电阻应变仪3 、游标卡尺三、实验原理和方法测定材料的弹性模量 E ,通常采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其关系式为:(1-1)由此可得(1-2 )式中: E :弹性模量P :载荷S0 :试样的截面积ε:应变ΔP 和Δε分别为载荷和应变的增量。

由公式(1-2)即可算出弹性模量 E 。

实验方法如图1-1所示,采用矩形截面的拉伸试件,在试件上沿轴向和垂直于轴向的两面各贴两片电阻应变计,可以用半桥或全桥方式进行实验。

1、半桥接法:把试件两面各粘贴的沿轴向(或垂直于轴向)的两片电阻应变计(简称工作片)的两端分别接在应变仪的A、B 接线端上,温度补偿片接到应变仪的B、C 接线端上,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变轴r ε值(或横向应变值横r ε)。

再将实际测得的值代入(1-2)式中,即可求得弹性模量 E 之值。

2、全桥接法:把两片轴向(或两片垂直于轴向)的工作片和两片温度补偿片按图1-1中(a)( 或(b)) 的接法接入应变仪的 A 、 B 、 C 、 D 接线柱中,然后给试件缓慢加载,通过电 阻应变仪即可测出对应载荷下的轴向应变值轴r ε(或垂直于轴向横r ε),将所测得的ε值代入(1-2)式中,即可求得弹性模量 E 之值。

试验一弹性模量和泊松比的测定实验

试验一弹性模量和泊松比的测定实验

试验一弹性模量和泊松比的测定实验弹性模量和泊松比的测定实验大纲1. 通过材料弹性模量和泊松比的测定实验,使学生掌握测定材料变形的基本方法,学会拟定实验加载方案,验证虎克定律。

2. 电测材料的弹性模量和泊松比,使学生学会用电阻应变计和电阻应变仪测量材料的变形。

主要设备:材料试验机或多功能电测实验装置;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。

拉伸弹性模量(E)及泊松比(μ)的测定指导书一、实验目的1?、用电测法测量低碳钢的弹性模量?E?和泊?松比?μ2?、在弹性范围内验证虎克定律二、实验设备1?、电子式万能材料试验机2?、XL 2101C 程控静态电阻应变仪3?、游标卡尺三、实验原理和方法测定材料的弹性模量?E?,通常采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其关系式为?:?(?1-1)由此可得?(?1-2?)式中:?E?:弹性模量 P?:载荷 S 0?:试样的截面积 ε:?应变Δ?P?和Δε分别为载荷和应变?的增量。

由公式(?1-2)即可算出弹性模量?E?。

实验方法如图?1-1所示,采用矩形截面的拉伸试件,在试件上沿轴向和垂直于轴向的两面?各贴两片?电阻应变计,可以用半桥或全桥方式进行实验。

1、半桥接法:把试件两面?各粘贴的沿轴向(或垂直于轴向)的两片电阻应变计(简称工作片)的两?端分别接在应变仪的?A 、B?接线端上,温度补偿片接到应变仪的?B 、C?接线端上,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变轴r ε值(或横向应变值横r ε)。

再将实际测得的值代入(1-2)式中,即可求得弹性模量?E?之值。

2、全桥接法:把两片轴向(或两片垂直于轴向)的工作片和两片温度补偿片按图1-1中(a)(?或(b))?的接法接入应变仪的?A?、?B?、?C?、?D?接线柱中,然后给试件缓慢加载,通过电?阻应变仪即可测出对应载荷下的轴向应变值轴r ε(或垂直于轴向横r ε),将所测得的ε值代入(1-2)式中,即可求得弹性模量?E?之值。

弹性模量,泊松比的测定方法

弹性模量,泊松比的测定方法

材料弹性模量E 和泊松比μ的测定弹性模量E 和泊松比μ是各种材料的基本力学参数,测试工作十分重要,测试方法也很多,如杠杆引伸仪法、千分表法、电测法等。

本节介绍电测法。

一、实验目的1.了解材料弹性常数E 、μ的定义。

2.掌握测定材料弹性常数E 、μ的实验方法。

3.了解电阻应变测试方法的基本原理和步骤。

4.验证虎克定律。

5.学习最小二乘法处理实验数据。

二、实验设备1.TS3861型静态数字应变仪一台; 2.NH-10型多功能组合实验架一台; 3.拉伸试件一根; 4.温度补偿块一块; 5.游标卡尺。

三、实验原理和方法弹性模量是材料拉伸时应力应变成线形比例范围内应力与应变之比。

材料在比例极限内服从虎克定律,其关系为:E σε=F Aσ=εεμ'=试件的材料为钢,宽H 和厚T 均由实际测量得出,形状为亚铃型扁试件如图2-17,应变片的K =2.08。

实验时利用NH-3型多功能组合实验架对试件施加轴向拉力,利用应变片测出试件的轴向应变ε和横向应变ε',利用②式计算出试件的轴向应力。

在测量轴向应变时,应将正反两面的轴向应变片接成全桥对臂测量线路。

利用式E σε=就可得到材料的E ,利用式εεμ'=得到材料的泊松比μ。

图2-17四、实验步骤1.实验准备检查试件及应变片和应变仪是否正常。

2.拟定加载方案根据材料手册,拟定加载方案。

(推荐方法: P 0=100N,△P =300N ,P MAX =1300N )。

3.组成测量电桥测定弹性模量E ,以前后两面轴线上的轴向应变片与温度补偿应变片组成对臂全桥接线方式进行测量如图2-18a 所示,测定泊松比μ,为了消除初曲率和加载可能存在的偏心引起的弯曲影响,同样采用对臂全桥接线方式将两个轴向应变片和两个纵向应变片分别组成两个桥路进行测量,测出试件的轴向应变ε和横向应变ε'。

如图2-18a 、b 所示。

4.进行实验5.检查实验数据6.自主设计数据记录表图2-18 五、实验结果处理1.利用最小二乘法拟合材料的弹性常数E和μ。

电测法测定材料弹性模量E和泊松比μ

电测法测定材料弹性模量E和泊松比μ

电测法测定材料弹性模量E 和泊松比μ一.实验目的用电阻应变片测量材料弹性模量E 和泊松比μ。

二.实验仪器和设备1.拉压实验装置一台2.YJ-4501静态数字电阻应变仪一台3.板试件一根(已粘贴好应变片)三.实验原理拉压实验装置见图1,它由座体1,蜗轮加载系统2,支承框架3,活动横梁4,传感器5和测力仪6等组成。

通过手轮调节传感器和活动横梁中间的距离,将万向接头和已粘贴好应变片的试件安装在传感器和活动横梁的中间,见图2。

图1图2材料在弹性阶段服从虎克定律,其关系为E若已知载荷P 及试件横截面面积A ,只要测得试件表面轴向应变εp 就可得pAP E,若同时测得试件表面横向应变εp ’,则pp '。

E 、u 测定试件见图3,是由铝合金(或钢)加工成的板试件,在试件中间的两个面上,沿试件的轴线方向和横向共粘贴四片应变片,分别为R 1、R 2、R 1‘、R 2’,为消除试件初弯曲和加载可能存在的偏心影响,采用全桥接线法。

由轴向应变测量桥和横向应变测量桥可分别测得εP 和εP ‘,也就可计算得到弹性模量E 和泊松比u 。

四.实验步骤1.试件横截面尺寸为:铝合金材料,宽15mm ,厚 2.5mm 或钢材料,宽15mm ,厚2mm 。

2.接通测力仪电源, 将测力仪开关置开。

3.将应变片按图3全桥接线法接至应变仪通道上(应变仪操作可参考应变仪使用说明书)。

4.检查应变仪灵敏系数是否与应变片一致,若不一致,重新设置。

5.实验:a .本实验取初始载荷P 0=0.5KN (500N ),P max =4.5KN (4500N ),ΔP=0.5KN (500N ),共分8次加载;b .加初始载荷0.5KN (500N ),通道置零;c .逐级加载,记录各级载荷作用下的读数应变。

实验数据记录可参考下面记录表。

图3五.实验结果处理1.平均值法根据记录表记录的各项数据,每级相减,得到各级增加量的差值(从这些差值可看出力与应变的线性关系),然后,计算这些差值的算术平均值ΔP 均、ΔεP 均、ΔεP 均‘,可由下式计算出弹性模量E 和泊松比u均均P OA P E均‘均P P 2.最小二乘法ni pini iPiE121ni Pini PiPi121‘六.思考题1.试件尺寸、形状对测定弹性模量E和泊松比u有无影响?为什么?2.试件上应变片粘贴时与试件轴线出现平移或角度差,对试验结果有无影响?3.本实验为什么采用全桥接线法?4.比较本实验的数据处理方法。

弹性模量E及泊松比的测定

弹性模量E及泊松比的测定

实验三 弹性模量E 及泊松比υ的测定一、实验目的1.在比例极限内,测定钢材的弹性模量E 和泊松比υ,并验证虎克定律。

2.了解电测法的基本原理和方法,初步熟悉电阻应变仪的使用方法。

二、实验设备1.1—5—2型拉力试验机 2.静态数字应变仪 三、实验概述金属杆件在承受拉伸时,应力在比例极限以内,它与应变的关系遵循虎克定律: σ=E ε (1)式中,P 为拉伸载荷,A 0为试件的原始横截面积,ε为沿拉力方向的线应变或称纵向线应变,E 为材料的弹性模量。

由材料力学还可知,在比例极限内,试件的横向线应变与纵向线应变之间存在着一定的关系。

即有:ε横=-υε纵 (2) 式中的υ称为横向变形系数或泊松比。

弹性模量E 与泊松比υ是材料的两个重要力学性能数据。

在杆件的变形计算、稳定计算以及用实验方法测定构件的应力时,都是重要的计算依据。

因此,测定E 和υ是具有实际意义的。

本实验用板状拉伸试件进行。

在试件的正、反面各贴上纵向电阻应变片R x 和横向电阻应变片R y 各一个,如图3所示,令纵向为x 轴,横向为y 轴。

其上每个电阻应变片都是工作片,分别与温度补偿片按半桥测量法接入桥路进行测量。

由(1)、(2)式,若在载荷P 时测得各片的应变值,根据(3)、(4)式计算E υ。

为了检验实验进行是否正常,验证虎克定律,并减少测试中的误差,一般采取“增量法”进行实验。

所谓增量法,就是把欲加的最大载荷分为若干等份,逐级加载来测量试件的变形或应变。

若各级载荷增量相同并等于△P ,各片应变增量分别为△εx ,△εy ,则有:实验正常,在各级载荷增量P ∆相等时,各片相应的应变增量也基本相等,这就验证了虎克定律。

-13-A P=σX A PE ε⋅=0x yεευ−=)4()3(x A PE ε∆⋅∆=0)5()6(xy x y εεεευ∆∆=∆∆−=为了消除试验机机构之间的空隙与加载机构的间隙,在实验开始时,必须加一定量的初载荷。

测量金属材料的弹性模量和泊松比

测量金属材料的弹性模量和泊松比

测量金属材料的弹性模量和泊松比一、实验目的1、测定低碳钢弹性模量E 和泊松比µ。

2、学习掌握电测法的基本原理和电阻应变仪的操作。

3、熟悉测量电桥的应用。

掌握应变片在测量电桥中的各种接线方法。

二、实验设备和仪器1、材料力学多功能实验台2、便携式超级应变仪3、载荷显示仪4、游标卡尺三、实验原理和方法材料在线弹性范围内服胡克(Hooke)定律,应力和应变成正比关系。

单向拉伸时,其形式为:σ=Eε(式1)式中E 为弹性模量。

在σ-ε曲线上,E 由弹性阶段直线的斜率确定,它表征材料抵抗弹性变形的能力。

E 越大,产生一定变形所需的应力越大。

工程上常把EA 称作杆件材料的抗拉(压)刚度。

E 是弹性元件选材的重要依据,是力学计算中的一个重要参量。

(式2)00PL E A L σ==ε△试件轴向拉伸时,产生纵向伸长,横向收缩。

实验表明在弹性范围内,横向应变ε’与轴向应变ε,二者之比为一常数,其绝对值称为横向变形系数或称为泊松比,用µ来表示,即µ=(式3)ε′ε本实验采用电测法来测量E、µ。

试件采用矩形截面试件,布片方式,如图1。

在试件中央截面上,沿前后两面的轴线方向分别对称地布有一对轴向应变片R 1、R 1’,以测量轴向应变ε,一对横向应变片R 2、R 2’以测量横向应变ε’。

图1拉伸试件及布片图1、测弹性模量E 由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。

为了尽可能减少测量误差,实验宜从初载P 0(P 0≠0)开始,与P 0对应的应变仪读数εd 可预调到零,也可设定一个初读数。

采用增量法,分级加载,分别测量在各相同载荷增量ΔP 作用下,产生的应变增量Δε,并求Δε的平均值。

设试件初始横截面面积为A 0,又因ε=ΔL/L 0,则式2可写成(式4)0PE A =ε△△均上式即为增量法测E 的计算公式(Δε均为试件实际轴向应变增量的平均值)。

增量法可以验证力与变形之间的线性关系。

材料弹性模量E和泊松比实验测定

材料弹性模量E和泊松比实验测定

材料弹性模量E和泊松⽐实验测定实验三材料弹性模量E 和泊松⽐µ的测定实验⼀、实验⽬的1、测定常⽤⾦属材料的弹性模量E 和泊松⽐µ。

2、验证胡克(Hooke )定律。

⼆、实验仪器设备和⼯具1、组合实验台中拉伸装置2、XL2118系列⼒&应变综合参数测试仪三、实验原理和⽅法试件采⽤矩形截⾯试件,电阻应变⽚布⽚⽅式如图3-1。

在试件中央截⾯上,沿前后两⾯的轴线⽅向分别对称的贴⼀对轴向应变⽚R1、R1ˊ和⼀对横向应变⽚R2、R2ˊ,以测量轴向应变ε和横向应变εˊ。

补偿块图 3-1 拉伸试件及布⽚图1、弹性模量E 的测定由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是⾮线性的。

为了尽可能减⼩测量误差,实验宜从⼀初载荷00(0)P P ≠开始,采⽤增量法,分级加载,分别测量在各相同载荷增量P ?作⽤下,产⽣的应变增量ε?,并求出ε?的平均值。

设试件初始横截⾯⾯积为0A ,⼜因L L ε=?,则有A E P ε??=0上式即为增量法测E 的计算公式。

式中 0A — 试件截⾯⾯积ε? — 轴向应变增量的平均值组桥⽅式采⽤1/4桥单臂测量⽅式,应变⽚连接见图3-2。

补偿⽚图3-2 1/4桥连接⽅式实验时,在⼀定载荷条件下,分别对前、后两枚轴向应变⽚进⾏单⽚测量,并取其平均值'11()2εεε+=。

显然ε代表载荷P 作⽤下试件的实际应变量。

⽽且前后两⽚应变⽚可以相互抵消偏⼼弯曲引起的测量误差。

2、泊松⽐µ的测定利⽤试件上的横向应变⽚和纵向应变⽚合理组桥,为了尽可能减⼩测量误差,实验宜从⼀初载荷00(0)P P ≠开始,采⽤增量法,分级加载,分别测量在各相同载荷增量△P 作⽤下,横向应变增量ε'?和纵向应变增量ε?。

求出平均值,按定义'εµε= 便可求得泊松⽐µ。

四、实验步骤1、明确试件尺⼨的基本尺⼨,宽30mm ,厚5mm 。

2、调整好实验加载装置。

材料弹性模量及泊松比的测定实验报告

材料弹性模量及泊松比的测定实验报告

材料弹性模量及泊松比的测定实验报告材料弹性模量及泊松比的测定实验报告引言:弹性模量和泊松比是材料力学性质的重要参数,对于材料的设计和工程应用具有重要意义。

本实验旨在通过测定材料的弹性模量和泊松比,了解材料的力学性能,为工程应用提供参考。

实验原理:弹性模量是材料在受力时对应变的抵抗能力,是表征材料刚度的指标。

泊松比则是材料在受力时横向收缩与纵向伸长之间的比值,是表征材料变形性能的参数。

实验步骤:1. 实验材料准备:选取一种材料样本,如金属棒或弹簧。

2. 弹性模量测定:将材料样本固定在实验台上,用一定的力对其施加拉伸或压缩力,测量应变和应力的关系,通过斜率计算弹性模量。

3. 泊松比测定:将材料样本固定在实验台上,施加纵向力,测量纵向应变,再施加横向力,测量横向应变,通过应变比值计算泊松比。

实验结果:根据实验数据计算得出材料的弹性模量和泊松比。

实验结果显示,材料的弹性模量为X GPa,泊松比为X。

讨论与分析:根据实验结果,我们可以对材料的力学性能进行分析和讨论。

弹性模量越大,材料的刚度越高,对外力的抵抗能力越强。

而泊松比则反映了材料在受力时的变形性能,泊松比越小,材料的变形能力越差,对外力的响应越迟缓。

实验误差及改进:在实验过程中,可能会存在一定的误差。

例如,由于材料的制备和实验条件的限制,实际测量值与理论值之间可能存在一定的偏差。

为了减小误差,可以增加样本数量,进行多次测量取平均值,或者改进实验装置,提高测量精度。

实验应用:弹性模量和泊松比是材料工程中常用的参数,对于材料的设计和工程应用具有重要意义。

例如,在建筑工程中,需要选取合适的材料来承受外力,弹性模量和泊松比的测定可以帮助工程师选择合适的材料。

此外,在材料科学研究中,弹性模量和泊松比的测定也是评价材料性能的重要手段。

结论:通过本实验的测定,我们成功地得到了材料的弹性模量和泊松比。

这些参数对于材料的力学性能研究和工程应用具有重要意义。

实验结果与理论值存在一定的偏差,但通过改进实验方法和提高测量精度,可以进一步提高实验结果的准确性。

材料弹性模量及泊松比测试实验教案.

材料弹性模量及泊松比测试实验教案.

材料弹性模量及泊松比测试实验教学内容:一、电测法原理 1、应变片测试原理 2、惠斯登路桥应用(1)1/4桥 温度补偿片(R 2) (2)半桥 (3)全桥二、应变片的粘贴步骤 1、选片2、测点表面的清洁处理3、贴片4、干燥处理5、接线6、防潮处理三、材料弹性模量和泊松比的测定包括实验目的、实验内容、实验(设计)仪器设备和材料清单、实验原理、实验步骤及结果测试等。

四、应变仪的操作方法 教学要求:理解电测法的原理、应变片的粘贴步骤;掌握材料弹性模量和泊松比测定的原理及应变仪的使用。

重点:电测法原理,实验原理,应变仪的使用。

一、电测法原理1、应变片测试原理电测法是工程上常用的对实际构件进行应力分析实验的方法之一。

它是通过贴在构件被测点处的电阻应变片(以下简称应变片),将被测点的应变值转换为应变片的电阻变化,再利用电阻应变仪测出应变片的电阻变量,并直接转换输出应变值,然后依据虎克定律计算出构件被测点的应力值的大小。

在电测法中,主要设备是电阻应变片和电阻应变仪。

其中,电阻应变片是将应变变化量转变成电阻变化量的转换组件。

应变电测发具有感受元件重量轻,体积小;量测系统信号传递迅速、灵敏度高、可遥感,便于与计算机连用及实现自动化等优点。

它的工作原理很简单,是依据金属丝的电阻R 与其本身长度L 成正比,与其横截面积A 成反比这一物理学定律而得,用公式表示其电阻即为:/(R L A ID ρ=为电阻系数)当电阻丝受到轴向拉伸或压缩时,上式中的L 、A 、p 均将发生变化。

若此时对上式两端同取对数,即有:ln ln ln ln R L A ρ=+-对其进行数学求导,有:////dR R d dL L dA A ρρ=+-因为金属电阻线受轴向拉伸(或压缩)作用时,式中:所以上式可写成:并令式中:u--电阻丝材料的泊松比K。

—单丝灵敏系数。

则:对大多数电阻丝而言,K0为常量,对丝栅状应变片或箔式应变片,考虑到已不是单根丝,故改用灵敏系数K代替代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料弹性模量及泊松比测试实验
教学内容:
一、电测法原理 1、应变片测试原理 2、惠斯登路桥应用
(1)1/4桥 温度补偿片(R 2) (2)半桥 (3)全桥
二、应变片的粘贴步骤 1、选片
2、测点表面的清洁处理
3、贴片
4、干燥处理
5、接线
6、防潮处理
三、材料弹性模量和泊松比的测定
包括实验目的、实验内容、实验(设计)仪器设备和材料清单、实验原理、实验步骤及结果测试等。

四、应变仪的操作方法 教学要求:
理解电测法的原理、应变片的粘贴步骤;掌握材料弹性模量和泊松比测定的原理及应变仪的使用。

重点:电测法原理,实验原理,应变仪的使用。

一、电测法原理
1、应变片测试原理
电测法是工程上常用的对实际构件进行应力分析实验的方法之一。

它是通过贴在构件被测点处的电阻应变片(以下简称应变片),将被测点的应变值转换为应变片的电阻变化,再利用电阻应变仪测出应变片的电阻变量,并直接转换输出应变值,然后依据虎克定律计算出构件被测点的应力值的大小。

在电测法中,主要设备是电阻应变片和电阻应变仪。

其中,电阻应变片是将应变变化量转变成电阻变化量的转换组件。

应变电测发具有感受元件重量轻,体积小;量测系统信号传递迅速、灵敏度高、可遥感,便于与计算机连用及实现自动化等优点。

它的工作原理很简单,是依据金属丝的电阻R 与其本身长度L 成正比,与其横截面积A 成反比这一物理学定律而得,用公式表示其电阻即为:
/(R L A ID ρ=为电阻系数)
当电阻丝受到轴向拉伸或压缩时,上式中的L 、A 、p 均将发生变化。

若此时对上式两端同取对数,即有:
ln ln ln ln R L A ρ=+-
对其进行数学求导,有:
////dR R d dL L dA A ρρ=+-
因为金属电阻线受轴向拉伸(或压缩)作用时,式中:
所以上式可写成:
并令
式中:u--电阻丝材料的泊松比
K。

—单丝灵敏系数。

则:
对大多数电阻丝而言,K0为常量,对丝栅状应变片或箔式应变片,考虑到已不是单根丝,故改用灵敏系数K代替代。

可见,应变片的电阻变化率与应变值呈线性关系。

当把应变片牢固粘贴于试件上,使之与试同步变形时,便可由式(中的电量—非电量转换关系调得试件的应变。

2、惠斯登路桥应用
图1 惠斯登电桥
(1)1/4桥温度补偿片(R
)
2
(2)半桥
(3)全桥
二、应变片的粘贴步骤
1、选片
2、测点表面的清洁处理
3、贴片
4、干燥处理
5、接线
6、防潮处理
三、材料弹性模量和泊松比的测定
1、实验目的
(1)用电阻应变片测量材料弹性模量E 和泊松比μ; (2)验证虎克定律;
(3)掌握电测方法的组桥原理与应用。

2、实验内容
用应变电测法测定钢材的弹性模量E 和泊松比μ。

3、实验(设计)仪器设备和材料清单
(1)1。

YE15002 多功能材料力学电测实验台。

(2)YE2538A 程控静态应变仪一台。

(3)试件一根(已粘贴好应变片)。

(4)游标卡尺。

4、实验原理
实验装置见图1-1,它由手轮(施加力)、试件、支承框架、拉压力传感器等组成。

材料在弹性阶段服从虎克定律,其关系为ε
σ
=
E ,若已知载荷P 及试件横截面面积A ,只要测得试件表面轴向应变εp 就可得p
A P
E ε=, 若同时测得试件表面横向应变εp ’
,则p
p εεμ'=。

图3 实验装置
1.手轮(施加力);
2.试件;
3. 支承框架;
4.拉压力传感器
E 、u 测定试件见图1-2,是由铝合金(或钢等材料)加工成的板试件,在试
件中间的两个面上,沿试件的轴线方向和横向共粘贴四片应变片,分别为R 1、R 2、R 1′、R 2′,采用1/4桥接线法。

由轴向应变测量桥和横向应变测量桥可分别测得εp 和εp ′,也就可计算得到弹性模量E 和泊松比u 。

图1-2 试件、应变片布置图及桥路布置图
5、实验步骤及结果测试
(1)实验步骤
①用游标卡尺测量试件横截面尺寸。

②接通测力仪电源, 将测力仪开关置开。

③按图1-2将应变片按1/4接线法接至应变仪通道上(应变仪操作可参考应变仪使用说明书)。

④检查应变仪灵敏系数是否与应变片一致,若不一致,重新设置。

⑤实验:
a.本实验取初始载荷P 0=0.5kN (50N ),P max =1.2kN (1200N ),ΔP=0.2kN (100N 或150N 或200N ),共分6次加载;
b.加初始载荷0.2kN (200N ),通道置零;
c.逐级加载,记录各级载荷作用下的读数应变。

实验数据记录可参考下面记录表。

⑥试验结束后,实验机卸载,切断应变仪电源。

取下试件。

(2)实验结果处理
根据记录表记录的各项数据,每级相减,得到各级增加量的差值(从这些差值可看出力与应变的线性关系),然后,计算这些差值的算术平均值ΔP 均、ΔεP 均 、
ΔεP 均′
,可由下式计算出弹性模量E 和泊松比u 。



P O A P E ε∆∆=
均均P P εεμ∆∆=' 6、考核形式
(1)考核的方式
指导教师对每一个实验学生进行考核,并要求学生认真完成实验报告,考核成绩分为:优秀、良好、中等、及格、不及格五等。

(2)成绩评定标准
A 、认真、正确完成实验,实验报告写的字迹秀美,条理阐述清楚、得当,程序完善,顺理成章。

出勤率达90%以上,能够熟练掌握各种测量仪器的应用者,考核成绩定为优秀;
B 、认真、正确完成实验,实验报告写的字迹工整,条理阐述清楚,程序完
善。

出勤率达80%以上,能够比较熟练掌握各种测量仪器的应用者,考核成绩定为良好;
C、较为认真地完成实验,实验报告写的比较好,条理阐述比较清楚,符合程序规定。

出勤率达70%以上,能较好的掌握各种测量仪器的应用者,考核成绩定为中等;
D、较为认真地完成实验,实验报告写的字迹比较潦草,但条理阐述还算清楚。

出勤率达60%以上,会使用各种测量仪器者,考核成绩定为及格;
E、不认真做实验或抄袭别人的实验报告,出勤率不足60%,不能正确的使用各种测量仪器者,考核成绩定为不及格。

7、实验报告要求
试验报告应包括:试验名称、试验目的、仪器设备名称、规格、量程,试验记录及结果等。

8、思考题
1.试件尺寸、形状对测定弹性模量E和泊松比u有无影响?为什么?
2.试件上应变片粘贴时与试件轴线出现平移或角度差,对试验结果有无影响?
记录表
序号
读数应变
轴向应变(με)横向应变(με)
载荷
P ΔPεPd1εPd2(εPd1+εPd2)/2ΔεPdεPd1′εPd2′
(εPd1′+εPd′2)
/2
ΔεPd′
初载
1
2
3
4
5
6
7
8
均值ΔP均Δεp均Δεp均‘实验结果:弹性模量E= 泊松比u=。

相关文档
最新文档