因数和倍数奥数题及标准答案

合集下载

小学奥数题库《数论》因数和倍数-倍数-1星题(含解析)

小学奥数题库《数论》因数和倍数-倍数-1星题(含解析)

数论-因数和倍数-倍数-1星题课程目标知识提要倍数•定义对于整数a和b,如果a∣b,我们就称b是a的倍数。

精选例题倍数1. 有n个自然数相加:1+2+⋯+n=aaa,那么a=.【答案】36【分析】1+2+3+⋯+n=(1+n)n÷2=111a,(1+n)n=2×3×37×a,a取1~9.n 和n+1中有一个是37的倍数,如果n=37k,那么37k2+k=6a⩽54,所以k=1,此时a不是整数.只有n+1=37k,那么37k2−k=6a,同样地k只能能取1,此时a=6.所以n= 36.2. 2021年3月11日,日本发生里氏9级大地震.在3月15日,日本本州岛东海岸附近海域再次发生5级地震.里氏地震级数每升2级,地震释放能量扩大到原来的1000倍,那么3月11日的大地震释放能量是3月15日东海岸地震的倍.【答案】1000000【分析】1000×1000=10000003. 一个四位数2abc扩大3倍后,变成了abc8,这个四位数是.【答案】2856【分析】根据题意,c×3的个位数字是8,知道c=6,b×3的个位数字是6−1=5,所以b= 5,a×3的个位数字是5−1=4,所以a=8,因此这个四位数是2856.4. 阿凡达有一个出了故障的计算器.当翻开电源时,视窗上显示数字0.如果按下“+〞键那么它会加上51;按下“−〞键那么它会减去51;按下“×〞键那么它会加上85;按下“÷〞键那么它会减去85;而其他的按键那么无效.阿凡达翻开计算器电源,任意操作上述按键,那么他可以得到最接近2010的数是.【答案】2006【分析】该题关键在于发现51与85均为17的倍数,因为初始显示是0,那么不管怎么按+,−,×,÷四个按键,得到的一定是17的倍数,而最接近2010的17的倍数为2006,并且2006= 17×118是可以操作出来的.如按23次“×〞键,再按一次“+〞键.5. 〔1〕1~1000中有个3的倍数.〔2〕1~100中有个是2的倍数也是3的倍数的数.【答案】〔1〕333;〔2〕67【分析】〔1〕高斯记号作为“记号〞的应用实例,[1000÷3]=333;〔2〕2的倍数的个数:[100÷2]=50;3的倍数的个数:[100÷3]=33;6的倍数的个数:[100÷6]=16;所以50+33−16=67.6. abc是三位数,假设a是奇数,且abc是3的倍数,那么最小是.【答案】102【分析】a为奇数,且要求最小,那么a=1,b=0.又要求为3的倍数,那么a+b+c为3的倍数,所以b=0,c=2.7. 一个五位数恰好等于它各位数字和的2007倍,那么这个五位数是多少?【答案】36126;54189【分析】这个五位数是abcde,那么abcde=(a+b+c+d+e)×2007.因2007=3×3×223=9×223,所以abcde是9的倍数,那么数字和也是9的倍数,(a+b+ c+d+e)数字和的可能是:9、18、27、36、45.逐一试验.数字和是9,那么数是:2007×9=18063,不符;数字和是18,那么数是:2007×18=36126,符合;数字和是27,那么数是:2007×27=54189,符合;数字和是36,那么数是:2007×36=72252,不符;数字和是45,那么数是:2007×45=90315,不符.8. 在算式“路亨+路亨=刘吉吉〞中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.刘吉吉是8的倍数,那么四位数亨吉刘路是多少?【答案】2417【分析】易知“刘是〞1,且“吉〞是偶数.那么“刘吉吉〞可能是100、122、144、166、188.其中只有144是8的倍数.那么算式应该是72+72=144,要求的四位数是2417.9. 以下哪些数是2的倍数?哪些是3的倍数?哪些是5的倍数?12 46 60 120 35 320 42 165 3120【答案】见解析.【分析】2的倍数:12 46 60 120 320 42 3120;3的倍数:12 60 120 42 165 3120;5的倍数:60 120 35 320 165 3120.10. 在算式12×23▫=▫32×21的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.【答案】12×231=132×21【分析】21有质因数7,所以23▫应该是7的倍数,只能填1或8,经检验,应填1.11. 在1、2、3、4、⋯、2002、2003这2003个自然数中,〔1〕最多可以取出多少个数,使得其中任意两个数的和都是160的倍数?〔2〕写出你所取的所有数.【答案】〔1〕13〔2〕80,240,400,560,720,880,1040,1200,1360,1520,1680,1840,2000【分析】因为选出的数中任意两个数的和都是160的倍数,那么有两种情况,第一种:这些数都是160的倍数,第二种:这些数除以160的余数都是80.从1~2003之间,满足第一种情况]=12个.满足第二种情况的数共有13个,所以最多为13个.的数共有[200316012. 一个三位数恰好等于它各位数字和的27倍,那么这个三位数是多少?【答案】243;486【分析】这个四位数是abc,那么abc=(a+b+c)×27.因27=3×3×3=9×3,所以abc是9的倍数,那么数字和也是9的倍数,(a+b+c)数字和的可能是:9、18、27、36、45.逐一试验.数字和是9,那么数是:27×9=243,符合;数字和是18,那么数是:27×18=486,符合;数字和是27,那么数是:27×27=729,不符;13. 从1~10这10个自然数中,每次取出两个不同的自然数,使它们的和是5的倍数.一共有多少种不同的取法?【答案】9【分析】从1~10这10个自然数中,每次取出两个不同的自然数有10×9÷2=45种,和是5的倍数有三类可能,第一类,和是5,有1+4,2+3;第二类,和是10,是5的2倍数,有1+9,2+8,3+7,4+6;第三类,和是15,是5的3倍数,有5+10,6+9,7+8,把它们的数加起来共9种.14. 一个四位数恰好等于它各位数字和的207倍,那么这个四位数是多少?【答案】3726;5589【分析】这个四位数是abcd,那么abcde=(a+b+c+d)×207.因207=3×3×23=9×23,所以abcd是9的倍数,那么数字和也是9的倍数,(a+b+c+ d)数字和的可能是:9、18、27、36、45.逐一试验.数字和是9,那么数是:207×9=1863,不符;数字和是18,那么数是:207×18=3726,符合;数字和是27,那么数是:207×27=5589,符合;数字和是36,那么数是:207×36=7452,不符.15. 如图,点B 是正方形一条边上的四等分点.连结AB 、BC ,点D 、E 又是AB 、BC 的四等分点,连结CD 、DE .如果正方形边长为24厘米,那么:〔1〕三角形ABC 的面积是多少?〔2〕三角形CDE 的面积是多少?【答案】〔1〕288平方厘米;〔2〕162平方厘米.【分析】〔1〕△ABC 的面积是正方形面积的一半,即242÷2=288(平方厘米); 〔2〕△BCD 的面积是△ABC 面积的34,即34×288=216(平方厘米); △CDE 的面积是△BCD 面积的34,即 34×216=162(平方厘米). 16. 〔1〕1~100中有个是3的倍数也是5的倍数的数.〔2〕计算{1÷5}+{2÷5}+{3÷5}+⋯+{19÷5}+{23÷5}.【答案】〔1〕47;〔2〕9.2【分析】〔1〕3的倍数的个数:[100÷3]=33;5的倍数的个数:[100÷5]=20;15的倍数的个数:[100÷15]=6;所以33+20−6=47.〔2〕一共有23÷5=4⋯⋯3.原式=(0.2+0.4+0.6+0.8+0)×4+0.2+0.4+0.6=9.2. 17. 猜猜看小侦探柯楠在侦破一个案件的时候,发现与案件有关的一个保险箱设有一个六位数的密码是:A B C D E F他又发现主人为了防范忘记密码在自己的日记本中做了如下的提示,A 是5的最大因数,B 的所有因数是1,2,4,8,C 是最小的自然数.D 只有一个因数,E 既是质数,又是偶数,F 既是9的因数又是9的倍数.你能帮助小侦探找到密码翻开这个保险箱吗?并说明你推理的理由是什么?【答案】580129;理由见解析.【分析】A 是5的最大因数,因为5的最大因数是5,所以A 是5;B 的所有因数是1,2,4,8,根据一个数最大的因数是它本身,可知B 是8;C 是最小的自然数,最小的自然数是0,所以C 是0;D 只有一个因数,是1;E 是2;F 既是9的因数又是9的倍数,所以F 是9;由此即可写出答案.。

五年级奥数题:因数与倍数

五年级奥数题:因数与倍数

因数与倍数相关习题(1)一、填空题1.28的所有因数之和是_____.2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.3. 一个两位数,十位数字减个位数字的差是28的因数,十位数字与个位数字的积是24.这个两位数是_____.4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.5. 两个自然数的和是50,它们的最大公因数是5,则这两个数的差是_____.6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.10. 含有6个因数的两位数有_____个.11.写出小于20的三个自然数,使它们的最大公因数是1,但两两均不互质,请问有多少组这种解?12.和为1111的四个自然数,它们的最大公因数最大能够是多少?13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?14. 已知a 与b 的最大公因数是12,a 与c 的最小公倍数是300,b 与c 的最小公倍数也是300,那么满足上述条件的自然数a ,b ,c 共有多少组?(例如:a =12、b =300、c =300,与a =300、b =12、c =300是不同的两个自然数组)———————————————答 案——————————————————————答 案:1. 5628的因数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的因数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2⨯2⨯7,所以28的因数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23⨯29,所以这班师生每人种的棵数只能是667的因数:1,23,29,667.显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.所以,一班共有28名学生.5. 40或20两个自然数的和是50,最大公因数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.[注]这里的关键是依最大公因数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的因数,又要是108的因数,即一定是36和108的公因数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公因数.36和108的最大公因数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36÷36=1(只)每个小朋友可分得桔子: 108÷36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公因数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公因数.因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公因数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公因数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公因数.180,45和18的最大公因数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个因数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个因数的数,用a 和b 表示M 的质因数,那么5a M =或b a M ⨯=2因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:72,52,32222⨯=⨯=⨯=M M M ,172,132,112222⨯=⨯=⨯=M M M ,23,232,192222⨯=⨯=⨯=M M M ,113,73,53222⨯=⨯=⨯=M M M ,27,35,25222⨯=⨯=⨯=M M M .所以,含有6个因数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公因数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公因数必须能整除这四个数的和,也就是说它们的最大公因数应该是1111的因数.将1111作质因数分解,得1111=11⨯101最大公因数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101⨯2,101⨯3,101⨯5,它们的和恰好是101⨯(1+2+3+5)=101⨯11=1111,它们的最大公因数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”499,即跳了499411÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了299÷29=11次掉进陷井. 经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是214⨯9=40.5(米). 14. 先将12、300分别进行质因数分解:12=22⨯3300=22⨯3⨯52(1)确定a的值.依题意a只能取12或12⨯5(=60)或12⨯25(=300).(2)确定b的值.当a=12时,b可取12,或12⨯5,或12⨯25;当a=60,300时,b都只能取12.所以,满足条件的a、b共有5组:a=12 a=12 a=12 a=60 a=300b=12, b=60, b=300, b=12, b=12.(3)确定a,b,c的组数.对于上面a、b的每种取值,依题意,c均有6个不同的值:52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a、b、c共有5⨯6=30(组)因数与倍数相关习题(2)一、 填空题1.把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_____个小朋友.2. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有_____人.3. 用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____块.4. 用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____块.5. 一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,_____分钟又同时发第二次车.6. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得_____粒.7. 这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.8. 能被3、7、8、11四个数同时整除的最大六位数是_____.9. 把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公因数是1, 那么至少要分成_____组.10. 210与330的最小公倍数是最大公因数的_____倍.二、解答题11.公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6:00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.12. 甲乙两数的最小公倍数除以它们的最大公因数,商是12.如果甲乙两数的差是18,则甲数是多少?乙数是多少?13. 用285、5615、2011分别去除某一个分数,所得的商都是整数.这个分数最小是几?14. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:(1)说的不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请找出这个数.———————————————答 案——————————————————————答 案:1. 9若梨减少2个,则有20-2=18(个);若将苹果增加2个,则有25+2=27(个),这样都被小朋友刚巧分完.由此可知小朋友人数是18与27的最大公因数.所以最多有9个小朋友.2. 36根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公因数.所以,这个大班的小朋友最多有36人.3. 56所铺成正方形的木板它的边长必定是长方形木板长和宽的倍数,也就是长方形木板的长和宽的公倍数,又要求最少需要多少块,所以正方形木板的边长应是14与16的最小公倍数.先求14与16的最小公倍数. 2 16 148 7故14与16的最小公倍数是2⨯8⨯7=112.因为正方形的边长最小为112厘米,所以最少需要用这样的木板1416112112⨯⨯=7⨯8=56(块) 4. 5292与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块769126126126⨯⨯⨯⨯=14⨯21⨯18=5292(块) [注]上述两题都是利用最小公倍数的概念进行“拼图”的问题,前一题是平面图形,后一题是立体图形,思考方式相同,后者可看作是前者的推广.将平面问题推广为空间问题是数学家喜欢的研究问题的方式之一.希望引起小朋友们注意.5. 90依题意知,从第一次同时发车到第二次同时发车的时间是3,5,9,15和10的最小公倍数.因为3,5,9,15和10的最小公倍数是90,所以从第一次同时发车后90分钟又同时发第二次车.6. 5依题意得花生总粒数=12⨯第一群猴子只数=15⨯第二群猴子只数=20⨯第三群猴子只数由此可知,花生总粒数是12,15,20的公倍数,其最小公倍数是60.花生总粒数是60,120,180,……,那么第一群猴子只数是5,10,15,……第二群猴子只数是4,8,12,……第三群猴子只数是3,6,9,……所以,三群猴子的总只数是12,24,36,…….因此,平均分给三群猴子,每只猴子所得花生粒数总是5粒.7. 421依题意知,这个数比2、3、4、5、6、7的最小公倍数大1,2、3、4、5、6、7的最小公倍数是420,所以这个数是421.8. 999768由题意知,最大的六位数是3,7,8,11的公倍数,而3,7,8,11的最小公倍数是1848.因为999999÷1848=541……231,由商数和余数可知符合条件的最大六位数是1848的541倍,或者是999999与231的差.所以,符合条件的六位数是999999-231=999768.9. 3根据题目要求,有相同质因数的数不能分在一组,26=2⨯13,91=7⨯13,143=11⨯13,所以,所分组数不会小于3.下面给出一种分组方案:(1)26,33,35;(2)34,91;(3)63,85,143.因此,至少要分成3组.[注]所求组数不一定等于出现次数最多的质因数的出现次数,如15=3⨯5,21=3⨯7,35=5⨯7,3,5,7各出现两次,而这三个数必须分成三组,而不是两组.除了上述分法之外,还有多种分组法,下面再给出三种:(1)26,35;33,85,91;34,63,143.(2)85,143,63;26,33,35;34,91.(3)26,85,63;91,34,33;143,35.10. 77根据“甲乙的最小公倍数⨯甲乙的最大公因数=甲数⨯乙数”,将210⨯330分解质因数,再进行组合有210⨯330=2⨯3⨯5⨯7⨯2⨯3⨯5⨯11=22⨯32⨯52⨯7⨯11=(2⨯3⨯5)⨯(2⨯3⨯5⨯7⨯11)因此,它们的最小公倍数是最大公因数的7⨯11=77(倍).11. 根据题意,先求出8,10,16的最小公倍数是80,即从第一次三车同时发出后,每隔80分钟又同时发车.从早上6:00至20:00共14小时,求出其中包含多少个80分钟.60⨯14÷80=10…40分钟由此可知,20:00前40分钟,即19:20为最后一次三车同时发车的时刻.12. 甲乙两数分别除以它们的最大公因数,所得的两个商是互质数.而这两个互质数的乘积,恰好是甲乙两数的最小公倍数除以它们的最大公因数所得的商——12.这一结论的根据是:(我们以“约”代表两数的最大公因数,以“倍”代表两数的最小公倍数) 甲数⨯乙数=倍⨯约约约乙数甲数⨯⨯=约约约倍⨯⨯,所以:约乙数约甲数⨯=约倍,约乙数约甲数⨯=12 将12变成互质的两个数的乘积:①12=4⨯3,②12=1⨯12先看①,说明甲乙两数:一个是它们最大公因数的4倍,一个是它们最大公因数的3倍.甲乙两数的差除以上述互质的两数(即4和3)之差,所得的商,即甲乙两数的最大公因数.18÷(4-3)=18甲乙两数,一个是:18⨯3=54,另一个是:18⨯4=72.再看②,18÷(12-1)=1171,不符合题意,舍去. 13. 依题意,设所求最小分数为N M ,则 285÷N M =a 5615÷N M =b 2011÷N M =c 即528⨯N M =a 1556⨯N M =b 2120⨯N M =c 其中a ,b ,c 为整数. 因为NM 是最小值,且a ,b ,c 是整数,所以M 是5,15,21的最小公倍数,N 是28,56,20的最大公因数,因此,符合条件的最小分数: N M =4105=4126 14. (1)根据2号~15号同学所述结论,将合数4,6,…,15分解质因数后,由1号同学验证结果,进行分析推理得出问题的结论.4=22,6=2⨯3,8=23,9=32,10=2⨯5,12=22⨯3,14=2⨯7,15=3⨯5由此不难断定说得不对的两个同学的编号是8与9两个连续自然数(可逐次排除,只有8与9满足要求).(2)1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是22⨯3⨯5⨯7⨯11⨯13=60060因为60060是一位五位数,而这12个数的其他公倍数均不是五位数,所以1号同学写的五位数是60060.。

(完整)小学奥数因数与倍数

(完整)小学奥数因数与倍数

第一讲:因数与倍数知识点拨1、因数和倍数:如果a×b=c(a,b,c 都是不为零的整数),那么a,b 就是c 的因数,c 就是a,b 的倍数。

例如6×2=12,所以6和2是12的因数,12是6和2的倍数。

如果整数a 能被b 整除,那么a 就是b 的倍数,b 就是a 的因数。

例如10能被5整除,那么10就是5的倍数,5就是10的因数。

2、一个数的因数的求法:(1)列乘法算式找 (2)列除法算式找一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

例如: 15的因数有哪些?方法一:1×15=15,3×5=15(一般从自然数1开始,一对一对的找) 方法二:15÷1=15,15÷3=5(计算时从除数1开始找,直到重复为止)所以15的因数就是1, 3, 5, 15。

最大的因数就是15,也就是它本身!最小的是1。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法是依次乘以自然数。

例如:3的倍数 3 6 9 12 15 ....... 3是3最小的倍数,也就是它本身 倍数特征:最小的倍数是本身,没有最大的倍数4、2、5、3的倍数的特征:①个位上是0、2、4、6、8的数,都是2的倍数。

②个位上是0或5的数,是5的倍数。

③一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。

5、在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数 性质2:偶数±奇数=奇数性质3:偶数个奇数的和是偶数性质4:奇数个奇数的和是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数例题精讲一、倍数与因数的认识【例1】请问:图中有哪些数?(1)根据图中数据:①买5千克梨需要多少钱?可以说:20是4的倍数;20是5的倍数;4是20的因数;5是20的因数。

(完整版)因数和倍数奥数题及标准答案(有难度)

(完整版)因数和倍数奥数题及标准答案(有难度)

因数和倍数奥数题荟萃总体难度有点大,如果有兴趣可以试试!1、某校举行数学竞赛,共有20道题。

评分标准规定,答对一题给 3 分,不答给1 分。

答错一题倒扣 1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?2、有四个连续奇数的和是2008,则其中最小的一个奇数是 ______ 。

3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得 1 个苹果和 3 个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了 ______ _名小朋友。

4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90 分,第二份训练题得了100 分,那么第三份训练题至少要得________ 分才能使四份训练题的平均成绩达到105 分。

5、三个连续自然数的乘积是210,求这三个数.6、自然数123456789 是质数,还是合数?为什么?7、一个数用3、4、5 除都能整除,这个数最小是多少?8、一个两位数去除251,得到的余数是41. 求这个两位数。

9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13 小时到达,求船在静水中的速度和水流速度。

答案:1、解:以一个学生得分情况为例。

如果他有m 题答对,就得3m 分,有n 题答错,则扣n 分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m- n)分。

所以,这个学生得分总数为:3m-n+(20-m-n)=3m-n+20-m-n=2m-2n+20 =2(m-n+10)不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。

由此可见,不管有多少学生参赛,得分总和一定是偶数。

2、解:499。

2008÷4—3=4993、解:6。

五年级奥数.数论.因数与倍数(A级答案

五年级奥数.数论.因数与倍数(A级答案

因数与倍数一天,因数和倍数走到了一起。

倍数傲慢地对因数说:“哎,哥们,见了我怎么也不下拜呀?” “我为什么要拜你,你算老几呀?”因数气愤地回答。

“我是老大呀。

” “你是老大?为什么”“你说,一个数的倍数有多少个呀?” “这我知道,一个数的倍数有无数个。

”只见倍数慢条斯理地说:“这就对嘛,一个数的因数的个数就那么可怜的几个。

而一个数的倍数有无数个.你的家庭成员这么少,而我的家庭是这样的庞大。

你说,你不应该拜我吗?”“是的,你的家庭是庞大的,可是,你知道吗?因为你的家庭的庞大,你知道你是老几吗?我们的家庭成员是有限的,可是,我们都知道我们自己的位置。

再说,离开我们这些因数,你们这些倍数还成立吗?”因数理直气壮地回答。

只见倍数挠着耳朵,想了想,说:“对,其实我们是密不可分的好伙伴,我们谁都离不开谁。

刚才是我不对,我向你道歉了。

”“没有关系,没有关系,你知道自己错了就好。

在自然数中,我们谁离开了谁都是不存在的。

没有倍数,我是谁的因数呢?同样,没有因数,你们又是谁的倍数呢?让我们共同携手,紧密团结在一起,永远做好兄弟!”因数诚恳地说。

因数和倍数两位好伙伴的手紧紧地握在了一起。

课前预习知识框架因数与倍数一、 约数的概念与最大公约数0被排除在约数与倍数之外 1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来. 例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数; ②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n . 3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;ba即为所求. 二、倍数的概念与最小公倍数 1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=; ②短除法求最小公倍数;例如:2181239632,所以[]18,12233236=⨯⨯⨯=;③[,](,)a ba b a b ⨯=. 2. 最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a ;求出各个分数分母的最大公约数b ;ba 即为所求.例如:35[3,5]15[,]412(4,12)4==注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦ 三、最大公约数与最小公倍数的常用性质1. 两个自然数分别除以它们的最大公约数,所得的商互质。

小学奥数题库《数论》因数和倍数-因数的个数定理-4星题(含解析)

小学奥数题库《数论》因数和倍数-因数的个数定理-4星题(含解析)

数论-因数和倍数-因数的个数定理-4星题课程目标知识提要因数的个数定理•因数的个数定理因数的个数等于不同质因数的指数分别加1后再相乘的积。

•因数个数性质当因数个数为奇数的时候,这个数一定是完全平方数.精选例题因数的个数定理1. A数有7个因数,B数有12个因数,且A、B的最小公倍数[A,B]=1728,那么B=.【答案】108【分析】1728=26×33,所以A、B质因数只能有2和3,又由于A有7个因数,而7是一个质数,所以A分解质因数的形式只能有A=26,设B=2k×33,那么(k+1)×(3+1)=12,得k=2所以B=22×33=108.2. 整除2015的数称为2015的因数,1和2015显然整除2015,称为2015的平凡因数,除了平凡因数,2015还有一些非平凡因数,那么,2015的所有非平凡因数之和为.【答案】672【分析】〔解法一〕2015=5×13×312015所有的约数和为(50+51)×(130+131)×(310+311)=6×14×32=26882015的所有非平凡因数之和为2688−1−2015=672〔解法二〕由于该数比拟小,可以直接写出2015的所有约数2015=1×2015=5×403=13×155=31×652015的所有非平凡因数之和为5+403+13+155+31+65=6723. 有一列数,第1个是1,从第2个数起,每个数比它前面相邻的数大3,最后一个数是100,将这些数相乘,那么在计算结果的末尾中有个连续的零.【答案】9【分析】这一列数为1,4,7,⋯,100,要求他们相乘的积中0的个数,找到因数2和5的个数即可,又因为因数2的个数远多于5的个数,所以找到5的个数即为积中末尾0的个数,5的倍数有10,25,40,55,70,85,100共9个5,所以有9个0.4. 60的不同约数〔1除外〕的个数是.【答案】11【分析】60=1×60=2×30=3×20=4×15=5×12=6×10.60的约数〔1除外〕有:2、3、4、5、6、10、12、15、20、30、60,共11个.5. 数学小组原方案将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人参加小组,这样每个学生比原方案少发了1个苹果.那么,原来有名学生.【答案】18【分析】前后两次每人分到的苹果数量相差1,且都是72的因数,72的相差1的因数对有(1,2)、(2,3)、(3,4)和(8,9),经试因数对(3,4)符合要求:前后人数分别为72÷4=18(人)和72÷3=24(人).6. 自然数甲有10个约数,那么甲的10倍的约数个数可能是.【答案】40、22、18、30或24【分析】详解:甲含有约数2、5的情况与否,会影响最终的约数个数,分情况讨论,得约数个数有五种可能:40、22、18、30和24.例如:29、24×5、24×7、2×74、79的10倍分别有22、18、24、30、40个约数.7. 老师用0至9这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数分别给了A、B、C、D、E这五名聪明且老实的同学,每名同学只能看见自己的两位数,并依次发生如下对话:A说:“我的数最小,而且是个质数.〞B说:“我的数是一个完全平方数.〞C说:“我的数第二小,恰有6个因数.〞D说:“我的数不是最大的,我已经知道ABC三人手中的其中两个数是多少了.〞E说:“我的数是某人的数的3倍.〞那么这五个两位数之和是.【答案】180【分析】A的话可知,A的十位是1,又因为是质数,所以A有可能是13,17,19;C能断定自己的数第二小,且有6个因数,所以可能是20,28,32;B是完全平方数,但不能含有1和2,所以B有可能是36,49,64;D能断定自己不是最大的,说明他的数是53或54或十位数不超过4,但大于等于34;E是某人的数的3倍,由上面信息可知,只能是A,且推得A为19,那么E为57最后根据D能知道ABC三人手中两个数,试验可知,BCD手中数分别为36,28,40综上所述,五个两位数之和是1808. 能被210整除且恰有210个约数的数有个.【答案】24个【分析】210=2×3×5×7,所以原数肯定含有2,3,5,7这四个质因子,而且幂次一定按照某种顺序是1,2,4,6,可以任意排列,所以有4!=24个9. 所有70的倍数中,共有多少个数恰有70个因数?【答案】6【分析】设70的N倍恰有70个因数.70=2×5×7,有:(1+1)×(1+1)×(1+1)=23= 8,因为8不整除70,所以N内可能有2、5、7.假设有4个不同质因数,但70只能表示为2×5×7,所以N内必含2、5、7中几个,即70N=2a+1×5b+1×7c+1,(a+1+1)×(b+1+1)×(c+1+1)=70,a,b,c分别是0,3,5中一个.N为23×53,23×73,25×23,25×73,53×75,55×73,一共6组.10. [A]表示自然数A的约数的个数.例如4有1,2,4三个约数,可以表示成[4]=3.计算:([18]+[22])÷[7]=.【答案】5【分析】因为18=2×32,有约数个为(1+1)×(2+1)=6(个),所以[18]=6,同样可知[22]=4,[7]=2.原式=(6+4)÷2=5.11. 两数乘积为2800,而且己知其中一数的因数个数比另一数的因数个数多1,那么这两个数分别是、.【答案】16、175【分析】先将2800分解质因数:2800=24×52×7,由于其中一数的因数个数比另一数的因数个数多1,所以这两个数中有一个数的因数为奇数个,这个数必为完全平方数.又是2800的因数,故这个数只能为22、24、52、22×52或24×52,另一个数相应地为22×52×7、52×7、24×7、22×7或7.经检验,只有两数分别为24和52×7时符合条件,所以这两个数分别是16和175.12. 算式1×8×15×22×⋯×2010的乘积末尾有个连续的0.【答案】72【分析】详解:乘数15、50、85、⋯、2010中含有因数5,都除以5得到3、10、17、⋯、402;其中10、45、⋯、395还含有因数5,都除以5,得到2、9、16、⋯、79.其中30、65里还含有因数5.我们第一次除掉了2010−1535+1=58个5,第二次除掉了395−1035+1=12个5,最后还剩下两个因数5.说明1×8×15×22×⋯×2010含有58+12+2=72个约数5,由于其中含有的约数2是足够多的,因而的0的个数就等于约数5的个数,是72个.13. 1001的倍数中,共有个数恰有1001个约数.【答案】6个【分析】1001的倍数可以表示为1001k,由于1001=7×11×13,如果k有不同于7,11,13的质因数,那么1001k至少有4个质因数,将其分解质因数后,根据数的约数个数的计算公式,其约数的个数为(a1+1)(a2+1)(a3+1)(a4+1)⋯(a n+1),其中n⩾4.如果这个数恰有1001个约数,那么(a1+1)(a2+1)(a3+1)(a4+1)⋯(a n+1)=1001=7×11×13,但是1001不能分解成4个大于1的数的乘积,所以n⩾4时不合题意,即k不能有不同于7,11,13的质因数.那么1001k只有7,11,13这3个质因数.设1001k=7a×11b×13c,那么(a+1)(b+1)(c+1)=1001,a+1、b+1、c+1分别为7,11,13,共有3!=6种选择,每种选择对应一个1001k,所以1001的倍数中共有6个数恰有1001个约数.14. 四位数双成成双的所有因数中,有3个是质数,其它39个不是质数.那么,四位数成双双成有个因数.【答案】12【分析】双成成双共有3+39=42个因数,且有3个质因数,所以它的质因数分解形式为双成成双=a×b2×c6,而双成成双=双00双+成成0̅=双×1001+成×110=11×(双×91+成×10)所以三个质因数中有一个是11,所以双成成双=a×b2×c6,至少是11×32×26=6336,稍微大一点点就是11×52×26=17600,已经是五位数了,所以双成成双=6336,双=6,成=3所以成双双成=3663=32×11×37,有3×2×2=12个因数.15. 2010的全部约数有个,这些约数的和数是.【答案】16;4896【分析】详解:2010=2×3×5×67,约数有(1+1)×(1+1)×(1+1)×(1+1)=16个,约数之和是(1+2)×(1+3)×(1+5)×(1+67)=4896.16. 自然数N有20个正约数,N的最小值为.【答案】240【分析】先将20写成几个数相乘的形式,再写成几个和的积的形式,最后利用约数个数的公式解题:①20=20×1=19+1,N的最小值为:219=524288,②20=2×10=(9+1)×(1+1),N的最小值为:29×3=1536,③20=4×5=(4+1)×(3+1),N的最小值为:24×33=432,④20=2×2×5=(4+1)×(1+1)×(1+1),N的最小值为:24×31×51=240.17. 有20个约数,且被42整除最小的自然数是.【答案】336【分析】因为被42整除,所以一定含有质因数2,3,7.20=1×20=2×10=4×5=2×2×5,有20个约数的自然数有:因为必须含有3个不同的质因数,所以最小的只能是:2×2×2×2×3×7=336;所以有20个约数且被42整除的最小自然数是336.18. S=19+199+1999+⋯+199⋯9⏟10000个9那么S的小数点后第2016位是.【答案】6【分析】首先,1 99⋯9⏟n个9=0.0⋅0⋯0⏟n−1个01⋅即小数点后第n,2n,3n,…位都是1,其它为都是0所以当n是2016的因数时,199⋯9⏟n个9化成小数后,小数点后第2016位是1,其余情况小数点后第2016位是0.2016=25×32×7,有36个因数,在不考虑进位的情况下,这一位上有36个1相加,这一位的数字是6,下面考虑进位,因为2017是质数,所以2017位上只有2个1相加,单独不构成进位,而2018=1009×2,有4个因数,本身也缺乏以向第2018位进位,显然2019位即以后都缺乏以进位到2016为,所以第2016位是6【解】19. 自然数N有45个正约数,N的最小值为.【答案】3600【分析】正约数个数的求法:分解质因数后,每个指数加1的连乘积45=3×3×5,容易知道,指数比拟小,原数比拟小.质因子比拟小,原数比拟小,因此原数最小是24×32×52=3600.20. 一个自然数有10个不同的因数〔即约数,指能够整除它的自然数〕,但质因数〔即为质数的因数〕只有2与3.那么,这个自然数是.【答案】162或48【分析】设这个数为2a×3b〔a、b均为正整数〕,由题意可知(a+1)×(b+1)=10=2×5所以a=1,b=4或a=4,b=1所以这个自然数是21×34=162或24×31=4821. 从2016的因数中选出不同的假设干个数写成一圈,要求相邻位置的两个因数互质,那么最多可以写出个因数.【答案】12【分析】2016=25×32×7,所以2016的奇因数有(2++1)×(1+1)=6个2016的偶因数有5×(2++1)×(1+1)=30个.假设排列最多的可能一定是“奇偶奇偶……〞,所以最多一圈有12个;假设有13〔或以上〕个因数,那么必有两偶数相邻,构造12个数的情况:1,2,3,14,9,4,7,8,21,16,63,32圈成一圈.22. 恰好有12个不同因数的最小的自然数为.【答案】60【分析】12=12×1=6×2=4×3=3×2×2所以,有12个因数的数对应的质因数分解形式分别是:A11,A5×B,A3×B2,A2×B×C,这四种形式下的最小自然数分别是:2048,96,72,60,所以符合要求的数是60.23. 能够被1到11的所有自然数整除的最小自然数为.【答案】27720【分析】1到11这11个数分解质因数后所包含的质数有2、3、5、7、11,因此这个自然数最少包含质因数2、3、5、7、11.1=11,2=21,3=31,4=22,5=51,6=2×3,7=71,8=23,9=32,10=2×5,11=111,所以这个自然数最小为23×32×51×71×111=27720,那么符合条件的A最小是.24. 一个正整数除以3!后所得结果中因数个数变为原来因数个数的13【答案】12【分析】设A=2x×3y×p1a1×p2a2×p3a3×⋯⋯×p n a n,那么B=A÷3!=2x−1×3y−1×p1a1×p2a2×p3a3×⋯⋯×p n a n,那么(x+1)(y+1)(a1+1)(a2+1)⋯⋯(a n+1)=3[xy(a1+1)(a2+1)(a n+1)],即(x+1)(y+1)=3xyxy都取1不满足此式,所以取x=2,y=1,a1=a2=⋯=a n=0得到最小值1225. A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是.【答案】100【分析】{B=2A=48=24×3B的因数个数为2,A的因数个数为5×2=10不符合要求;{B=3A=72=23×32B的因数个数为2,A的因数个数为4×3=12不符合要求;{B=4=22A=96=25×3B的因数个数为3,A的因数个数为6×2=12,符合要求;可见A+B的最小值为4+96=10026. 在三位数中,恰好有9个因数的数有多少个?【答案】7个【分析】由于9=1×9=3×3,根据因数个数公式,可知9个因数的数可以表示为一个质数的8次方,或者两个不同质数的平方的乘积,前者在三位数中只有28=256符合条件,后者中符合条件有22×52=100、22×72=196、22×112=484、22×132=676、32×52=225、32×72=441,所以符合条件的有7个.27. 3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?【答案】45;30;27;21【分析】详解:3600=24×32×52,有(4+1)×(2+1)×(2+1)=45个约数.3600=3×(24×3×52),有(4+1)×(1+1)×(2+1)=30个约数是3的倍数.3600=24×32×52=4×(22×32×52),有(2+1)×(2+1)×(2+1)=27个.28. 在1到100中,恰好有6个因数的数有多少个?【答案】16个【分析】6=1×6=2×3,故6只能表示为(5+1)或(1+1)×(2+1),所以恰好有6个因数的数要么能表示成某个质数的5次方,要么表示为某个质数的平方再乘以另一个质数,100以内符合前者的只有32,符合后者的数枚举如下:22×322×522×722×1122×1322×1722×1922×23⋯⋯8个32×232×532×732×11⋯⋯4个52×252×3⋯⋯2个72×2⋯⋯1个所以符合条件的自然数一共有1+8+4+2+1=16个.29. 如果你写出12的所有因数,1和12除外,你会发现最大的因数是最小因数的3倍.现有一个整数n,除掉它的因数1和n外,剩下的因数中,最大因数是最小因数的15倍,那么满足条件的整数n有哪些?【答案】60和135.【分析】设整数n除掉因数1和n外,最小因数为a,可得最大因数为15a,那么n=a×15a=15a2=3×5×a2.那么3、5、a都为n的因数.因为a是n的除掉因数1外的最小因数,那么a⩽3.当a=2时,n=15×22=60;当a=3时,n=15×32=135.所以满足条件的整数n有60和135.30. 在小于1000的正整数中,有多少个数有奇数个约数?【答案】31【分析】详解:平方数有奇数个约数.1000以内的平方数有12,22,32,⋯,312,因此有31个数有奇数个约数.31. 以下各数分别有多少个约数?18、47、243、196、450【答案】6;2;6;9;18【分析】简答:分解质因数后,指数加1连乘即可.32. 240有多少个约数?其中有多少个奇约数?有多少个约数是3的倍数?【答案】20个;4个;10个【分析】简答:240=24×3×5,有(4+1)×(1+1)×(1+1)=20个约数.奇约数即不含有因子2,有(1+1)×(1+1)=4个奇约数,有(4+1)×(1+1)=10个约数是3的倍数.33. 有一个整数,它恰好是它约数个数的2011倍,这个正整数的最小值是多少?【答案】16088【分析】设这个数为x,其约数的个数为n,那么有x=2011×n,因为2011是质数,那么n的最小值的约数个数大概率为偶数,经试验当n=8时,那么x=2011×23⇒n=2×4=8成立因此x=2011×8=16088.34. 16200有多少个因数?因数中有多少个奇因数?有多少个偶因数?因数中有多少个是3的倍数?有多少个是6的倍数?有多少个不是5的倍数?【答案】60;15;45;48;36;20【分析】把16200分解质因数:16200=23×34×52,根据因数个数定理,16200的因数个数为:(3+1)×(4+1)×(2+1)=60个;奇因数:(4+1)×(2+1)=15个;偶因数:60−15=45个;因数中3的倍数:3×1×4×(2+1)=48(个);因数中6的倍数,也就是2,3都得选;3×4×(2+1)=36(个);不是5的倍数,(3+1)×(4+1)=20(个).35. 79、128、180分别有多少个约数?【答案】2;8;18【分析】简答:提示,牢记计算约数个数的公式.并能准确分解质因数.36. 数270的因数有多少个?这些因数中奇因数有多少个?【答案】16个,8个【分析】270=33×2×5,因数的个数为(3+1)×(1+1)×(1+1)=16(个),奇因数个数为(3+1)×(1+1)=8(个).37.数360的约数有多少个?这些因数中偶因数有多少个?【答案】24个,18个【分析】360=23×32×5,因数的个数为(3+1)×(2+1)×(1+1)=24(个),奇因数个数为(2+1)×(1+1)=6(个),偶因数有24−6=18(个).38. 有一个自然数,它的个位是零,并且它有8个因数,这个数最小可能是多少?【答案】30【分析】因数个数定理:8=1×8=2×4=2×2×2,分解质因数后:a7、ab3、abc,因为这个自然数的个位是零,因此必有质因数2和5,因此可能是23×51或21×31×51,比拟可知最小的数是21×31×51=30.39. 有一个整数,它恰好是它约数个数的2012倍,这个正整数的最小值是多少?【答案】40220【分析】设这个数为x,其约数的个数为n,那么有x=2012×n=22×503×n,其约数个数总大于(2+1)×(1+1)=6个,经试验当n=20时,那么x=24×5×503⇒n=5×2×2= 20成立因此x=2011×20=40220.40. 数学老师把一个两位数的约数个数告诉了墨莫,聪明的墨莫仔细思考了一下后算出了这个数.同学们,你们知道这个数可能是多少吗?【答案】64或36【分析】假设约数个数为2个,是质数,这样的两位数有很多.假设约数个数为3个,可以用a2来表示,也有很多.约数个数为4个的两位数也有很多.约数个数为5个的数可以表示为a4,有16和81,不唯一.约数个数为6个的两位数也不唯一.约数个数为7个的两位数表示为a6,只有26=64,是唯一的.同样的,约数个数为9个的两位数也是唯一的,只有36.约数个数更多的两位数,或者不唯一,或者不存在.因此这个数可能为64或36.41. 求出所有恰好含有10个因数的两位数,并求出每个数的所有因数之和.【答案】124或186【分析】10=9+1=2×5,表达式为a9或者ab4,29>100,2×34>100,只可能是24×3=48或24×5=80.48的因数之和:(20+21+22+23+24)×(30+31)=124,80的因数之和:(20+21+22+ 23+24)×(50+51)=186.42. 有12个约数的数最小是多少?有多少个两位数的约数个数是12个?【答案】60;5【分析】详解:有12个约数的数分解质因数后,可能是▫11、▫×▫5、▫2×▫3、▫×▫×▫2;对应的最小数分别是2048、96、72、60,那么最小的就是60,其中两位数除了60、72、96之外还有84和90,共5个.43. 1000以内恰有10个因数的数有多少个?【答案】22【分析】10=1×10=2×5,对于第一种情况29=512;第二种情况为a4×b,a只能取2和3,经试验分别有17种和4种可能,综合共有22个.44. A有7个约数,B有12个约数,且A、B的最小公倍数是1728,求B.【答案】108【分析】1728=26×33,由于A数有7个约数,而7为质数,所以A为某个质数的6次方,由于1728只有2和3两个质因数,如果A为36,那么1728不是A的倍数,不符合题意,所以A=26,那么33为B的约数,设B=2k×33,那么(k+1)×(3+1)=12,解得k=2,所以B=22×33=108.45. 3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?【答案】32;24;24;11【分析】简答:3456=27×33,约数有8×4=32个.其中3的倍数有8×3=24个,4的倍数有6×4=24个,6的倍数有7×3=21个.那么有32−21=11个不是6的倍数.46. 一个正整数,它的2倍的约数恰好比自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个,那么这个正整数为多少?【答案】12【分析】这个数只能含2和3的因子,因为如果它还有别的因子,例如5,那么最后增加的个数要比给定的数字大.设x=2a⋅3b,它的约数有(a+1)(b+1)个,它的2倍为2a+1⋅3b,它的约数有(a+1+1)(b+1)个.(a+1+1)(b+1)−(a+1)(b+1)=b+1=2,b=1同样的,它的3倍为2a⋅3b+1,它的约数为(a+1)(b+1+1)个,比原数多3个(a+1)(b+1+1)−(a+1)(b+1)=a+1=3,a=2,所以这个数的形式是22×3=12.47. 在小于200的正整数中,有多少个数有偶数个约数?【答案】185【分析】简答:平方数有奇数个约数.小于200的平方数有12,22,⋯,32,142,共14个,因此有偶数个约数的数有185个.48. 在所有30的倍数中,共有个数恰好有30个因数?【答案】6【分析】设30的N倍恰有30个因数.因为30=2×3×5,所以N内可能有2、3、5.根据因数个数定理,(1+1)×(2+1)×(4+1)=30,所以N内必含2、3、5中几个,即30N=2a×3b×5c,(a+1)×(b+1)×(c+1)=30,a,b,c分别是1,2,4中一个.N为21×32×54,21×34×52,22×31×54,22×34×51,24×31×52,24×32×51,一共6个.49. 360共有多少个奇约数?所有这些奇约数的和是多少?【答案】6、78【分析】360=23×32×5,奇约数有:(2+1)×(1+1)=6(个),奇约数的和是:(30+31+32)×(50+51)=78.50. 偶数A不是4的倍数,它的约数个数为12,求4A的约数个数.【答案】24【分析】由于A是偶数但是不是4的倍数,所以A只含1个因子2,可将A分解成A=21×B,其中B奇数,根据约数个数定理,它的约数个数为(1+1)×N=12,那么4A=8B=23×B,所以它的约数个数为(1+3)×N=24个.51. a,b均为质数且不相等,假设A=a3b2,那么a有多少个因数?假设B=9A,那么B有多少个因数?假设C有6个因数,那么C2有多少个因数?【答案】12;36个或18个或20个;11个或15个【分析】A有(3+1)×(2+1)=12个因数.B=9A=32a3b2,假设a和b都不是3,那么B有(2+1)×(3+1)×(2+1)=36个因数;假设a=3,那么B=35b2,那么B有(5+1)×(2+1)=18个因数,假设b=3,那么B=34a3,B有(4+1)×(3+1)=20个因数.综上B的因数可能有36个、18个或20个;6=2×3=1×6,那么假设C=p1×p22,C2=p12×p24,有(2+1)×(4+1)=15个因数;或C=p5,C2=p10,有11个因数.52. 11个连续的两位数乘积的末4位都是0,那么这11个数的总和最小是多少?【答案】220【分析】末4位都是0.这个乘积分解质因数后,至少有4个因数2和4个因数5.而连续的11个数中至少有5个偶数,所以因数2的个数足够了,因而问题在于因数5是不是够4个.由于连续的11个自然数中,最多有3个数是5的倍数,而乘积中要出现4个因数5,说明这3个数中,至少一个数含有两个因数5,这个数最小是25,所以所求的11个连续自然数的总和最小是25+24+23+⋯+15=220.53. 一个数的完全平方数有39个约数,求该数的约数个数是多少?【答案】14个或者20个.【分析】设该数为p1a1×p2a2×⋯×p n a n,那么它的平方就是p12a1×p22a2×⋯×p n2a n,因此(2a1+1)×(2a2+1)×⋯×(2a n+1)=39.由于39=1×39=3×13,⑴所以,2a1+1=3,2a2+1=13,可得a1=1,a2=6;故该数的约数个数为(1+1)×(6+1)=14个;⑵或者,2a1+1=39,可得a1=19,那么该数的约数个数为19+1=20个.所以这个数的约数个数为14个或者20个.54. 一个自然数,它最大的约数和次大的约数之和是111,这个自然数是多少?【答案】74【分析】最大的约数是这个自然数本身,因此它是次大约数的倍数.它们的和也应该为次大约数的倍数.111=3×37,次大约数为37时满足条件,这个自然数为74.55. 10000的所有因数的和为多少?所有因数的积为多少?【答案】24211;1000012×100【分析】10000=24×54,因数和:(20+21+22+23+24)×(50+51+52+53+54)=24211因数积为(1002)n×100,其中n=[(4+1)×(4+1)−1]÷2=12所以因数的积为1000012×10056. 数120的因数有多少个?这些因数中奇因数有多少个?【答案】16个;4个【分析】120=23×3×5,因数的个数为(3+1)×(1+1)×(1+1)=16(个),奇因数个数为(1+1)×(1+1)=4(个).57. 数240的因数有多少个?这些因数中偶因数有多少个?【答案】20个;16个【分析】240=24×3×5,因数的个数为(4+1)×(1+1)×(1+1)=20(个),奇因数个数为(1+1)×(1+1)=4(个),偶因数有20−4=16(个).58. 求所有能被30整除,且恰有30个不同约数的自然数的个数.【答案】6个【分析】30=2×3×5,所以原数肯定只含有2,3,5,这三个质因子,并且指数分别为1,2,4,可以任意排列所以有3!=6个.59. 算式(1+2+3+⋯+n)+2007的结果可表示为n(n>1)个连续自然数的和.请问:共有多少个满足要求的自然数n?【答案】5个.【分析】1+2+3+⋯+n是项数为n的等差数列之和,我们考虑将2007平均分成n份,加到每一项上即可.2007=32×223,有6个约数,分别为1、3、9、223、669、2007.其中1舍去,有5个满足要求的自然数.60. 有3599只甲虫,依次编号为1,2,3,⋯,3599,开始时头都朝东.第1秒钟,编号为1的倍数的甲虫向右转90度;第2秒钟,编号为2的倍数的甲虫向右转90度;第3秒钟,编号为3的倍数的甲虫向右转90度,⋯,如此进行.那么,1小时后,第3599号甲虫头朝哪个方向?【答案】东.【分析】要求编号为n的甲虫转动的次数实际上是要求n的因数的个数,先将3599分解质因数:3599=3600−1=602−12=59×61,所以3599只有(1+1)×(1+1)=4个因数,那么在1小时即3600秒内,第3599号甲虫共转动了4次,由于每次转90度,所以共转了360度,还是朝向原来的方向,所以1小时后,第3599号甲虫头朝东.61. 2008÷a=b⋯⋯6,a、b均为自然数,a有多少种不同的取值?【答案】14【分析】由2008÷a=b⋯⋯6可知:ab+6=2008,ab=2002,又因为2002=2×7×11×13,而且a>6,所以a的取值有:7、11、13、2×7、2×11、2×13、7×11、7×13、11×13、2×7×11、2×7×13、2×11×13、7×11×13、2×7×11×13,共14种不同的取值.62. 28有多少个因数?和28因数个数相同的两位数还有那些?【答案】6个;共16个,分别是:12,18,20,28,32,44,45,50,52,63,68,75,76,92,98,99.【分析】28=22×7,共6个因数,枚举6个因数的两位数.6=1×6=2×3,原数为a5或b2c形式共16个,分别是:12,18,20,28,32,44,45,50,52,63,68,75,76,92,98,99.63. 200以内恰有10个因数的数有多少个?【答案】5【分析】10=1×10=2×5,对于第一种情况29=512>200;第二种情况为a4×b,a只能取2和3:24×3、24×5、24×7、24×11、24×13=208>200;34×2、34×5=405> 200,综上,共有5个.。

五年级奥数.数论.因数与倍数(A级答案

五年级奥数.数论.因数与倍数(A级答案

五年级奥数.数论.因数与倍数(A级答案因数与倍数课前预习因数与倍数⼀天,因数和倍数⾛到了⼀起。

倍数傲慢地对因数说:“哎,哥们,见了我怎么也不下拜呀?”“我为什么要拜你,你算⽼⼏呀?”因数⽓愤地回答。

“我是⽼⼤呀。

”“你是⽼⼤?为什么”“你说,⼀个数的倍数有多少个呀?”“这我知道,⼀个数的倍数有⽆数个。

”只见倍数慢条斯理地说:“这就对嘛,⼀个数的因数的个数就那么可怜的⼏个。

⽽⼀个数的倍数有⽆数个.你的家庭成员这么少,⽽我的家庭是这样的庞⼤。

你说,你不应该拜我吗?”“是的,你的家庭是庞⼤的,可是,你知道吗?因为你的家庭的庞⼤,你知道你是⽼⼏吗?我们的家庭成员是有限的,可是,我们都知道我们⾃⼰的位置。

再说,离开我们这些因数,你们这些倍数还成⽴吗?”因数理直⽓壮地回答。

只见倍数挠着⽿朵,想了想,说:“对,其实我们是密不可分的好伙伴,我们谁都离不开谁。

刚才是我不对,我向你道歉了。

”“没有关系,没有关系,你知道⾃⼰错了就好。

在⾃然数中,我们谁离开了谁都是不存在的。

没有倍数,我是谁的因数呢?同样,没有因数,你们⼜是谁的倍数呢?让我们共同携⼿,紧密团结在⼀起,永远做好兄弟!”因数诚恳地说。

因数和倍数两位好伙伴的⼿紧紧地握在了⼀起。

⼀、约数的概念与最⼤公约数0被排除在约数与倍数之外1.求最⼤公约数的⽅法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=??,22252237=??,所以(231,252)3721=?=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=?=;③辗转相除法:每⼀次都⽤除数和余数相除,能够整除的那个余数,就是所求的最⼤公约数.⽤辗转相除法求两个数的最⼤公约数的步骤如下:先⽤⼩的⼀个数除⼤的⼀个数,得第⼀个余数;再⽤第⼀个余数除⼩的⼀个数,得第⼆个余数;⼜⽤第⼆个余数除第⼀个余数,得第三个余数;这样逐次⽤后⼀个余数去除前⼀个余数,直到余数是0为⽌.那么,最后⼀个除数就是所求的最⼤公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最⼤公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最⼤公约数是15.2.最⼤公约数的性质①⼏个数都除以它们的最⼤公约数,所得的⼏个商是互质数;②⼏个数的公约数,都是这⼏个数的最⼤公约数的约数;③⼏个数都乘以⼀个⾃然数n ,所得的积的最⼤公约数等于这⼏个数的最⼤公约数乘以n .3.求⼀组分数的最⼤公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最⼩公倍数a ;求出各个分数的分⼦的最⼤公约数b ;b a即为所求.⼆、倍数的概念与最⼩公倍数1. 求最⼩公倍数的⽅法①分解质因数的⽅法;例如:2313711=??,22252237=??,所以[]22231,252237112772==;②短除法求最⼩公倍数;例如:2181239632,所以[]18,12233236==;知识框架③[,](,)a b a b a b ?=. 2. 最⼩公倍数的性质①两个数的任意公倍数都是它们最⼩公倍数的倍数.②两个互质的数的最⼩公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最⼤公约数是其中较⼩的数,最⼩公倍数是较⼤的数.3. 求⼀组分数的最⼩公倍数⽅法步骤先将各个分数化为假分数;求出各个分数分⼦的最⼩公倍数a ;求出各个分数分母的最⼤公约数b ;b a即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最⼤公约数不能是整数,最⼩公倍数可以是整数.例如:[]()1,414,4232,3??== 三、最⼤公约数与最⼩公倍数的常⽤性质1.两个⾃然数分别除以它们的最⼤公约数,所得的商互质。

小学奥数数论(因数与倍数及整数裂项)试题及答案解析

小学奥数数论(因数与倍数及整数裂项)试题及答案解析

小学奥数——因数与倍数与整数裂项一、选择题(共50小题)1.沿边长为20米的正方形花园四周每隔4米种一棵树,最多可种树()棵A.16B.18C.20D.222.一个挂钟,一点钟敲一下,两点钟敲两下,三点钟敲三下⋯⋯十二点钟敲十二下,每逢半点敲一下.这个挂钟一昼夜共敲()下.A.78B.102C.156D.1803.一根木头长24分米,要锯成4分米长的木棍.若每锯一次要3分钟,锯完一段休息2分钟,则全部锯完需要()分钟.A.23B.25C.28D.304.一块三角形地,三条边分别12米、15米、9米,每3米种一棵树,一共要种()棵树.A.9B.12C.15D.185.一根长2米的木棍,锯成每段长0.4米的木棍需要20分钟,那么锯成每段长0.5米的木棍需要()A.15分钟B.12分钟C.10分钟D.以上都不对6.一根水管锯成两段要2分钟,锯成6段要()分钟.A.6B.10C.12D.247.同学们做早操,81个同学排成一排,每相邻两个同学之间的距离相等,第一个人到最后一个人的距离时120米,相邻两个人的距离是()米.A.1B.约1.5C.1.5D.28.小明家住在9楼,他从底楼走到3楼用了1分钟,那么它从底楼走到9楼要用()分钟.A.4.5B.4C.3.5D.3E.2.59.奶奶出去散步,从第一根电线杆处走到第十根电线杆处共用了18分钟,照这个速度奶奶走了36分钟,她走到了第()根电线杆处.A.18B.19C.20D.2110.时钟3点敲3下,6秒钟敲完;那么7点敲7下,()秒钟敲完.A.10B.12C.14D.1811.在一座长1000米的长江大桥两边挂彩灯,起点和终点都挂,一共挂了202盏(相邻两盏之间的距离相等).则相邻两盏彩灯之间的距离是()米.A.8B.9C.10D.1112.分母小于60,分子不大于6的最简真分数有()个.A.59B.87C.197D.21513.a,b和c是三个非零自然数,在a b c=⨯中,能够成立的说法是()A.b和c是互质数B.b和c都是a的质因数C.b和c都是a的约数D.b一定是c的倍数14.三个不同正整数的和为564,其中一个数除以3余数为1,另一个数除以5的余数为3,第三个数除以7的余数为5,商都相同,则相同的商为()A.15B.21C.35D.3715.商店有三种糖,甲种糖每袋1.5千克,乙种糖每袋2千克,丙种糖每袋2.5千克,为了方便顾客,将大袋改为小袋,把它们全改为0.5千克的小袋,这样奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,原来的甲、乙、丙三种糖的品种依次是()A.酥糖、水果糖、奶糖B.奶糖、水果糖、酥糖C.奶糖、酥糖、水果糖D.水果糖、奶糖、酥糖16.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点的千米数是()A.32B.37C.55D.9017.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3 的倍数又是25 的倍数;(3)这个密码在20000000 到30000000 之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是()A.25526250B.26650350C.27775250D.2887035018.从1~11这11个整数中任意取出6个数,则下面结论正确的共()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.A.3B.2C.1D.019.如果20132013201420142012nm⨯=⨯+(其中m与n为互质的自然数),那么m n+的值是()A.1243B.1343C.4025D.402920.某班有50多人上体育课,他们站成一排,老师让他们按1,2,3,4,5,6,7循环报数,最后一人报的数是4,这个班有()人上体育课.A.51B.50C.53D.5721.两个数的最大公约数是20,最小公倍数是100,下面说法正确的有()个.(1)两个数的乘积是2000.(2)两个数都扩大10倍,最大公约数扩大100倍.(3)两个数都扩大10倍,最小公倍数扩大10倍.(4)两个数都扩大10倍,两个数乘积扩大100倍.A.1B.2C.3D.422.用四个数码1,3,4和6所组成的没有重复数字的所有整数中,是6的倍数的有( )A.1B.2C.3D.423.若干位小朋友排成一行,从左面第一个人开始,每隔2人发一个苹果,从右面第一人开始,每隔4人发一个桔子,结果有10个小朋友苹果和桔子都拿到了,那么这些小朋友最多有()人.A.16B.31C.158D.16624.一个电子钟,每9分钟亮一次灯,每到整点响一次铃,中午12点时,电子钟恰好又亮灯又响铃,问下次既亮灯又响铃是()A.2点B.3点C.4点D.5点25.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么,长度是1厘米的短木棍有()条.A.7B.8C.9D.1026.一根长木棍上刻有三种刻度,第一种刻度将木棍十等分,第二种刻度将木棍十二等分,第三种刻度将木棍十五等分,如果沿每条刻度线将木棍锯开,木棍总共被锯成()A.20段B.24段C.28段D.30段27.某加油站有二位员工,从今年l月1日起规定:员工甲每工作3天后休息1天,员工乙每工作5天后休息2天,当遇到二人都休息时,必须另聘一位临时工,则今年共有()天要聘1个时工.A.26B.28C.30D.2428.一条公路由A经B到C.已知A、B相距280米,B、C相距315米.现要在路边植树,要求相邻两树间的距离相等.并在B点及AB、BC的中点上都要植一棵.那么两树间距离最多有()A.35米B.36米C.17.5米D.18米29.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点是()A.32千米处B.37千米处C.55千米处D.90千米处30.有两个二位数,它们的最大公约数8,最小公倍数是96,这两个数的和是()A.56B.78C.84D.9631.在老区和新区之间一条路上安排公交站点,第一种安排将道路分成十等份;第二种安排将道路分成十二等份;第三种安排将道路分成十五等份.这三种安排分别通过三路不同的公交车实现,则此道路上其有多少个公交站点?(含起点和终点)()A.27B.29C.32D.3732.有两个合数是互质数,它们的最小公倍数是210,这样的数有()对.A.1B.2C.3D.433.如果a、b的最大公因数是21,那么a和b的公因数有()个.A.2B.3C.4D.534.同学们栽树,每行栽5棵,到最后一行只栽了4棵树,那么这些树的棵数是()A.5的倍数B.4的倍数C.5的倍数多4D.4的倍数多535.标有1到200的200张数字卡片,任意抽一张,号码是3的倍数的可能性是()A.33100B.67100C.310D.不确定36.7和8的最小公倍数是()A.1B.56C.11237.一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块?( )A.15B.12C.75D.838.小丽用一排地砖创造了一种跳跃游戏.她将地砖标上l,2,3,4,⋯并沿这一排地砖跳跃,每两块地砖着地一次,第一步落在第2块地砖上,最后停在倒数第2块地砖上.转身后她从倒数第2块地砖开始向回跳跃,这一次是每三块地砖着地一次,最后停在第l块地砖上.最后她又转身从第l块地砖开始跳跃,每五块地砖着地一次.这一次她又停在倒数第2块地砖上.那么这一排地砖共有()块(从下列选项中选出符合条件的答案).A.39B.40C.47D.49E.5339.a、b和c是三个自然数,在a b c=⨯中,不一定成立的是()A.a一定是b的倍数B.a一定能被b整除C.a一定是b和c的最小公倍数D.b一定是a的约数40.一个圆的直径缩小2倍,周长与面积分别缩小()A.2倍与4倍B.2倍与2倍C.4倍与4倍D.4倍与2倍41.下列四组数中,两个数只有公约数1的数是()A.13和91B.21和51C.34和51D.15和2842.五楼的王老师病了,小孙帮王老师送早点,从一楼到二楼用了34分钟,用同样的速度从一楼走到五楼王老师家要用( )分钟.A.154B.3C.203D.以上都不对43.校园内有一圆形花坛,花坛周围一共种了15棵月季花,每两棵月季花的距离都是2米,那么花坛的周长是( )A.30B.3C.28D.1544.奶奶折一个纸鹤用3分钟,每折好一个需要休息1分钟,奶奶从2时30分开始折,她折好第5个纸鹤时已经到了( )A.2时45分B.2时49分C.2时50分D.2时53分45.小明在正方形的边上标出若干个点,每条边上恰有3个,那么所标出的点最少有( )个.A.12B.10C.8D.646.一个木工锯一根长22米的木料,他先把一头损坏的部分锯下来2米,然后锯了4次,锯成同样长的短木条,每根短木条长( )米.A.2B.3C.4D.547.把25分拆成若干个不同正整数的和,其积的最大值设为A ,把26分拆成若干个不同正整数的和,其积的最大值设为B ,则(A B ) A.2526 B.78 C.56 D.1848.把自然数154写成若干个连续自然数之和(最少有两个数),共有( )种不同写法.A.2B.3C.4D.549.如图所示,将15个点排成三角形点阵或者梯形点阵共有3种不同方法(规定:相邻两行的点数均差1).那么将2014个点排成三角形点阵或者梯形点阵(至少两层)共有( )种不同的方法.A.3B.7C.4D.950.式子20141x为整数,则正整数x有()种取值.A.6B.7C.8D.9参考答案与试题解析一、选择题(共50小题)1.沿边长为20米的正方形花园四周每隔4米种一棵树,最多可种树()棵A.16B.18C.20D.22【解析】根据题意得⨯÷2044=÷804=(棵)20故选:C.2.一个挂钟,一点钟敲一下,两点钟敲两下,三点钟敲三下⋯⋯十二点钟敲十二下,每逢半点敲一下.这个挂钟一昼夜共敲()下.A.78B.102C.156D.180【解析】根据题意得+++⋯++⨯(1231212)2=⨯902=(下)180故选:D.3.一根木头长24分米,要锯成4分米长的木棍.若每锯一次要3分钟,锯完一段休息2分钟,则全部锯完需要()分钟.A.23B.25C.28D.30【解析】2446÷=(段)615-=(次)⨯=(分钟)5315⨯-=(分钟)2(51)815823+=(分钟)答:全部锯完需要23分钟.故选:A.4.一块三角形地,三条边分别12米、15米、9米,每3米种一棵树,一共要种()棵树.A.9B.12C.15D.18【解析】根据题意得(12159)3++÷=÷363=(棵)12故选:B.5.一根长2米的木棍,锯成每段长0.4米的木棍需要20分钟,那么锯成每段长0.5米的木棍需要()A.15分钟B.12分钟C.10分钟D.以上都不对【解析】20.45÷=(段)÷-20(51)=÷204=(分)5÷=(段)20.54⨯-5(41)=⨯53=(分钟)15答:需要15分钟.故选:A.6.一根水管锯成两段要2分钟,锯成6段要()分钟.A.6B.10C.12D.24【解析】2(21)(61)÷-⨯-=÷⨯215=(分钟)10答:锯成6段要10分钟;故选:B.7.同学们做早操,81个同学排成一排,每相邻两个同学之间的距离相等,第一个人到最后一个人的距离时120米,相邻两个人的距离是()米.A.1B.约1.5C.1.5D.2【解析】如果把人看做一个点,120(811)÷-=÷120801.5=(米)所以应该是约1.5米,但不是1.5米答:相邻两个人约隔1.5米.故选:B.8.小明家住在9楼,他从底楼走到3楼用了1分钟,那么它从底楼走到9楼要用()分钟.A.4.5B.4C.3.5D.3E.2.5【解析】1(31)(91)÷-⨯-=÷⨯128=(分钟);4答:它从底楼走到9楼要用4分钟.故选:B.9.奶奶出去散步,从第一根电线杆处走到第十根电线杆处共用了18分钟,照这个速度奶奶走了36分钟,她走到了第()根电线杆处.A.18B.19C.20D.21【解析】18(101)2÷-=(分钟)÷+=(根)362119答:奶奶36分钟走到了第19根电线杆处.10.时钟3点敲3下,6秒钟敲完;那么7点敲7下,()秒钟敲完.A.10B.12C.14D.18【解析】根据分析可得,÷-⨯-,6(31)(71)=⨯,3618=(秒);答:7点敲7下,18秒钟敲完.故选:D.11.在一座长1000米的长江大桥两边挂彩灯,起点和终点都挂,一共挂了202盏(相邻两盏之间的距离相等).则相邻两盏彩灯之间的距离是()米.A.8B.9C.10D.11【解析】大桥一边挂彩灯的数量:2022101÷=(盏)灯与灯之间的间隔数:1011100-=(个)相邻2盏彩灯的距离:100010010÷=(米),故选:C.12.分母小于60,分子不大于6的最简真分数有()个.A.59B.87C.197D.215【解析】根据题意可得:①当分子是1时,分母可以从2到59,共58个;②当分子是2、3、5时,因为他们都是质数,因此分母必须大于分子,且不是分子的倍数,当分子是2时,在1到59之间有偶数29个130+=个数不符合条件,所以有593029-=个;当分子是3时,在1到59之间有3的倍数18个321+=个,所以有592138-=个;当分子是5时,在1到59之间是5的倍数的11个415+=个,所以591544-=个;③因为当分子是4时是合数,分母不能为偶数,在1到59之间有偶数29个231+=,所以有593128-=个;④分子是6时,6是合数,分母不能为偶数,在1到59之间有偶数29个231+=个,又不能是3的倍数,1至59之间不是偶数且是3的倍数有10个,则所以共有--=个.59311018所以分子不大于6而分母小于60的不可约真分数有:582938442818215+++++=(个).故选:D.13.a,b和c是三个非零自然数,在a b c=⨯中,能够成立的说法是()A.b和c是互质数B.b和c都是a的质因数C.b和c都是a的约数D.b一定是c的倍数【解析】A、比如1226=⨯,2和6不互质,所以b和c是互质数的说法错误;B、比如4886=⨯,8和6不是48的质因数,所以b和c都是a的质因数的说法错误;C、因为a b c=⨯,所以b和c都是a的因数,所以b和c都是a的约数的说法正确;D、比如4886=⨯,8就不是6的倍数,所以b一定是c的倍数的说法错误;故选:C.14.三个不同正整数的和为564,其中一个数除以3余数为1,另一个数除以5的余数为3,第三个数除以7的余数为5,商都相同,则相同的商为()A.15B.21C.35D.37【解析】---÷++=(564135)(357)37故选:D.15.商店有三种糖,甲种糖每袋1.5千克,乙种糖每袋2千克,丙种糖每袋2.5千克,为了方便顾客,将大袋改为小袋,把它们全改为0.5千克的小袋,这样奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,原来的甲、乙、丙三种糖的品种依次是()A.酥糖、水果糖、奶糖B.奶糖、水果糖、酥糖C.奶糖、酥糖、水果糖D.水果糖、奶糖、酥糖【解析】由题意,甲种糖一袋改3小袋,乙种糖一袋改4小袋,丙种糖一袋改5小袋,因为奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,而126能被3整除,104能被4整除,205能被5整除,所以甲、乙、丙三种糖的品种依次是奶糖、水果糖、酥糖,故选:B.16.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点的千米数是()A.32B.37C.55D.90【解析】同时经过两种设施时的里程数减3后,应是4的倍数,减10以后应是9的倍数.在19千米处第一次同时经过这两种设施,所以从这里开始以后再次经过这两种设施时,行驶的路一定是4和9的最小公倍数,所以第二次同时经过这两种设施时的里程数为194955+⨯=千米.故选:C.17.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3 的倍数又是25 的倍数;(3)这个密码在20000000 到30000000 之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是()A.25526250B.26650350C.27775250D.28870350【解析】(1)四个选项都是8位数;(2)四选项都是25的倍数,C的数字和是35不是3的倍数.排除C;(3)都满足条件;(4)都满足条件;(5)A,D相等不满足条件;(6)B满足条件.故选:B.18.从1~11这11个整数中任意取出6个数,则下面结论正确的共()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.A.3B.2C.1D.0【解析】根据上面的分析可知:从1~11这11个整数中任意取出6个数,①其中必有两个数互质;此说法正确.③其中必有一个数的2倍是其中另一个数的倍数.此说法正确.故选:B.19.如果20132013201420142012n m⨯=⨯+(其中m 与n 为互质的自然数),那么m n +的值是( )A.1243B.1343C.4025D.4029 【解析】2013201320136712014201420122016672n m ⨯===⨯+, 所以671n =,672m =,1343m n +=.故选:B .20.某班有50多人上体育课,他们站成一排,老师让他们按1,2,3,4,5,6,7循环报数,最后一人报的数是4,这个班有( )人上体育课.A.51B.50C.53D.57【解析】接近50的7的倍数有:49和56,49453+=,56460+=不符合题意,所以这个班有53人上体育课.故选:C .21.两个数的最大公约数是20,最小公倍数是100,下面说法正确的有( )个.(1)两个数的乘积是2000.(2)两个数都扩大10倍,最大公约数扩大100倍.(3)两个数都扩大10倍,最小公倍数扩大10倍.(4)两个数都扩大10倍,两个数乘积扩大100倍.A.1B.2C.3D.4【解析】根据题意,可知这两个数分别是20和100;(1)201002000⨯=,所以两个数的乘积是2000,所以原说法正确的;(2)两个数都扩大10倍,最大公约数变为2010200⨯=,是扩大了10倍,所以原说法错误;(3)两个数都扩大10倍,最小公倍数变为100101000⨯=,是扩大了10倍,所以原说法正确;(4)两个数都扩大10倍,变为200和1000,乘积变为200000,也即两个数乘积扩大100倍,所以原说法正确;正确的说法有3个.故选:C .22.用四个数码1,3,4和6所组成的没有重复数字的所有整数中,是6的倍数的有( )A.1B.2C.3D.4【解析】由分析可知,用四个数码1,3,4和6所组成的没有重复数字的所有整数中,是6的倍数的有36和6这两个数.故选:B.23.若干位小朋友排成一行,从左面第一个人开始,每隔2人发一个苹果,从右面第一人开始,每隔4人发一个桔子,结果有10个小朋友苹果和桔子都拿到了,那么这些小朋友最多有()人.A.16B.31C.158D.166【解析】每(21)(41)15+⨯+=人就会有1人拿到两种水果.先让12人拿到两种水果,并且在这一行中,两端的两人都拿到了两种水果,因此共:15111166⨯+=(人);然后从两端去掉最少的人就可以了,要满足左方第一个是苹果,那么左方最少去掉3人,要满足右方第一个拿到橘子,那么右方最少去掉5人;所以最多有:16653158--=(人);答:这些小朋友最多有158人.故选:C.24.一个电子钟,每9分钟亮一次灯,每到整点响一次铃,中午12点时,电子钟恰好又亮灯又响铃,问下次既亮灯又响铃是()A.2点B.3点C.4点D.5点【解析】因为9和60的最小公倍数是180,所以180分后既亮灯又响铃,180分钟3=小时;12时3=时;+时15答:在下午3点既亮灯又响铃.故选:B.25.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么,长度是1厘米的短木棍有()条.A.7B.8C.9D.10【解析】从左往右每隔6厘米染的红点全是6的倍数,从右往左每隔5厘米染红点,100除以5能除尽,说明从左往右和从右往左是一样的,都是5的倍数.只要找出5厘米的倍数和6厘米的倍数就可以.100以内5的倍数是:5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100.100以内6的倍数是:6,12,18,24,30,36,42,48,54,60,66,72,78,84,90,96,5的倍数和6的倍数相差1的是:5和6,24和25,36和35,54和55,65和66,84和85,95和96,所以共有7段长1cm的短木棍.故选:A.26.一根长木棍上刻有三种刻度,第一种刻度将木棍十等分,第二种刻度将木棍十二等分,第三种刻度将木棍十五等分,如果沿每条刻度线将木棍锯开,木棍总共被锯成()A.20段B.24段C.28段D.30段【解析】由于10、12、15的最小公倍数是60,假定这根木棍的长为60.于是,各等分的刻度线的标记处是:十等分:6、12、18、24、30、36、42、48、54、60.十二等分:5、10、15、20、25、30、35、40、45、50、55、60.十五等分:4、8、12、16、20、24、28、32、36、40、44、48、52、56、60.这样,把有三个刻度线标记处重合的(60)去掉,把有两个刻度线标记处的(12、24、36、48、20、30、40)只算一个,然后在4、5、6、8、10、12、15、16、18、20、24、25、28、30、32、35、36、40、42、44、45、48、50、52、54、55、56处将木棍锯断,共锯了27次.根据植树问题的原理可知:这根木棍共锯成27128+=(段).故选:C.27.某加油站有二位员工,从今年l月1日起规定:员工甲每工作3天后休息1天,员工乙每工作5天后休息2天,当遇到二人都休息时,必须另聘一位临时工,则今年共有()天要聘1个时工.A.26B.28C.30D.24【解析】解;甲每到4的倍数就休息,而乙每到7的倍数和比7的倍数少一天都休息.因为4和7的最小公倍数是28,因为今年是平年,所以在28的倍数休息的日子时;÷=⋯(天),36528131而每个28天中,第20天和第28天两人都休息,所以全年共有13226⨯=(天)需要聘请临时工.故选:A.28.一条公路由A经B到C.已知A、B相距280米,B、C相距315米.现要在路边植树,要求相邻两树间的距离相等.并在B点及AB、BC的中点上都要植一棵.那么两树间距离最多有()A.35米B.36米C.17.5米D.18米【解析】因为157.5140117.5÷=⋯,14017.58÷=,所以140和157.5这两个数的最大公约数就是17.5.答:两树间距离最多有17.5米.故选:C.29.如图,在高速公路上,从3千米处开始,每隔4千米设计一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两标志.那么,下一个同时设置这两种标志的地点是()A.32千米处B.37千米处C.55千米处D.90千米处【解析】同时经过两种设施时的里程数减3后,应是4的倍数,减10以后应是9的倍数.在19km处第一次同时经过这两种设施,所以从这里开始以后再次经过这两种设施时,行驶的路一定是4和9的公倍数,所以第二次同时经过这两种设施时的里程数为194955km+⨯=.故选:C.30.有两个二位数,它们的最大公约数8,最小公倍数是96,这两个数的和是()A.56B.78C.84D.96【解析】8222=⨯⨯,=⨯⨯⨯⨯⨯,96222223所以这两个最大公约数8,最小公倍数是96的二位数只能是2222232⨯⨯⨯⨯=和⨯⨯⨯=;222324这两个二位数的和是:322456+=;故选:A.31.在老区和新区之间一条路上安排公交站点,第一种安排将道路分成十等份;第二种安排将道路分成十二等份;第三种安排将道路分成十五等份.这三种安排分别通过三路不同的公交车实现,则此道路上其有多少个公交站点?(含起点和终点)()A.27B.29C.32D.37【解析】第一种安排:10个站点;第二种安排:12个站点;第三种安排:15个站点.其中,三种安排的起点终点是相同的,要减掉4个站点又,第一种安排和第二种安排有一个站点重合,减掉1个站点(因为10和12在100以内只有一个公倍数60)第二种安排和第三种安排有一怠伐糙和孬古茬汰长咯个站点重合,减掉1个站点(因为12和15在100以内只有一个公倍数60)第一种安排和第三种安排有三个站点重合,减掉2个站点(10和15在100以内有三个公倍数30、60、90,其中60已经减过一次)所以总共是29个站点.故选:B.32.有两个合数是互质数,它们的最小公倍数是210,这样的数有()对.A.1B.2C.3D.4【解析】根据题干分析可得:=⨯⨯⨯,2102357符合题意的两个合数为:⨯;23⨯和57⨯;⨯和3725⨯;27⨯和35共有3对.故选:C.33.如果a、b的最大公因数是21,那么a和b的公因数有()个.A.2B.3C.4D.5【解析】a和b的公因数有1、3、7、21,共有4个;故选:C.34.同学们栽树,每行栽5棵,到最后一行只栽了4棵树,那么这些树的棵数是()A.5的倍数B.4的倍数C.5的倍数多4D.4的倍数多5【解析】根据分析可得,树的总棵数5=⨯行数4+,即树的总棵数比5的倍数多4;故选:C.35.标有1到200的200张数字卡片,任意抽一张,号码是3的倍数的可能性是()A.33100B.67100C.310D.不确定【解析】标有1到200的200张数字卡片,是3的倍数的有198366÷=个,可能性为:33 66200100÷=;答:号码是3的倍数的可能性是33 100;故选:A.36.7和8的最小公倍数是()A.1B.56C.112【解析】7和8的最小公倍数是;7856⨯=;故选:B.37.一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块?( )A.15B.12C.75D.8【解析】(7525)(75150)÷⨯÷35=⨯15=(块);答:用这样的红砖拼成一个正方形最少需要15块.故选:A.38.小丽用一排地砖创造了一种跳跃游戏.她将地砖标上l,2,3,4,⋯并沿这一排地砖跳跃,每两块地砖着地一次,第一步落在第2块地砖上,最后停在倒数第2块地砖上.转身后她从倒数第2块地砖开始向回跳跃,这一次是每三块地砖着地一次,最后停在第l块地砖上.最后她又转身从第l块地砖开始跳跃,每五块地砖着地一次.这一次她又停在倒数第2块地砖上.那么这一排地砖共有()块(从下列选项中选出符合条件的答案).A.39B.40C.47D.49E.53【解析】第一次:因为每两块地砖着地一次,第一步落在第2块地砖上,最后停在倒数第2块地砖上,所以地砖数是2的倍数加上1;第二次:因为倒数第2块地砖开始向回跳跃,这一次是每三块地砖着地一次,最后停在第l块地砖上,所以地砖数是3的倍数减去1;第三次:因为从第l块地砖开始跳跃,每五块地砖着地一次.这一次她又停在倒数第2块地砖上,所以地砖数是5的倍数加上2;在答案39,40,47,49,53中,只有47符合要求;故选:C.39.a、b和c是三个自然数,在a b c=⨯中,不一定成立的是()A.a一定是b的倍数B.a一定能被b整除C.a一定是b和c的最小公倍数D.b一定是a的约数【解析】A、因为a b c=⨯,所以a一定是b的倍数,正确;B、因为a b c=⨯,所以a b c÷=,a一定能被b整除,正确;=⨯,a一定是b和c的最小公倍数,不成立;C、a b cD、a b c=⨯,所以a b c÷=,b一定是a的约数.故选:C.40.一个圆的直径缩小2倍,周长与面积分别缩小()A.2倍与4倍B.2倍与2倍C.4倍与4倍D.4倍与2倍【解析】根据圆的周长和面积公式可知,圆的周长和半径成正比例,圆的面积与半径的平方成正比例,所以圆的直径缩小2倍,即圆的半径缩小2倍,则圆的周长缩小2倍,圆的面积就缩小2=倍,24故选:A.41.下列四组数中,两个数只有公约数1的数是()A.13和91B.21和51C.34和51D.15和28【解析】A,13是质数,91713=⨯,它们的最大公因数是13;B,2137=⨯,51317=⨯,它们的最大公因数是3;C,34217=⨯,51317=⨯,它们的最大公因数是17;D,1535=⨯,28227=⨯⨯,它们的公因数只有1.故选:D.42.五楼的王老师病了,小孙帮王老师送早点,从一楼到二楼用了34分钟,用同样的速度从一楼走到五楼王老师家要用()分钟.A.154B.3C.203D.以上都不对【解析】3(51) 4⨯-344=⨯3=(分钟)答:用同样的速度从一楼走到五楼王老师家要用3分钟.故选:B.43.校园内有一圆形花坛,花坛周围一共种了15棵月季花,每两棵月季花的距离都是2米,那么花坛的周长是()A.30B.3C.28D.15【解析】根据题意可知:花坛的周长15230=⨯=(米);故选:A.44.奶奶折一个纸鹤用3分钟,每折好一个需要休息1分钟,奶奶从2时30分开始折,她折好第5个纸鹤时已经到了()A.2时45分B.2时49分C.2时50分D.2时53分【解析】1(51)4⨯-=(分钟)3515⨯=(分钟)2时30分4+分钟15+分钟2=时49分答:她折好第5个纸鹤时已经到了2时49分;故选:B.45.小明在正方形的边上标出若干个点,每条边上恰有3个,那么所标出的点最少有(。

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)第二单元:因数和倍数提高题和奥数题板块一:因数和倍数例题1:一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练1:一个数是25的倍数,它位于110至160之间,这个数是多少?例题2:有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练2:既是7的倍数,又是42的因数,这样的数有哪些?例题3:妈妈买来30个苹果,让XXX把苹果放入篮子里。

不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。

XXX共有几种拿法?每种拿法每次各拿多少个?练3:五(1)班有学生42人,把他们平均分成几个研究小组,每组多于2人且少于8人。

可以分成几个小组呢?板块二:2、5、3的倍数的特征例题1:一个五位数29ABC(A、B、C是~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练1:在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5.这个五位数最大是多少?最小是多少?例题2:5□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练2:4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三:奇数和偶数例题1:一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。

已知小船最初在南岸。

1)摆渡15次后,小船是在南岸还是在北岸?为什么?2)XXX说摆渡2016次后,小船在北岸。

他说得对吗?为什么?练1:傍晚XXX开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。

你知道来电的时候,灯应该亮着还是不亮呢?例题2:有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练2:(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?可以做到。

五下 第二单元因数和倍数能力提高题和奥数题(附答案)

五下 第二单元因数和倍数能力提高题和奥数题(附答案)

五下第二单元因数和倍数能力提高题和奥数题(附答案)第二单元《因数和倍数》1. 整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

最小的自然数是02. 因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

例:12÷2=6, 12是6的倍数,6是12的因数。

为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。

数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

一个数的最大因数=最小倍数=它本身3. 2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

①自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数,叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

②最小的奇数是1,最小的偶数是0.③奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数(大减小)奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(984),最小的是(450)②在能被3整除的数中,最大的是(984),最小的是(405)③在能被5整除的数中,最大的是(980),最小的是(405)2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能( 4 )种填法。

4. 质数和合数①质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

【奥数专题】精编人教版小学数学五年级上册 因数与倍数(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 因数与倍数(试题)含答案与解析

经典奥数:因数与倍数(专项试题)一.选择题(共6小题)1.有两根绳子,一根长36厘米,另一根长48厘米,把它们剪成长度相等的小段,且没有剩余,每小段最长()厘米.A.24B.6C.122.红旗小学六年级有男生48人,女生36人.男、女生分别站成若干排,要使每排的人数相同,每排最多有()人.A.4B.6C.12D.163.有一张长方形纸,长70cm,宽50cm.如果要剪成若干同样大小的正方形而没有剩余,剪成的小正方形的边长最大是()厘米.A.5B.10C.15D.204.学校图书室新购进一些图书,如果每24本一包,能够正好包完.如果每16本一包,也能正好包完.图书室至少买了()本图书.A.48B.64C.96D.245.淘气与笑笑同时从环形跑道的起点出发,淘气跑一圈需要4分钟,笑笑跑一圈需要6分钟,至少()分钟后两人还能在起点相遇.A.8B.10C.12D.246.如果把两根长度分别为40厘米和56厘米的塑料管截成长度相等的吸管,并且都没有剩余,每根吸管最长是()厘米.A.1B.2C.4D.8二.填空题(共6小题)7.某条道路上,每隔900米有一个红绿灯,所有的红绿灯都按绿灯30秒黄灯5秒,红灯25秒的时间周期同时重复变换,一辆汽车在第一个路口处遇到绿灯后,要想在所有的红绿灯路口都遇到绿灯,则他最快该以每小时千米的速度行驶.8.暑期,东东和明明到图书馆看书,东东每4天去一次,明明每6天去一次.8月13日两人在图书馆相遇,8月日他们下次相遇.9.六一班有学生48人,六二班有学生54人.如果把两个班的学生分别分成若干小组去大扫除,要使两个班每个小组的人数相同,每组最多人.10.王老师有一盒铅笔,如果平均分给2名同学余1支,如果平均分给3名同学余2支,如果平均分给4名同学余3支,如果平均分给5名同学余4支。

王老师这盒铅笔至少有。

11.有些自然数。

它加1是2的倍数,它的2倍加1是3的倍数,它的3倍加1是5的倍数,那么所有这样的自然数中最小的一个是。

六年级下册数学试题-奥数专练:因数与倍数(含答案)全国通用

六年级下册数学试题-奥数专练:因数与倍数(含答案)全国通用

一、约数(因数)和倍数⑴整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除。

⑴如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数(因数)。

例如:12÷3=4,12能被3整除,12是3的倍数,3是12的约数。

⑴最大公约数:几个数公有的约数叫做这几个数的公约数,其中最大的一个,叫做这几个数的最大公约数。

例如:12和18的公约数有1、2、3、6,其中最大的是6,所以12和18的最大公约数是6,记作(12,18)=6⑴最小公倍数:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公约数。

例如:12和18的公倍数有36、72、108、144、180、……,其中最小的是36,所以12和18的最小公倍数是36。

记作[12,18]=36二、关于最大公约数1.求最大公约数的方法。

⑴分解质因数法;例如求9和12的最大公约数。

9=3×312=2×2×3所以,(9,12)=3例如求12和18的最大公约数。

12=2×2×318=2×3×3所以,(12,18)=2×3=6⑴短除法:例如:求12和18的最大公约数。

所以(12,18)=2×3=6例如:求231和252的最大公约数。

所以(231,252)=3×7=212.最大公约数的性质⑴两个自然数分别除以他们的最大公约数,所得的商互质。

⑵几个数的公约数,都是这几个数的最大公约数的约数。

因数与倍数⑶两个数的最大公约数与最小公倍数的乘积,等于这两个数的乘积。

即:(12,18)×[12,18]=12×18(a,b)×[a,b]=a×b三、关于最小公倍数求最小公倍数的方法。

⑴分解质因数法;例如:求9和12的最小公倍数。

9=3×312=2×2×3所以,[9,12]=2×2×3×3=36例如求12和18的最小公倍数。

小学因数与倍数奥数题100道及答案(完整版)

小学因数与倍数奥数题100道及答案(完整版)

小学因数与倍数奥数题100道及答案(完整版)题目1:一个数既是12 的倍数,又是48 的因数,这个数可能是多少?答案:这个数可能是12、24 或48。

题目2:两个数的最大公因数是6,最小公倍数是36,其中一个数是12,另一个数是多少?答案:另一个数是18。

因为最小公倍数乘以最大公因数等于两个数的乘积,所以另一个数为36×6÷12 = 18 。

题目3:有一个自然数,除以5 余3,除以7 余4,这个数最小是多少?答案:23 。

从除以7 余4 的数中找除以5 余3 的数,最小为23 。

题目4:已知A = 2×3×5,B = 2×5×7,A 和 B 的最大公因数和最小公倍数分别是多少?答案:最大公因数是10,最小公倍数是210 。

题目5:一个数在80 到100 之间,既是6 的倍数,又是9 的倍数,这个数是多少?答案:90 。

6 和9 的最小公倍数是18 ,在80 到100 之间18 的倍数是90 。

题目6:两个自然数的积是360,最小公倍数是120,这两个数分别是多少?答案:3 和120 或15 和24 。

题目7:有一个数,它的最大因数和最小倍数之和是60,这个数是多少?答案:30 。

一个数的最大因数和最小倍数都是它本身,所以这个数是30 。

题目8:把48 块糖和38 块巧克力分别分给同一组同学,结果糖剩3 块,巧克力少了2 块,这个组最多有几名同学?答案:5 名。

48 - 3 = 45 ,38 + 2 = 40 ,45 和40 的最大公因数是5 。

题目9:一个数除以4 余1,除以5 余2,除以6 余3,这个数最小是多少?答案:57 。

这个数加上3 就能被4、5、6 整除,4、5、6 的最小公倍数是60 ,所以这个数最小是57 。

题目10:甲、乙两数的最大公因数是8,最小公倍数是48,甲数是24,乙数是多少?答案:16 。

乙数= 8×48÷24 = 16 。

小学奥数题库《数论》因数和倍数-因数积-3星题(含解析)

小学奥数题库《数论》因数和倍数-因数积-3星题(含解析)

数论-因数和倍数-因数积-3星题课程目标知识提要因数积•概念因数积:就是所有因数的乘积。

精选例题因数积1. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【答案】74和3,37和18.【分析】两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如33=1+32=2+31=3+30=⋯⋯=16+17,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111=37×3,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍〔想想为什么?〕3倍就不是两位数了.把九个三位数分解:111=37×3、222=37×6=74×3、333=37×9、444=37×12= 74×6、555=37×15、666=37×18=74×9、777=37×21、888=37×24=74×12、999=37×27.把两个因数相加,只有(74+3)=77和(37+18)=55的两位数字相同.所以满足题意的答案是74和3,37和18.2. 两个学生抄写同一个乘法算式,两个乘数都是两位数,他们各抄错了一个数字,于是得到两个不同的算式,但巧合的是,他们计算的结果都是936.如果正确的乘积不能被6整除,那么它等于多少?【答案】676【分析】注意936中有质因数13,故易见将其分解成两个两位数相乘的形式有13×72,26×36,39×24,52×18,78×12这5种可能,由于两人各抄错了一个数字,因此两人的算式中应有两个位置上的数字相同.经枚举可知,他们所抄错的算式可能是〔13×72,18×52〕,〔13×72,12×78〕,〔26×36,24×39〕或〔52×18,12×78〕.对于第一种情况,两人抄错的是第一个乘数的个位数字和第二个乘数的十位数字,正确的算式应是13×52或18×72,后者乘积是6的倍数,与题意不符,故原算式应为前者,正确的乘法算式是13×52=676.对后三种情况作类似分析,可得出2×3=6种可能的原乘法算式,但它们的结果都是6的倍数,不合题意.因此676即为所求.3. 360的所有因数的和为多少?所有因数的积为多少?【答案】1170、36012【分析】360=23×32×5,因数和:(20+21+22+23)×(30+31+32)×(50+51)=1170因数积:360n ,n =(3+1)×(2+1)×(1+1)÷2=12 所以因数的积为36012.4. 一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的外表积是多少平方厘米?【答案】6934【分析】39270=2×3×5×7×11×17,为三个连续自然数的乘积,而34×34×34最接近39270,39270的约数中接近或等于34的有35、34、33,有33×34×35=39270.所以33、34、35为满足题意的长、宽、高.那么长方体的外表积为:2×(长×宽+宽×高+高×长)=2×(33×34+34×35+35×33)=6934(平方厘米).方法二:39270=2×3×5×7×11×17,为三个连续自然数的乘积,考虑质因数17,如果17作为长、宽或高显然不满足.当17与2结合即34作为长方体一条边的长度时有可能成立,再考虑质因数7,与34接近的数32~36中,只有35含有7,于是7与5的乘积作为长方体的一条边的长度.而39270的质因数中只剩下了3和11,所以这个长方体的大小为33×34×35.长方体的外表积为2×(3927033+3927034+3927035)=2×(1190+1155+1122)=2×3467=6934(平方厘米).5. 2000的所有因数的和为多少?所有因数的积为多少?【答案】4836、200010【分析】2000=24×53,因数和:(20+21+22+23+24)×(50+51+52+53)=4836; 因数积为2000n ,其中n =(4+1)×(3+1)÷2=10,所以因数的积为200010.6. 10000的所有因数的和为多少?所有因数的积为多少?【答案】24211;1000012×100【分析】10000=24×54,因数和:(20+21+22+23+24)×(50+51+52+53+54)=24211因数积为(1002)n ×100,其中n =[(4+1)×(4+1)−1]÷2=12所以因数的积为1000012×100。

五年级奥数因数倍数

五年级奥数因数倍数

五年级奥数因数倍数五年级奥数(因数与倍数)典型例题80 和144的因数各有多少个?举一反三1.求60和90的因数各有多少个?2.求196的因数各有多少个?3.甲数的2倍等于乙数,乙数的3倍等于丙数,丙数的4倍等于甲数,求甲数拓展提高一个数是5个2,3个3,2个5,1个7的连乘积,这个数当然有许多因数是两位数,这些两位数的因数中,最大的是几?奥赛训练1.把316表示成两个数的和,使其中一个是13的倍数,另一个是11的倍数,求这两个数。

2.和子去鱼店买了以下几种鱼:青花鱼,每条130日元:竹荚鱼,每条170日元,沙丁鱼,每条78日元:秋刀鱼,每条104日元,每种鱼都多于1条,正好花了3600日元,请问:和子买了多少条竹荚鱼?(100日元=7元人民币)3.有一个自然数,它的最小的两个因数的差是4,最大的两位因数的差是308.那么,这个自然数是多少?(2011年全国“希望杯”数学邀请赛)因数和倍数(二)典型例题29÷()=()。

5,在括号内填上适当的数,使等式成立。

共有多少种不同的填法?举一反三1. 37÷()=().........5,在括号内填上适当的数,使等式成立。

共有多少种不同的填法?2 . 49÷()=().........9,在括号内填上适当的数,使等式成立。

共有多少种不同的填法?3.面积是165平方厘米的形状不同且边长是自然数的长方形,共有多少种?拓展提高一只盒内共有96个棋子,如果不是一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完。

那么。

共有多少种不同的拿法?奥赛训练1.自然数≥3,b≥3,a x b =195.那么,共有多少种不同的拿法?2.一只筐内共有120个苹果,如果不一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完。

那么,共有多少种不同的拿法?3.把自然数的所有因数两两求和,得到若干个自然数,在这些自然数中,最小的数是4,最大的数是324,那么,A是多少?2,5倍数的特征个位上是0、2、4、6、8的数都是2的倍数,个位上是0或5的数是5的倍数,因此我们发下,一个数即是2的倍数又是5的倍数,那么它的个位上数字必须是0,另外,一个数的末两位数是4或25的倍数,这个数就是4或25的倍数。

因数和倍数奥数题及标准答案(有难度)

因数和倍数奥数题及标准答案(有难度)

因数和倍数奥数题荟萃总体难度有点大,如果有兴趣可以试试!1、某校举行数学竞赛,共有20道题。

评分标准规定,答对一题给3分,不答给1分。

答错一题倒扣1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?2、有四个连续奇数的和是2008,则其中最小的一个奇数是_________。

3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了________ _名小朋友。

4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得_________分才能使四份训练题的平均成绩达到105分。

5、三个连续自然数的乘积是210,求这三个数.6、自然数123456789是质数,还是合数?为什么?7、一个数用3、4、5除都能整除,这个数最小是多少?8、一个两位数去除251,得到的余数是41.求这个两位数。

9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

答案:1、解:以一个学生得分情况为例。

如果他有m 题答对,就得3m 分,有n题答错,则扣n分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m-n)分。

所以,这个学生得分总数为:3m-n+(20-m-n)=3m-n+20-m-n=2m-2n+20 =2(m-n+10)不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。

由此可见,不管有多少学生参赛,得分总和一定是偶数。

2、解:499。

2008÷4—3=4993、解:6。

12÷(3—1)=6(名)。

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

第二单元因数与倍数提高题和奥数题板块一因数和倍数例题1.一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练习1.一个数是25的倍数,它位于110至160之间,这个数是多少?例题2.有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练习2.既是7的倍数,又是42的因数,这样的数有哪些?例题3.妈妈买来30个苹果,让小明把苹果放入篮子里。

不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。

小明共有几种拿法?每种拿法每次各拿多少个?练习3.五(1)班有学生42人,把他们平均分成几个学习小组,每组多于2人且少于8人。

可以分成几个小组呢?板块二 2、5、3的倍数的特征例题1.一个五位数29ABC(A、B、C是0~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练习1.在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5。

这个五位数最大是多少?最小是多少?例题2.5□□0是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练习2.4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三奇数和偶数例题1.一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。

已知小船最初在南岸。

(1)摆渡15次后,小船是在南岸还是在北岸?为什么?(2)小明说摆渡2016次后,小船在北岸。

他说得对吗?为什么?练习1.傍晚小亮开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。

你知道来电的时候,灯应该亮着还是不亮呢?例题2.有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练习2.(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?(2)有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?例题3.桌子上放着5个杯子,全部是杯底朝上,如果每次翻动2个杯子,称为一次翻动,经过多次翻动能使5个杯子的杯口全部朝上吗?如果每次翻动3个杯子呢?练习3.如家宾馆现在有10间客房的灯开着,每次同时拨动4个房间的开关,能不能把这10个房间的灯全部关闭?如果能,至少需要几次?板块四质数和合数例题1.三个不同质数的和是82,这三个质数的积最大是多少?练习1.(1)两个质数的和是小于100的奇数,并且是11的倍数,这两个质数可能是什么数?(2)两个质数的和是2001,这两个质数的积是多少?(3)一个长方形的长和宽都是质数,并且周长是36厘米,这个长方形的面积最大是多少?例题2.用0、1、4、5这四个数字组成两个质数,每个数字只能用一次,求这两个质数。

小学奥数题库《数论》因数和倍数-因数-5星题(含解析)

小学奥数题库《数论》因数和倍数-因数-5星题(含解析)

数论-因数和倍数-因数-5星题 课程目标知识提要因数• 定义对于整数a 和b ,如果a ∣b ,我们就称a 是b 的因数。

精选例题因数1. 三个最简真分数的分母分别是6,15和20,它们的乘积是130,那么在这三个最简真分数中,最大的数是.【答案】56. 【分析】设这三个真分数分别为a 6,b 15,c 20,其中a 不含因数2和3;b 不含因数3和5;c 不含因数2和5,且a,b,c 均为非0自然数.依题意:a 6×b 15×c 20=130,abc =60=22×3×5.所以a =5,b =4,c =3.所以最大数为:56.2. 有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差颗.【答案】4【分析】设5年前妹妹的年龄为x ,那么5年前今年妹妹x x +5姐姐x +2x +75年前与今年分别按照年龄的比例分配,且恰好分完,所以2x +2与2x +12均为80的因数,且这两个因数的差为10,80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,x=4,5年前按照4:6的比例分配,姐姐分80÷(4+6)×6=48(颗),今年按照9:11的比例分配,姐姐分到80÷(9+11)×11=44(颗),两次分配相差48−44=4(颗).3. 有20个约数,且被42整除最小的自然数是.【答案】336【分析】因为被42整除,所以一定含有质因数2,3,7.20=1×20=2×10=4×5=2×2×5,有20个约数的自然数有:因为必须含有3个不同的质因数,所以最小的只能是:2×2×2×2×3×7=336;所以有20个约数且被42整除的最小自然数是336.4. 请将1、2、3、4、5、6、7、8、9、10、11按适宜的顺序写成一行,使得这一行数中的任何一个都是它前面所有数之和的约数.【答案】其中一个答案是6、1、7、2、8、3、9、4、10、5、11.【分析】设填好后的数从左往右依次为a1,a2,⋯,a11,所有数的和为66,那么有a11∣66−a11,故a11∣66,可以设a11=11,那么其余数的和为55,那么倒数第二个数肯定是55的约数,可以填5;还剩50,那么倒数第三个数肯定是50的约数,可以填10,最后经过尝试得到6、1、7、2、8、3、9、4、10、5、11和8、1、9、3、7、2、6、4、10、5、11等答案.观察6、1、7、2、8、3、9、4、10、5、11这组答案,可以发现一个一般的规律:假设所给数是1∼2n+1,那么n+1,1,n+2,2,⋯,2n,n,2n+1符合题意;假设所给数是1∼2n,那么n+1,1,n+2,2,⋯,2n,n符合题意.5. 一个自然数至少有4个约数,并且该数等于其最小的4个约数的平方之和,请找出这样的自然数.【答案】130【分析】最小的那个约数肯定是1,接着感觉到还是不好下手,先考虑奇偶分析.〔或随便尝试几种情况后肯定会想到奇偶分析〕如果这个数不含因数2,即为奇数.由于12+奇2+奇2+奇2=偶,矛盾.如果这个数含因数2,即为偶数,由于12+22+奇2+奇2=奇,12+22+偶2+奇2=偶,12+22+奇2+偶2=偶,12+22+偶2+偶2=奇,那么只有1、2、偶、奇和1、2、奇、偶这两种情况可能,故这个数最小的四个约数从小到大依次为:1、2、4、p或1、2、p、2p.〔其中p为1个非2的质数〕对于1、2、4、p,说明p∣12+22+42+p2,即p∣21+p2,所以p∣21,那么p是3或7,经验证都不对.对于1、2、p、2p,说明p∣12+22+p2+(2p)2,即p∣5+5p2,整理得p∣5(1+p2),很明显p不能整除1+p2,所以p只能是5,所以这个数是5×(1+52)=130.6. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,其余各位同学都说这个数能被自己的编号数整除.1号作了检验:只有编号连续的两位同学说的不对,其余同学都对,问:〔1〕说的不对的两位同学,他们的编号是哪两个连续自然数?〔2〕如果告诉你1号写的数是五位数,请找出这个数.【答案】〔1〕8和9;〔2〕60060【分析】〔1〕为了表达方便,不妨设1号同学写的自然数为a.根据2~15号同学所述结论,2∼15中只有两个连续的自然数不能整除a,其他的数都能整除a.由于2∼7中的每一个数的2倍都在15以内,如果2∼7中有某个数不能整除a,那么这个数的2倍也不能整除a,然而2∼7中的这个数与它的2倍不可能是两个连续的自然数,所以2∼7中每一个数都是a的约数.由于2与5互质,那么2×5=10也是a的约数.同理可知,12、14、15也都是a的约数.还剩下的四个数为8、9、11、13,只有8、9是两个连续的自然数,所以说的不对的两位同学,他们的编号分别是8和9.〔2〕1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是:22×3×5×7×11×13=60060.因为60060是一位五位数,而这12个数的其他公倍数都是它们的最小公倍数60060的倍数,且最小为2倍,所以均不是五位数,那么1号同学写的五位数是60060.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因数和倍数奥数题荟萃
总体难度有点大,如果有兴趣可以试试!
1、某校举行数学竞赛,共有20道题。

评分标准规定,答对一题给3分,不答给1分。

答错一题倒扣1分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?
2、有四个连续奇数的和是2008,则其中最小的一个奇数是___________ 。

3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了____________ —名小朋友。

4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题
(每
份训练题满分为120分)。

他第一份训练题得了90分,第二份训练题得了100 分,那么第三份训练题至少要得___________ 才能使四份训练题的平均成绩达到
105 分。

5、三个连续自然数的乘积是210,求这三个数.
6自然数9是质数,还是合数?为什么?
7、一个数用3、4、5除都能整除,这个数最小是多少?
8、一个两位数去除251,得到的余数是41.求这个两位数。

9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?
10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

答案:
1、解:以一个学生得分情况为例。

如果他有m题答对,就得3m分,有n题答
错,则扣n分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m- n)分。

所以,这个学生得分总数为:
3m-n+(20-m-n)
=3m-n+20-m-n
=2m-2n+20 =2(m-n+10)
不管(m-n+10)是奇数还是偶数,贝U 2(m-n+10)必然是偶数,即一个学生得分为偶数。

由此可见,不管有多少学生参赛,得分总和一定是偶数。

2、解:499。

2008-4—3=499
3、解:6。

12-(3 —1)=6(名)。

4、解:110。

当第四份训练题得满分即120分时,对第三份训练题的得分要求最低,所以第三份训
练题至少要得105X4 一(90+100+120)=110(分)。

5、解::210=2X 3X 5X7
•••可知这三个数是5、6和7。

&解:9是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

7、分析由题意可知,要求的数是3、4、5的公倍数,且是最小的公倍数。

解:3,4,5] =3X 4X 5=60,
•••用3、4、5除都能整除的最小的数是60。

8、分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除
式入手分析。

解:•••被除数十除数=商…余数,
即被除数=除数X商+余数,
••• 251=除数X商+41,
251-4仁除数X商,
••• 210=除数X商。

•/ 210=2X 3X 5X 7,
••• 210 的两位数的约数有10、14、15、21、30、35、42、70,其中42 和70 大于余数41.所以除数是42或70.即要求的两位数是42或70。

9、解法1:v相邻两个奇数相差2,
•••150是这个要求数的2倍。

•••这个数是150-2=75
解法2:设这个数为x,设相邻的两个奇数为2a+1, 2a-1 (a> 1).则有
(2a+1)x- (2a-1)x=150,
2ax+x-2ax+x=150,
2x=150,
x=75。

•••这个要求的数是75。

10、分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺
水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。

解:顺水速度:208- 8=26(千米/小时)
逆水速度:208- 13=16 (千米/小时)
船速:(26+16)十2=21 (千米/小时)
水速:(26-16)- 2=5 (千米/小时)
答:船在静水中的速度为每小时21千米,水流速度每小时5千米
习题五
1.有100个自然数,它们的和是偶数.在这100个自餓数中,奇数的个数比
偶数的个数多.问:这些数中至多有多少个偶数?
2•有一串数,最前面的四个数依次是1、9、8、?.从第五个数起,每一个
数都是它前面相邻四个数之和的个位数字•问:在这一串数中,会依次岀现1、9、8、8这四个数吗?
3•求证;四个连续奇数的和一定是谢倍数。

4.把任意6个整数分别填入右图屮的6个小力恪内,试说明一定有一个矩形,它的四个角上四个小方格中的四个数之和为偶数。

as
5.如杲两个人通一次电话,每人都记通话一次,在24小吋以内,全世界通话次数是奇数的那些人的总数为—0
(A)必为奇数,(B)必为偶数,
(C)可能是奇数,也可能是偶数。

6.-次宴会上,客人们相互握手•问握手次数是奇数的那些人的总人数是奇数还是偶数。

7.有12张卡片,其中有3张上面写着1,有3张上面与着3,有3张上面写着5,有3张上面写着7•你能否从中选出五张,使它们上面的数字和为20?为什么?
8.有10只杯子全部口朝下放在盘子里.你能否每次翻那只杯子,经过若干次翻动后将杯子全部翻成口朝上?
9•电影厅每排有19个座位,共23排,要求每一视介都仅和它邻近(即前、后、左、右)一人交换位置•问:这种交换方袪是否可行?
10•由14个大小相同的方格组成下列图形(石图),请证明;不论怎样剪法,总不能把它剪成7个由两个相邻方格组成的长方形.
习题五解答
1.偶数至多有4g个。

2.提示:先按规律写出一些数来,再找其奇、偶性的聊列规律,使可得到答秦=不会依次岀现1、9、8、8这四个数。

3.设四个连续奇数是2n+l, 2n + 3, 2n+5, 2n+ 7, n为整数,则它们的和是
C2n+1) +(2n+3)+〔2n+5)+(2n+7)
= 2nX4+16=8n+16=8 (口+2)。

所以,四个连续奇数的和是0的倍数。

4.证明:设填入数分别为①、比、%屯、%、条.有
假设要证明的结论不成立,则有’
•••偶数工奇数,•••假设不成立,命题得证。

5.应选择.参考例3。

6.是偶数.参考例3。

了.不能.因为5个奇数的和为奇数,不可能等于20。

&龍.例如
第一次78910
第二次3456
第三次2345
第四次13 45
9.这种交换方法是不可命的•参考例12。

10.利用黑白相间染色方法可以证明:不可能剪成由7个相邻两个方格组成的长方形,因为图形中一种颜色有8枱另一种颜色有6卷而每个相邻两个方格组威的长方形是一黑恪一白格,厂卜这样的长方形井?黑格治
棉与图形相才盾.。

相关文档
最新文档