继电保护原理6—母线保护

合集下载

继电保护原理6—母线保护

继电保护原理6—母线保护

第六章母线保护第一节概述一、母线保护的概述母线是发电厂和变电站的重要组成部分。

在母线上连接着电厂和变电所的发动机、变压器、输电线路和调相设备,母线的作用是汇集和分配电能.如果母线的短路故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故.二、母线的主接线形式单母线;单母分段(专设分段、分段兼旁路、旁路兼分段);单母多分段;双母线(专设母联、母联兼旁路、旁路兼母联);双母单分段(专设母联、母联兼旁路);双母双分段(按两面屏配置);3/2接线(按两套单母线配置)。

1、单母线图6-1—1 单母线2、单母分段(专设母联)图6-1—2 单母分段(专设母联)3、单母分段(母联兼旁路)图6-1-3 单母分段(母联兼旁路)4、单母分段(旁路兼母联)图6-1—4 单母分段(旁路兼母联)5、单母三分段图6-1-5 单母三分段6、双母线(专设母联)图6—1-6 双母线(专设母联)7、双母线(母联兼旁路)图6-1—7 双母线(母联兼旁路) 8、双母线(旁路兼母联)图6-1-8 双母线(旁路兼母联) 9、双母线单分段(专设母联)图6-1—3 双母单分段(专设母联) 10、双母线单分段(母联兼旁路)图6-1—10 双母单分段(母联兼旁路)11、双母双分段图6—1-11 双母双分段三、母线保护的硬件组成1、标准配置1.1 保护箱图6—1-12 保护箱(一)插件布置图(后视图)1。

1。

1交流变换插件(NJL-801/NJL—818):将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。

该插件共有8 路电流通道、6 路电压通道。

1。

1.2交流变换插件(NJL—817/NJL—819):将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用.该插件共有15 路电流通道。

1。

1.3 CPU 插件(NPU—804):在单块PCB 板上完成数据采集、I/O、保护及控制功能等。

母线的继电保护

母线的继电保护

电流保护策略
电流保护
01
通过检测母线电流的大小和持续时间,判断是否存在故障,实
现对母线的保护。
电流保护的优点
02
结构简单,易于实现。
电流保护的局限性
03
对电流变化的反应速度较慢,可能无法及时切除故障。
距离保护策略
距离保护
通过测量故障点到保护装置的距离,判断是否存 在故障,实现对母线的保护。
距离保护的优点
05
母线继电保护的发展趋势与 展望
智能化母线继电保护技术
总结词
随着人工智能和大数据技术的不断发展,智能化母线继电保护技术已成为未来 的发展趋势。
详细描述
智能化母线继电保护技术利用人工智能算法,如神经网络、模糊逻辑等,对母 线运行状态进行实时监测和故障诊断,能够快速准确地识别和定位故障,提高 保护的可靠性和响应速度。
总结词
随着可再生能源的广泛应用,微电网已成为智能电网的重要 组成部分,对母线继电保护技术提出了新的挑战和机遇。
详细描述
在微电网中,母线结构复杂,且经常出现分布式电源的接入 和退出,给传统的母线继电保护技术带来了困难。因此,需 要研究适应微电网运行特性的母线继电保护技术,以确保微 电网的安全稳定运行。
距离保护
通过测量故障点到保护装置的距离,判断是否发生母线故障 。根据距离的远近,保护装置会在不同的时限内切除故障。
母线继电保护的分类
按保护范围分类
可分为大差动保护和小差动保护。大差动保护适用于母线全部或大部分发生故障的情况;小差动 保护适用于母线局部故障的情况。
按动作原理分类
可分为电流型保护和电压型保护。电流型保护基于电流的变化来判断故障,响应速度快;电压型 保护基于电压的变化来判断故障,适用于高压母线。

继电保护原理原理和常见问题处理方法

继电保护原理原理和常见问题处理方法

问题4.防跳问题
防跳回路是指防止跳跃的电气回路。开关装置配有 电气的分闸和合闸按钮,当分闸按钮一直按下时, 开关分闸,如果此时合闸按钮也一直按下,开关 就会出现合闸后立即分闸,分闸后又合闸的跳跃 动作。因此需要防跳回路,以防止开关发生这种 跳跃现象,进而保护开关装置以及负载免受保护
作为本线路主保护的近后备以及相邻线下一线路保护的远 后备。其起动电流按躲最大负荷电流来整定的保护称为 过电流保护,此保护不仅能保护本线路全长,且能保护 相邻线路的全长。
优点:本线路和相邻下一线路全长
缺点:有动作时限(比过流Ⅱ段还要长)
过流Ⅲ段保护是后备保护,过流Ⅲ段保护的IdZ比 第Ⅰ、Ⅱ段的IdZ小得多,其灵敏度比第Ⅰ、Ⅱ 段更高
母线电压开放解释:是根据母线故障电压降低的特性, 正常电压情况下,即使有差动电流,电压闭锁,只有 电压降低到一定程度,才开放逻辑。
问题3.母差保护报交流异常
处理方法:母差保护在电站影响比较大,若有交流异常 应逐一检查装置的采样(包括角度)和极性。
问题4.线路纵差保护报通道告警
处理方法:应和供电局保护班确认,更换跳线或光缆的 芯号
五.输电线路纵联差动保护
采用光纤通道按相传送两侧电流量,本 身具有选相能力,不受系统振荡影响, 在非全相运行中有选择地快速动作, 不受TV断线影响。
由于带有制动特性,可防止区外故 障误动,不受失压影响,不反应负荷 电流,抗过渡电阻能力强。在短线路 上使用,不需要电容电流补偿功能。 在同杆并架线路上应用广泛。
母线大差比率差动用于判别母线区内和区外 故障,小差比率差动用于故障母线的选择
七.主变保护
1.变压器纵差保护 变压器的纵差保护是反应相间短路、高压侧
单相接地短路以及匝间短路的主保护,其 保护范围包括变压器套管及引出线。

继电保护培训第五章母线及断路器

继电保护培训第五章母线及断路器
• 在母线倒闸操作过程中,为了保证在发生母线故障时,母线 差动保护能可靠发挥作用,需将保护切换成由启动元件直接 切除双母线的方式。但对隔离开关为就地操作的变电所,为 了确保人身安全,此时,一般需将母联断路器的跳闸回路断 开。
7
断路器失灵保护
断路器失灵保护
当断路器失灵而不能切除短路故障时,失灵保护动作后,将连接于拒绝动作
(2)鉴于失灵保护误动引起的严重后果,应严格要求: 配置有失灵保护的元件停电或其保护装置故障、异常、停用,应解除其
起动失灵保护的回路或停用该开关的失灵保护。 失灵保护故障、异常、试验,必须停用失灵保护,并解除其起动其它保
护的回路(如母差保护)。
1、母差保护的启动原件: 启动原件一般由“和电流突变量”和“差流越限”两个判据组成。和
电流是指:母线上所有连接原件电流的绝对值之和。
差电流:是指所有连接原件电流和的绝对值。
2
母线保护
大差、小差的概念 保护将母线上所有连接元件的电流采样值输入差动保护的差动判据,
构成大差比率差动元件;对于分段母线,将每一段母线所连接元件的 电流采样值输入差动判据,构成小差比率差动原件。各原件连接在哪 一段母线上,是根据各连接原件的刀闸(隔离开关)位置来决定的。 大差比率差动原件的差动保护范围涵盖各段母线,大多数情况下不受运 行方式的控制;小差比率差动元件受当时的运行方式控制,但差动保 护范围只是相应的一段母线,具有选择性。 母线充电及过流保护的设置 母联(分段)过流保护可以作为母线解列保护,也可作为线路(变压 器)的临时应急保护。母联过流(分段)保护投入后,当母联任一相 电流大于母联过流定值时,经延时跳母联开关,不经复合电压闭锁。
(2)断路器未断开的判别元件动作后不返回。若主设备保护出口继电器返 回时间不符合要求时,判别元件应双重化。

主要的继电保护原理归纳总结

主要的继电保护原理归纳总结

主要的继电保护相关原理归纳总结一、线路主保护(纵联保护)纵联保护:利用某种通信通道将输电线路两端的保护装置纵向连接起来,将各端的电气量传送到对端,将各端的电气量进行比较,一判断故障在本线路范围内还是范围之外,从而决定是否切断被保护线路。

任何纵联保护总是依靠通道传送的某种信号来判断故障的位置是否在被保护线路内,信号按期性质可分为三类:闭锁信号、允许信号、跳闸信号。

闭锁信号:收不到这种信号是保护动作跳闸的必要条件。

允许信号:收到这种信号是保护动作跳闸的必要条件。

跳闸信号:收到这种信号是保护动作与跳闸的充要条件。

按输电线路两端所用的保护原理分,可分为:(纵联)差动保护、纵联距离保护、纵联方向保护。

通道类型:一、导引线通道;二、载波(高频)通道;三、微波通道;四、光纤通道。

1.(纵联)差动保护(纵联)差动保护:原理是根据基尔霍夫定律,即流向一个节点的电流之和等于零。

差动保护存在的问题:(一).对于输电线路1.电容电流:电容电流从线路内部流出,因此对于长线路的空载或轻载线路容易误动。

解决办法:提高启动电流值(牺牲灵敏度);加短延时(牺牲快速性);必要是进行电容电流补偿。

*注:穿越性电流就是在保护区外发生短路时,流入保护区内的故障电流。

穿越电流不会引起保护误动。

2.TA断线,造成保护误动解决办法:使差动保护要发跳闸命令必须满足如下条件:本侧起动原件起动;本侧差动继电器动作;收到对侧“差动动作”的允许信号。

保护向对侧发允许信号条件:保护起动;差流元件动作3.弱电侧电流纵差保护存在问题(变压器不接地系统的弱电侧在轻载或空载时电流几乎没有变化)解决办法:除两侧电流差突变量起动元件、零序电流起动元件和不对应起动元件外,加装一个低压差流起动元件。

4.高阻接地是保护灵敏度不够在线路一侧发生高阻接地短路时,远离故障点的一侧各个起动元件可能都不启动,造成两侧差动保护都不能切除故障。

解决办法:由零序差动继电器,通过低比率制动系数的稳态相差元件选相,构成零序1 段差动继电器,经延时动作。

母线保护

母线保护

目录1 概述 (2)1.1高压母线上故障可归纳为3种: (2)1.2母线保护的装设时机 (2)1.3设计母线保护时应注意以下几个问题: (2)1.4母线保护主要研究的方向: (2)2 母线保护的分类 (4)2.1母线保护按其原理可分为以下几类 (4)2.2电流差动原理 (6)2.3母联电流相位比较原理 (7)2.4电流相位比较式母线保护原理 (8)2.5按差动回路中的电阻大小分类 (8)3 带制动特性的母线差动保护 (10)4 JMH-1型母线差动保护装置基本原理 (11)4.1差动回路的工作原理 (11)4.2关于差动回路还有以下几点需要说明: (13)5 电流相位比较式母线保护 (14)5.1小母线不带电的情况 (15)5.2母线处于正常运行或外部故障情况 (15)5.3母线内部短路故障 (16)5.4延时回路的作用 (16)致谢 (17)总结 (18)参考文献 (19)1 概述1.1高压母线上故障可归纳为3种:一是母线上所连设备(包括开关、电流互感器、电压互感器、避雷器)故障;二是母线瓷瓶(包括隔离刀闸、支持瓷瓶)闪络或母线的带电导线直接闪络;三是某些人为的操作和作业引起的故障。

1.2母线保护的装设时机根据我国国家标准《继电保护及安全自动装置技术规程》GB14285-1993,目前我国在下列情况下均装设专门的母线保护:(1)在110kV的双母线和220kV及以上的母线上,为保证快速地有选择性地切除任一组(或段)母线上发生的故障,而另一组(或段)无故障的母线仍能继续运行,应装设专用的母线保护。

对于一个半断路器接线的每组母线应装设两套母线保护。

(2)110kV及以上的单母线,重要发电厂的35kV母线或高压侧为 110kV及以上的重要降压变电站的35kV母线,按照系统的要求必须快速切除母线上的故障时,应装设专用的母线保护。

1.3设计母线保护时应注意以下几个问题:(l)母线故障对电力系统稳定将造成严重威胁,必须以极快的速度切除,同时为了防止电流互感器(TA)饱和使保护误动,也要求保护在故障后几个毫秒内电流互感器饱和前就能反应。

母线继电保护

母线继电保护

断路器失灵保护的构成原理
1KA为电流速断保护,2KA为过电流保护。
母线的不完全电流差动保护原理接线图
三、电流比相式母线保护
母线外部故障和内部故障时的电流分布 (a)外部故障;(b)内部故障
电流比相式母线保护原理接线图
元件固定连接的双母线完全差动电流保护单相原理接线图 (a)交流回路;(b)直流回路
元件固定连接的母线差动保护范围外部故障时的电流分布图
利用供电元件保护装置切除母 线故障
(a)利用发电机过电流保护
(b)利用变压器过电流保护
利用供电元件保护装置切除母 线故障
(c)利用供电电源线路的第Ⅱ、Ⅲ段保护
第二节 母线电流差动保护
一、母线完全电流差动保护
常用作单母线或只有一组母线经常运行的双母线
的保护;
母线完全电流差动保护按差动原理构成,和母线
母线保护方式
母线保护方式有两种:
利用供电元件的保护切除母线故障;
装设专用母线保护。
母线专用保护应能保证快速性和选择性,并应有足
够的灵敏性和工作可靠性。按差动原理构成的母线 保护得到了广泛的应用。在直接接地系统中,母线 保护采用三相式接线,以便反应相间及单相短路。 在非直接接地系统中可采用两相式接线。
连接的所有元件上,都装设变比和特性均相同的 TA,TA的二次绕组端子并联后接上差动继电器。
各互感器之间的一次电气设备,即为母Байду номын сангаас差动保
护的保护区。
母线完全电流差动保护原理接线图 (a)外部故障时的电流分布;(b)内部故障时的电流分布
二、母线不完全电流差动保护
不完全电流差动保护通常用作发电厂或大容量变电 站6-10Kv母线保护。 保护采用两相式,由两段电流保护构成。如下图, 仅对有电源的连接元件上装设电流互感器,即发动 机、变压器、分段断路器及母联断路器上装设,有 时也会装设在常用变压器上.这些TA型号和变比均 相同,二次绕组按照环流法连接。1KA、2KA 和电 流互感器的二次绕组并联,由于这种保护的电流互 感器不是在所有与母线连接的元件上装设,因此称 为不完全差动电流保护。

继电保护-第8章_母线保护

继电保护-第8章_母线保护
第八章 母线保护
第八章 母线保护
8.1 母线故障和装设母线保护基本原则 8.2 母线差动保护基本原理 8.3 母线保护的特殊问题及其对策 8.4 断路器失灵保护简介
第八章 母线保护
8.1 母线故障和装设母线保护的基本原则
一、母线故障
母线是集中和分配电能的重要电气设备, 母线发生故障,将造成大面积用户停电,电 气设备遭到严重破坏,甚至使电力系统稳定 运行破坏,导致电力系统瓦解,后果是十分 严重的。
在110kV及以上电压等级的发电厂和变电所中, 当输电线路、变压器或母线发生短路,在保护装置动 作于切除故障时,可能伴随故障元件的断路器拒动, 也即发生了断路器的失灵故障。产生断路器失灵故障 的原因是多方面的,例如:断路器跳闸线圈断线;断 路器的操作机构失灵等。
断路器失灵故障的发生会导致故障切除时间的延 长、事故范围的扩大,其后果是造成电力系统大范围 停电,甚至发生电力系统的瓦解事故。
第八章 母线保护
A
C
1
4
k
2
3
B
5
B变电所母线
3) 对双侧电源网络(或环形网络)当变电所B母线故障 时可由保护1和4的Ⅱ段动作于以切除。
第八章 母线保护
(2)装设专用母线保护的原因:
A)利用供电元件的保护装置切 除母线故障的时间较长,威胁 到系统稳定运行、使发电厂厂 用电及重要负荷供电电压低于 允许值。(速动性)
✓ 35~66kV电力网中主要变电所的35~66kV双母线或 分段单母线,在母联或分段断路器上装设解列装置和 其它自动装置后,仍不满足电力系统安全运行的要求 时。
✓ 发电厂和主要变电所的3~10kV分段母线或并列运行 的双母线,须快速地切除一段或一组母线上故障时, 或者线路断路器不允许切除线路电抗器前的短路时。

母线保护(继电保护原理)

母线保护(继电保护原理)

母线保护母线是电流系统中汇集和分配电能的重要元件,将来自电源的电能汇集到母线上,再从母线上将电能分配给各个不同的负荷区。

母线如果发生故障,将会使连接在母线上的所有元件停电,进线,出线都会断开。

若枢纽变电所的母线上发生故障,甚至会破坏整个系统的稳定,使故障进一步扩大,其后果极为严重。

母线的结构比较简单,但是比线路上,有一点好处,母线是在变电站内部,不在野外,属于非工作人员接触不到的地方,和输电线路不一样,因此,受自然环境影响相对较小,主要是受到自身变电站的影响。

母线故障的主要原因分析运行经验表明:母线故障大多是单相接地短路和由其引起的相间短路。

母线故障按照统计表明,它大体的故障分为以下几种:(1)由于在设计时设计不合理,造成了母线运行以后,可能会出现断线(机械强度不够),或者绝缘强度不够而出现的散落。

(2)由于长期运行以及绝缘子上受到的污染(灰尘等)造成绝缘强度下降而出现的散落。

(3)人员的误操作。

带地线合闸。

没有拆除地线的情况或者没有拉开接地刀闸的情况下,给母线充电,引发的母线故障。

对母线保护的要求(1)必须快速有选择地切除故障母线。

切除故障母线会使得线路上的所有元件停电,但是如果不切除开,事故蔓延非常迅速,影响更大,往下影响负荷,往上影响电源,更容易影响系统的稳定性。

(2)应能可靠、方便地适应母线运行方式的变化。

尤其是对双母线这种接线方式,我们可以根据需要将我们相应的进出线接在不同的母线上,以适用灵活的调度方式。

(3)接线尽量简化。

如果母线上所连接的设备较多,我们要将所有设备的相关信息引进,引进的数量较多,如果接线复杂,就会比我们任何一个设备的复杂程度都高。

母线上出线一般有几条甚至十几条,如果接线不简化,就会使得保护接线非常复杂。

装设母线保护的基本原则母线保护总的来说可以分为两大类型:(1)利用供电元件的保护来保护母线。

利用电源侧的保护来保护母线供电,当母线发生故障时,利用电源侧的后备保护来切除母线故障。

继电保护的作用及原理

继电保护的作用及原理

继电保护的作用及原理当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。

实现这种自动化措施的成套设备,一般通称为继电保护装置。

本期就为大家详细介绍继电保护的基本原理、基本要求、基本任务、分类和常见故障分析及其处理。

1、基本原理。

继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。

保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。

电力系统发生故障后,工频电气量变化的主要特征是:a.电流增大短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

b.电压降低当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

c.电流与电压之间的相位角改变正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85°)。

d.测量阻抗发生变化测量阻抗即测量点(保护安装处)电压与电流之比值。

正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。

不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。

这些分量在正常运行时是不出现的。

利用短路故障时电气量的变化,便可构成各种原理的继电保护。

此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。

2、基本要求。

继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。

母线保护

母线保护
因此
1 & 1 n & & & & I j = − (I u1 + I u 2 LL + I un ) = − ∑ I ui n n i =0
因此在正常情况下流入电流差动继电器的的电流为各电流互感器励磁电流之 和。这就是继电器的不平衡电流。 不平衡电流在正常情况下和在外部短路故障时都有,因此整定差动继电器的启动 电流要考虑躲开不平衡电流。
二、母线保护原理
母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。 母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。 大差不受母线运行方式影响。 大差不受母线运行方式影响。 各段母线的小差是指该段 各段母线的小差是指该段 母线上所连接的所有支路 (包括母联和分段开关) 包括母联和分段开关) 电流所构成的差动回路。 电流所构成的差动回路。 1CT、2CT、3CT、4CT 和2CJ构成母线大差 1CT、2CT、5CT和1CJ 构成Ⅰ母小差 3CT、4CT、 5CT和3CJ 构成Ⅱ母小差 母线大差跳开的是母联断路器, 小差跳开的是与故障母线连接的断路器。
Title
Ⅰ母小差和大差保护将跳开与Ⅰ母连接 的所有元件和母联断路器。但故障并没 有切除,母线Ⅱ上的供电元件仍向故障 点提供短路电流。
母联死区保护 Ⅰ母差动作后经死区保护延时后检测母 联断路器位置,若母联处于跳位, 联断路器位置,若母联处于跳位,并且 母联电流大于定值时, 母联电流大于定值时,闭锁母联电流互 感器,母联电流不再计算入差动保护, 感器,母联电流不再计算入差动保护, 从而破坏Ⅱ母电流平衡, 从而破坏Ⅱ母电流平衡,使Ⅱ母差动动 最终切除故障。 作,最终切除故障。
i=
& & & I s1 , I s 2 LL I sn

母线保护原理

母线保护原理

母线保护原理
母线保护是一种用于保护电力系统中母线的重要保护装置。

它的主要功能是及时检测和隔离可能发生的母线故障,以保证电力系统的安全运行。

母线保护的工作原理通常基于电流差动保护和电压差动保护。

对于电流差动保护,系统中的所有母线端点都会安装电流变压器(CT)。

当电流通过母线时,CT会检测电流的大小并将信
息传递给差动继电器。

差动继电器会将所有CT的输入电流进
行比较,若存在差异,则会启动保护动作以隔离故障点。

电压差动保护则是通过电压变压器(VT)来实现的。

VT会检
测母线两端的电压,并将信息传递给差动继电器。

差动继电器会将所有VT的输入电压进行比较,如果有差异,则会发出警
报或启动保护动作。

除了差动保护外,母线保护还可以采用过电流保护来实现。

过电流保护通常是通过在母线两端或者接地处安装电流保护继电器来实现的。

当电流超过设定值时,电流保护继电器会启动保护动作以隔离故障点。

为了提高母线保护的可靠性和准确性,还可以采用同期比较、相位比较、频率比较等方法来检测母线故障,并进行保护动作。

总之,母线保护的原理是基于电流差动保护、电压差动保护和过电流保护等手段,通过检测和隔离电流或电压差异来实现对母线的保护,以确保电力系统的安全运行。

继电保护(9)-母线保护

继电保护(9)-母线保护

m1 甲
m2
m3
m4
甲母线差动
k
QS
乙母线差动 乙
n1
n2
n3
n4
单母线或双母线保护,通常把安全性放在重要位置 一个半断路器接线的母线保护,要求它的可信赖性 (不拒动)比安全性(不误动)更高
m1 甲
m2
m3
m4
甲母线差动
k
QS
乙母线差动 乙
n1
n2
n3
n4
为了提高保护的可信赖性,通常采用保护双重化,即采用工 作原理不同的两套母线保护,每套保护应分别接于电流互感 器不同的二次绕组上,应有独立的直流电源,出口继电器触 点应分别接通断路器两个独立的跳闸线圈等。
(b)
二、双母线其他保护形式
• 可以在母联断路器单元只安装一组TA,如 图9-11所示。在微机母差保护中不需要将 所有TA的二次侧端子连接在一起,可以分 别接入差动回路。 • 但是,当故障发生在母联断路器与母联TA 之间时将无法切除故障母线,并将无故障 母线切除。
1TA QF1
2TA QF2
Ⅰ段母线 小差元件
• 高压电网中,由于各电源支路的助增作 用,实现远后备方式往往有较大困难 (灵敏度不够),而且由于动作时间较 长,容易造成事故范围的扩大,甚至引 起系统失稳而瓦解。 • 电网中枢地区重要的220kV及以上的主干 线路,由于系统稳定要求必须装设全线 速动保护时,通常装设两套独立的全线 速动主保护(即保护双重化),以防保 护装置的拒动,而对于断路器的拒动, 则专门装设断路器失灵保护。
KD2
(a)
(b)
A相大差 Ⅰ段母线A相小差


Ⅱ段母线A相小差 B相大差 Ⅰ段母线B相小差
TA饱和判别

继电保护母线保护讲解

继电保护母线保护讲解

(2)母线故障时:
K
I g

1 nTA
( II

III
)

1 nTA
Ik
(10 4)
故障点的总短路电流
2、差动继电器动作电流的整定
(1)按躲过TA二次回路断线时的
负荷电流
=0
I ope r.k

K rel
I I.max nTA
(10 5)


母线上任一元件的最大负荷电流
(2)躲过外部短路时的最大不平衡电流
利用线路保 护切除故障
3、母线故障的保护方式 (2)装设专用母线保护规定
110kV及以上双母线和分段母线。
110kV单母线,重要发电厂或110kV以上重要变电所的35~66kV母线,需 要快速切除母线上的故障时。
35~66kV电力网中主要变电所的35~66kV双母线或分段单母线,在母联或 分段断路器上装设解列装置和其它自动装置后,仍不满足电力系统安全运行的要 求时。
运行人员的误操作等。 2、母线主要故障类型
各种类型的接地和相间短路 3、母线故障的保护方式
利用供电元件的保护兼母线故障的保护
采用专用母线保护
3、母线故障的保护方式 (1)利用其它供电元件的保护装置来切除母线故障 利用变压器的过电流保 护切除低压母线故障
利用发电机的过电流保护 切除母线故障
利用供电元件的保护来切除母线 故障,不需另外装设保护,简单、经 济,但故障切除的时间一般较长。
第10章 母线保护 10.1 母线故障和装设母线保护的基本原则 一、母线故障
母线是集中和分配电能的重要电气设备,母线发生故障,将造成大面积用户 停电,电气设备遭到严重破坏,甚至使电力系统稳定运行破坏,导致电力系统瓦 解,后果是十分严重的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章母线保护第一节概述一、母线保护的概述母线是发电厂和变电站的重要组成部分。

在母线上连接着电厂和变电所的发动机、变压器、输电线路和调相设备,母线的作用是汇集和分配电能。

如果母线的短路故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。

二、母线的主接线形式单母线;单母分段(专设分段、分段兼旁路、旁路兼分段);单母多分段;双母线(专设母联、母联兼旁路、旁路兼母联);双母单分段(专设母联、母联兼旁路);双母双分段(按两面屏配置);3/2接线(按两套单母线配置)。

1、单母线图6-1-1 单母线2、单母分段(专设母联)图6-1-2 单母分段(专设母联).3、单母分段(母联兼旁路)图6-1-3 单母分段(母联兼旁路)4、单母分段(旁路兼母联)图6-1-4 单母分段(旁路兼母联)5、单母三分段图6-1-5 单母三分段6、双母线(专设母联)图6-1-6 双母线(专设母联)7、双母线(母联兼旁路)图6-1-7 双母线(母联兼旁路)8、双母线(旁路兼母联)图6-1-8 双母线(旁路兼母联)9、双母线单分段(专设母联)图6-1-3 双母单分段(专设母联)10、双母线单分段(母联兼旁路)图6-1-10 双母单分段(母联兼旁路)11、双母双分段图6-1-11 双母双分段三、母线保护的硬件组成1、标准配置1.1 保护箱图6-1-12 保护箱(一)插件布置图(后视图)1.1.1交流变换插件(NJL-801/NJL-818):将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。

该插件共有8 路电流通道、6 路电压通道。

1.1.2交流变换插件(NJL-817/NJL-819):将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。

该插件共有15 路电流通道。

1.1.3 CPU 插件(NPU-804):在单块PCB 板上完成数据采集、I/O、保护及控制功能等。

1.1.4 采保插件(NCB-801):将由变换器来的弱电信号经过低通滤波后,由多路转换开关对信号进行选通,然后通过电压跟随器对信号进行处理,以提高其负载能力。

该插件还有+5V、-15V、+15V 及累加和自检功能。

此外通过运算放大器过零比较检测电路可实现基频测量。

能够完成80 路模拟信号采集,模拟量的输出幅值范围为-10V~+10V。

1.1.5 开入插件(NKR-810):每个开入插件提供30 路开关量输入回路。

开入电源为直流220V 或110V;其正电源连接到开入节点,负电源接到31-32 端子。

1.1.6 开入插件(NKR-812):每个开入插件提供64 路开关量输入回路。

开入电源为直流24V。

1.1.7 信号插件(NXH-808):主要提供保护的信号接点,共三组信号接点,两瞬动一保持。

1.1.8 通讯插件(NTX-803):提供的通讯接口有:一个就地打印口(RS232),两个GPS对时口(RS485、RS232),及与保护管理机通讯的LON网接口,与变电站自动化系统通讯的双通道接口(RS485,RS232,以太网口)。

另外,必要时端子04、05可作为码对时通讯口。

1.1.9 稳压电源插件(NDY-801):直流逆变电源插件。

直流220 V 或110 V 电压输入经抗干扰滤波回路后,利用逆变原理输出本装置需要的三组直流电压,即5 V、±15 V 及24 V。

电源插件具有失电告警功能。

1.2 辅助箱图6-1-13 辅助箱插件布置图(后视图)1.2.1 交流变换插件(NJL-801/NJL-818):将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。

该插件共有8 路电流通道、6 路电压通道。

1.2.2交流变换插件(NJL-817/NJL-819):将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。

该插件共有15 路电流通道。

1.2.3 开入插件(NKR-810):每个开入插件提供30 路开关量输入回路。

开入电源为直流220V 或110V;其正电源连接到开入节点,负电源接到31-32 端子。

1.2.4 出口插件(NCK-804/NCK-812):主要提供16副(共8组,每组2副接点)的出口接点。

1.2.5 转换插件(NZJ-807):主要完成辅助箱与保护箱之间开入、出口回路间的转接。

2、简化配置图6-1-14 保护箱(二)插件布置图(后视图)2.1 交流变换插件(NJL-801/NJL-818):将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。

该插件共有8 路电流通道、6 路电压通道(未用)。

2.2 交流变换插件(NJL-817/NJL-819):将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。

该插件共有15 路电流通道。

2.3 CPU 插件(NPU-804):在单块PCB 板上完成数据采集、I/O、保护及控制功能等。

2.4 采保插件(NCB-801):将由变换器来的弱电信号经过低通滤波后,由多路转换开关对信号进行选通,然后通过电压跟随器对信号进行处理,以提高其负载能力。

该插件还有+5V、-15V、+15V 及累加和自检功能。

此外通过运算放大器过零比较检测电路可实现基频测量。

能够完成80 路模拟信号采集,模拟量的输出幅值范围为-10V~+10V。

2.5 开入插件(NKR-810):每个开入插件提供30 路开关量输入回路。

开入电源为直流220V 或110V;其正电源连接到开入节点,负电源接到31-32 端子。

2.6 出口插件(NCK-804/NCK-812):主要提供16副(共8组,每组2副接点)的出口接点。

2.7 信号插件(NXH-808):主要提供保护的信号接点,共三组信号接点,两瞬动一保持。

2.8 通讯插件(NTX-803):提供的通讯接口有:一个就地打印口(RS232),两个GPS对时口(RS485、RS232),及与保护管理机通讯的LON网接口,与变电站自动化系统通讯的双通道接口(RS485,RS232,以太网口)。

另外,必要时端子04、05可作为码对时通讯口。

2.9 稳压电源插件(NDY-801):直流逆变电源插件。

直流220 V 或110 V 电压输入经抗干扰滤波回路后,利用逆变原理输出本装置需要的三组直流电压,即5 V、±15 V 及24 V。

电源插件具有失电告警功能。

四、母线保护的软件版本介绍1、WMH-800A/R1版属三相式,适用于各种接线方式,母线上允许连接元件数最大为23 个(含母联及分段元件);2、WMH-800A/R2 版属三相式,专用于3/2 接线,母线上允许连接元件数最大为12 个;3、WMH-800A/R3 版属两相式,适用于各种接线方式,母线上允许连接元件数最大为32个(含母联及分段元件);4、WMH-800A/R4是专用的电压闭锁装置,与母线差动保护或断路器失灵保护配合使用,满足母线保护出口回路有独立的电压闭锁硬接点的反措要求;5、WMH-800A/R5版属三相式,适用于各种接线方式,母线上允许连接元件数最大为23 个(含母联及分段元件),只有失灵保护.第二节WMH-800A/R1一、WMH-800A/R1概述1.WMH-800A/R1适用于750 kV 及以下各种电压等级、各种主接线方式的母线,作为发电厂、变电站母线的成套保护装置。

2.通过绘制主接线即可自动实现软件定义,自动获取母线接线结构、特殊元件定义等信息,使同一个版本的软件可以适用于所有常规主接线方式。

3.跳闸出口采用“启动+保护动作”的方式,杜绝保护装置硬件故障引起的误动。

4.完善的自检功能4.1 A/D采样回路自检能避免A/D 采样出错导致的装置误动;4.2 开出回路自检可以准确检测任一路开出回路断线或开出击穿故障,发出告警并可靠闭锁保护;4.3 定值自检能够检测定值存储区出错、定值越限等;4.4 +5V、±15V电源自检功能,当电源电压不正常时,装置发告警信息,并闭锁保护;4.5 RAM自检,EOPROM自检。

5.硬件存储容量大可循环存储多达200 条保护事件报告记录和装置自检报告,100 条保护动作报告记录。

事件记录包括软、硬压板投退、开关量变位等。

装置自检报告包括硬件自检出错报警、装置长期启动。

6.灵活配置的通信功能有PC 调试口、就地打印口,两个以太网和两个485接口,GPS网络对时。

7.对时方式7.1 外部GPS 脉冲对时;7.2 RS485/RS232方式的串口对时;7.3 监控系统绝对时间的对时报文;7.4 B 码对时。

8.采用双CPU方式WMH-800A微机母线保护装置设有两套保护用计算机系统和一套人机接口计算机系统,CPU2完成启动(大差、失灵、母联等保护启动),CPU1完成出口(大差及各段母线小差、复合电压闭锁、失灵保护、母联保护等),双CPU模式可防止一块CPU意外故障而引起保护误出口。

其中,母联保护包括母联充电保护、过流保护和非全相保护。

此外,CPU1还具有母线运行方式的自动识别元件、TA断线闭锁元件、TA饱和检测元件、母联失灵及死区保护元件和TV断线判别元件等。

9.灵活的TA变比当某元件TA 变比大于10 倍基准变比时,装置发TA 变比异常告警,异常告警后闭锁母差保护。

对于TA变比不同时(二次额定电流相同),差动保护电流计算及差动电流的显示均归算到了基准TA 的二次侧。

当遇到不同规格的TA混用遇到时,WMH-800A 母线保护装置内采用和该元件规格相对应的辅助变流器,在整定TA 变比时,该元件TA 二次额定值按其它TA二次额定值计算。

例如:某一路变比为1200/1,其它变比为1200/5、600/5 等,整定时,TA变比分别按:1200/5,1200/5,600/5等整定。

二、保护功能介绍1.保护功能配置1)比率制动差动保护(稳态量差动保护和突变量差动保护);2)大差后备保护;3)母线保护复合电压闭锁;4)母联死区保护;5)母联失灵保护;6)母联充电保护;7)母联过流保护;8)母联非全相保护;9)断路器失灵保护;10)失灵保护复合电压闭锁;11)TA 异常告警;12)TA 断线闭锁及告警;13)TV 断线告警;14)母线运行方式自动识别。

2. 保护原理介绍2.1 差动保护2.1.1 比率差动保护母线差动保护为分相式比率制动差动保护,设置大差及各段母线小差。

大差由除母联外母线上所有元件构成,每段母线小差由每段母线上所有元件(包括母联)构成。

大差作为起动元件,用以区分母线区内外故障,小差为故障母线的选择元件。

大差、小差均采用具有比率制动特性的分相电流差动算法,其动作方程为:s d I I > (3-1)r d KI I > (3-2) 其中:∑==n j jd I I 1& ∑==nj j r I I 1& 式中d I 为差动电流;r I 为制动电流;K 为比率制动系数;S I 为差动电流定值;jI &为各回路电流。

相关文档
最新文档