计量经济学实验指导_2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学实验指导
实验一多元线性回归模型
【实验目的】
通过本实验,了解Eviews软件,熟悉软件建立工作文件,文件窗口操作,数据输入与处理等基本操作。掌握多元线性回归模型的估计方法,学会用Eiews 软件进行多元回归分析。通过本实验使得学生能够根据所学知识,对实际经济问题进行分析,建立计量模型,利用Eiews软件进行数据分析,并能够对输出结果进行解释说明。
【实验内容及步骤】
本实验选用美国金属行业主要的27家企业相关数据,如下表,其中被解释变量Y表示产出,解释变量L表示劳动力投入,K表示资本投入。试建立三者之间的回归关系。
【实验内容及步骤】
1.数据的输入
STEP1:双击桌面上Eviews快捷图标,打开Eviews,如图1.
图1
STEP2:点击Eviews主画面顶部按钮file/new/Workfile ,如图2,弹出workfile create对话框如图3。在frequency中选择integer data,在start date 和end date 中分别输入1和27,点击OK,出现图如4画面,Workfile 定义完毕。在新建的workfile中已经存在两个objects,即c和residual。c 是系数向量、residual是残差序列,当估计完一个模型后,该模型的系数、残差就分别保存在c和residual中。
图2
图3
图4
STEP3:在workfile空白部分单击右键,选择New object,在Type of object 中选择Series,将该对象命名为Y,如图5.单击ok,得到图6。
图5
图6
STEP4:双击图6中的图标“y”,得到如下图7,是关于序列“y”的工作表。点击表示命令栏中的“Edit+/-”即可进入数据输入状态,利用给定的数据逐步输入27个数值。
图7
STEP5:重复上面的数据输入步骤,依次输入序列“L”和“K”.如下图8所示.
图8
2数据描述
(1).数据的查看方式。Eviews可以有多种不同数据的查看方式,在数据输入时用的表格形式,即Spreadsheet。双击“y”,得到Spreadsheet形式,
点击表格命令栏中的view,选择Graph可以用图的形式显示数据。如选择Line,得到图10的线性图。
图9
图10
(2).数据的统计性质。双击“y”,得到Spreadsheet形式,点击表格命令
栏中的“view”,选择“Descriptive Statistics”、“Histogram and State”,如图11,得到图12,其中给出了序列“y”的均值、方差等统计量以及用以判断该序列是否服从正态分布的JB概率等。
图11
图12
3.多个序列的走势图。有些时候为了方便找出多个变量之间的关系,需要观察多个变量的走势,Eviews处理这个问题的方法也很简单。在workfile中按住
control键依次选中“y”“l”“k”,单击右键,选择“open”“as group”如图13,得到图14。此时3个序列被显示在一张表格中。单击图13中的“View”“Graph”“Line”得到图15。
图13
图14
图15
4.生成新的序列。有时为了研究的需要要在原有序列的基础上进行处理生产新的序列。比如我们需要对序列“y”“l”“k”取对数的步骤如下:在命令栏中点击“Genr”得到如图15的对话框,在空白部分输入“lny=log(y)”表示新建的序列lny是由原有序列y取对数得到的。点击“ok”后,lny序列被保存。相同的方法可建立新序列lnl与lnk,如图17。
图17
4.多元回归分析。利用序列“lny”“lnl”“lnk”进行多元回归分析的方法有两种。按住control键,依次选中三个序列,右键选择“open”“as Equation”如图18得到图19。或者在窗口上方的命令栏中点击选择“Quick”“Estimate Equation” 如图19得到图20。在图20中输入lny、lnc、lnl、lnk,中间用空格键隔开,点击“确定”得到最终的回归分析结果,如图21。
图19
图20
图21
5.结果分析。从图20可以看出,回归方程为LNY = 0.6078151931*LNL +
0.371887487*LNK + 1.171524819,并且通过了F检验和t检验,并且可决系数为0.9424,调整后的可决系数为0.9377,表明建立的回归方程的统计性质是是比较好的。点击命令栏中的“Resids”得到图21,可以看出实际值和拟合值是非常的接近的。
图22
从图22中可以看出残差在0的上下摆动,可以对其进行正态性检验。点击“resid”
序列,选择“View”“Descriptive Statistics”,“Histogram and State”得到图23,通过正态性检验。
图23
作业:利用中国统计年鉴2011,建立我国税收收入、国内生产总值、财政支出、商品零售价格指数的回归模型。
课堂练习
据相关数据以税收收入为被解释变量,国民生产总值和财政支出及商品零售价格指数为解释变量建立我国税收收入的多元模型。
实验二异方差的检验与处理
【实验目的】
了解异方差的概念及产生的原因,学会异方差的检验方法(图示法、帕克检验法、格里瑟检验法、GQ检验法等)和修正的方法-加权最小二乘法。
【实验内容及步骤】
Y消费性支出X可支配支出Y消费性支出X可支配支出
8493.49 10349.69 7020.22 9279.16
6121.04 8140.5 5022 6489.97
4348.47 5661.16 3830.71 4766.26
3941.87 4724.11 4644.5 5524.54
3927.75 5129.05 5218.79 6218.73
4356.06 5357.79 8016.91 9761.57
4020.87 4810 4276.67 5124.24
3824.44 4912.88 4126.47 4916.25
8868.19 11718.01 4185.73 5169.96
5323.18 6800.23 4422.93 5644.86
(1)采用OLS估计结果如图1:
图1