四川理工学院复变函数与积分变换试卷(13-14-1-A2)
《复变函数与积分变换》2012-2013-1试卷A卷.doc(A4精简版)
河南理工大学 2012—2013 学年第 1 学期《复变函数与积分变换》试卷(A 卷)一、填空题:(8×4’)1. =+331)(i ;2.方程12=)Re(z 所表示的平面曲线方程为__________________;3.C 是线段OA ,O 为原点,A 为i +2, 则dz z c )Re(⎰____________; 4.)i =________________;5.n n z in )(cos ∑∞=0的收敛半径是_________________; 6.函数411z +在所有有限奇点处的留数和为___________; 7.ℱ)]([t u _________________;8. 若F 1(ω)=ℱ[f 1(t )],F 2(ω)=ℱ[f 2(t )],则ℱ=*)]()([t f t f 21_______.二、选择题:(4×4’)1.函数)Im()(z z z f 2=在0=z 处的导数( ) A. -1 B.1 C. 0 D.不存在.2.设函数)(z f 在单连通区域B 内解析,c 为B 内一条简单正向闭曲线,则必有( )A.0=⎰dz z f c )](Im[ B. 0=⎰dz z f c )](Re[ C. 0=⎰dz z f c )( D. 0=⎰])(Re[dz z f c. 3.若幂级数∑∞=-02n n n z c)(在0=z 收敛,则它必在( )A. z =3点收敛 B. z =2点发散 C. z =3点发散 D.以上全不正确.4.0=z 是6zz z sin -的( )A.可去奇点 B. 三阶极点 C. 六阶极点 D. 本性奇点. 三、解答题:(共52分)1.验证xy y x y x u 222+-=),(为调和函数,并求一满足条件00=)(f 的解析函数),(),()(y x iv y x u z f +=.(8分)2.⎰+-τdz z z e z))((21,τ为不过2,1-的任意一条简单正向闭曲线. (8分) 3.用留数法计算积分⎰+∞∞-++dx x x x 542cos .(7分) 4.把函数112+=z z f )(在复平面上的下列圆环域展开为i z -的洛朗级数,+∞<-<<-<i z i z 22201)(,)(.(8分)5.计算 ℱ][sin t t+2.(7分) 6.计算 ℒ])([22112+-s s .(7分) 7.利用Laplace 变换法解微分方程⎩⎨⎧==+'.)(,001y y y (7分)。
复变函数与积分变换试卷
复变函数与积分变换试卷一、填空题(每空3分,共30分)1. 设z = x+iy,则| z|=_√(x^2)+y^{2}。
2. 复数z = 3 - 4i的共轭复数¯z=_3 + 4i。
3. 函数f(z)=(1)/(z)在z = 1处的泰勒展开式为∑_n = 0^∞(- 1)^n(z - 1)^n,收敛半径R=_1。
4. 设C为正向圆周| z|=2,则∫_C(dz)/(z - 1)=_2π i。
5. 拉普拉斯变换L[sin at]=_(a)/(s^2)+a^{2}(s>0)。
6. 已知F(s)=(1)/(s(s + 1)),其拉普拉斯逆变换f(t)=_1 - e^-t(t≥slant0)。
7. 设f(z)=u(x,y)+iv(x,y)在区域D内解析,则u与v满足柯西 - 黎曼方程(∂ u)/(∂ x)=_(∂ v)/(∂ y),(∂ u)/(∂ y)=-_(∂ v)/(∂ x)。
二、选择题(每题4分,共20分)1. 下列复数中,位于第三象限的是()A. - 1 + iB. 1 - iC. -1 - iD. 1 + i2. 函数f(z)=(1)/(z^2)+1的奇点是()A. z = i和z=-iB. z = 0C. z = 1和z=-1D. 无奇点。
3. 设C是从z_1=0到z_2=1 + i的直线段,则∫_C(x - iy)dz=()A. (1)/(2)(1 + i)B. (1)/(2)(1 - i)C. (1 + i)D. (1 - i)4. 拉普拉斯变换L[t^n]=()(n为正整数,s>0)A. (n!)/(s^n)B. (n)/(s^n)C. (n!)/(s^n+1)D. (n)/(s^n+1)5. 若F(s)是f(t)的拉普拉斯变换,则L[f'(t)]=()(s满足一定条件)A. sF(s)B. F(s)-f(0)C. sF(s)-f(0)D. F(s)三、计算题(每题10分,共30分)1. 求函数f(z)=(z)/((z - 1)(z - 2))在1<| z|<2内的洛朗级数展开式。
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数14套题目和答案
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则Cz f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1.=-⎰=-1||00)(z z nz z dz __________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数0n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→nz z z nn (i)21______________.8.=)0,(Re nz ze s ________,其中n 为自然数.9.zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=Cd zz f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D内为常数. 2. 试证: ()(1)f z z z =-在割去线段0R e 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0R e 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)1、 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nnf .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z nz z dz _________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________. 10.____)1,1(Res 4=-zz .三. 计算题. (40分) 1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dz z zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若nn ni nn z )11(12++-+=,则=∞→nz n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z nz z dz _________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nz ze .三. 计算题. (40分)1. 将函数12()z f z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-Czz z z e )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z 在|z |<1内根的个数. 四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时nz M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
(完整)《复变函数与积分变换》期末考试试卷及答案,推荐文档
(完整)《复变函数与积分变换》期末考试试卷及答案,推荐⽂档23∞ ?复变函数与积分变换?期末试题(A)1.1 -i⼀.填空题(每⼩题3 分,共计15 分)的幅⾓是();2. Ln(-1 +i) 的主值是(1);3.f (z) =1 +z 2,z - sin z f (5)(0) =();f (z) =1,4.z = 0 是z 4 的()极点;5.z Re s[f(z),∞]=();⼆.选择题(每⼩题3 分,共计15 分)1.解析函数f (z) =u(x, y) +iv(x, y) 的导函数为();(A)f '(z) =u x +iu y ;(B)f '(z) =u x-iu y;(C) f '(z) =ux+ivy ;(D) f '(z) =u y +iv x.2.C 是正向圆周z = 3 ,如果函数f (z) =(),则?C f (z)d z = 0 .3;(B)3(z -1);(C)3(z -1);(D)3.n=1(A)z =-2 点条件收敛;(B)z = 2i 点绝对收敛;(C)z = 1 +i 点绝对收敛;(D)z = 1 + 2i 点⼀定发散.4.下列结论正确的是( )(A)如果函数f (z) 在z0点可导,则f (z) 在z0点⼀定解析;得分e(B) 如果 f (z ) 在 C 所围成的区域内解析,则 ?C f (z )dz = 0(C )如果 ?C f (z )dz = 0 ,则函数 f (z ) 在 C 所围成的区域内⼀定解析;(D )函数 f (z ) = u (x , y ) + iv (x , y ) 在区域内解析的充分必要条件是u (x , y ) 、v (x , y ) 在该区域内均为调和函数. 5.下列结论不正确的是().(A) ∞为sin 1的可去奇点 z(B) ∞为sin z 的本性奇点 ∞为 1 的孤⽴奇点; ∞ 1 (C) sin 1z(D) 为的孤⽴奇点. sin z三.按要求完成下列各题(每⼩题 10 分,共计 40 分)(1)设 f (z ) = x 2 + axy + by 2 + i (cx 2 + dxy + y 2 ) 是解析函数,求a ,b ,c ,d .z(2).计算 ?Cz (z - 1)2d z 其中 C 是正向圆周: z = 2 ;得分zd z (3)计算? 15z =3 (1 +z 2 )2 (2 +z 4 )3(sin z )3在扩充复平⾯上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题 14 分)将函数 f (z ) = 1z 2 (z - 1)在以下区域内展开成罗朗级得分数;(1) 0 < z - 1 < 1 ,(2) 0 < z < 1 ,(3)1 < z < ∞五.(本题 10 分)⽤ Laplace 变换求解常微分⽅程定解问题 y (x ) - 5 y '(x ) + 4 y (x ) = e -xy (0) = y '(0) = 1得分六、(本题 6 分)求 f (t) e t(0) 的傅⽴叶变换,并由此证明:costt2 2 d 2 e 0复变函数与积分变换?期末试题(A )答案及评分标准⼀.填空题(每⼩题 3 分,共计 15 分)得分3 的幅⾓是( 2k Ln (-1 + i ) ee 1. 1- i 2 - + , k = 0,±1,±2 );2.的主值是( 31 ln2 +3 24 iz - sin z f (z ) =3.1+ z 2 , f(5)(0) = ( 0),4. z = 0 是1 z4的(⼀级)极点;5. f (z ) = z, R e s [ f (z ),∞] =(-1);⼆.选择题(每题 3 分,共 15 分)1----5B DC B D三.按要求完成下列各题(每⼩题 10 分,共 40 分)(1).设 f (z ) = x 2 + axy + by 2 + i (cx 2 + dxy + y 2 ) 是解析函数,求a ,b ,c ,d .解:因为 f (z ) 解析,由 C-R 条件u = vx y u = -vy x2x + ay = dx + 2y ax + 2by = -2cx - dy ,a = 2, d = 2, , a = -2c ,2b = -d ,c = -1, b = -1,给出 C-R 条件 6 分,正确求导给 2 分,结果正确 2 分。
《复变函数与积分变换》期末考试试卷及答案(K12教育文档)
《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改)的全部内容。
«复变函数与积分变换»期末试题(A)一.填空题(每小题3分,共计15分)1.231i-的幅角是();2。
)1(iLn+-的主值是( );3. 211)(zzf+=,=)0()5(f();4.0=z是4sinzzz-的( )极点;5.zzf1)(=,=∞]),([Re zfs( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(yxivyxuzf+=的导函数为();(A) yxiuuzf+=')(; (B)yxiuuzf-=')(;(C)yxivuzf+=')(;(D)xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf(),则0d)(=⎰C zzf.(A)23-z;(B)2)1(3--zz; (C)2)2()1(3--zz;(D)2)2(3-z.3.如果级数∑∞=1nnnzc在2=z点收敛,则级数在(A)2-=z点条件收敛; (B)iz2=点绝对收敛;(C)iz+=1点绝对收敛; (D)iz21+=点一定发散.4.下列结论正确的是( )(A)如果函数)(zf在z点可导,则)(zf在0z点一定解析;(B) 如果)(zf在C所围成的区域内解析,则0)(=⎰C dzzf)(=dzzf(D)函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A ) 的可去奇点;为z1sin ∞(B ) 的本性奇点;为z sin ∞ (C) ;1sin 1的孤立奇点为z ∞(D) .sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Cz z z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββt e t f 的傅立叶变换,并由此证明:ted tββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2。
四川理工学院复变函数与积分变换试卷(12-13-1-A2)-推荐下载
试题
得分 评阅教师 一、填空题(本大题共 36 分, 每小题 3 分).
1.设复数 z 2 1 i, 则 Imz
2
2.方程 z 2 i 0 的根分别是 z1 和 z2 , 则 z2 z1
3.指数 e i
2012 年 月 日
, 复对数 ln e
7.设 C : z 1 , 顺时针方向. 则积分 eiz dz
C z 3
8.幂级数
n0
i
e
n
(z
i)n
9. z 0 是函数 f z 1 e z 2 z sin z的
10. z 0 是函数 f (z) 1 cos z 的
z 3 1 z 2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
复变函数与积分变换期末试题(附有答案)
复变函数与积分变换期末试题一.填空题(每小题3分,共计15分)1.231i -的幅角是;2.)1(i Ln +-的主值是();3.211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题3分,共15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A )y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ;3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C);1sin 1的孤立奇点为z∞三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数试卷库
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
《复变函数与积分变换》课程考试试卷(A卷)
华中科技大学2008~2009学年第一学期 《复变函数与积分变换》课程考试试卷(A 卷) 院(系)_________专业班级__________学号_______________姓名__________ 一、填空题 (每空2分,共20分)
1.复数的主辐角为 .
2.函数
在何处可导? .,何处解析? .
3.的值为 .
4.级数
是否收敛? ;是否绝对收敛? . 5.函数在点展开成泰勒(Taylor )级数的收敛半径 为 .
6.区域
在映射下的像为 . 7.映射
在处的旋转角为 . 8.函数的Fourier 变换为 .
二、计算题 (每题5分,共20分)
1.
2.
3.
得 分
评卷人
三、(14分)已知
,求常数a 以及二元函数
,使得为解析函数且满足条件
. 四、(14分)将函数
分别在点和点
展开为洛朗(Laurent )级数. 五、(6分)求区域在映射
下的像. 六、(10分)求把区域
映射到上
半平面的共形映射. 七、(10分)利用Laplace 变换求解微分方程: ,.
八、( 6 分) 已知幂级数的系数满足:,
,该级数在内收敛到函
数,证明:,. 得 分
评卷人 得 分
评卷人 得 分
评卷人 得 分
评卷人 得 分
评卷人 得 分
评卷人。
复变函数及积分变换试题及答案
第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。
A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。
2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。
A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。
A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。
A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。
A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。
A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。
A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。
(完整版)《复变函数》考试试题与答案(十三)
《复变函数》考试试题(十三)一、填空题.(每题2分)1.设(cos sin )z r i θθ=+,则1z=_____________________. 2.设函数()(,)(,)f z u x y iv x y =+,00A u iv =+,000z x iy =+,则0lim ()z z f z A →=的充要条件是_______________________.3.设函数()f z 在单连通区域D 内解析,则()f z 在D 内沿任意一条简单闭曲线C 的积分()C f z dz =⎰_________________________.4.设z a =为()f z 的极点,则lim ()z a f z →=____________________.5.设()sin f z z z =,则0z =是()f z 的________阶零点. 6.设21()1f z z=+,则()f z 在0z =的邻域内的泰勒展式为_________________. 7.设z a z a b -++=,其中,a b 为正常数,则点z 的轨迹曲线是_________________. 8.设sincos 66z i ππ=--,则z 的三角表示为_________________________. 9.40cos z zdz π=⎰___________________________. 10.设2()ze f z z-=,则()f z 在0z =处的留数为________________________. 二、计算题.1.计算下列各题.(9分)(1) cos i ; (2) ln(23)i -+; (3) 33i - 2.求解方程380z +=.(7分)3.设22u x y xy =-+,验证u 是调和函数,并求解析函数()f z u iv =+,使之()1f i i =-+.(8分)4.计算积分.(10分)(1)2()C x iy dz +⎰,其中C 是沿2y x =由原点到点1z i =+的曲线. (2) 120[()]ix y ix dz +-+⎰,积分路径为自原点沿虚线轴到i ,再由i 沿水平方向向右到1i +. 5.试将函数1()(1)(2)f z z z =--分别在圆环域01z <<和12z <<内展开为洛朗级数.(8分)6.计算下列积分.(8分) (1) 2252(1)z z dz z z =--⎰; (2) 224sin (1)z z dz z z =-⎰.7.计算积分241x dx x +∞-∞+⎰.(8分) 8.求下列幂级数的收敛半径.(6分)(1) 11n n nz∞-=∑; (2) 1(1)!n n n z n ∞=-∑. 9.讨论2()f z z =的可导性和解析性.(6分)三、证明题.1.设函数()f z 在区域D 内解析,()f z 为常数,证明()f z 必为常数.(5分) 2.试证明0az az b ++=的轨迹是一直线,其中a 为复常数,b 为实常数.(5分) 《复变函数》考试试题(十三)参考答案一、填空题.(每题2分)1. 1i e r θ-2. 0lim (,)x x o y y ou x y u →→=及0lim (,)x x o y y o v x y v →→= 3. 0 4. ∞ 5. 2 6. 24621(1)n n z z z z -+-+⋅⋅⋅-+⋅⋅⋅ 7.椭圆8. 1(1)2-+ 9. )124π+- 10. 1- 二、计算题.1.计算下列各题.(9分)解: (1) 11cos ()2i e e -=+ (2) ln(23)ln 23arg(23)i i i i -+=-++-+13ln13(arctan )22i π=+- (3) 3(3)ln3(3)(ln32)3ln32(6ln3)3i i i i k k i k e e e πππ---+⋅++-===227[cos(ln 3)sin(ln 3)]k ei π=- 2. 解: 233802k i z z e ππ++=⇒=== (0,1,2)k =故380z +=共有三个根: 01z =, 12z =-, 21z =3. 解: 222,2x y u x y xy u x y u y x =-+⇒=+=-+2222220u u u x y∂∂⇒+=-=⇒∂∂是调和函数. (,)(,)(0,0)(0,0)(,)()(2)(2)x y x y y x v x y u dx u dy c y x dx x y dy c =-++=-+++⎰⎰ 00()(2)x yx dx x y dy c =-+++⎰⎰22222x y xy c =-+++ 22221()()(2)222x y f z u iv x y xy i xy ⇒=+=-++-+++ 211(2)22i z i =-+ 4. 解 (1)12222015()()()66c x iy dz x ix d x ix i +=++=-+⎰⎰ (2) 11122000[()]()[(1)]ix y ix dz i y dy x ix dx +-+=-+-+⎰⎰⎰ 11(3)2326i i i =-+-=-+ 5. 解: 01z <<时01111()()(1)(2)2122n n n o n z f z z z z z z ∞∞====-=-+----∑∑ 101(1)n n n z z ∞+==-∑ 12z <<时11111()1(1)(2)212(1)(1)2f z z z z z z z z-==-=------- 0121n n n o n z n z+∞+∞===--+∑∑ 6. 解: (1) 22522[Re (,)]4(1)c z z dz i s f i z z ππ==-=-∞=--⎰(2) 224sin 2[Re (,)]0(1)z z dz i s fz z π==-∞=-⎰ 7.解: 设24()1z f z z =+ 1(1)2z i =+和21)2z i =-+为上半平面内的两个一级极点,且121Re [(),]z z s f z z →==222Re [(),]lim 2z z s f z z →==24212x dx i x ππ+∞-∞=+=+⎰ 8. (1) 1R = (2) R =∞9. 解: 设z x iy =+,则222()f z z x y ==+ 2,2,0x y x y u x u y v v ==== 当且仅当0x y ==时,满足C R -条件,故()f z 仅在0z =可导,在z 平面内处处不解析.三、1. 证明: 设f u iv =+,因为()f z 为常数,不妨设22u v C += (C 为常数)则0x y u u v v ⋅+⋅= 0y y u u v v ⋅+⋅=由于()f z 在D 内解析,从而有x y u v =, y x u v =-将此代入上述两式可得0x y x y u u v v ====于是12,u C v C ≡≡ 因此()f z 在D 内为常数.2. 解: 设z x iy =+, a A Bi =+ (A ,B 为实常数) 则()()()()az A Bi x iy Ax By i Ay Bx =-+=++- 0az az b az az b ++=++=⇔2()0Ax By b ++= 故0az az b ++=的轨迹是直线22)0Ax By b ++=。
《复变函数与积分变换》试卷及答案
得分得分«复变函数与积分变换»期末试题(A )题号 一 二 三 四 五 六 总分 得分一.填空题(每小题3分,共计15分)1.231i -的幅角是( ); 2.)1(i Ln +-的主值是( );3.211)(z z f +=,=)0()5(f ( );4.0=z 是 4sin z zz -的( )极点;5. zz f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a得分(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数323 2)(sin)3 ()2)(1()(z zzzzzfπ-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1得分五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos得分得分«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3.211)(z z f +=,=)0()5(f ( 0 ),4.0=z 是 4sin z zz -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分)1.解析函数),(),()(y x iv y x u z f +=的导函数为(B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(完整版)《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1.若f (z)在z 0的某个邻域内可导,则函数f(z )在z 0解析. ( )2.有界整函数必在整个复平面为常数。
( ) 3。
若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6。
若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( ) 7。
若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点. ( )8。
若函数f (z )在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠。
( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z )在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。
( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。
=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________。
5。
幂级数0n n nz ∞=∑的收敛半径为__________。
6.若函数f (z )在整个平面上处处解析,则称它是__________。
7。
若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8。
=)0,(Re n zz e s ________,其中n 为自然数。
9. zz sin 的孤立奇点为________ .10。
四川理工学院复变函数与积分变换试卷(12-13-1-A2)
四川理工学院试卷(2012 至2013学年第 1学期)课程名称:复变函数与积分变换(A 卷) 命题教师:雷远明 适用班级:通信20111,20112班考查 (闭卷,2小时完成) 2012年 月 日 共 6 页 注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
试 题一、填空题(本大题共36分, 每小题3分).1.设复数()i z -=122, 则()=z Im , =112z .2.方程02=+i z 的根分别是1z 和2z , 则=-12z z . 3.指数=-πi e, 复对数()=-e ln .4.函数()()()y x iv y x u z f ,,+=在区域D 内解析. 若在区域D 内()3,≡y x u , 则 在区域D 内()='z f . 5.设C :1<=r z , 正向. 则积分()=+--⎰dz z z z z C )1)(1(1ln 34 .6.设C :2=z , 逆时针方向. 则积分=+⎰dz z zC1sin 2 . 7.设C :1=z , 顺时针方向. 则积分=⎰dz ze C iz3 .8.幂级数n n nii z e)(0+∑∞=π的收敛圆域为 .9.0=z 是函数()()()z z e z f z sin 12--=的 级零点.10.0=z 是函数()231cos 1)(zz zz f --=的 级极点.11.设()+∞∞-∈,t , 则单位阶跃函数)(t u 与()tte t f 24=的卷积()=*)(t f t u .12.若()[]73122+++=s s s t f L , 则函数()t f 的初值()=0f . 二、设函数()()()2213sin 4--=z z z izz f π. 根据留数定理计算积分()⎰Cdz z f , 其中曲线C :2=z , 正向.(本题10分).三、求函数z e z z f )4cos()(π-=在00=z 处的Taylor 展开式,(本题8分).四、已知[]βωββπ422--=e eF t , 波形42)(t t tet f -=.()ωS ,(本小题8分).(2)求该波形的相关函数()τR,(本小题10分).五、求函数()dt t et t f tt⎰-=032sin 的Laplace 变换()[]t f L ,(本题8分).[]()()18632722+--=s ss s F 的Laplace 逆变换,七、设()+∞∞-∈,x , 求解下列微积分方程:()()0sin 2=+-'⎰∞-x dx x y x y x, (本题10分).。
复变函数论试卷
《复变函数论》试题库《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若收敛,则与都收敛. ( )4.若f(z)在区域D内解析,且,则(常数). ( )5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z0是的m阶零点,则z0是1/的m阶极点. ( )7.若存在且有限,则z0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D内的单叶函数,则. ( )9. 若f(z)在区域D内解析, 则对D内任一简单闭曲线C.( )10.若函数f(z)在区域D内的某个圆内恒等于常数,则f(z)在区域D内恒等于常数.()二.填空题(20分)1、__________.(为自然数)2. _________.3.函数的周期为___________.4.设,则的孤立奇点有__________.5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若,则______________.8.________,其中n为自然数.9. 的孤立奇点为________ .10.若是的极点,则.三.计算题(40分):1. 设,求在内的罗朗展式.2.3. 设,其中,试求4. 求复数的实部与虚部.四. 证明题.(20分)1. 函数在区域内解析. 证明:如果在内为常数,那么它在内为常数.2. 试证: 在割去线段的平面内能分出两个单值解析分支,并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)一.判断题.(20分)1. 若函数在D内连续,则u(x,y)与v(x,y)都在D内连续.( )2. cos z与sin z在复平面内有界. ( )3. 若函数f(z)在z0解析,则f(z)在z0连续. ( )4. 有界整函数必为常数. ( )5. 如z0是函数f(z)的本性奇点,则一定不存在. ( )6. 若函数f(z)在z0可导,则f(z)在z0解析. ( )7. 若f(z)在区域D内解析, 则对D内任一简单闭曲线C.( )8. 若数列收敛,则与都收敛. ( )9. 若f(z)在区域D内解析,则|f(z)|也在D内解析.( )10. 存在一个在零点解析的函数f(z)使且.( )二. 填空题. (20分)1. 设,则2.设,则________.3. _________.(为自然数)4. 幂级数的收敛半径为__________ .5. 若z0是f(z)的m阶零点且m>0,则z0是的_____零点.6. 函数e z的周期为__________.7. 方程在单位圆内的零点个数为________.8. 设,则的孤立奇点有_________.9. 函数的不解析点之集为________.10. .三. 计算题. (40分)1. 求函数的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值.3. 计算积分:,积分路径为(1)单位圆()的右半圆.4. 求.四. 证明题. (20分)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z与sin z的周期均为. ( )2. 若f(z)在z0处满足柯西-黎曼条件, 则f(z)在z0解析. ( )3. 若函数f(z)在z0处解析,则f(z)在z0连续. ( )4. 若数列收敛,则与都收敛. ( )5. 若函数f(z)是区域D内解析且在D内的某个圆内恒为常数,则数f(z)在区域D内为常数. ( )6. 若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导. ( )7. 如果函数f(z)在上解析,且,则. ()8. 若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.( )9. 若z0是的m阶零点, 则z0是1/的m阶极点. ( )10. 若是的可去奇点,则. ( )二. 填空题. (20分)1. 设,则f(z)的定义域为___________.2. 函数e z的周期为_________.3. 若,则__________.4. ___________.5. _________.(为自然数)6. 幂级数的收敛半径为__________.7. 设,则f(z)的孤立奇点有__________.8. 设,则.9. 若是的极点,则.10. .三. 计算题. (40分)1. 将函数在圆环域内展为Laurent级数.2. 试求幂级数的收敛半径.3. 算下列积分:,其中是.4. 求在|z|<1内根的个数.四. 证明题. (20分)1. 函数在区域内解析. 证明:如果在内为常数,那么它在内为常数.2. 设是一整函数,并且假定存在着一个正整数n,以及两个正数R及M,使得当时,证明是一个至多n次的多项式或一常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:复变函数与积分变换命题教师:雷远明
适用班级:自动化121,122,123班
考试(闭卷,2小时完成)2013年
五
六
七
总分
评阅(统分)教师
得分
注意事项:
1、满分100分。要求卷面整洁、字迹工整、无错别字。
2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
试题
得分
评阅教师
一、填空题(本大题共13个小题,每小题3分,共39分)
1.设复数 ,则 的三角形式 ,
指数形式 , .
2.方程 的根分别是 ,则 .
3.复指数 ,复对数 ,
4.设 : ,正向.则积分 .
5.设 : ,逆时针方向.则积分 .
6.设 : ,顺时针方向.则积分 .
7.函数 在 的 展开式为.
得分
评阅教师
三、设 : ,正向;函数 .
根据留数定理计算积分 ,(本题12分).
得分
评阅教师
四、求函数 的Fourier变换 ,(本题8分).
得分
评阅教师
五、求函数 的 变换 ,
(本题8分).
得分
评阅教师
六、求 的Laplace逆变换,(本题10分).
得分
评阅教师
七、已知 .求函数
的能量谱密度 和相关函数 ,(本题15分).
8.函数 在圆环域 内的 展开式为
.
9. 是函数 的级极点.
10.函数 的频谱函数 ,则 .
11.设 ,则单位阶跃函数 与 的卷积 .
12.函数 的 逆变换 .
13.若 ,则 .
得分
评阅教师
二、设 为区域 内的一条正向简单闭曲线.如果函数 都在 内解析,在 内有唯一点 使得 , .证明: ,(本题8分).