考点11 幂函数(练习)(解析版)

合集下载

高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.对于函数f(x)若存在x0∈R,f(x)=x成立,则称x为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.【答案】(1)-1和3.(2)(0,1)(3)-【解析】解:(1)∵a=1,b=-2时,f(x)=x2-x-3,f(x)=x⇒x2-2x-3=0⇒x=-1,x=3,∴函数f(x)的不动点为-1和3.(2)即f(x)=ax2+(b+1)x+b-1=x有两个不等实根,转化为ax2+bx+b-1=0有两个不等实根,需有判别式大于0恒成立,即Δ=b2-4a(b-1)>0⇒Δ1=(-4a)2-4×4a<0⇒0<a<1,∴a的取值范围为(0,1).(3)设A(x1,x1),B(x2,x2),则x1+x2=-,则A,B中点M的坐标为(,),即M(-,-).∵A,B两点关于直线y=kx+对称,且A,B在直线y=x上,∴k=-1,A,B的中点M在直线y=kx+上.∴-=+⇒b=-=-,利用基本不等式可得当且仅当a=时,b的最小值为-.3.若幂函数y=f(x)的图象经过点,则f(25)=________.【答案】【解析】设f(x)=xα,则=9α,∴α=-,即f(x)=x-,f(25)=4.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α值为() A.1,3B.-1,1C.-1,3D.-1,1,3【答案】A【解析】当α=-1时函数定义域为{x|x≠0}.当α=时,定义域是[0,+∞),都不符合条件.当α=1,3时,幂函数定义域为R且为奇函数.故选A.5.幂函数y=f(x)的图像经过点(4,),则f()的值为()A.1B.2C.3D.4【答案】B【解析】设幂函数,由,得.【考点】幂函数6.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.7.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.8.函数是幂函数,且在上为增函数,则实数的值是()A.B.C.D.或【答案】【解析】是幂函数或 . 又上是增函数,所以.【考点】幂函数的概念及性质.9.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.10.下列对函数的性质描述正确的是()A.偶函数,先减后增B.偶函数,先增后减C.奇函数,减函数D.偶函数,减函数【答案】B【解析】是偶函数,图象关于y轴对称,而在(0,+∞)是减函数,所以,在(-∞.0)是增函数,故选B。

幂函数的练习题

幂函数的练习题

幂函数的练习题幂函数的练习题幂函数是数学中一种常见的函数形式,它的表达式为y = ax^n,其中a是常数,n是指数。

在解决实际问题或数学题目时,我们经常会遇到幂函数的练习题。

本文将通过一些例题来帮助读者更好地理解和应用幂函数。

例题一:已知y = 2x^3,求当x = 4时,y的值。

解析:将x = 4代入幂函数的表达式中,得到y = 2(4^3) = 2(64) = 128。

因此,当x = 4时,y的值为128。

例题二:已知y = 5x^2,求当y = 45时,x的值。

解析:将y = 45代入幂函数的表达式中,得到45 = 5(x^2)。

将方程两边除以5,得到9 = x^2。

开平方根,得到x = ±3。

因此,当y = 45时,x的值为±3。

例题三:已知y = 2^x,求当x = 0时,y的值。

解析:将x = 0代入幂函数的表达式中,得到y = 2^0 = 1。

因此,当x = 0时,y的值为1。

例题四:已知y = 3^x,求当y = 81时,x的值。

解析:将y = 81代入幂函数的表达式中,得到81 = 3^x。

将等式两边取对数,得到log3(81) = x。

由于3的多少次幂等于81,可以得到x = 4。

因此,当y =81时,x的值为4。

通过以上例题,我们可以看到幂函数在解决实际问题中的应用。

幂函数的指数决定了函数的增长速度,当指数为正数时,函数呈现递增趋势,当指数为负数时,函数呈现递减趋势。

幂函数也可以用来描述物理现象中的指数增长或衰减。

除了以上的例题,我们还可以通过一些练习题来进一步巩固对幂函数的理解。

练习题一:已知y = 4x^2,求当x = -2时,y的值。

练习题二:已知y = 2^x,求当y = 16时,x的值。

练习题三:已知y = 3^x,求当x = -1时,y的值。

练习题四:已知y = 5^x,求当y = 625时,x的值。

通过解答这些练习题,读者可以进一步熟悉幂函数的性质和运算规律。

幂函数知识归纳及习题(含答案)

幂函数知识归纳及习题(含答案)

自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。

幂函数练习(含答案详解)

幂函数练习(含答案详解)

3.3 幂函数练习一、单选题1、已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫12,2,则k +α=( A ) A .12 B .1 C .32D .22、下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( A ) A .y =x-2B .y =x-1C .y =x 2D .y =31x3、幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( C )4、幂函数()()2222m f x m m x -=--在()0,∞+上单调递减,则实数m 的值为( A ) A .1-B .3C .1-或3D .3-5、若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( A )A .⎣⎡⎭⎫2,167B .(0,2]C .⎝⎛⎭⎫-∞,167 D .[2,+∞) 6、若幂函数f (x )=()12255a a a x---在(0,+∞)上单调递增,则a 等于( D )A .1B .6C .2D .-17、幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是 ( D )A .a b c d >>>B .d b c a >>>C .d c b a >>>D .b c d a >>>8、已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( D )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0二、多选题9.下列关于幂函数y x α=的性质说法正确的有( CD ) A .当1α=-时,函数在其定义域上递减 B .当0α=时,函数图象是一条直线 C .当2α=时,函数是偶函数D .当3α=时,函数的图象与x 轴交点的横坐标为0 10.已知函数()a f x x 的图象经过点1,33⎛⎫⎪⎝⎭则( CD )A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞11、已知幂函数f (x )=()2231mm m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足2121)()(x x x f x f -->0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( BC )A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能12.若函数()f x x α=的定义域为R 且为奇函数,则α可能的值为( BD )A .1-B .1C .2D .3三、填空题13.若幂函数()21my m m x =--为偶函数,则m = ___2_____ .14、已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =_____0__. 15、若()()21221112-+>+m m m ,则实数m 的取值范围是______⎣⎢⎡⎭⎪⎫5-12,2__________.16、给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为__③______. 四、解答题17.已知幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.解:因为幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,故可得139α=,解得2α=-,故()2f x x -=,其定义域为{|0}x x ≠,关于原点对称;其函数图象如下所示:数形结合可知,因为()f x 的图象关于y 轴对称,故其为偶函数; 且()f x 在()0,+∞单调递减,在(),0-∞单调递增.18、已知幂函数f (x )=(m 2-5m +7)x -m -1(m ∈R)为偶函数.(1)求f ⎝⎛⎭⎫12的值;(2)若f (2a +1)=f (a ),求实数a 的值. 解:(1)由m 2-5m +7=1,得m =2或3. 当m =2时,f (x )=x-3是奇函数,∴不满足题意,∴m =2舍去;当m =3时,f (x )=x -4,满足题意, ∴f (x )=x -4,∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-4=16.(2)由f (x )=x-4为偶函数和f (2a +1)=f (a )可得|2a +1|=|a |,即2a +1=a 或2a +1=-a ,∴a =-1或a =-13.19、已知幂函数f (x )=21()mm x-+(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解:(1)因为m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,所以m 2+m 为偶数, 所以函数f (x )=21()m m x-+(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)因为函数f (x )的图象经过点(2,2), 所以2=2(m 2+m )-12()12m m +-,即122=2()12mm +-,所以m 2+m =2,解得m =1或m =-2. 又因为m ∈N *,所以m =1,f (x )=12x , 又因为f (2-a )>f (a -1), 所以⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).20、19.已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式; (2)令()()21g x f x x =++yg x 在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.解:(1)因为函数()()()2151Z m f x m m x m +=-+∈为幂函数,所以2511m m -+=,解得0m =或5m =, 当0m =时,函数()f x x =是奇函数,符合题意,当5m =时,函数()6f x x =是偶函数,不符合题意,综上所述,m 的值为0,函数()f x 的解析式为()f x x =. (2)由(1)知,()f x x =,所以()()2121g x f x x x x =+=++ 令21t x =+212t x -=,11,0123,032x x t -≤≤∴≤+≤∴≤≤ 所以2211()222t t g t t t -=+=+-,3t ⎡∈⎣, 根据二次函数的性质知,()g t 的对称轴为11122t =-=-⨯,开口向上,所以()g t 在3⎡⎣上单调递增;所以2min011()(0)0222g t g ==+-=-,(2max 31()(3)33122g t g === 所以函数()g x 在1,12⎡⎤-⎢⎥⎣⎦的值域为1312⎡⎤-⎢⎥⎣⎦.。

【学案与检测】高中数学-幂函数(解析版)-高中数学考点精讲精练

【学案与检测】高中数学-幂函数(解析版)-高中数学考点精讲精练

3.3 幂函数新课标要求通过具体实例,结合231,,,,y x y y x y x y x x=====的图象,理解它们的变化规律,了解幂函数。

知识梳理一、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 二、五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1 定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞)R [0,+∞) {y |y ≠0} 奇偶性 奇 偶奇 非奇非偶 奇单调性 增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞)上减, 在(-∞,0)上减三、一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.名师导学知识点1 幂函数的概念幂函数的判断及应用(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③x α的系数为1.形如y =(3x )α,y =2x α,y =x α+5…形式的函数都不是幂函数.(2)若一个函数为幂函数,则该函数也必具有y =x α(α为常数)这一形式. 【例1-1】在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3 答案 B解析 ∵y =1x 2=x -2,∴是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1),所以常函数y =1不是幂函数. 【例1-2】已知y =(m 2+2m -2)22m x-+2n -3是幂函数,求m ,n 的值.解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧ m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.【变式训练1-1】给出下列函数:①y=x 3;②y=x 2+2x ;③y=4x 2;④y=x 5+1;⑤y=(x-1)2;⑥y=x ;⑦y=x -2.其中幂函数的个数为 ( ) A .1 B .2 C .3D .4C [解析] 由幂函数的定义知,只有①⑥⑦是幂函数,故选C .【变式训练1-2】已知幂函数y=(m 2-m-1),求此幂函数的解析式,并指出其定义域.解:∵y=(m 2-m-1)为幂函数,∴m 2-m-1=1,解得m=2或m=-1.当m=2时,m 2-2m-3=-3,则y=x -3(x ≠0);当m=-1时,m 2-2m-3=0,则y=x 0(x ≠0).故所求幂函数的解析式为y=x -3(x ≠0)或y=x 0(x ≠0).知识点2 幂函数的图象及应用(1)幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y =x α在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f (x )在其他象限内的图象.(2)解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y =x α(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.【例2-1】若点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,14在幂函数g (x )的图象上,问当x 为何值时,(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).解 设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以将点(2,2)代入f (x )=x α中,得2=(2)α,解得α=2,则f (x )=x 2.同理可求得g (x )=x -2. 在同一坐标系中作出函数f (x )=x 2和g (x )=x-2的图象(如图所示),观察图象可得,(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =1或x =-1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).【变式训练2-1】如图所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于C 1,C 2,C 3,C 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故C 1的n =2,C 2的n =12;当n <0时,|n |越大,曲线越陡峭,所以曲线C 3的n =-12,曲线C 4的n =-2.知识点3 幂函数的性质比较幂值大小的方法(1)若两个幂值的指数相同或可化为两个指数相同的幂值时,则可构造函数,利用幂函数的单调性比较大小.(2)若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”. 【例2-1】[2021·安徽亳州二中高一期中] 已知函数f (x )=(m 2-m-1)是幂函数,且在(0,+∞)上单调递减,则实数m= ( )A .2B .-1C .4D .2或-1A 【解析】因为f (x )为幂函数,所以m 2-m-1=1,解得m=2或m=-1.因为f (x )在(0,+∞)上单调递减,所以m 2-2m-2<0,所以m=2.故选A .【例2-2】比较下列各组数中两个数的大小: (1)⎝⎛⎭⎫250.5与⎝⎛⎭⎫130.5; (2)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1; (3)3432⎛⎫⎪⎝⎭与3234⎛⎫⎪⎝⎭. 解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的, 又25>13,∴⎝⎛⎭⎫250.5>⎝⎛⎭⎫130.5. (2)∵幂函数y =x-1在(-∞,0)上是单调递减的,又-23<-35,∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1. (3)∵函数y 1=34x 在(0,+∞)上单调递增, 又32>1,∴3432⎛⎫⎪⎝⎭>341 =1. 又∵函数y 2=32x 在(0,+∞)上单调递增,且34<1,∴3234⎛⎫⎪⎝⎭<321 =1,∴3432⎛⎫ ⎪⎝⎭>3234⎛⎫⎪⎝⎭. 【变式训练2-1】比较下列各组数的大小: (1)⎝⎛⎭⎫230.3与⎝⎛⎭⎫130.3;(2)-3.143与-π3.解 (1)∵y =x 0.3在[0,+∞)上单调递增且23>13,∴⎝⎛⎭⎫230.3>⎝⎛⎭⎫130.3.(2)∵y =x 3是R 上的增函数,且3.14<π, ∴3.143<π3,∴-3.143>-π3.【变式训练2-2】已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称且在(0,+∞)上单调递减,求满足()31ma -+ <()332m a -- 的a 的取值范围.解 因为函数在(0,+∞)上单调递减,所以3m -9<0, 解得m <3.又因为m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称, 所以3m -9为偶数,故m =1. 则原不等式可化为()131a -+<()1332a --.因为y =13x- 在(-∞,0),(0,+∞)上均单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a , 解得23<a <32或a <-1.故a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <-1或23<a <32.名师导练A 组-[应知应会]1.已知点,在幂函数y=f (x )的图像上,则 ( ) A .f (x )= B .f (x )=x 3 C .f (x )=x -2D .f (x )=xB [解析] 设f (x )=x a ,由题意知a==3,所以a=3,所以f (x )=x 3.故选B .2.(2021秋•三明期末)已知幂函数21()m f x x -=的图象经过点(2,8),则实数m 的值是() A .1-B .12C .2D .3【分析】把点的坐标代入幂函数解析式,即可求出m 的值. 【解答】解:幂函数21()m f x x -=的图象经过点(2,8), 2128m -∴=,2m ∴=,故选:C .3.(2021秋•下城区校级期末)若一个幂函数的图象经过点1(2,)4,则它的单调增区间( )A .(,1)-∞B .(0,)+∞C .(,0)-∞D .R【分析】先求出幂函数的解析式,再得出其单调增区间. 【解答】解:设幂函数()f x x α=,函数()f x 经过点1(2,)4,∴124α=,解得2α=-, ∴221()f x x x -==, 故它的单调递增区间为(,0)-∞. 故选:C .4.(2021秋•杨浦区校级期末)已知常数a Q ∈,如图为幂函数a y x =的图象,则a 的值可以为( )A .23B .32 C .23-D .32-【分析】根据幂函数的图象关于y 轴对称,且在第一象限内单调递减,可以得出C 选项正确. 【解答】解:根据幂函数a y x =的图象关于y 轴对称,函数是偶函数,排除B 、D 选项; 再根据幂函数a y x =的图象在第一象限内从左到右下降,是单调减函数, 所以0a <,排除A ,即C 选项正确. 故选:C .5.已知幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,则实数m 的值为 ( )A .-1B .3C .-1或3D .1或-3B [解析] 因为幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,所以m 2-2m-2=1且m 2+m-1>0,解得m=3,则实数m 的值为3.6.(2021秋•白山期末)若函数21()(22)m f x m m x -=--是幂函数,且()y f x =在(0,)+∞上单调递增,则f (2)(= ) A .14B .12C .2D .4【分析】根据幂函数的定义,令2221m m --=,求出m 的值,再判断m 是否满足幂函数在(0,)x ∈+∞上为增函数即可,确定m 的值,从而求出幂函数的解析式,得出结果.【解答】解:因为函数21()(22)m f x m m x -=--是幂函数, 所以2221m m --=,解得1m =-或3m =.又因为()y f x =在(0,)+∞上单调递增,所以10m -, 所以3m =,2()f x x =, 从而f (2)224==, 故选:D .7.(2020秋•河南月考)幂函数223()mm y x m Z +-=∈的图象如图所示,则m 的值为( )A .2-或0B .1-C .0D .2-【分析】依题意,2m =-或1-或0,结合函数为奇函数,依次验证即可得到答案.【解答】解:由幂函数在第一象限的单调性可得,2230m m +-<,解得31m -<<, 再由m Z ∈可得,2m =-或1-或0. 又从图象可知该函数是奇函数,若2m =-,则2233m m +-=-,符合题意; 若1m =-,则2234m m +-=-,不合题意; 若0m =,则2233m m +-=-,符合题意, 综上,2m =-或0. 故选:A .8.(2022春•沈河区校级月考)设113244342(),(),()433a b c ===,则a ,b ,c 的大小顺序是( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<【分析】先判断1b >,再化a 、c ,利用幂函数的性质判断a 、c 的大小. 【解答】解:112439()()1416a ==<,144()13b =>,314428()()1327c ==<;且89012716<<<,函数14y x =在(0,)+∞上是单调增函数,所以114489()()2716<,所以c a <; 综上知,c a b <<. 故选:A .9.(多选题)已知幂函数f (x )= (m ,n ∈N *,m ,n 互质),则下列关于f (x )的结论正确的是( )A .当m ,n 是奇数时,幂函数f (x )是奇函数B .当m 是偶数,n 是奇数时,幂函数f (x )是偶函数C .当0<<1时,幂函数f (x )在(0,+∞)上单调递减D .当m ,n 是奇数时,幂函数f (x )的定义域为R ABD [解析] f (x )==.当m ,n 是奇数时,幂函数f (x )是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数时,幂函数f (x )是偶函数,故B 中的结论正确;当0<<1时,幂函数f (x )在(0,+∞)上单调递增,故C 中的结论错误;当m ,n 是奇数时,幂函数f (x )=的定义域为R,故D 中的结论正确.故选ABD .10.(多选)(2021秋•徐州期末)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线C .当2α=时函数是偶函数D .当3α=时函数有一个零点0【分析】根据幂函数的图象与性质,判断选项中的命题是否正确即可.【解答】解:对于A ,1α=-时幂函数1y x -=在(,0)-∞和(0,)+∞是减函数,在其定义域上不是减函数,A 错误;对于B ,0α=时幂函数01(0)y x x ==≠,其图象是一条直线,去掉点(0,1),B 错误; 对于C ,2α=时幂函数2y x =在定义域R 上是偶函数,C 正确;对于D ,3α=时幂函数3y x =在R 上的奇函数,且是增函数,有唯一零点是0,D 正确. 故选:CD .11.(2019秋•金山区校级期末)幂函数()y f x =的图象经过点1(4,)2,则1()16f 的值为 .【分析】利用待定系数法求出幂函数()y f x =的解析式,再计算1()16f 的值.【解答】解:设幂函数()y f x x α==,R α∈;其图象过点1(4,)2,所以142α=,解得12α=-;所以12()f x x -=,所以112211()()1641616f -===.故答案为:4.12.[2021·厦门外国语学校高一期中] 已知幂函数f (x )=(m 2-5m+7)x m-1为偶函数,则实数m 的值为 .3 [解析] ∵f (x )为幂函数,∴m 2-5m+7=1,解得m=2或m=3.当m=2时,f (x )=x 为奇函数,不满足题意;当m=3时,f (x )=x 2为偶函数,满足题意.综上所述,m=3.13.(2021秋•湖州期末)幂函数()()f x x R αα=∈的图象经过点(2,8),则α的值为 ;函数()f x 为 函数.(填“奇”或“偶” )【分析】先求出幂函数解析式,再判断奇偶性即可. 【解答】解:幂函数()()f x x R αα=∈的图象经过点(2,8), 28α∴=,3α∴=,3()f x x ∴=,定义域为R ,又33()()()f x x x f x -=-=-=-,()f x ∴是奇函数,故答案为:3,奇.14.(2020春•嘉陵区月考)若幂函数22(22)m y m m x -=--在(0,)x ∈+∞上为减函数,则实数m 的值是【分析】根据给出的函数为幂函数,由幂函数概念知2221m m --=,再根据函数在(0,)+∞上为减函数,得到幂指数应该小于0,求得的m 值应满足以上两条.【解答】解:因为函数22(22)m y m m x -=--既是幂函数又是(0,)+∞的减函数, 所以222120m m m ⎧--=⎨-<⎩⇒312m m m ==-⎧⎨<⎩或,解得:1m =-. 故答案为:1-.15.(2021秋•道里区校级月考)当01x <<时, 1.1()f x x =,0.9()g x x =,2()h x x -=的大小关系是 .【分析】画出这三个函数在区间(0,1)上的图象可得答案. 【解答】解:画出幂函数的图象如下图可知()()()f x g x h x <<故答案为()()()f x g x h x <<16.(2021•西湖区校级模拟)已知函数223()(2,)n n f x x n k k N -++==∈的图象在[0,)+∞上单调递增则n = ,f (2)= .【分析】根据幂函数的单调性,列出不等式求出n 的值,写出()f x 的解析式,再计算f (2)的值.【解答】解:函数223()n n f x x -++=的图象在[0,)+∞上单调递增,所以2230n n -++>, 即2230n n --<,解得13n -<<;又2n k =,且k N ∈,所以0n =,2,当0n =时,3()f x x =;当0n =时,3()f x x =;所以f (2)328==.故答案为:0,2;8.17.[2021·浙江宁波高一期中] 已知幂函数f (x )的图像过点P 8,.(1)求函数f (x )的解析式;(2)画出函数f (x )的图像,并指出其单调区间.解:(1)设f (x )=x α. ∵f (x )的图像过点P 8,,∴8α=,即23α=2-1,解得α=-,故函数f (x )的解析式为f (x )=(x ≠0). (2)作出函数f (x )的图像如图所示.由图可知,函数f (x )的单调递减区间为(-∞,0),(0,+∞),无单调递增区间.18.[2021·广州六中高一期中] 已知幂函数f (x )的图像过点(2,).(1)求出函数f (x )的解析式,判断并证明f (x )在[0,+∞)上的单调性;(2)若函数g (x )是R 上的偶函数,当x ≥0时,g (x )=f (x ),求满足g (1-m )≤的实数m 的取值范围. 解:(1)设f (x )=x α,将点(2,)的坐标代入,得=2α,解得α=, 所以f (x )=.幂函数f (x )==在[0,+∞)上单调递增.证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=-==, 因为x 1-x 2<0,+>0,所以f (x 1)<f (x 2), 故幂函数f (x )=在[0,+∞)上单调递增.(2)当x ≥0时,g (x )=f (x ),而幂函数f (x )=在[0,+∞)上单调递增, 所以当x ≥0时,g (x )单调递增.因为函数g (x )是R 上的偶函数,所以g (x )在(-∞,0)上单调递减. 由g (5)=,g (1-m )≤可得|1-m|≤5,解得-4≤m ≤6,所以满足g (1-m )≤的实数m 的取值范围为[-4,6]. B 组-[素养提升]1.已知幂函数y =223m m x-- (m ∈Z )的图象与x 轴和y 轴没有交点,且关于y 轴对称,则m 等于( )A .1B .0,2C .-1,1,3D .0,1,2答案 C解析 ∵幂函数y =223m m x -- (m ∈Z )的图象与x 轴、y 轴没有交点,且关于y 轴对称, ∴m 2-2m -3≤0,且m 2-2m -3(m ∈Z )为偶数,由m 2-2m -3≤0,得-1≤m ≤3,又m ∈Z ,∴m =-1,0,1,2,3.当m =-1时,m 2-2m -3=1+2-3=0,为偶数,符合题意;当m =0时,m 2-2m -3=-3,为奇数,不符合题意;当m =1时,m 2-2m -3=1-2-3=-4,为偶数,符合题意;当m =2时,m 2-2m -3=4-4-3=-3,为奇数,不符合题意;当m =3时,m 2-2m -3=9-6-3=0,为偶数,符合题意.综上所述,m =-1,1,3.2.(2022春•凯里市校级期中)已知一次函数()f x 的图象过点(0,1)-和(2,1),()(1)m g x m x =-为幂函数.(Ⅰ)求函数()f x 与()g x 的解析式;(Ⅱ)当a R ∈时,解关于x 的不等式:()()af x g x <.【分析】(1)利用待定系数法求出解析式即可;(2)分0a <或4a >,0a =,4a =,04a <<四种情况讨论即可.【解答】解:()I 根据一次函数()f x 的图象过点(0,1)-和(2,1),设()f x kx b =+,则112b k b -=⎧⎨=+⎩,解得11k b =⎧⎨=-⎩,则()1f x x =- ()(1)m g x m x =-为幂函数,则2m =,故2()g x x =()()()II af x g x <即2(1)a x x -<,则△24(4)a a a a =-=-当0a <或4a >时,不等式的解集为24{|}a a a x x --或24{|}a a a x x +->, 当0a =时,不等式的解集为{|0}x x ≠;当4a =时,不等式的解集为{|2}x x ≠当04a <<时,不等式的解集为R .。

幂函数练习题及答案解析

幂函数练习题及答案解析

幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。

2.若 a < 1,则 5a < 0.5a < 5-a。

解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。

3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。

解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。

(-3)^n。

解析:因为 (-2)^n。

0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。

+∞) 上为减函数。

因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。

-4)。

解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。

-4) 上递减。

2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。

0)。

解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。

0)。

3.正确的说法有 2 个。

解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。

4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。

因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。

考点11 幂函数(练习)(解析版)

考点11 幂函数(练习)(解析版)

考点11:幂函数【题组一 幂函数定义辨析】1.已知函数()()22231m m f x m m x +-=--是幂函数,且其图象与两坐标轴都没有交点,则实数m = 。

【答案】-1 【解析】函数()()22231m m f x m m x +-=--是幂函数,211m m ∴--=,解得:2m =或1m =-,2m =时,()f x x =,其图象与两坐标轴有交点不合题意,1m =-时,()41f x x =,其图象与两坐标轴都没有交点,符合题意,故1m =-。

2.函数2()(1)n f x n n x =--是幂函数,且在()0,x ∈+∞上是减函数,则实数n =_______【答案】﹣1【解析】函数f (x )=(n 2﹣n ﹣1)x n 是幂函数,∴n 2﹣n ﹣1=1,解得n =﹣1或n =2;当n =﹣1时,f (x )=x ﹣1,在x ∈(0,+∞)上是减函数,满足题意; 当n =2时,f (x )=x 2,在x ∈(0,+∞)上是增函数,不满足题意.综上,n =﹣1.故答案为:﹣1.3.2222()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =______. 【答案】2【解析】2222()(1)mm f x m m x --=--是幂函数,则211m m --=,解得2m =或1m =-. 当2m =时,()2f x x -=,在(0,)x ∈+∞上是减函数,满足;当1m =-时,()f x x =,在(0,)x ∈+∞上是增函数,排除.综上所述:2m =.故答案为:2.4.若幂函数a y x =的图像过点(28),,则a =__________. 【答案】3 【解析】幂函数a y x =的图像过点()28,,3282,3a a ∴===,故答案为3. 5.幂函数()()22m f x m m x =+在[)0,+∞上为单调递增的,则m =______.【答案】12【解析】由幂函数()()22m f x m m x =+在[)0,+∞上为单调递增的, 所以2210m m m ⎧+=⎨>⎩,解得12m =.故答案为:12. 6.幂函数()()223mm f x x m --=∈Z 的图像与坐标轴没有公共点,且关于y 轴对称,则m 的值为______. 【答案】1,1,3-【解析】由于幂函数()()223m m f x x m --=∈Z 的图像与坐标轴没有公共点,所以{}2230131,0,1,2,3m m m m --≤⇒-≤≤⇒∈-,又因为函数为偶函数,故分别代入检验可知:1,1,3m =-满足;故填: 1,1,3-7.幂函数()222533m m y m m x+-=-+在()0,∞+单调递减,则实数m 的值为_________.【答案】1 【解析】由题意可得22331250m m m m ⎧-+=⎨+-<⎩,解得1m =,故答案为:1 【题组二 幂函数性质】1.幂函数25y x -=的定义域为_________(用区间表示).【答案】()(),00,-∞⋃+∞ 【解析】幂函数25y x -=,20x ∴>,解得0x ≠,∴函数y 的定义域为()(),00,-∞⋃+∞.故答案为:()(),00,-∞⋃+∞.2.已知幂函数()y f x =的图象过点(,则这个函数的定义域为__________.【答案】[)0,+∞【解析】由题意可知,设()()f x x R αα=∈函数()f x 图象过点((2)2f α∴==即12α=∴()f x =要使得函数()f x =0x ≥,即函数()f x 的定义域为[)0,+∞.故答案为:[)0,+∞ 3.使(3-2x -x 234)-有意义的x 的取值范围是________.【答案】(-3,1)【解析】()332432x x-⎛⎫--=,要使表达式有意义,必有2032x x -->,解得31x -<<,故答案为()3,1-.4.若1144(1)(32)a a --+<-,则a 的取值范围是 ______ 【答案】23,32⎛⎫ ⎪⎝⎭【解析】幂函数y x α=,当0α<时是减函数,函数 14y x-=的定义域为()0,∞+, 所以有1320a a +>->,解得2332a <<,故答案为 23,32⎛⎫ ⎪⎝⎭ . 5.若()()1133132a a --+<-,则实数a 的取值范围是______. 【答案】23(,)(,1)32-∞- 【解析】由题得11331111()(),132132a a a a<∴<+-+-,所以110132a a -<+-, 所以321320,0(1)(32)(1)(23)a a a a a a a ----<∴<+-+-,所以(1)(23)(32)0a a a +--<, 所以2332a <<或1a <-,所以a 的取值范围为23(,)(,1)32-∞-.故答案为:23(,)(,1)32-∞- 6.若 1.30.3(0.3)(1.3)>m m ,则实数m 的取值范围是________.【答案】0m <【解析】由题: 1.3000.300.30.31 1.3 1.3<<==<,考虑幂函数()m f x x =,()()1.30.30.3 1.3f f >,根据幂函数的性质,()0,mm f x x >=在()0,x ∈+∞单调递增, ()00,m f x x ==在()0,x ∈+∞为常数函数,()0,m m f x x <=在()0,x ∈+∞单调递减,此题只需()mf x x =在()0,x ∈+∞单调递减,所以0m <.故答案为:0m < 7.若()()11132a a --+<-,试求a 的取值范围 .【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭ 【解析】∵()()11132a a --+<-,∴10,320,132a a a a +>⎧⎪->⎨⎪+>-⎩或10,320,132a a a a +<⎧⎪-<⎨⎪+>-⎩或320,10,a a ->⎧⎨+<⎩解得2332a <<或1a <-.故a 的取值范围是()23,1,32⎛⎫-∞- ⎪⎝⎭. 8.不等式()()2233131x x ->+的解为 。

幂函数练习(解析版)

幂函数练习(解析版)

3.3 幂函数一、选择题1.(2017·全国高一课时练习)如图是幂函数y =x m 和y =x n 在第一象限内的图象,则( )A.-1<n<0,0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>1【答案】B【解析】由题图知,my x =在[)0,+∞上是增函数,n y x =在()0,∞+上为减函数, 0,0m n ∴><,又当1x >时,my x =的图象在y x =的下方,n y x = 的图象在1y x -=的下方, 1,1m n ∴<<-,从而01,1m n <<<-,故选B.2.(2018·全国高一课时练习)若幂函数的图象过点124⎛⎫ ⎪⎝⎭,,则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞) C .(-∞,+∞) D .(-∞,0)【答案】D 【解析】本题主要考查的是幂函数的图像与性质。

设幂函数为,因为图像过,所以。

由幂函数的性质:当时,在上是减函数。

又为偶函数,所以在上是增函数。

应选D 。

3.(2018·浙江高三课时练习)已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】因为a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x 在R 上单调递增,所以b <a <c . 故选A.4.(2017·全国高一课时练习) 下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,12时,幂函数y =x α是增函数 D.当幂指数α=-1时,幂函数y =x α在定义域上是减函数 【答案】C 【解析】当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R),y >0,所以幂函数的图象不可能出现在第四象限,故选B 不正确;当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但在它的定义域上不是减函数,故选项D 不正确. 故选C.5.(2017·全国高一课时练习) 在下列四个图形中,y =x -12的图像大致是( )A. B. C. D.【答案】D 【解析】函数12y x-==的定义域为(0,+∞),是减函数.故选D. 6.(2017·全国高一课时练习)若幂函数y =(m 2-3m +3)x m -2的图像不过原点,则m 的取值范围为( ) A.1≤m≤2 B.m =1或m =2 C.m =2 D.m =1【答案】D 【解析】由幂函数()2233m y m m x -=-+的图像不过原点,可得220331m m m -<⎧⎨-+=⎩,解得21,2m m m <⎧⎨==⎩,1m ∴=,故选D. 二、填空题7.(2017·全国高一课时练习)已知幂函数f (x )的部分对应值如下表:则不等式f (|x |)≤2的解集是___________. 【答案】[–4,4] 【解析】由表中数据知2=12a⎛⎫⎪⎝⎭,∴α=12,∴f(x)=12x ,∴|x|12≤2,即|x|≤4,故-4≤x≤4,故填{x|-4≤x≤4}.8.(2017·全国高一课时练习) 已知幂函数f (x )=x 21m - (m ∈Z)的图像与x 轴,y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________. 【答案】f (x )=x -1 【解析】∵函数的图像与x 轴,y 轴都无交点, ∴m 2-1<0,解得-1<m <1;∵图像关于原点对称,且m ∈Z, ∴m =0,∴f (x )=x -1.9.(2017·全国高一课时练习)若幂函数y =x α的图像经过点(8,4),则函数y =x α的值域是________. 【答案】[0,+∞) 【解析】幂函数y x α=图象经过点()8,4,48α∴=,解得2,3α=∴函数23y x =的值域为[)0,+∞. 10.(2016·全国高一课时练习)已知幂函数f(x)=12x -,若f(a+1)<f(10−2a),则实数a 的取值范围是________. 【答案】(3,5) 【解析】f(x)=12x-=1x(x>0),易知f(x)在(0,+∞)上为减函数,又f(a+1)<f(10−2a),∴10,1020,1102,a a a a +>⎧⎪->⎨⎪+>-⎩解得1,5,3,a a a >-⎧⎪<⎨⎪>⎩∴3<a<5. 三、解答题11.(2017·全国高一课时练习) 已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x ):(1)是幂函数; (2)是正比例函数; (3)是反比例函数; (4)是二次函数.【答案】(1)m =2或m =-1.(2)m =-45 .(3)m =-25.(4) m =-1. 【解析】(1)∵f (x )是幂函数, 故m 2-m -1=1,即m 2-m -2=0, 解得m =2或m =-1. (2)若f (x )是正比例函数, 则-5m -3=1,解得m =-. 此时m 2-m -1≠0,故m =-. (3)若f (x )是反比例函数,则-5m -3=-1,则m =-,此时m 2-m -1≠0, 故m =-.(4)若f (x )是二次函数,则-5m -3=2, 即m =-1,此时m 2-m -1≠0,故m =-1.12.(2017·全国高一课时练习) 比较下列各题中两个幂的值的大小:(1)2.334,2.434; (2)32-,32-;(3)(-0.31)65,0.3565. 【答案】(1)2.334<2.434.(2) 32->32-;(3)(-0.31) 65<0.3565.【解析】(1)∵y =34x 为R 上的增函数, 又2.3<2.4, ∴2.334<2.434.(2)∵y =32x -为(0,+∞)上的减函数,又<,∴()32->()32-.(3)∵y =65x 为R 上的偶函数, ∴()650.31-=650.31.又函数y =65x 为[0,+∞)上的增函数, 且0.31<0.35,∴0.3165<0.3565,即(-0.31) 65<0.3565.。

高一数学幂函数习题及答案

高一数学幂函数习题及答案

高一数学幂函数习题及答案高一数学幂函数习题及答案在高一数学课程中,幂函数是一个非常重要的概念。

幂函数是指形如f(x) =ax^b的函数,其中a和b是常数,x是自变量。

在本文中,我们将探讨一些关于幂函数的习题,并提供相应的答案。

1. 习题一:已知函数f(x) = 2x^3,求f(2)的值。

解答:将x替换为2,得到f(2) = 2(2)^3 = 2(8) = 16。

因此,f(2)的值为16。

2. 习题二:已知函数g(x) = 4x^2,求g(0)的值。

解答:将x替换为0,得到g(0) = 4(0)^2 = 4(0) = 0。

因此,g(0)的值为0。

3. 习题三:已知函数h(x) = 5x^-2,求h(1)的值。

解答:将x替换为1,得到h(1) = 5(1)^-2 = 5(1/1^2) = 5(1/1) = 5。

因此,h(1)的值为5。

4. 习题四:已知函数k(x) = x^4 + 2x^3 - 3x^2 + x - 1,求k(-1)的值。

解答:将x替换为-1,得到k(-1) = (-1)^4 + 2(-1)^3 - 3(-1)^2 + (-1) - 1 = 1 - 2 - 3 - 1 - 1 = -5。

因此,k(-1)的值为-5。

5. 习题五:已知函数m(x) = (1/2)x^2 - 3x + 2,求m(3)的值。

解答:将x替换为3,得到m(3) = (1/2)(3)^2 - 3(3) + 2 = (1/2)(9) - 9 + 2 = 4.5 - 9 + 2 = -2.5。

因此,m(3)的值为-2.5。

通过以上习题,我们可以看到幂函数的计算方法。

对于给定的函数,我们只需将自变量替换为相应的值,然后按照幂函数的定义进行计算即可。

在实际应用中,幂函数常常用于描述各种变化规律,如物体的增长、衰减等。

除了计算习题,我们还可以通过绘制幂函数的图像来更好地理解其特点。

下面是几个常见的幂函数图像:1. 当b>0时,函数f(x) = ax^b的图像呈现出从左下方向右上方递增的趋势。

幂函数练习题及答案解析

幂函数练习题及答案解析

3.3幂函数1.给出四个说法:①当n=0时,y=x n的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=x n在第一象限为减函数,则n<0.其中正确的说法个数是()A.1 B.2C.3 D.42.在函数y=2x3,y=x2,y=x2+x,y=x0中,幂函数有() A.1个B.2个C.3个D.4个3.下列结论中,正确的是()①幂函数的图象不可能在第四象限②α=0时,幂函数y=xα的图象过点(1,1)和(0,0)③幂函数y=xα,当α≥0时是增函数④幂函数y=xα,当α<0时,在第一象限内,随x的增大而减小A.①②B.③④C.②③D.①④4.幂函数f(x)=xα满足x>1时f(x)>1,则α满足条件() A.α>1 B.0<α<1C.α>0 D.α>0且α≠15.已知幂函数f(x)的图象经过点(2,22),则f(4)的值为()A.16 B.1 16C.12D.26.函数f(x)=(m2-m-1)x m2-2m-3是幂函数,且在x∈(0,+∞)上是减函数,则实数m=()A.2 B.3C.4 D.57.下列幂函数为偶函数的是()A .y =x 12 B .y =3xC .y =x 2D .y =x -18.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a9.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,310.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________. 11.幂函数的图象过点(2,14),则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞)C .(-∞,0)D .(-∞,+∞)12.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4 13.使(3-2x -x 2)-34有意义的x 的取值范围是( )A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >114.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.15.已知2.4α>2.5α,则α的取值范围是________.16.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.17.已知(m +4)-12<(3-2m )-12,求m 的取值范围.18.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-1219.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错20.函数f (x )=(1-x )0+(1-x )12的定义域为________.21.下列幂函数中,定义域为{x |x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -34 22.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________.23.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数? ,参考答案:1.解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.2.解析:选B.y =x 2与y =x 0是幂函数.3.解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.4.解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1.5.解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.6.解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.8.解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .9.解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.10.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3},∴n =-1或n =2.答案:-1或211.解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.12.解析:选A.∵f (x )=x α为奇函数, ∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数,∴α=-1.13.解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3, ∴要使上式有意义,需3-2x -x 2>0,解得-3<x <1.14.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1,∴函数y =(x -1)α恒过点(2,1).答案:(2,1)15.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数.答案:α<016.解析:(76)0=1,(23)-13>(23)0=1, (35)12<1,(25)12<1,∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13.答案:(25)12<(35)12<(76)0<(23)-1317.解:∵y =x -12的定义域为(0,+∞),且为减函数.∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m, 解得-13<m <32. ∴m 的取值范围是(-13,32).18.解析:选B.当x =2时,22>212>2-12>2-2, 即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2. 19.解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.20.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1. 答案:(-∞,1) 21.解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x ,x ≠0;D.y =x -34=14x3,x >0.22.解析:结合幂函数的图象性质可知p <1.答案:p <1 23.解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m=-1±2.。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案幂函数是数学中常见的一类函数,其形式为 f(x) = a^x,其中 a 为常数且a ≠ 0。

幂函数在数学中有广泛的应用,涉及到各个领域的问题。

本文将通过一些幂函数的练习题及其答案,来帮助读者更好地理解和掌握幂函数的性质和运算。

1. 练习题一:简单的幂函数求值计算以下幂函数在给定点上的函数值:(a) f(x) = 2^x,当 x = 3;(b) g(x) = (-3)^x,当 x = -2;(c) h(x) = 0.5^x,当 x = 4。

答案:(a) f(3) = 2^3 = 8;(b) g(-2) = (-3)^(-2) = 1/((-3)^2) = 1/9;(c) h(4) = 0.5^4 = 1/2^4 = 1/16。

这些计算可以通过将给定的 x 值代入幂函数的定义中进行求解。

注意负指数的处理方式。

2. 练习题二:幂函数的图像与性质研究以下幂函数的图像,并回答相应问题:(a) f(x) = 2^x;(b) g(x) = (-2)^x;(c) h(x) = 3^x。

答案:(a) f(x) = 2^x 的图像是一条递增曲线,穿过点 (0, 1)。

当 x 取负值时,函数值逐渐趋近于 0,当 x 取正值时,函数值逐渐增大。

(b) g(x) = (-2)^x 的图像是一条交替变化的曲线。

当 x 为偶数时,函数值为正,当 x 为奇数时,函数值为负。

(c) h(x) = 3^x 的图像是一条递增曲线,穿过点 (0, 1)。

函数值随 x 的增大而迅速增大。

通过观察这些幂函数的图像,我们可以发现幂函数的一些共同性质,如递增或递减性、穿过点 (0, 1)、趋近于 0 等。

3. 练习题三:幂函数的运算计算以下幂函数的运算结果:(a) f(x) = 2^x * 2^3;(b) g(x) = (2^x)^3;(c) h(x) = 2^(x+3)。

答案:(a) f(x) = 2^x * 2^3 = 2^(x+3);(b) g(x) = (2^x)^3 = 2^(3x);(c) h(x) = 2^(x+3) = 2^x * 2^3。

幂函数练习题

幂函数练习题

幂函数练习题幂函数练习题幂函数是数学中一种常见且重要的函数类型,它的形式为f(x) = ax^n,其中a和n是实数,且a不等于0。

幂函数在实际问题中有着广泛的应用,例如物理学中的运动学问题、经济学中的成本函数等等。

为了更好地理解和掌握幂函数,下面将给出一些幂函数的练习题。

1. 给定函数f(x) = 2x^3,求f(2)的值。

解析:将x代入函数f(x)中,得到f(2) = 2 * 2^3 = 2 * 8 = 16。

2. 已知函数g(x) = 4x^2,求g(-1)的值。

解析:将x代入函数g(x)中,得到g(-1) = 4 * (-1)^2 = 4 * 1 = 4。

3. 若函数h(x) = 3x^4,求h(0)的值。

解析:将x代入函数h(x)中,得到h(0) = 3 * 0^4 = 3 * 0 = 0。

4. 给定函数k(x) = 5x^2,求k(3)的值。

解析:将x代入函数k(x)中,得到k(3) = 5 * 3^2 = 5 * 9 = 45。

通过以上的练习题,我们可以看到幂函数的计算方法其实并不复杂。

只需要将给定的x代入函数中,并按照幂函数的定义进行计算即可。

幂函数的特点是在变量x的幂次上有着明显的影响,不同的幂次会导致函数图像的变化。

除了计算幂函数的值,我们还可以通过观察幂函数的图像来了解其性质。

例如,当幂函数的幂次为正数时,函数的图像呈现出递增的趋势;当幂次为负数时,函数的图像则呈现出递减的趋势。

这是因为正数的幂次会使函数的值逐渐增大,而负数的幂次则会使函数的值逐渐减小。

此外,当幂次为偶数时,函数的图像会关于y轴对称;当幂次为奇数时,函数的图像则不对称。

这是因为偶数次幂的函数具有正负对称性,而奇数次幂的函数则没有这种对称性。

幂函数在实际问题中的应用非常广泛。

例如,在物理学中,我们可以利用幂函数来描述物体的运动规律;在经济学中,幂函数可以用来描述成本函数、收益函数等。

掌握幂函数的性质和应用,对于解决实际问题具有重要的意义。

幂函数练习题及解析

幂函数练习题及解析

幂函数练习题及解析幂函数是数学中一种重要的函数类型,它可以表示为f(x) = a * x^b的形式,其中a和b是实数常数。

在本篇文章中,我们将提供一些幂函数的练习题,并对解答进行详细的解析。

练习题1:考虑函数f(x) = 2 * x^3,请回答以下问题:1. 当x = 2时,f(x)的值是多少?2. 当f(x) = 16时,x的值是多少?解析1:在函数f(x) = 2 * x^3中,我们只需要将x = 2代入函数中计算即可得到f(x)的值。

f(2) = 2 * 2^3 = 2 * 8 = 16因此,当x = 2时,f(x)的值为16。

解析2:当f(x) = 16时,我们需要求解方程2 * x^3 = 16,即2 * x^3 - 16 = 0。

首先,我们可以将方程进行简化,除以2得到x^3 - 8 = 0。

然后,我们注意到8可以表示为2的立方,因此我们可以将方程进一步简化为(x - 2) * (x^2 + 2x + 4) = 0。

根据因式定理,我们得到两个解:x - 2 = 0和x^2 + 2x + 4 = 0。

对于x - 2 = 0,解得x = 2。

对于x^2 + 2x + 4 = 0,由于判别式小于零,方程没有实数解。

因此,当f(x) = 16时,x的值为2。

练习题2:考虑函数f(x) = 5 * (1/2)^x,请回答以下问题:1. 当x = 3时,f(x)的值是多少?2. 当f(x) = 1/8时,x的值是多少?解析1:在函数f(x) = 5 * (1/2)^x中,我们只需要将x = 3代入函数中计算即可得到f(x)的值。

f(3) = 5 * (1/2)^3 = 5 * (1/8) = 5/8因此,当x = 3时,f(x)的值为5/8。

解析2:当f(x) = 1/8时,我们需要求解方程5 * (1/2)^x = 1/8,即5 * (1/2)^x - 1/8 = 0。

首先,我们可以将方程进行简化,乘以8得到40 * (1/2)^x - 1 = 0。

高考数学专题《幂函数》习题含答案解析

高考数学专题《幂函数》习题含答案解析

专题3.4 幂函数1.(2021·全国高一课时练习)下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数【答案】C 【解析】根据奇偶函数的定义依次判断即可. 【详解】 因为11xx -=,11=--xx ,所以A 正确; 因为22()x x -=,所以B 正确; 因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确. 故选:C.2.(2020·上海高一课时练习)下列函数中,既是偶函数,又在(,0)-∞上单调递增的函数是( ) A .2y x -=- B .23y x =-C .13y x =-D .3y x -=【答案】B 【解析】A: 2y x -=-为偶函数,且在()0,∞+上递增,即2y x -=-在(,0)-∞上单调递减,排除; B: 23y x =-为偶函数,在(,0)-∞上单调递增; C: 13y x =-为奇函数,故排除; D: 3y x -=为奇函数,故排除. 故选:B.练基础3.(2020·石嘴山市第三中学高二月考(文))幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为( ) A .0 B .1C .1或2D .2【答案】D 【解析】由题意()f x 为幂函数,所以2211m m -+=,解得0m =或2m =. 因为()f x 在()0,∞上为增函数,所以210m ->,即12m >,所以2m =. 故选D.4.(2020·上海高一课时练习)下面是有关幂函数3()-=f x x 的四种说法,其中错误的叙述是( )A .()f x 的定义域和值域相等B .()f x 的图象关于原点中心对称C .()f x 在定义域上是减函数D .()f x 是奇函数【答案】C 【解析】3()-=f x x ,函数的定义域和值域均为()(),00,-∞⋃+∞,A 正确;3()-=f x x ,()()33()f x x x f x ---=-=-=-,函数为奇函数,故BD 正确;()f x 在(),0-∞和()0,∞+是减函数,但在()(),00,-∞⋃+∞不是减函数,C 错误.故选:C.5.(2020·上海高一课时练习)若幕函数()f x 的图像经过点1,42⎛⎫ ⎪⎝⎭,则该函数的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称D .关于直线y x =对称【答案】B 【解析】设()f x x α=,依题意可得1()42α=,解得2α=-,所以2()f x x -=,因为22()()()f x x x f x ---=-==,所以()f x 为偶函数,其图象关于y 轴对称.故选:B.6.(2019·延安市第一中学高三月考(文))已知幂函数()f x x α=的图像过点1(,)22,则方程()2f x =的解是( )A .4B .2C .2D .12【答案】A 【解析】依题意得1()2α=,解得12α=,所以12()f x x =,由()2f x =得122x =,解得4x =.故选:A.7.(2021·浙江高一期末)幂函数()()22222m f x m m x-=--在()0,∞+为增函数,则m 的值是( )A .1-B .3C .1-或3D .1或3-【答案】B 【解析】由幂函数解析式的形式可构造方程求得1m =-或3m =,分别验证两种情况下()f x 在()0,∞+上的单调性即可得到结果. 【详解】()f x 为幂函数,2221m m ∴--=,解得:1m =-或3m =;当1m =-时,()1f x x -=,则()f x 在()0,∞+上为减函数,不合题意;当3m =时,()7=f x x ,则()f x 在()0,∞+上为增函数,符合题意;综上所述:3m =. 故选:B.8.(2021·全国高一课时练习)下列结论正确的是( ) A .幂函数图象一定过原点B .当0α<时,幂函数y x α=是减函数C .当1α>时,幂函数y x α=是增函数D .函数2y x 既是二次函数,也是幂函数【答案】D 【解析】由函数1y x -=的性质,可判定A 、B 不正确;根据函数2y x 可判定C 不正确;根据二次函数和幂函数的定义,可判定D 正确. 【详解】由题意,函数1y x -=的图象不过原点,故A 不正确;函数1y x -=在(,0)-∞及(0,)+∞上是减函数,故B 不正确; 函数2yx 在(,0)-∞上是减函数,在(0,)+∞上是增函数,故C 不正确;根据幂函数的定义,可得函数2y x 是二次函数,也是幂函数,所以D 正确.故选:D.9.(2021·全国高一课时练习)幂函数的图象过点(3, ,则它的单调递增区间是( )A .[-1,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0)【答案】B 【解析】根据利用待定系数法求出幂函数的解析式,再根据幂函数求出单调增区间即可. 【详解】设幂函数为f (x )=x α,因为幂函数的图象过点(3, ),所以f (3)=3α=123, 解得α=12, 所以f (x )=12x ,所以幂函数的单调递增区间为[0,+∞). 故选:B10.(2021·全国高三专题练习)下列关于幂函数图象和性质的描述中,正确的是( ) A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种 【答案】AB 【解析】举反例结合幂函数的性质判断即可. 【详解】因为11α=,所以的幂函数都经过(1,1),故A 正确;当0x >时,0x α>,幂函数的图象都不经过第四象限,故B 正确;12y x =的定义域为[)0,+∞,为非奇非偶函数,故C 错误;1y x=在(),0-∞和()0,∞+上为减函数,但在定义域内不是减函数,故D 错误. 故选:AB1.(2020·内蒙古自治区集宁一中高二月考(文))若a =12⎛⎫ ⎪⎝⎭23,b =15⎛⎫ ⎪⎝⎭23,c =12⎛⎫ ⎪⎝⎭13,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c【答案】D 【解析】∵y =x 23 (x >0)是增函数,∴a =12⎛⎫⎪⎝⎭23>b =15⎛⎫ ⎪⎝⎭23. ∵y =12⎛⎫⎪⎝⎭x 是减函数,∴a =12⎛⎫ ⎪⎝⎭23<c =12⎛⎫ ⎪⎝⎭13,∴b <a <c .故本题答案为D.2.(2019·湖北高三高考模拟(理))幂函数f(x)=x m 的图象过点(2,4),且a =m 12,b =(13)m ,c =−log m 3,则a 、b 、c 的大小关系是( )练提升A .a >c >bB .b >c >aC .a >b >cD .c >a >b 【答案】C 【解析】幂函数f(x)=x m 的图象过点(2,4), ∴2m =4,m =2; ∴a =m 12=√2>1, b =(13)m =19∈(0,1), c =−log m 3=﹣log 23<0, ∴√2>19>−log 23,∴a >b >c . 故选:C .3.(2021·全国高三专题练习)已知幂函数()f x x α=满足()()2216f f =,若()4log 2a f =,()ln 2b f =,()125c f -=,则a ,b ,c 的大小关系是( )A .a c b >>B .a b c >>C .b a c >>D .b c a >>【答案】C 【解析】由()()2216f f =可求得13α=,得出()f x 单调递增,根据单调性即可得出大小. 【详解】由()()2216f f =可得4222αα⋅=,∴14αα+=, ∴13α=,即13f x x .由此可知函数()f x 在R 上单调递增.而由换底公式可得242log 21log 2log 42==,22log 2ln 2log e =,125-=,∵21log 2e <<,∴2222log 2log 2log 4log e<,于是4log 2ln 2<,12<,∴1245log 2-<,故a ,b ,c 的大小关系是b a c >>.故选:C.4.(2021·安徽高三二模(理))函数()nxf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( )A .B .C .D .【答案】B 【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项. 【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <, 当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n nx x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项. 故选:B.5.(2021·新疆高三其他模拟(理))若实数m ,n 满足m n >,且0mn ≠,则下列选项正确的是( ) A .330m n -> B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()lg 0m n ->D .11m n< 【答案】A 【解析】利用幂函数、指数函数单调性和对数的运算可求解. 【详解】解:∵函数3y x =,在R x ∈时单调递增,且m n >,∴330m n ->,故A 正确;∵函数1()2xy =,在R x ∈时单调递减,且m n >,∴11()()22mn<,故B 错误;当11,2m n ==时,()1lg lg 02m n -=<,故C 错误;当,11m n ==-时,1111m n=>=-,故D 错误;故选:A.6.【多选题】(2020·新泰市第二中学高二月考)已知函数()f x x α=图像经过点(4,2),则下列命题正确的有( ) A .函数为增函数 B .函数为偶函数 C .若1x >,则()1f x > D .若120x x <<,则()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭. 【答案】ACD 【解析】将点(4,2)代入函数()f x x α=得:2=4α,则1=2α. 所以12()f x x =,显然()f x 在定义域[0,)+∞上为增函数,所以A 正确.()f x 的定义域为[0,)+∞,所以()f x 不具有奇偶性,所以B 不正确.当1x >1>,即()1f x >,所以C 正确. 当若120x x <<时,()()122212()()22f x f x x x f ++-=22-.122x x +-.=0<.即()()121222f x f x x xf ++⎛⎫< ⎪⎝⎭成立,所以D 正确. 故选:ACD.7.【多选题】(2021·湖南高三月考)已知函数1,0(),0x x e x f x xe x -⎧>⎪=⎨≤⎪⎩,若关于x 的方程()f x a =有且仅有一个实数解,且幂函数()ag x x =在()0,∞+上单调递增,则实数a 的取值可能是( )A .1B .1eC .2D .e【答案】AD 【解析】作出()f x 的图象,根据方程根的个数判断参数a 的取值,再结合函数()ag x x =在()0,∞+上单调递增,即可求解出结果. 【详解】当0x ≤时,()xf x xe =,()()1x f x e x '=+,当1x <-时()0f x '<,当10x -<<时()0f x '> 所以()xf x xe =在(),1-∞-上单调递减,在()1,0-上单调递增,最小值为1(1)f e --=-;所以()f x 的图象如图所示,因为()f x a =有且仅有一个实数解,即()y f x =的图象 与y a =有且只有一个交点,所以[)1,1,0,a e e ⎧⎫∈+∞-⎨⎬⎩⎭,又因为()ag x x =在()0,∞+上单调递增,所以0a >,所以[){},1a e ∈+∞.故选:AD8.(2019·上海高考模拟)设α∈{13,12,−1,−2,3},若f (x )=x α为偶函数,则α=______.【答案】−2 【解析】由题可知,α=−2时,f (x )=x −2,满足f(-x)=f(x),所以是偶函数; α=13,12,−1,3时,不满足f(-x)=f(x), ∴α=−2. 故答案为:−2.9.(2021·全国高三专题练习(理))已知幂函数()39*N m y x m -=∈的图像关于y 轴对称,且在()0,∞+上函数值随着x 的增大而减小. (1)求m 值. (2)若满足()()22132mma a +<-,求a 的取值范围.【答案】(1)1m =;(2)()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭. 【解析】(1)由题意可知39m -为负偶数,且*N m ∈,即可求得m 值; (2)将所求不等式化为()()22132a a +<-,求解,即可得出结果. 【详解】(1)因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<, 解得3m <.又因为*m N ∈,所以1m =,2; 因为函数的图象关于y 轴对称, 所以39m -为偶数,故1m =.(2)由(1)可知,1m =,所以得()()22132a a +<-,解得4a >或23<a , 即a 的取值范围为()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭. 10.(2021·浙江高一期末)已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.【答案】(1)0m =;(2)01k ≤≤;(3)[][)1,02,-+∞ 【解析】(1)由幂函数的定义2(1)1m -=,再结合单调性即得解.(2)求解()f x ,()g x 的值域,得到集合A ,B ,转化命题p 是q 成立的必要条件为B A ⊆,列出不等关系,即得解.(3)由(1)可得22()1F x x kx k =-+-,根据二次函数的性质,分类讨论02k ≤和12k ≥两种情况,取并集即可得解.【详解】(1)由幂函数的定义得:2(1)1m -=,0m ⇒=或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去;当0m =时,2()f x x =在(0,)+∞上单调递增,符合题意;综上可知:0m =.(2)由(1)得:2()f x x =,当[1,2)x ∈时,[)()1,4f x ∈,即[)1,4A =,当[1,2)x ∈时,[)()2,4g x k k ∈--,即[)2,4B k k =--,由命题p 是q 成立的必要条件,则B A ⊆,显然B ≠∅,则2144k k -≥⎧⎨-≤⎩,即10k k ≤⎧⎨≥⎩, 所以实数k 的取值范围为:01k ≤≤.(3)由(1)可得22()1F x x kx k =-+-,二次函数的开口向上,对称轴为2k x =, 要使|()|F x 在[0,1]上单调递增,如图所示:或 即02(0)0k F ⎧≤⎪⎨⎪≥⎩或12(0)0k F ⎧≥⎪⎨⎪≤⎩,解得:10k -≤≤或2k ≥.所以实数k 的取值范围为:[][)1,02,-+∞1.(2019·全国高考真题(理))若a >b ,则( )A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .2.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭ C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞ 【答案】D【解析】 练真题注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2y x 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.3.(2020·江苏高考真题)已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____.【答案】4-【解析】先求(8)f ,再根据奇函数求(8)f -【详解】 23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-4. (2018·上海卷)已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= .【答案】-1【解析】∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.5.(浙江省高考真题(文))已知函数()2,1{ 66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ , ()f x 的最小值是 .【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.6.(江苏省高考真题)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x(x >0)图象上一动点.若点P ,A 之间的最短距离为,则满足条件的实数a 的所有值为________.【答案】-1【解析】试题分析:设点1,P x x ⎛⎫ ⎪⎝⎭()0x >,则PA ===令1,0,2t x x t x=+>∴≥ 令()()22222222g t t at a t a a =-+-=-+-(1)当2a ≥时,t a =时g t 取得最小值()22g a a =-,=a = (2)当2a <时,g t 在区间[)2,+∞上单调递增,所以当2t =时,g t 取得最小值()22242g a a =-+=1a =-综上可知:1a =-或a =所以答案应填:-1。

幂函数知识点总结及练习题

幂函数知识点总结及练习题

幂函数(1)幂函数的定义: 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.幂函数练习题一、选择题:1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( )A .y x =43B .y x =32C .y x =-2D .y x =-142.函数2-=x y 在区间]2,21[上的最大值是( )A .41B .1-C .4D .4- 3.下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=xy C .32x y = D .13-=x y 4.函数34x y =的图象是( )A .B .C .D . 5.下列命题中正确的是 ( ) A .当0=α时函数αx y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数8.如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<1α3α4α2α二、填空题:. 1.函数y x =-32的定义域是 .2.14()3,27)()f x f x -幂函数的图象过点(,则的解析式是.3.942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .4.函数2422-+=x x y 的单调递减区间是 .三、解答题:解答应写出文字说明.证明过程或演算步骤 1.比较下列各组中两个值大小 (1)060720880896116115353..(.)(.).与;()与--2.求证:幂函数3x y =在R 上为奇函数且为增函数.3.下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系..6543212132323123---======x y x y x y x y x y x y );();()(;);();()((A ) (B ) (C ) (D ) (E ) (F )巩固训练 一、选择题1.已知集合{}{}2,2,1==N M ,则N M 等于( ) A .{}2,1 B .{}1 C .{}2 D .22.下列函数中,值域是()+∞,0的函数是( ) A .3x y = B .4x y = C .2-=x y D .31-=xy3.函数11-=x y 的定义域是( ) A .()+∞,1 B .[)+∞,1 C .()1,∞- D . ()()+∞∞-,11, 4.二次函数12+-=x y 的单调递减区间是( )A .(]0,∞-B .[)+∞,1C .(]1,-∞-D .[)+∞,0 5.函数3)(x x f -=的图象( )A .关于直线x y =对称B .关于x 轴对称C .关于原点对称D .关于y 轴对称 6.幂函数)(Q n x y n∈=的图象一定经过点( )A .()0,0B .()1,1C .()1,1--D .()1,0 7.已知{}512,>-==x x A R I ,则A =( )A .{}3≤x xB .{}2-≥x xC .{}32≤≤-xD .{}32≤≤-x x 8.若一元二次不等式0122<--px x 的解集是{}q x x <<-2,则p 的值是( ) A .不能确定 B .4 C .-4 D .8 10.函数)1(1≥--=x x y 的反函数是( ) A .)(12R x x y ∈+= B .)0(12>+=x x y C .)0(12≤+=x x y D .)0(12≤+-=x x y11.已知)(x f 是定义在R 上的偶函数,且在[)+∞,0上单调递减,则( ) A .)10()()3(f f f <-<-π B .)3()()10(-<-<f f f π C .)10()3()(f f f <-<-π D .)()3()10(π-<-<f f f 12.已知点()1,2+-b b a 与()b a 2,2+-关于直线x y =对称,则这两点之间的距离是( )A .不能确定B .314C .213D .21713.若不等式012<--kx kx 的解集是R ,则k 的取值范围是( ) A .04<<-k B .04≤<-k C .4-<k 或0>k D .4-<k 或0≥k 14.已知)(x f 是奇函数,当0>x 时,其解析式1)(3++=x x x f ,则当0<x 时,)(x f 的解析式是( )A .13-+x x B .13---x x C .13+-x x D .13+--x x 二、填空题15.设函数)(x f 的定义域是{}10≤≤x x ,则)12(-x f 的定义域是___________ 18.已知幂函数)(x f 的图象经过()2,2 ,则)9(f =___________19.已知函数m x x f a+=)(的图象经过点()3,1 ,又其反函数图象经过点()2,10,则)(x f 的解析式为___________20.已知奇函数)(x f 在区间[]5,2上是减函数,且最小值为5-,则)(x f 在区间[]2,5--上的最大值是___________ 21.满足条件{}{}3,2,12,1⊆⊆M 的集合M的个数是___________个.22.函数x y --=11的反函数的值域是___________ 三、解答题23.已知{}⎭⎬⎫⎩⎨⎧>-=≤--=2,0822m m x x B x x x A ,若φ=B A ,求m 的取值范围。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案幂函数练习题及答案幂函数是数学中常见的一种函数形式,它的表达式为y = ax^n,其中a和n为常数,x为自变量。

幂函数在实际问题中具有广泛的应用,例如物理学中的力学问题、经济学中的需求曲线等。

下面将给出一些幂函数的练习题及其答案,帮助读者更好地理解和掌握幂函数的性质和应用。

1. 练习题:已知函数y = 2x^3,求当x取值为2时,y的值是多少?解答:将x = 2代入函数表达式中,得到y = 2*(2^3) = 2*8 = 16。

因此,当x取值为2时,y的值为16。

2. 练习题:已知函数y = 5x^(-2),求当x取值为0.5时,y的值是多少?解答:将x = 0.5代入函数表达式中,得到y = 5*(0.5^(-2)) = 5*(1/0.5^2) =5*(1/0.25) = 5*4 = 20。

因此,当x取值为0.5时,y的值为20。

3. 练习题:已知函数y = 3x^2,求当y取值为12时,x的值是多少?解答:将y = 12代入函数表达式中,得到12 = 3*(x^2)。

将方程两边同时除以3,得到4 = x^2。

再开平方根,得到x = ±2。

因此,当y取值为12时,x的值为±2。

4. 练习题:已知函数y = 4x^(-1/2),求当y取值为2时,x的值是多少?解答:将y = 2代入函数表达式中,得到2 = 4*(x^(-1/2))。

将方程两边同时除以4,得到1/2 = x^(-1/2)。

两边同时取倒数,得到2 = x^(1/2)。

再平方,得到4 = x。

因此,当y取值为2时,x的值为4。

通过以上练习题的解答,我们可以看到幂函数的特点和性质。

首先,幂函数的自变量可以取任意实数值,但要注意当指数为负数时,自变量不能取0。

其次,幂函数的图像在正数指数时呈现出上升趋势,指数越大,曲线上升得越快;而在负数指数时,图像则呈现下降趋势。

此外,幂函数的图像在指数为偶数时,始终位于x轴的上方,而在指数为奇数时,图像则会穿过x轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点11:幂函数【题组一 幂函数定义辨析】1.已知函数()()22231m m f x m m x +-=--是幂函数,且其图象与两坐标轴都没有交点,则实数m = 。

【答案】-1 【解析】函数()()22231m m f x m m x +-=--是幂函数,211m m ∴--=,解得:2m =或1m =-,2m =时,()f x x =,其图象与两坐标轴有交点不合题意,1m =-时,()41f x x=,其图象与两坐标轴都没有交点,符合题意,故1m =-。

2.函数2()(1)n f x n n x =--是幂函数,且在()0,x ∈+∞上是减函数,则实数n =_______【答案】﹣1【解析】函数f (x )=(n 2﹣n ﹣1)x n 是幂函数,∴n 2﹣n ﹣1=1,解得n =﹣1或n =2;当n =﹣1时,f (x )=x ﹣1,在x ∈(0,+∞)上是减函数,满足题意; 当n =2时,f (x )=x 2,在x ∈(0,+∞)上是增函数,不满足题意.综上,n =﹣1.故答案为:﹣1.3.2222()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =______. 【答案】2【解析】2222()(1)mm f x m m x --=--是幂函数,则211m m --=,解得2m =或1m =-. 当2m =时,()2f x x -=,在(0,)x ∈+∞上是减函数,满足;当1m =-时,()f x x =,在(0,)x ∈+∞上是增函数,排除.综上所述:2m =.故答案为:2.4.若幂函数a y x =的图像过点(28),,则a =__________. 【答案】3 【解析】幂函数a y x =的图像过点()28,,3282,3a a ∴===,故答案为3. 5.幂函数()()22m f x m m x =+在[)0,+∞上为单调递增的,则m =______. 【答案】12【解析】由幂函数()()22m f x m m x =+在[)0,+∞上为单调递增的,所以2210m m m ⎧+=⎨>⎩,解得12m =.故答案为:12. 6.幂函数()()223mm f x x m --=∈Z 的图像与坐标轴没有公共点,且关于y 轴对称,则m 的值为______. 【答案】1,1,3-【解析】由于幂函数()()223m m f x x m --=∈Z 的图像与坐标轴没有公共点,所以{}2230131,0,1,2,3m m m m --≤⇒-≤≤⇒∈-,又因为函数为偶函数,故分别代入检验可知:1,1,3m =-满足;故填: 1,1,3-7.幂函数()222533m m y m m x+-=-+在()0,∞+单调递减,则实数m 的值为_________.【答案】1 【解析】由题意可得22331250m m m m ⎧-+=⎨+-<⎩,解得1m =,故答案为:1 【题组二 幂函数性质】1.幂函数25y x -=的定义域为_________(用区间表示).【答案】()(),00,-∞⋃+∞ 【解析】幂函数25y x -==,20x ∴>,解得0x ≠,∴函数y 的定义域为()(),00,-∞⋃+∞.故答案为:()(),00,-∞⋃+∞.2.已知幂函数()y f x =的图象过点(,则这个函数的定义域为__________.【答案】[)0,+∞【解析】由题意可知,设()()f x x R αα=∈函数()f x 图象过点((2)2f α∴==即12α=∴()f x =要使得函数()f x =0x ≥,即函数()f x 的定义域为[)0,+∞.故答案为:[)0,+∞ 3.使(3-2x -x 234)-有意义的x 的取值范围是________.【答案】(-3,1)【解析】()332432x x -⎛⎫--=,要使表达式有意义,必有2032x x -->,解得31x -<<,故答案为()3,1-.4.若1144(1)(32)a a --+<-,则a 的取值范围是 ______ 【答案】23,32⎛⎫ ⎪⎝⎭【解析】幂函数y x α=,当0α<时是减函数,函数 14y x -=的定义域为()0,∞+, 所以有1320a a +>->,解得2332a <<,故答案为 23,32⎛⎫ ⎪⎝⎭ . 5.若()()1133132a a --+<-,则实数a 的取值范围是______. 【答案】23(,)(,1)32-∞- 【解析】由题得11331111()(),132132a a a a<∴<+-+-,所以110132a a -<+-, 所以321320,0(1)(32)(1)(23)a a a a a a a ----<∴<+-+-,所以(1)(23)(32)0a a a +--<, 所以2332a <<或1a <-,所以a 的取值范围为23(,)(,1)32-∞-.故答案为:23(,)(,1)32-∞- 6.若 1.30.3(0.3)(1.3)>m m ,则实数m 的取值范围是________.【答案】0m <【解析】由题: 1.3000.300.30.31 1.3 1.3<<==<,考虑幂函数()m f x x =,()()1.30.30.3 1.3f f >,根据幂函数的性质,()0,mm f x x >=在()0,x ∈+∞单调递增, ()00,m f x x ==在()0,x ∈+∞为常数函数,()0,m m f x x <=在()0,x ∈+∞单调递减,此题只需()mf x x =在()0,x ∈+∞单调递减,所以0m <.故答案为:0m < 7.若()()11132a a --+<-,试求a 的取值范围 .【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭ 【解析】∵()()11132a a --+<-,∴10,320,132a a a a +>⎧⎪->⎨⎪+>-⎩或10,320,132a a a a +<⎧⎪-<⎨⎪+>-⎩或320,10,a a ->⎧⎨+<⎩解得2332a <<或1a <-.故a的取值范围是()23,1,32⎛⎫-∞- ⎪⎝⎭. 8.不等式()()2233131x x ->+的解为 。

【答案】()1,0-【解析】()()2233131x x ->+22(1)(31)x x >-+解得10x -<<.9.已知函数3()-=f x x ,若()0.60.6a f =,()0.40.6b f =()0.60.4c f =,则,,a b c 的太小关系是 。

【答案】b a c <<【解析】3()-=f x x 在(0,)+∞上是减函数,0.60.60.40.40.60.6<<,所以b a c <<,10.已知321.4a -=,321.7b -=,21.7c -=,则 。

【答案】c b a << 【解析】幂函数32y x-=在区间()0,∞+上为减函数,33221.4 1.7--∴>,即a b >; 指数函数 1.7x y =在R 上为增函数,3221.7 1.7--∴>,即b c >.因此,c b a <<.11.已知点()8m ,在幂函数()()1n f x m x =-的图象上,设32a f ⎛=⎫ ⎪⎝⎭,()4log 9b f =,0.512c f ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系为 。

【答案】c a b <<【解析】点(),8m 在幂函数()()1nf x m x =-的图象上, ∴118n m m -=⎧⎨=⎩,解得23m n =⎧⎨=⎩,()3f x x ∴=, ∴()f x 在(),-∞+∞上单调递增,又0.54413log 8log 9221⎛⎫< ⎪⎝⎭<=<,∴c a b <<, 12.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭ ,则a ,b ,c 的大小关系是 。

【答案】a>c>b【解析】∵函数2()5x y =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >. 3.比较113.13.1 3.11.522、、的大小关系是 。

【答案】11 3.13.1 3.12 1.52<< 【解析】∵13.1 3.13.111.51.5()1.5-==,1 3.1 3.13.1122()2-==,又幂函数 3.1y x =在(0,)+∞上是增函数,1122 1.5<<,∴ 3.1 3.1 3.111()()22 1.5<<. 【题组三 图像问题】1.已知实数0a >且1a ≠,则在同一直角坐标系中,函数()()0a f x xx =>,()log a g x x =的图象可能是 。

A . B . C . D .【答案】D【解析】由题,当01a <<时, ()()0a f x x x =>为增函数且图像往上凸,()log a g x x =为减函数且过()1,0.易得D 满足条件.当1a >时,()()0a f x x x =>为增函数且图像往下凸,()log a g x x =为增函数且过()1,0.无对应选项.2.在同一直角坐标系中,函数a y x =,||)log (a y x a =-(0)a ≠的图象不可能的是( )A .B .C .D .【答案】A【解析】对于A 来说:幂函数中01a <<,而对数函数平移后的图象应该还在y 轴右侧(定义域为(),a +∞),所以A 是不可能的;对于B 来说:幂函数中1a >,而对数函数平移后的图象应该还在直线x a =右侧(定义域为(),a +∞),所以B 是可能的;对于C 来说:幂函数中0a <,选择1a <-,而对数函数平移后的图象应该还在直线x a =右侧(定义域为(),a +∞),所以C 是可能的;对于D 来说:幂函数中0a <,选择10a -<<,而对数函数平移后的图象应该还在直线x a =右侧(定义域为(),a +∞),所以D 是可能的.故选:A. 3.在同一坐标系中,函数()()0a f x x x =>与()1x g x a +=的图象可能是( )A .B .C .D .【答案】A【解析】对A ,由图知()1x g x a+=中的1a >,()()0a f x x x =>中的1a >,符合; 对B ,由图知()1x g x a+=中的01a <<,()()0a f x x x =>的图没有过(1,1),不符; 对C ,由图知()1x g x a +=中的1a >,()()0a f x x x =>中的01a <<,不符;对D ,由图知()1x g x a +=中的01a <<,此时()()0a f x x x =>中的1a >,不符;故选:A.4.已知函数a y x =,x y b =,log c y x =的图象如图所示,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .a c b <<D .b c a <<【答案】A【解析】由图,当1x =时,()1,2y b =∈,当1y =时()1log 2,3c x x c =⇒=∈,又幂函数a y x =为增函数且上凸,故()0,1a ∈.故a b c <<.故选:A5.已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b【答案】A【解析】由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 6.已知函数,,a b x y x y x y c ===的图象如图所示,则,,a b c 的大小关系为()A .c b a <<B .a b c <<C .c a b <<D .a c b <<【答案】A 【解析】由图像可知,111,,022a b c >=<<,得a b c >>,故选A ..。

相关文档
最新文档