一次函数知识点过关卷及答案
人教版数学八年级下册 第十九章 一次函数 基础过关考试测试卷(含解析)
人教版数学八年级下册第十九章基础过关测试卷一、选择题1.下列曲线中能够表示y是x的函数的有( )A.①②③ B.①②④ C.①③④ D.②③④2.寓言故事《乌鸦喝水》教导我们,遇到困难时要运用智慧、认真思考才能将问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面升高,乌鸦成功地喝到了水,如果衔入瓶中石子的体积为x,水面高度为y,下面图象能大致表示该故事情节的是( )A. B. C. D.3.关于正比例函数y=-3x,下列结论正确的是( )A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=31时,y=14.如果函数y= kx+b(k、b是常数)的图象不经过第二象限,那么k、b应满足的条件是( )A.k≥0且b≤0 B.k>0且b≤0 C.k≥0且b<0 D.k>0且b<05.已知一次函数的图象过点(0,3),且与两坐标轴所围的三角形面积为3,则这个一次函数的表达式为( )A.y=1.5x+3B.y=-1.5x+3C.y=1.5x+3或y=-1.5x+3D.y=1.5x-3或y= -1.5x-36.周末,小红到郊外游玩,她从家出发0.5小时后到达甲地,游玩一段时间后,原速前往乙地,刚到达乙地时她接到妈妈的电话,便快速返回家中,小红从家出发到返回家中,行进的路程y(km)随时间x(h)变化的函数图象大致如图所示,下列说法错误的是( )A.小红从甲地到乙地骑车的速度为20 km/hB.小红在甲地游玩1hC.乙地离小红家30 kmD .小红接到电话后1.5 h 到达家中7.一次函数y= ax+b 和y=bx+a 的图象可能是( )A. B. C. D.8.定义:点A (x ,y )为平面直角坐标系内的点,若满足x=y ,则把点A 叫做“美好点”,例如:M(1,1),N( -2,-2)都是“美好点”,当-1≤x≤3时,直线y= 2x+m 上有“美好点”,则m 的取值范围是( )A.0≤m≤1B.-1≤m≤0C.-3≤m≤3D.-3≤m≤19.在同一平面直角坐标系内,若直线y= 3x -1与直线y=x -k 的交点在第四象限的角平分线上,则k 的值为( )A.B .C .D .110.把直线y= -x -3向上平移m 个单位后,与直线y= 2x+4的交点在第二象限,则m 可以取得的整数值有( )A .1个B .3个C .4个D .5个 二、填空题1.函数的自变量x 的取值范围是____________.2.写出一个y 随x 的增大而减小,且不经过第三象限的一次函数解析式为_____________.3.已知点A 是直线y=x -2上一点,其横坐标为3,若点B 与点A 关于y 轴对称,则点B 的坐标为4.一次函数y= kx+b 的图象与直线y=-2x+1平行,并且经过点(0,4),那么这个一次函数的解析式是_________.5.如图所示,直线y= kx+b (k<0)经过点A(3,1),当kx+b<x 时,x 的取值范围为____.6.如图所示,某公司快递员甲匀速骑车前往某小区送快件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送快件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计),则乙回到公司时,甲距公司的路程是_____________米.21-31212y +=xx7.如图所示,已知一次函数y₁=kx+b与y₂=x+a的图象,则下列结论:①k<0;②a>0;③关于x的方程kx+b =x+a的解为x=3;④当x>3时,y₁<y₂.其中正确的有______________(填序号).8.已知一次函数y= 2x+1的图象与x轴、y轴分别交于A、B两点,将这条直线进行平移后与x轴、y轴分别交于C、D两点,要使A、B、C、D围成的四边形面积为4,则直线CD的解析式为______________.三、解答题1.已知直线l₁:y=kx过点(1,2),与直线l₂:y= -3x+b相交于点A,若l₂与x轴交于点B(2,0),与y轴交于点C.(1)分别求出直线xy的解析式;(2)求△OAC的面积.2.直线y=-2x+4与x轴交于点A,与y轴交于点B,直线y=kx+b(k、b是常数,k≠0)经过点A,与y轴交于点C.且OC= OA.(1)求点A的坐标及k的值;(2)点C在x轴的上方,点P在直线y=-2x+4上,若PC =PB,求点P的坐标.3.某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于购买B种文具件数的2倍,且计划经费不超过2 750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?4.问题:探究函数y= |x|-2的图象与性质,小华根据学习函数的经验,对函数y=|x|-2的图象与性质进行了探究,下面是小华的探究过程,请补充完整.(1)在函数y=|x|-2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值:①m=__________;②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n=______;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为____,该函数图象与x轴围成的几何图形的面积是______;(4)已知直线与函数y=|x|-2的图象交于C、D两点,当y₁≥y时,试确定x的取值范围.5.某商贸有限公司新进了某品牌的40台空气净化器,60台净水机,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲店,30台给乙店.两个连锁店销售这两种电器每台的利润(元)如下表所示:(1)设公司调配给甲店空气净化器x台,则调配给甲店净水机____台;调配给乙店空气净化器____台,净水机_______台;(用含x的代数式表示)(2)若公司卖出这100台电器的总利润为y(元),求y关于x的函数关系式,并求出x 的取值范围;2121y1-=x(3)若仅把甲店的空气净化器每台让利25元,其他不变,则如何调配,才能使总利润最大?第十九章基础过关测试卷1.A ①②③中的图象都满足对于z的每一个取值y都有唯一确定的值与之对应,故①②③中的图象都能表示y是x的函数,④中的图象不满足对于x的每一个取值,y都有唯一确定的值与之对应,故选A.2. D由题意可得,刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A、B错误;乌鸦衔来一些小石子放入瓶中后,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,在继续上升的过程中.h与f成一次函数关系,故选项C 错误,选项D正确.3.C A.图象经过原点,选项A错误;B.y随x的增大而减小,选项B错误;C.图象经过第二、四象限,选项C正确;D.当x=时,y=-1,选项D错误.4.A∵y=kx+b(k、b是常数)的图象不经过第二象限,∴k=0,b≤0或k>0,b≤0.综上所述,k>0,b≤0.故选A.5.C设这个一次函数的表达式为y=kx+b(k≠0),与x轴的交点是(a,0).∵一次函数y=kx+b(△≠0)图象过点(0,3).∴b=3.∵这个一次函数的图象与两坐标轴所围成的三角形面积为3.∴×3×|a| =3,解得a=2或-2.把(2,0)代入y=kx+3,得k= -1.5,则函数的解析式是y=-1.5x+3;把(-2,0)代入y=kx+3,得k= 1.5,则函数的解析式是y=1.5x+3.故选C.6.D小红到郊外游玩,她从家出发到达甲地,速度为10÷0.5= 20( km/h),又因为小红游玩一段时间后原速前往乙地,所以选项A正确:小红在甲地的游玩时间为1.5-0.5=1(h),故选项B正确;乙地离小红家的距离为10+20x(2.5 - 1.5)=30( km),故选项C正确;小红从乙地到家的速度未知,故不能确认小红从乙地返回家中的时长.故选项D错误,故选D.31217.D 若经过第一、二、三象限的直线为y=ax+b ,则a>0,b>0,所以直线y=bx+a 也必经过第一、二、三象限,所以选项A 、B 错误;若经过第一、三、四象限的直线为y= ax+b ,则a>0,b<0,所以直线y= bx+a 必经过第一、二、四象限,所以选项C 错误,选项D 正确.故选D .8.D ∵x=y ,∴x=2x+m ,即x=-m,.∵-1≤x≤3 ∴-1≤-m≤3 ∴-3≤m≤1.9.C 解关于x 、y 的方程组得.∵交点在第四象限的角平分线上,∴,解得.10.D 直线y= -x -3向上平移m 个单位后可得直线y= -x -3+m ,联立两直线解析式得解得∵交点在第二象限,∴解得1<m<7.∴m 可以取得的整数值有5个. 二、 1. x>-2解析:由题意,得x+2>0.解得x>-2. 2.y= -x+1(答案不唯一)解析:函数图象中y 随x 的增大而减小,则k<0,又因为图象不经过第三象限,则b>0,答案不唯一,答案可以为y=-x+1. 3.(-3,1)解析:∵点A 是直线y=x -2上一点,其横坐标为3,∴把x=3代入y=x -2得y=1.∴A(3,1),∵点A 、B 关于y 轴对称,∴B( -3,1).4.y= - 2x+4解析:∵一次函数y=kx+b 的图象与直线y=- 2x+1平行.∴k=-2, ∵一次函数图象经过点(0,4),∴b=4, ∴这个一次函数的解析式为y= -2x+4.5.x>3解析:∵正比例函数y=的图象经过点A ,又∵k<0,∴kx+b<-x 的解集为x>3.6.6000解析:由题意可得甲的速度为4 000÷(12-2-2)=500(米/分),21k乙的速度为(米/分),乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是4 000+500x4=6 000(米). 7.①③④解析:∵直线y 1=kx+b 经过第一、二、四象限,∵k<0,b>0,所以①正确, ∵直线y 2=x+a 与y 轴的交点在x 轴下方,∴a<0,所以②错误.∵当x=3时,y₁=y₂,∴关于x 的方程kx+b =x+a 的解为x=3,所以③正确. ∵当x>3,直线y₁=kx+b 在直线y₂=x+0的下方.∴x>3时,y₁<y₂,所以④正确,故答案为①③④. 8.y=2x -3或y=2x+.解析:∵一次函数y= 2x+1的图象与x 轴、y 轴分别交于A 、B 两点,∴,B(0,1).设直线CD 的解析式为y=2x+b ,∴,D (0,b ).当点C 在x 轴的正半轴上时,,b<0,,解得b=5(舍去)或b=-3,此时直线CD 的解析式为y= 2x -3;当点C 在x 轴的负半轴上时,<0,b>0.∵点A 、B 、C 、D 围成的四边形面积为4.∴,∴,解得(舍去)或,此时直线CD 的解析式为.综上所述,直线CD 的解析式为y= 2x -3或.三、1.解析:(1)∵直线l 1,:y=kx 过点(1,2).∴k=2, ∴直线l₁的解析式为y= 2x .∵直线l₂:y= -3x+b 与x 轴交于点B(2,0),,.,-3x2+b=0,b=6. ∴直线l₂的解析式为y= -3x+6.(2)由得∴点A的坐标为.∵直线l₂:y=-3x+6与y 轴交于点C .∴C(0,6).∴.2.解:(1)由直线y=-2x+4与x 轴交于点A ,与y 轴交于点B ,令y=0,则-2x+4=0,解得x=2,∴A(2,0),17),(021A -)(0,2bC -02b >-4b 1212b 21=-⨯+-)()(212b -<-17b -=17b =172y +=x 172y +=x ),(5125651856621S OAC =⨯⨯=△∵OC=OA ,∴点C 的坐标为(0,2)或(0,-2),∵直线y=kx+b (k 、b 是常数,k≠0)经过点A 和点C .∴或解得k=1或k=-1.(2)易得B(0,4),c(0,2),∵PC=PB,∴点P 的纵坐标为3. ∵点P 在直线y= - 2x+4上,∴把y=3代入y= 2x+4,得,即点P的坐标为.3.解:(1)设一件4种文具的价格为x 元,则一件B 种文具的价格为(x+5)元,根据题意得,解得x= 15.经检验.x= 15是原分式方程的解,且符合题意,答:一件A 种文具的价格为15元.(2)①由题意可得W=15a+( 15+5)(150-a)= -5a+3 000,即购买A 、B 两种文具所需经费W 与购买A 种文具的件数n 之间的函数关系式是W= -5a+3 000.②∵购买A 种文具的件数不多于购买B 种文具件数的2倍,且计划经费不超过2 750元,∴解得50≤a≤100.∵a 为整数,∴共有51种购买方案, ∵W= -5a+3 000,∴当a= 100时,W 取得最小值,此时W=2500,150-a= 50,故有51种购买方案,经费最少的方案是购买A 种文具100件,B 种文具50件,最少需要2 500元.4.解:(2)①把x=3代入y= |x|-2,得m=3-2=1.故答案为1. ②把y=2 018代入y=|x|-2,得2018=|x|-2,解得x= -2020或2020,∵A(n ,2018),B (2020,2018)为该函数图象上不同的两点,∴n=-2 020.(3)该函数的图象如图:⎩⎨⎧-==+,2,0k 2b b ⎩⎨⎧==+.2,0k 2b b 21x =),(32125400x 600⨯+=x ⎩⎨⎧≤+--≤,275030005),150(2a aa由图可得,该函数的最小值为-2;该函数图象与x 轴围成的几何图形的面积是×4x2=4.(4)在同一平面直角坐标系中画出函数与函数y=|x|-2的图象,如图:由图可知,当y 1≥y 时,x 的取值范围是-1≤x≤3.5.解:(1)设公司调配给甲店空气净化器x 台,则调配给甲店净水机(70-x )台;调配给乙店空气净化器( 40-x)台,净水机(x -10)台. (2)y= 200x+170( 70-x) +160( 40-x) +150( x -10)= 20x+16800, ∵x -10≥0,x≤40,∴10≤x≤40, 故y=20x+16 800(10≤x≤40).(3)此时y=(200-25)x+170(70-x)+160(40-x)+150( x -10)= -5x+16 800(10≤x≤40),∵-5<0.∴y= -5x+16 800随x 的增大而减小,故当x= 10时,Y 最大值= 16 750.故调配给甲店空气净化器10台,净水机60台,调配给乙店空气净化器30台,净水机0台能使总利润最大.212121y 1-=x。
中考数学总复习《一次函数》专项测试卷带答案
中考数学总复习《一次函数》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为( )A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是( )A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-35.(2024·北海模拟)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )A.x≤3B.x≥3C.x≥-3D.x≤06.(2024·青海)如图,一次函数y=2x-3的图象与x轴相交于点A,则点A关于y轴的对称点是( )A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是( )A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为( )A.y =12-0.5xB.y =12+0.5xC.y =10+0.5xD.y =0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式 .10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为( )A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为.13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.参考答案A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为(D)A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为(B)A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是(D)A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是(D)A .x =2B .x =0C .x =-1D .x =-35.(2024·北海模拟)直线y =kx +3经过点A (2,1),则不等式kx +3≥0的解集是(A) A .x ≤3 B .x ≥3 C .x ≥-3 D .x ≤06.(2024·青海)如图,一次函数y =2x -3的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是(A)A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是(C)A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为(B)A.y=12-0.5xB.y=12+0.5xC.y=10+0.5xD.y=0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式y=x+1(答案不唯一).10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;【解析】(1)由表中的数据,x的增加量不变∴y是x的一次函数设y=kx+b由题意得:{k+b=62k+b=8.4,解得:{k=2.4 b=3.6∴y与x之间的函数解析式为y=2.4x+3.6;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?【解析】(2)设碗的数量有x个,则:2.4x+3.6≤28.8,解得:x≤10.5,∴x的最大整数解为10答:碗的数量最多为10个.B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为(C)A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为(3×22 024,√3×22 024).13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于5.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);【解析】(1)描点如图所示:(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);【解析】(2)∵y=kx(k≠0)转化为k=xy=23×156≠24×163≠25×170≠…∴y与x的函数不可能是y=kx故选一次函数y=ax+b(a≠0),将点(23,156),(24,163)代入解析式得:{23a+b=15624a+b=163,解得{a=7 b=−5∴一次函数解析式为y=7x-5.(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.【解析】(3)当x=25.8时,y=7×25.8-5=175.6.答:脚长约为25.8 cm时,估计这个人的身高为175.6 cm.。
八年级数学一次函数知识点总结及练习题大全(含答案)
⼋年级数学⼀次函数知识点总结及练习题⼤全(含答案)⼀次函数⼀、命题趋势本讲内容主要有:正⽐例函数的图象和性质,⼀次函数的图象和性质,图象的平移,⽤待定系数法求解析式,⼀次函数与⼀次⽅程(组)、⼀次不等式(组)的关系以及实际应⽤等。
作为初中阶段的重点内容,测试中⼀般以选择、填空为主,也有作为与其他内容融合的综合题型出现。
(⼀)、⼀次函数y=kx+b 的图象和性质 [考点归纳][答案] ⼀、⼆、三, ⼀、三、四, , ⼀、⼆、四, ⼆、三、四, 增⼤, 增⼤, 减⼩, 减⼩. [考题精粹]1、若⼀次函数y =ax +b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是()A .ab >0B .a -b >0C .a 2+b >0D .a +b >0 2、关于直线l :y = kx +k (k ≠0),下列说法不正确的是( )A .点(0,k )在l 上B .l 经过定点(-1,0)C .当k >0时,y 随x 的增⼤⽽增⼤D .l 经过第⼀、⼆、三象限 3、若k ≠0,b <0,则y =kx +b 的图象可能是()4、如图4,点A 的坐标为(0,1),点B 是x 轴正半轴上的⼀动点,以AB 为边作等腰直⾓ABC ?,使?=∠90BAC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表⽰y 与x 的函数关系的图象⼤致是A B C D [考题评析]k >0 ,b >0k >0 ,b <0 k <0 ,b >0 k <0,b <01、解:∵⼀次函数y =ax +b 的图象经过第⼀、⼆、四象限,∴a <0,b >0,∴a 2>0,则a 2+b >0,选项C 正确.由a <0,b >0,可得ab <0,a -b <0,⼜因a ,b 的绝对值⼤⼩不确定,所以a +b 的正负⽆法确定,因此,选项A 、B 、D 均错误.故选择C .2、解:由直线l :y = kx +k (k ≠0),当x =0时,y =k ,所以点(0,k )在l 上,即A 正确;当x =-1时,y =0,所以l 经过定点(-1,0) ,即B 正确;当k >0时,y 随x 的增⼤⽽增⼤,所以C 正确;当k >0时,l 经过第⼀、⼆、三象限,当k <0时,l 经过第⼆、三、四象限,所以D 错误.故选择D .3、解:对于y=kx+b ,当x=0时,y=b ,即y=kx+b 的图像与y 轴的交点为(0,b ),当b <0时,(0,b )在x 轴下⽅,故y=kx+b 的图像为选项B.4、解:过点C 作CD ⊥y 轴,垂⾜为D ,∵∠DAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠DAC=∠OBA 。
一次函数经典测试题及答案解析
一次函数经典测试题及答案解析一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B点坐标为(b,-b+2),∴点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,∵A(2,0),∴∠AQO=45°,∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,∴b的取值范围为b<0或b>2.故选D.【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选A.【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .图象与y 轴交于点()0,b D .当bx k>-时,0y > 【答案】D 【解析】 【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当bx k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>, ∴图象经过第一、二、四象限, A 正确; ∵k 0<,∴y 随x 的增大而减小, B 正确;令0x =时,y b =, ∴图象与y 轴的交点为()0,b , ∴C 正确; 令0y =时,b x k=-, 当bx k>-时,0y <; D 不正确; 故选:D . 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④. 【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误; ④由图象知x=t 时,动车到达乙地, ∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误; 故选B. 【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】B 【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集. 【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0), ∴不等式 30mx +>的解集是:2x <, 故选:B . 【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】C 【解析】 【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案. 【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3), ∴-3=-6+b , 解得:b=3,∴一次函数的解析式为y=-6x+3, ∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C . 【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C 【解析】分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b , 将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元. 故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案. 【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0, 解得:n=2,m≠2. 故选A . 【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.14.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。
(完整版)一次函数知识点过关卷,绝对经典,推荐文档
=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移
位,得到直线.
,.即横坐标或纵坐标为
经过第一、二、三象限经过第一、三、四象限经过第一、三象限
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
经过第一、二、四象限经过第二、三、四象限经过第二、四象限
建议收藏下载本文,以便随时学习!
为何值,直线y=x+2m与直线y=-x+4
、已知一次函数
取何值时,y随x的增大而减小?
、已知:经过点(-3,
,直线经过点(
)求直线的解析式;
)若直线与交于点,求的值。
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙。
一次函数试题及答案
一次函数试题及答案一、选择题1. 下列哪个选项不是一次函数的表达式?A. y = 3x + 5B. y = x^2 + 1C. y = 2x - 3D. y = -4x答案:B2. 一次函数y = 2x + 1的斜率是:A. 1B. 2C. 3D. -1答案:B3. 如果一次函数y = kx + b的图象经过点(1, 5)和(2, 9),那么k 的值是:A. 2B. 3C. 4D. 5答案:C二、填空题4. 一次函数y = 4x + 3与x轴的交点坐标是________。
答案:(-3/4, 0)5. 已知一次函数y = -x + 2,当x = 0时,y的值为________。
答案:26. 一次函数y = 3x + 7的图象在y轴上的截距是________。
答案:7三、解答题7. 已知一次函数y = kx + b,其中k ≠ 0,且该函数图象经过点A(-1, 6)和点B(2, -3)。
求k和b的值。
解:将点A(-1, 6)代入y = kx + b得:6 = -k + b ①将点B(2, -3)代入y = kx + b得:-3 = 2k + b ②由①②两式联立解得:k = -3,b = 98. 一次函数y = 5x - 4的图象在x轴上的截距是多少?解:令y = 0,解得:5x - 4 = 0x = 4/5因此,图象在x轴上的截距是4/5。
9. 已知一次函数y = 2x + 1,求当y = 0时,x的值。
解:令y = 0,解得:2x + 1 = 0x = -1/2四、应用题10. 某公司生产一种产品,每件产品的成本为c元,该公司计划以每件产品p元的价格出售。
已知该公司的总成本为C万元,总收入为P万元,且C = 100c,P = 150p。
如果该公司希望获得的利润为20万元,求每件产品的成本c。
解:利润 = 总收入 - 总成本20 = 150p - 100c又因为p = c + 利润/件产品,代入上式得:20 = 150(c + 利润/件产品) - 100c解得c = 40注意:以上试题及答案仅供格式排版参考,具体内容需根据实际教学要求进行调整。
(完整版)一次函数知识点过关卷,绝对经典
一次函数基本题型过关卷题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
一次函数(含参考答案)
一次函数(含参考答案)一次函数专题【基础知识回顾】一、一次函数的定义:一般的:如果y= (),那么y叫x的一次函数特别的:当b= 时,一次函数就变为y=kx(k≠0),这时y叫x的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b的同象是经过点(0,b),0)的一条,(-bk正比例函数y= kx的同象是经过点和的一条直线。
【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx(k≠0),当k>0时,其同象过、象限,此时时y随x的增大而;当k<0时,其同象过、象限,时y随x的增大而。
达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b中解一元一次方程可求求直线与坐标轴的交点坐标。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x轴上方或下方时相应的x的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】五、一次函数的应用一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】【重点考点例析】考点一:一次函数的图象和性质例1 一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限例2 写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).例3已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).考点三:一次函数解析式的确定例4 一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是__________.考点四:一次函数与方程(组)、不等式(组)的关系例5 函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( )A . x ≥B . x ≤3C . x ≤D .x ≥3 考点五:一次函数综合题例6 已知两直线L 1:y =k 1x +b 1,L 2:y =k 2x +b 2,若L 1⊥L 2,则有k 1•k 2=﹣1.(1)应用:已知y =2x +1与y =kx ﹣1垂直,求k ;(2)直线经过A (2,3),且与y =x +3垂直,求解析式.考点六:一次函数的应用例7 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A ,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B 处的距离分别为d 1,d 2,则d 1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【聚焦中考】1.直线y=-x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限2. 若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m <33. 将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>-4 C.x>2 D.x>-24.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为()5. 如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP 的顶点P在第三象限时(如图),求证:△AOC ≌△ABP;由此你发现什么结论?(2)求点C 在x 轴上移动时,点P 所在函数图象的解析式.【备考真题过关】一、选择题1.一次函数y =2x +4的图象与y 轴交点的坐标是( )A .(0,﹣4) B . (0,4) C . (2,0) D . (﹣2,0)2.已知直线y =kx +b ,若k +b =﹣5,kb =6,那么该直线不经过( )A .第一象限B . 第二象限C . 第三象限D . 第四象限 3. 正比例函数y=kx (k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是( )A .B .C .D . 4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③5.一次函数y=kx-k(k<0)的图象大致是()A.B.C.D.6.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.7.正比例函数y=x的大致图象是()A.B.C.D.8.正比例函数y=2x的大致图象是()A.B.C.D.9.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限 B.第一、二、三象限 C.第一、三、四象限 D.第一、二、四象限10.已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限11.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.12.当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限 B.第一、四象限C.第二、三象限 D.第二、四象限二、填空题13.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为__________.14.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是__________.15.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.16.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.三、解答题17.已知直线y=2x-b经过点(1,-1),求关于x 的不等式2x-b≥0的解集.18. 已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=-1.(1)应用:已知y=2x+1与y=kx-1垂直,求k;(2)直线经过A(2,3),且与y=−13x+3垂直,求解析式.19. 如图,已知函数y=-12x+b的图象与x轴、y 轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-12x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.20. 如图,一次函数y=-x+m的图象和y轴交于点B,与正比例函数y=32x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.一次函数【重点考点例析】例1 解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.例2 解:∵正比例函数y=kx 的图象经过一,三象限, ∴k>0,取k=2可得函数关系式y=2x (答案不唯一). 故答案为:y=2x (答案不唯一).例3 解:∵P 1(1,y 1),P 2(2,y 2)是正比例函数y=x 的图象上的两点, ∴y 1=,y 2=×2=, ∵<, ∴y 1<y 2. 故答案为:<.例4 解:当k >0时,此函数是增函数, ∵当1≤x≤4时,3≤y≤6, ∴当x=1时,y=3;当x=4时,y=6, ∴,解得,∴=2;当k <0时,此函数是减函数, ∵当1≤x≤4时,3≤y≤6, ∴当x=1时,y=6;当x=4时,y=3, ∴,解得,∴=﹣7.故答案为:2或﹣7.例5 解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.例6 解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.例7 解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.【聚焦山东中考】1. B.2. C.3. B.4.B.5.解:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB 或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.【备考真题过关】一、选择题1.B.2.A.3.B.4. A.5.A.6.B.7. C.8. B.9. B.10. C.11. C.12. A.二、填空题13.y=3x+2.14.(1,4),(3,1).15. 2200.16. 4.解:(1)把P(2,n)代入y=3x得n=3,2所以P点坐标为(2,3),把P(2,3)代入y=-x+m得-2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=-x+5得y=5,所以B点坐标为(0,5),×5×2=5.所以△POB的面积=12。
八年级一次函数试卷【含答案】
八年级一次函数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 一次函数的图像是一条直线,当斜率k>0时,这条直线是向()倾斜的。
A. 上B. 下C. 左D. 右2. 如果一次函数的表达式为y=3x+2,那么它的截距是()。
A. 3B. 2C. -3D. -23. 一次函数y=2x-5与x轴的交点是()。
A. (2.5, 0)B. (-2.5, 0)C. (0, -2.5)D. (0, 2.5)4. 两个一次函数y=2x+1和y=-0.5x+3的图像()。
A. 总是相交B. 总是平行C. 在y轴相交D. 在x轴相交5. 如果一次函数y=kx+b的图像经过点(1, 4)和(3, 12),那么k的值是()。
A. 3B. 4C. 5D. 6二、判断题(每题1分,共5分)6. 一次函数的图像是一条曲线。
()7. 当一次函数的斜率为0时,函数图像是一条水平线。
()8. 一次函数y=5x-10的图像一定经过点(0, -10)。
()9. 两个一次函数如果斜率相同,那么它们的图像一定平行。
()10. 一次函数y=kx+b中,b表示函数图像与y轴的交点。
()三、填空题(每题1分,共5分)11. 一次函数y=3x-7与x轴的交点是______。
12. 如果一次函数的图像经过点(2, 5)和(4, 11),那么这个函数的斜率是______。
13. 一次函数y=-2x+6的图像是一条______。
14. 一次函数y=kx+b的图像与y轴的交点是______。
15. 如果两个一次函数的斜率相同,那么它们的图像是______。
四、简答题(每题2分,共10分)16. 解释一次函数的斜率代表了什么。
17. 描述一次函数图像与x轴和y轴的交点。
18. 如何确定两个一次函数是否平行。
19. 什么是截距?一次函数有几个截距?20. 解释一次函数图像的斜率和截距是如何决定的。
五、应用题(每题2分,共10分)21. 一次函数y=4x-1的图像与x轴的交点是什么?22. 如果一次函数的图像经过点(3, -2)和(6, 4),求这个函数的表达式。
一次函数知识点总复习含答案
A.
B.
C.
D.
【答案】C 【解析】 【分析】 根据 k、b 的符号来求确定一次函数 y=kx+b 的图象所经过的象限. 【详解】 ∵k<0, ∴一次函数 y=kx+b 的图象经过第二、四象限. 又∵b>0 时, ∴一次函数 y=kx+b 的图象与 y 轴交与正半轴. 综上所述,该一次函数图象经过第一象限. 故答案为:C. 【点睛】 考查一次函数图象在坐标平面内的位置与 k、b 的关系.解答本题注意理解:直线 y=kx+b 所在的位置与 k、b 的符号有直接的关系.k>0 时,直线必经过一、三象限.k<0 时,直 线必经过二、四象限.b>0 时,直线与 y 轴正半轴相交.b=0 时,直线过原点;b<0 时, 直线与 y 轴负半轴相交.
∵一次函数 y=kx b 的图象与正比例函数 y=﹣6x 的图象平行,
∴k=-6,
∵一次函数 y 6x b 经过点 A(1,-3),
∴-3=-6+b, 解得:b=3, ∴一次函数的解析式为 y=-6x+3, ∵-6<0,3>0, ∴一次函数图象经过二、四象限,与 y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C. 【点睛】 本题考查了两条直线平行问题及一次函数的性质:若直线 y=k1x+b1 与直线 y=k2x+b2 平行, 则 k1=k2;当 k>0 时,图象经过一、三象限,y 随 x 的增大而增大;当 k<0 时,图象经过 二、四象限,y 随 x 的增大而减小;当 b>0 时,图象与 y 轴交于正半轴;当 b<0 时,图 象与 y 轴交于负半轴.
∴A( 2 ,0),B(0,2), 3
∴OA= 2 ,OB=2, 3
∴S
一次函数专题复习(含答案)
一次函数专题复习一、填空题1.已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .2.若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3.在同一直角坐标系内,直线3y x =+与直线23y x =-+都经过点 .4.当m 满足 时,一次函数225y x m =-+-的图象与y 轴交于负半轴.5.函数312y x =-,如果0y <,那么x 的取值范围是 .6.一个长120m ,宽100m 的矩形场地要扩建成一个正方形场地,设长增加xm ,宽增加ym ,则y 与x 的函数关系是 .自变量的取值范围是 .且y 是x 的 函数.7.如图1是函数152y x =-+的一部分图像,(1)自变量x 的取值范围是 ; (2)当x 取 时,y 的最小值为 ; (3)在(1)中x 的取值范围内,y 随x 的增大而 .8.已知函数y=(k-1)x+k 2-1,当k______时,它是一次函数,当k=_____•时,它是正比例函数. 9.已知一次函数y kx b =+的图象经过点(2,5)-,且它与y 轴的交点和直线32x y =-+与y 轴的交点关于x 轴对称,那么这个一次函数的解析式为 .10.一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .11.一次函数1y kx b =+-的图象如图2,则3b 与2k 的大小关系是 ,当b = 时,1y kx b =+-是正比例函数.12.b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上.13.已知直线42y x =-与直线3y m x =-的交点在第三象限内,则m 的取值范围是 . 14.要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .15.y=23x 与y=-2x+3的图像的交点在第_________象限.二、选择题1.图3中,表示一次函数y m x n =+与正比例函数(y mx m =.n 是常数,且0,0)m n ≠<的图象的是( )2.直线y kx b =+经过一.二.四象限,则直线y bx k =-的图象只能是图4中的( )3.若直线11y k x =+与24y k x =-的交点在x 轴上,那么12k k 等于( ).4A .4B - 1.4C 1.4D -4.直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r ==.,0B p q r == .,1C p q r =-= .,0D p q r =-=5.直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A. 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b << 6.如果0ab >,0a c<,则直线a c y x b b=-+不通过( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对8.如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )9.已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则A B C ∆的面积为( )A .4B .5C .6D .710.已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,下列结论:① 0,0k b >>若则;②0,0k b ><若则;③0,0k b <>若则;④0,0k b <<若则,其中正确的个数是( )A .1个B .2个C .3个D .4个 11.已知(0,0)b c a c a b k b a b c abc+++===>++=,那么y kx b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发x小时,距A站y千米,则y 与x之间的关系可用图象表示为()三、解答题m+(m-4)是一次函数?1.当m为何值时,函数y=-(m-2)x322.一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.3.已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.4.已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?5.某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?6.判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.参考答案: 一、填空题: 1.m=-32.163.(0,3)4. 2.5m <5. 23x <6. 20y x =+ 0x ≥ 一次函数7.(1)05x <≤ (2)5;2.5 (3)减小8. 1k ≠k=-1 9. 43y x =--10.-1, 2b >11. 32b k >;1 12. 83b =-13. 23m <-14.n=2; 2m ≠ 15.第一象限二、选择题: 1~6 D B D B C A7~12 A A C B C A三、解答题:1.解:∵函数y=(m-2)x32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.2.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.3.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3. (2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21.4.解:(1)y 是x 的一次函数.∵y+a 与x+b 是正比例函数,∴设y+a=k(x+b)(k 为常数,且k ≠0)整理得y=kx+(kb-a ).∵k ≠0,k ,a ,b 为常数,∴y=kx+(kb-a)是一次函数. (2)当kb-a=0,即a=kb 时,y 是x 的正比例函数.5.解:(1)y 1=50+0.4x (其中x ≥0,且x 是整数)y 2=0.6x (其中x ≥0,且x 是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250. ∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分).∴“神州行”可通话33331分.∵375>33331,∴选择“全球通”较合算.6.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k∴过A ,B 两点的直线的表达式为y=x-2. ∴当x=4时,y=4-2=2. ∴点C (4,2)在直线y=x-2上. ∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.。
一次函数经典试题及答案
一次函数经典试题及答案10.(20XX 年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )【关键词】函数的意义 【答案】A1、(20XX 年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(A) (B) (C) (D) s (千米)t (分钟)ABDC304515O2 4 小聪 小明 第1题(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米? 【关键词】函数与实际问题 【答案】解:(1)15,154 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m∴12154+-=t s (4530≤≤t ) 令t t 45412154=+-,解得4135=t 当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
5.(20XX 年安徽省芜湖市)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B.a >-2且a ≠0 C.a >-2或a ≠0 D.a ≥-2且a ≠0 【关键词】函数自变量的取值范围 【答案】D11.(20XX 年浙江台州市)函数xy 1-=的自变量x 的取值范围是 ▲ . 【关键词】自变量的取值范围 【答案】0≠x5.(20X X 年益阳市)如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是A. B . C . D . 【关键词】函数图像火车隧道oyxoy xoy xoy x2图【答案】A20.(20XX 年浙江台州市)A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.【关键词】一次函数、分类思想 【答案】(1)①当0≤x ≤6时,x y 100=;②当6<x ≤14时, 设b kx y +=,∵图象过(6,600),(14,0)两点,∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y .∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y (2)当7=x 时,5251050775=+⨯-=y ,757525==乙v (千米/小时). x/小y /千600146OFEC D(第20题)18. (20X X 年益阳市)我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式;(2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃? (3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米? 【关键词】一次函数、一元一次方程 【答案】解:⑴ x y 620-= (0>x ) ⑵ 500米=5.0千米 1750620=⋅⨯-=y (℃) ⑶ x 62034-=- 9=x答:略.17.(2010江西)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.【关键词】一次函数 待定系数法【答案】解:设这直线的解析式是(0)y kx b k =+≠,将这两点的坐标(1,2)和(3,0)代入,得2,30,k b k b +=⎧⎨+=⎩,解得1,3,k b =-⎧⎨=⎩所以,这条直线的解析式为3y x =-+.5.(2010山东德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是(A) (B) (C) (D) 【关键词】函数图像 【答案】A(20XX 年四川省眉山)某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为【关键词】函数图象 【答案】 DOyxOxyOy xO xyA B C Dt h Ot h O t h O htO第5题图深 水浅水区(20XX年四川省眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【关键词】一元一次方程(组)、一元一次不等式(组)、一次函数型的最值问题【答案】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000)x-尾,由题意得:+-=………………………………………(10.50.8(6000)3600x x分)解这个方程,得:4000x=∴60002000-=x答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.…………………(2分)(2)由题意得:0.50.8(6000)4200+-≤……………………………(3分)x x解这个不等式,得:2000x≥即购买甲种鱼苗应不少于2000尾.………………………………(4分)(3)设购买鱼苗的总费用为y,则0.50.8(6000)0.34800=+-=-+(5分)y x x x由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分)解得: 2400x ≤…………………………………………………………(7分)在0.34800y x =-+中∵0.30-<,∴y 随x 的增大而减少 ∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)9.(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
一次函数知识点训练含答案
∴慢车速度为: =60(千米/小时);
设快车速度为x千米/小时,
由图象得:60×4+4x=600,解得:x=90,
∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;
(3)快车到达甲地所用时间: 小时,慢车所走路程:60× =400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.
A.﹣5B. C. D.7
【答案】C
【解析】
【分析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
【详解】
把(-2,0)和(0,1)代入y=kx+b,得
,
解得
所以,一次函数解析式y= x+1,
再将A(3,m)代入,得
m= ×3+1= .
故选C.
【点睛】
本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
故选A.
【点睛】
本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
15.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()
C.3>0,故该选项不符合题意,
D.∵ ,
∴y=-3x+1,
-3+1=-2,故该选项不符合题意,
故选:B.
【点睛】
本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三、象限,y随x的增大而增大;当k<0时,图象经过二、四、象限,y随x的增大而减小;熟练掌握一次函数的性质是解题关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=__4_____,b=_____2____;若A,B关于y轴对称,则a=___-4____,b=______2____;若若A,B关于原点对称,则a=___-4____,b=_____-2____;
4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第_一___象限。
题型二、关于点的距离的问题
方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;
任意两点 的距离为 ;
若AB∥x轴,则 的距离为 ;
若AB∥y轴,则 的距离为 ;
点 到原点之间的距离为
(1)两直线平行:k1=k2且b1 b2
(2)两直线相交:k1 k2
(3)两直线重合:k1=k2且b1=b2
☆特殊直线方程:
X轴:直线0=xY轴:直线y=o
与X轴平行的直线y=x+b与Y轴平行的直线y=b
一、三象限角平分线y=x二、四象限角平分线y=-x
1、对于函数y=5x+6,y的值随x值的减小而___减小________。
☆已知是直线或一次函数可以设y=kx+b(k≠0);
☆若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b经过点(2,-6),求函数的解析式。
将(2,-6)代入y=3x+b
得:-6=3×2+b,∴b=-12
即y=3x-12.
2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
Y=-3k+13
3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,
所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,
设:一次函数的表达式为:y=kx+b,
因为,图像经过点A(0,40),B(8,0),
所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,
☆A与B成正比例A=kB(k≠0)
1、当k____=3_________时, 是一次函数;
2、当m___=3__________时, 是一次函数;
3、当m____=4_________时, 是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为y=9/2x+3;
题型四、函数图像及其性质
4、已知点P(3,0),Q(-2,0),则PQ=__5________,已知点 ,则MQ=___1_____; ,则EF两点之间的距离是____7______;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________;
5、两点(3,-4)、(5,a)间的距离是2,则a的值为____-4______;
2、对于函数 , y的值随x值的___减小_____而增大。
3、一次函数y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是__m>2 n>2________。
4、直线y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是___m>2 n>2______。
5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第__一_二三____象限。
一次函数基本题型过关卷
题型一、点的坐标
方法:x轴上的点纵坐标为0,y轴上的点横坐标为0;
若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;
若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;
1、若点A(m,n)在第二象限,则点(|m|,-n)在第_四___象限;
6、已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为(4,0)(-1,0)
题型三、一次函数与正比例函数的识别
方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。
6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第___一___象限。
7、已知一次函数
(1)当m取何值时,y随x的增大而减小?
(2)当m取何值时,函数的图象过原点?
(1)由
解得
∴当 时,y随x的增大而减小
(2)由 ,解得
∴当 时,函数的图象过原点
题型五、待定系数法求解析式
方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。
方法:
函数
图象
性质
经过象限
变化规律
y=kx+b
(k、b为常数,
且k≠0)
k>0
b>0
直线
一二三
Y随X的增大而增大
b=0
直线
一三
b<0
直线
一三四
k<0
b>0
直线
一二四
Y随X的增大而减小
b=0
直线
二四
b<0
直线
二三四
☆一次函数y=kx+b(k≠0)中k、b的意义:
k(称为斜率)表示直线y=kx+b(k≠0) 的倾斜程度;
1、点B(2,-2)到x轴的距离是____2_____;到y轴的距离是_______2_____;
2、点C(0,-5)到x轴_0______;到原点的距离是________5____;
3、点D(a,b)到x轴的距离是_____|b|____;到y轴的距离是______|a|______;到原点的距离是__√a2+b2__________;
b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的距离,也表示直线在y轴上的位置。
☆同一平面内,不重合的两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:
当时,两直线平行。当时,两直线垂直。
当时,两直线相交。当时,两直线交于y轴上同一点。
直线y=k1x+b1与y=k2x+b2的位置关系