波利亚怎样解题表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波利亚的怎样解题表
1 乔治波利亚
乔治 波利亚(George Polya , 1887〜1985)是美籍匈牙利数学家、数学教育家.在解题方 面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法
)现代研究的先驱•由于 他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他 93岁高龄时,还被I CME (国际数学教育大会)聘为名誉主席.
作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学 等众多领域,都做出了开创性的贡献,留下了以 波利亚”命名的定理或术语; 他与其他数学
家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变 量》等书堪称经典;而以200多篇论文构成的四大卷文集,
在未来的许多年里,将是研究生 攻读的内容.
作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》 (1945年卜《数学与 似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及 解题理论”、解题 教学”教师培训”三个领域•波利亚对数学解题理论的建设主要是通过 怎样解题”表来实
现的,而在尔后的著作中有所发展,也在解题讲习班”中对教师现身说法•他的著作把传统 的单纯解题发展为通过解题获得新知识和新技能的学习过程, 他的目标不是找出可以机械地
用于解决一切问题的 万能方法”而是希望通过对于解题过程的深入分析, 特别是由已有的
成功实践,总结出一般的方法或模式, 使得在以后的解题中可以起到启发的作用.
他所总结 的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化 方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都 在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,
并通过 一系列的问句或建议表达出来,
使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的 会议致词中说过: 每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的
书”(195年 2 月 2 日).
2 怎样解题表
波利亚是围绕 怎样解题”、怎样学会解题”来开展数学启发法研究的,这首先表明其对
问题解决”重要性的突出强调,同时也表明其对 问题解决”研究兴趣集中在启发法上•波利 亚在风靡世界的《怎样解题》(被译成14种文字)一书中给出的怎样解题表”正是一部启 发法小词典”
2.1
怎样解题”表的呈现
弄清问题
拟定计划
第一,你必
须弄清问题
3波利亚的解题观
对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认
识(见参考文献),我们将其归结为5个要点.
3.1程序化的解题系统
怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有
用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段一一弄清问题、拟定计划、实现计划、回顾,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教
学系统•既体现常识性,又体现由常识上升为理论(普遍性)的自觉努力.
这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回顾”是最容易被忽视的阶段,波利亚将其作为解题的必要环节
而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.
“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过
程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);
第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,
为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特
殊化,一般化,类比等,积极诱发念头,努力变化问题•这实际上是阐述和应用解题策略并进行资源的提取与分
配.
于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.
3.2启发式的过程分析
(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好
像还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好像还行,它
看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢从解题论的观点
看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,
波利亚说,这“终于导致他写出本书”(指《怎样解题》
波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的
演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学. 这两个侧面都像数学
本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有’照本宣科’ 地把处于发现过程中
的数学照原样提供给学生,或教师自己,或公众.”他以数十年的时间
悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.
在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导
实践,自己学会怎样解题.
这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人
去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞
成,良好的教育应该“系统地给学生自己发现事物的机会”,“应该帮助
学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学
生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展
技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传
授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜
想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”
(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波
利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢
“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规
律.波利亚在《数学的发现》序言中提出:“领会方法的最佳时机,可能是读者解出一道题的时候,或是阅读它
的解法的时候,也可能是阅读解法形成过程的时候”.
波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思
维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐
释,使我们既领会到了这样的意图,也见到了这样的行动.
波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学
或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程
体验发挥了重要作用. 这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝
非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织
良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识
易于用上,这甚至可能比知识的广泛更为重要. ”用现在的话来说,波利亚在这里强调了“原有的知识经
验”和“优化的认知结构”对问题解决的基础作用.
3.3开放型的念头诱发.
波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和
建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.),弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们
实现它;回顾此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生
所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》
一书里,出现“念头”这个词不下四五十次.
念头有什么用皴利亚说:“它会给你指出整个或部分解题途径” •“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个’好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而
不会做任何事情去加速其来到.”
这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质
是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语. 那么产生念
头的基础是什么呢皴利亚的回答是:“过去的经验和已有的知识”.(解题力量)“如果我们
对该论题知识贫乏,是不容易产生好念头的. 如果我们完全没有知识,则根本不可能产生好念头.”
波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种
'灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一
个刚刚露头的有信心的预感”.
波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.
3.4探索性的问题转换
这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也体现了解题策略的实际运用. 波利亚强调:“解题的成
功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的
方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.” “变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.” “新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而
复苏•通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.
在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把
问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问
题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关. “如果我们不用’题目变更’,几乎是不能有什么进展的”一一这
就是波利亚的结论.
3.5朴素的数学解题元认知观念.
元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控. 虽然元认知概
念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.
波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知
性的;另一部分则以解题者自身为对象,属于元认知性的.比如,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你
能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.
波利亚解题表中的“回顾”也并不完全是常规解题中的“检验”,主要是有分析地领会
所得的解法(参见例1的回顾),它包含着把“问题及其解法”()认为对象进行自觉反思
的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所体现的解题策略(一种策略性知
识)及所进行的元认知提问,都属于元认知知识•波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.
波利亚的另一些问句,如“你能不能重新叙述这个问题?你能不能用不同的方法重新叙
述它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度,“你能不能一下子看出它来?” o题感则属于朴素的元认知体验.
至于解题表本身,则自始至终体现着元认知调控.
综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解
题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解
题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础•而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解
题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.
4波利亚解题研究的发展
4.1反思
数学上存在证明的方法与发现的方法,在逻辑实证主义占主导地位的历史时期,关于数
学发现方法的研究一度陷于停顿,波利亚的贡献就在于自觉承担起复兴数学启发法的重任,并提出合情推理,为数学启发法的现代研究提供了必要基础. 20世纪80年代初期,美国数
学教育界兴起的“问题解决”研究是对波利亚现代启发法的直接继承,曾经有“对波利亚的
重新发现”、“数学启发法…几乎成了问题解决的同义词”等提法. 但是,已有数学实践却
未能获得预期的成功,尽管学生已经具备了必要的数学知识,也已经了解了相关的方法原则,
或者说已执行了解题表的建议,却仍不能有效地解决问题,这不能不引起数学教育界的反思.
⑴波利亚构建的“四阶段”解题系统具有开创性的意义,但局限于“四阶段”对学会
“数学地思维”而言是不是有点简单化了?对数学问题解决全过程的探索可能比解题表所简
洁描述的复杂得多.
(2)数学启发法的现代复兴及其所取得的成功,无论怎样评价都不算过分,但启发法能
不能看成影响问题解决能力的惟一要素? +知发法”之外可能还有更多的因素需要重
视(如“元认知调节”、“观念”等),“好念头”的出现可能也需要从方法论的角度做出更为自觉的分析.
(3)波利亚从数学内部研究数学问题解决并强调解题实践是一个值得继承的研究方向(与
那些连数学题都没有出现的解题研究形成鲜明对照,也与那些对中学教材作业题都不那么过
关的研究者形成鲜明对照),但局限于“解题”、专注于技能技巧是不是狭窄了点?至少“问
题发现(提出)”、“实际应用”都与解决问题有同样的重要性.
4.2发展
近十几年来,通过反思和对解题实践活动的深入考察,数学教育界已经在“问题解决”
的全过程和“高级数学思维”的内外部机制等研究方面取得了新的进展,中国式的“问题解
决”也初成特色,这些都构成了对波利亚的超越.
(1)美国学者舍费尔德在名著《数学解题》一书中,提出了一个新的理论框架,描述了复杂的智力活动的四个不同性质的方面.
①认识的资源.即解题者所已掌握的事实和算法;
②启发法.即在困难的情况下借以取得进展的“常识性的法则”;
③调节.它所涉及的是解题者运用已有知识的有效性(即现代认知心理学中所说的元认
知);
④信息系统.即解题者对于学科的性质和应当如何去从事工作的看法.
(2)中国的数学教学历来重视解题训练、中国的数学教师历来重视解题研究,20世
纪80年代,随着美国“问题解决” 口号传入中国,波利亚的解题理论受到了重视也得到了发展.
早在20世纪40年代,波利亚的《怎样解题》就曾有过中译本(周佐严译,中华书局出
版),到60年代曾有人翻译《数学的发现》但由于种种原因未能完成(见江泽涵•关于波利亚的《怎样解题》和《数学的发现》的一些往事.中学数学教学(皖),1983, 2,P.4).8
0年代以来,波利亚的三部著作都已翻译发行,其中的解题观点已成为许多同行研究解题的
指导思想,国内一些学者多次召开了波利亚数学思想的讨论会,徐利治教授还提出研究波利
亚的两项重要任务:一是培养和造就一批波利亚型的数学工作者,二是按照波利亚的思想改
革数学教材和教学方法(后来有“ MM教育方式”的理论与实践,见文[8]). 20世纪90
年代,张奠宙教授组织“数学教育高级研讨班”,提出“提倡问题解决”作为进一步改革中
国数学教育“突破口”的设计(数学素质教育设计.数学教学,1993, 3).这一切,促进了
中国特色的解题研究(参见文[6]、[7 ]等),并初步形成了“中国的数学问题解决”特色. 主要表现有:
①注重研究数学解题的思维过程:
②强调数学方法论研究;
③提倡数学解题策略研究;
④应用问题、数学建模教学研究;
⑤开放题、情景题的教学研究及其在考试中的大规模运用;
⑥提倡探究性学习,进行“问题教学”、“情景教学”、“开放性教学”.
与此相关的是两个举世瞩目的事实:
①1992年,“国际教育成就评价”IAEP表报告,在21个参加数学测试和科学测试
的国家和地区中,中国内地以总平均80分的成绩名列第一,领先于第二名的中国台湾省和
韩国7分之多.
②在参加国际数学奥林匹克竞赛的19年中(1985〜2003),中国中学生参赛104人次,得
奖102人次(得奖率达98%),其中金牌77个(占得奖牌数的75%)、银牌20个(占得奖牌数的20%)、铜牌5个(占得奖牌数的5%);团体总分10次获第1名,4次获第二名,成为公认的竞赛强国.。