带有缓和曲线的圆曲线逐桩坐标计算例题

合集下载

后缓和曲线上任意点中、边桩坐标计算实例

后缓和曲线上任意点中、边桩坐标计算实例

曲线上任意一点中、边桩坐标计算实例一、 平面图JD1JD2二、 已知JD 1、X 1=50151,Y 1=52616;JD 2、X 2=50186,Y 2=52374;JD 3、X 3=50470,Y 3=52414;JD 2的半径R=95.78m,L 1=110, L 2=100,K JD2=K23+389.92,求后缓和曲线上K23+400的中桩坐标及左右各20米的边桩坐标。

步骤1、根据三个交点的坐标、求JD 2的转向角α。

○1、JD 1→JD 2的方位角:1-2α=tg 1-2α=2121--Y Y X X =52374-5261650186-50151=-24235=-6.9143= 278-13-46○2、JD 2→JD 3的方位角:2-3α=tg 2-3α=3232--Y Y X X =52414-5237450470-50186=40284= 8-01-01 ○3、JD 2的转向角α=(8-01-01.54)-(278-13-46.26)+360=89-47-15 步骤2、计算p 、m 、T 、 L 。

○1、1P =2124L R =21102495.78⨯=5.2642P =2224L R =21002495.78⨯=4.350○2、2m =32222240L L R -=32100100224095.78-⨯=49.546○3、2T =2m +(R +2P )2tgα+12sin p p α-=49.546+(95.78+4.350)×8947152tg--+ 5.264 4.350sin894715.28---=150.219 ○4、L =(L 1+L 2)÷2+180n Rπ=(110+100)÷2+(894715) 3.1495.78180--⨯⨯=255.096步骤3、计算HZ 、YH 的里程。

○1、HZ= ZH+L=K23+235.769+255.096=K23+490.865 ○2、YH= ZH+L-L 2=K23+235.769+255.096-100=K23+390.865 步骤4、计算K23+400的中桩坐标及左右20米边桩坐标。

带有缓和曲线的圆曲线逐桩坐标计算例题

带有缓和曲线的圆曲线逐桩坐标计算例题

带有缓与曲线的圆曲线逐桩坐标计算例题:某山岭区二级公路,已知交点的坐标分别为JD1(40961、914,91066、103)、JD2(40433、528,91250、097)、JD3(40547、416,91810、392),JD2里程为K2+200、000,R=150m,缓与曲线长度为40m,计算带有缓与曲线的圆曲线的逐桩坐标。

(《工程测量》第202页36题)解:(1)转角、缓与曲线角、曲线常数、曲线要素、主点里程、主点坐标计算方法一:偏角法(坐标正算)(2)第一缓与段坐标计算 228370'''= β 308416012'''= α(3)圆曲线段坐标计算 1490153-'''==βαα(4)第二缓与段坐标计算 228370=桩号弧长里程里程桩点ZY -=i l偏角0231β⎪⎪⎭⎫ ⎝⎛=∆S i i L l 方位角 i c i ∆-=12αα (左转) 弦长22590Sii i L R l l c -= Xi i c i ZH i c X X αcos +=Yiic i ZH i c Y Y αsin +=ZH:K2+048、5620 160 48 03 40576、543 91200、296 +060 11、438 0 12 30 160 35 33 11、438 40565、754 91204、097 +080 31、438 1 34 23 159 13 40 31、438 40547、149 92211、446 HY K2+088、562402 32 47 158 15 1639、96840539、41991215、104桩号弧长里程里程桩点HY -=i l偏角π︒=∆90R l i i方位角(左转) i JD ZY c i∆=---0βαα弦长ii R c ∆=sin 2X i c i HY i c X X αcos += Yici HY i c Y Y αsin +=HY: K2+088、5620βαα-=-JD ZY 切线153 09 41 40539、419 91215、104 +100 11、438 2 11 04 150 58 37 11、435 40529、420 91220、652 +120 31、438 6 00 15 147 09 26 31、38040513、055 91232、122+140 51、438 9 49 26 143 20 15 +16071、438 13 38 37 139 31 04QZ:K2+176、28087、718 16 45 10136 24 3186、47340476、789 91274、728+180 91、438 +200 111、438 +220 131、438 +240 151、438 +260171、438YH:K2+263、998175、43633 30 21119 39 20165、60640457、480 91359、018桩号弧长里程里程桩点-Z H l i =偏角0231β⎪⎪⎭⎫⎝⎛=∆S i i L l 方位角i c i∆+=32αα(左转)弦长22590Si i i L R l l c -=X ii c i i c X X αcos HZ +=Y ii c i HZ i c Y Y αsin +=方法二:切线支距法(坐标系转换)(2)第一缓与段坐标计算308416012'''= α1212sin cos ααy x X X ZH i ++= 1212cos sin ααy x Y Y ZH i -+=(本题为左转曲线)228370'''= β p = 0.444m q = 19.988m308416012'''= α ZH (40576、543 , 91200、296) sin cos ααy x X X ++= cos sin ααy x Y Y -+=YH: K2+263、99840 2 32 47 261 03 24 39、968 40457、480 91359、018 +280 23、998 0 55 00 259 25 37 23、996 40459、290 91374、911 +300 3、998 0 01 32258 30 373、998 40462、89791394、582HZ K2+303、99832α258 30 3740463、693 91398、500桩号里程里程桩点ZY -=i l 22540s L R l l x -=33733366SS L R l RL l y -= X iY iZH: K2+048、5620 40576、543 91200、296 +060 11、438 11、438 0、042 40565、755 91204、096 +080 31、438 31、417 0、863 40547、156 92211、446 HYK2+088、5624039、9291、77840539、41991215、104桩号 里程里程桩点HY -=i l0180βπϕ+=Rl i q R x +=ϕsin P ()p R y +-=ϕcos 1PX i Y iHY:K2+088、56240539、419 91215、10473037812'''= α2323sin cos ααy x X X HZ i +-= 2323cos sin ααy x Y Y HZ i --=(本题为左转曲线)。

关于公路测量中圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例

关于公路测量中圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例

关于公路测量圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例新浪微博:爱疯记录仪例:某道路桥梁中,A匝道线路。

已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。

SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。

由图纸上“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。

求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。

解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。

那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。

下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。

附:A匝道直线、曲线及转角表。

】下载地址:/view/f0677e38cdbff121dd36a32d7375a417866fc18f1 / 102 / 10y 轴。

后缓和曲线上任意点中、边桩坐标计算实例

后缓和曲线上任意点中、边桩坐标计算实例

曲线上任意一点中、边桩坐标计算实例一、 平面图JD1JD2二、 已知JD 1、X 1=50151,Y 1=52616;JD 2、X 2=50186,Y 2=52374;JD 3、X 3=50470,Y 3=52414;JD 2的半径R=95.78m,L 1=110, L 2=100,K JD2=K23+389.92,求后缓和曲线上K23+400的中桩坐标及左右各20米的边桩坐标。

步骤1、根据三个交点的坐标、求JD 2的转向角α。

○1、JD 1→JD 2的方位角:1-2α=tg 1-2α=2121--Y Y X X =52374-5261650186-50151=-24235=-6.9143= 278-13-46○2、JD 2→JD 3的方位角:2-3α=tg 2-3α=3232--Y Y X X =52414-5237450470-50186=40284= 8-01-01 ○3、JD 2的转向角α=(8-01-01.54)-(278-13-46.26)+360=89-47-15 步骤2、计算p 、m 、T 、 L 。

○1、1P =2124L R =21102495.78⨯=5.2642P =2224L R =21002495.78⨯=4.350○2、2m =32222240L L R -=32100100224095.78-⨯=49.546○3、2T =2m +(R +2P )2tgα+12sin p p α-=49.546+(95.78+4.350)×8947152tg--+ 5.264 4.350sin894715.28---=150.219 ○4、L =(L 1+L 2)÷2+180n Rπ=(110+100)÷2+(894715) 3.1495.78180--⨯⨯=255.096步骤3、计算HZ 、YH 的里程。

○1、HZ= ZH+L=K23+235.769+255.096=K23+490.865 ○2、YH= ZH+L-L 2=K23+235.769+255.096-100=K23+390.865 步骤4、计算K23+400的中桩坐标及左右20米边桩坐标。

圆曲线及缓及曲线坐标推算公式附带例题

圆曲线及缓及曲线坐标推算公式附带例题

圆曲线和缓和曲线坐标计算公式一、直线上的坐标计算X i=X m L i cosa0Y i=Y m L i sina0式中: Xm、Ym——直线段起点M 坐标Li——直线段上任意点i 到线路起点 M 的距离a0——直线段起点M 到 JD1 的方向角二、圆曲线上任一点的坐标计算①、圆曲线上任一点i 相对应的圆心角:i=180L iR式中: Li——圆曲线上任一点 i 走开 ZY或 YZ点的弧长②、圆曲线上任一点i 的直角坐标:X i=Rsin i(可不计算) . Y i=R(1 cos i)③、圆曲线 ZY 或 YZ 点到任一点 i 的偏角: i = i=90L i2R④、圆曲线 ZY 或 YZ 点到任一点 i 的弦长: C i =2Rsin( i ) 2R sin( i )2 ⑤、圆曲线 ZY 或 YZ 点到任一点 i 的弦长的方向角: a i = a zy jd 或 y z jdiX i =X ZY 或 YZ C i cosa i⑥、所以圆曲线上任意点 i 的坐标为:C i sina iY i=YZY 或YZ例题:已知一段圆曲线 ,R=3500m ,Ls =553.1m ,交点里程 K50+154.734, ZY 点到 JD 方向方向角为 A=129° 23′ 18.3″,右偏 9° 3′ 15.8″, ZY 点里程K49+877.607, YZ 点里程 K50+430.707,起点坐标为 x =389823.196, y =507787.251,求 K50+200 处中点坐标及左右各偏 12.5m 的坐标。

解: K50+200 处的曲线长度为 Li = 322.393mK50+200 相对应的方向角: a =180L i = 180322.393=5 16 39.52R3500 K50+200 相对应的偏角:i =i = 90L i =90 322.393=2 38 19.762 R3500K50+200 到 zy 点的弦长: C i =2Rsin i =2 3500 sin2 38 19.76 =322.279m zy 点到 K50+200 中桩的方向角: a i = a zyjdi =129 23 18 .3 2 38 19 .76 =132 1 38 .06K50+200 左、右偏 12.5m 的方向角:a 左= A i a90 =134 39 57.82 90 =44 39 57.82 a 右=A i a90 =134 39 57.82 90 =134 39 57.82所以 K50+200 处的坐标为:X i =X ZY C i cosa i =389823.196 322.279 cos132 1 38.06 =389607.4354 Y i =Y ZY C i sina i =507787.251 322.279 sin132 1 38.06 =508026.6484K50+200 左偏 12.5m 的坐标为:X 左=X i=12.5 cos44 39 57.82=12.5cosa左389607.4354 389616.3256 =Y i=12.5=Y左12.5sina左508026.6484 sin44 39 57.82 508035.4656 K50+200 右偏 12.5m 的坐标为:X 右=X i=389607.4354 12.5 cos134 39 57.82=389598.648212.5cosa右=Y i=12.5=Y右12.5sina右508026.6484 sin134 39 57.82 508035.5386 三、缓和曲线上任一点的坐标计算2切线角:i=Li180缓和曲线上任意点i 的偏角:i =i=L2i 1803 6RL s缓和曲线 ZH 或 HZ 点到任意点i 的方向角为: a i=a ZH jd或 HZ jd ix i=L iL5i 40R2 L2s缓和曲线上任意点 i 的坐标为: 3y i=L i6RL s缓和曲线 ZH 或 HZ 点到任意点 i 的弦长:C i=x2 y2所以缓和曲线上任意点 i 的坐标为:X i=X ZH或HZ C i cosa i Yi=YZH或 HZ C i sina i例题:已知一段缓和曲线, ZH 点到 JD 方向方向角为 A=183°17′08.9″,线路左偏 43° 31′02″,ZH 点里程为 K52+001.615,ZH 点坐标 x =388071.927,y= 508789.089, R =960m ,Ls =120m ,求 K52+100 处的中点坐标及左右各偏 12.5m 的坐标。

圆曲线和缓和曲线坐标推算公式附带例题

圆曲线和缓和曲线坐标推算公式附带例题

、直线上的坐标推算a c ――直线段起点M 到JD1的方位角二、圆曲线上任一点的坐标推算旳 180”①、圆曲线上任一点i 相对应的圆心角:「一二了兀R式中:Li ――圆曲线上任一点i 离开ZY 或YZ 点的弧长 ‘X 一Rsin^j Y i 一 R例题:已知一段圆曲线,R=3500m , Ls = 553.1m ,交点里程 K50+154.734 , ZY点到JD 方向方位角为 A=129 °3 ‘18.3 〃,右偏9 ° ‘15.8 〃,ZY 点里程 K49+877.607 , YZ 点里程 K50+430.707 ,起点坐标为 x = 389823.196 , y = 507787.251,求K50+200处中点坐标及左右各偏 12.5m 的坐标。

解:K50+200 处的曲线长度为 Li = 322.393m180 180圆曲线和缓和曲线坐标推算公式式中:Xm 、Ym ------- 直线段起点 M 坐标Li ---- 直线段上任意点i到线路起点M 的距离L i②、圆曲线上任一点i 的直角坐标: (1-COS 、)(可不计算).③、圆曲线 ZY 或YZ 点到任一点 的偏角:L i④、圆曲线 ZY 或YZ 点到任一点 的弦长: 4C i = 2Rsin(~^) = 2Rsin( J ⑤、圆曲线 ZY 或YZ 点到任一点 的弦长的方位角:ai 一 azy >jd 或yz 》jd - i⑥、所以圆曲线上任意点i 的坐标为:X j = X ZY 或 YZ C j COsqY j =YZY 或 YZC i sina iK50+200 相对应的方位角:a一二R L i- 一3500 322.393-5 16 39.52典 90°90°K50+200 相对应的偏角: 十-=L尸 322.393=2 38j9.76,2 nR八 3500K50+200 到 zy 点的弦长:G =2Rsin =2 3500 sin2 38 19.76 = 322.279m zy 点到K50+200中桩的方位角:K50+200 左、右偏12.5m 的方位角: 所以K50+200处的坐标为: K50+200左偏12.5m 的坐标为: K50+200右偏12.5m 的坐标为:三、缓和曲线上任一点的坐标推算切线角「尸去180X --------------兀缓和曲线上任意点i 的偏角: 二=丄3 6RL s180 缓和曲线ZH 或HZ 点到任意点i 的方位角为:ai=a ZH >jd 或HZrjd一 i缓和曲线上任意点i 的坐标为:( L 5 Xi = Li一 40R 2L ;i = _LL“ 6RL s缓和曲线ZH 或HZ 点到任意点所以缓和曲线上任意点i 的坐标为: i 的弦长:x 2y 2X i = X ZH 或HZ + C i cosqY j = Y ZH 或 HZ C i sina i例题:已知一段缓和曲线,ZH 点到JD 方向方位角为A=183 °7'08.9 〃,线路左 偏 43 °「02 〃,ZH 点里程为 K52+001.615 , ZH 点坐标 x = 388071.927 ,y = 508789.089 , R = 960m , Ls = 120m ,求 K52+100 处的中点坐标及左右各偏12.5m 的坐标。

圆曲线、缓和曲线计算例题《精选》

圆曲线、缓和曲线计算例题《精选》

圆曲线坐标计算公式β=180°/π×L/R(L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α ±β/2)×CY=Y1+sin (α ±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。

X、Y代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2LS2X=X1+cos (α ±β/3)×CY=Y1+sin (α ±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

直线坐标计算公式X=X1+cosα×L Y=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L代表起算点到准备算的距离。

左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

例题:直线坐标计算方法α(方位角)=18°21′47″X1=84817.831 Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算: X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680 Y边=Y中+sin(α±90°)×L Y边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941起始里程DK186+421.02曲线半径2500缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算: X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH 点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086Y1=926.832 曲线半径2500曲线长748.75起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C=弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算: X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算: X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。

带缓和曲线的圆曲线逐桩座标计算实例

带缓和曲线的圆曲线逐桩座标计算实例

带缓和曲线的圆曲线逐桩座标计算实例及说明(应用程序)使用说明:一.缓和段:1.当显示N?时,输入1,表示按里程增大的方向计算逐桩座标的,同时以此作为线路的左右方向.按EXE键确认.2.当显示X0?时,输入起点X轴座标,即X0=795002.398, 按EXE键确认.3.当显示Y0?时,输入起点Y轴座标,即Y0=538674.207, 按EXE键确认.4.当显示S0?时, 输入起点里程桩号及ZH点桩号.S0=53.711, 按EXE键确认.5.当显示F0?时, 输入起点线的座标方位角,即F0=166°15′17″按EXE键确认6.当显示LS?时, 输入待该线元长度,即LS=100, 按EXE键确认.7.当显示F0?时, 输入起点线元半径,因为本题起点与直线相接,所以线元半径F0=1045 按EXE键确认.8.当显示FN?时, 输入起点线元半径,因为本题起点与直线相接,所以线元半径FN=400,按EXE键确认.9.当显示Q?时, 表示线路转角方向,右偏时Q=1, 按EXE键确认.10.当显示S?时, 表示所求座标点的里程桩号,如S=75, 按EXE键确认.11. 当显示Z?时,所求点距该桩号中桩的距离.Z=0时为中桩,左为负,右为正.12. 当显示XS时,显示X轴座标结果即XS=794981.709.13. 当显示YS时,显示Y轴座标结果即YS=538679.226二.圆曲线段说明本程序在计算时应计算出缓圆点的座标方位角,起点座标为HY点的座标.起点桩号为153.711.1.先计算HY点的座标方位角(见FW1)计算程序.2.当显示LS1?时,输入缓和曲线长度即LS1=153.711-53.711=100,按EXE键确认.3.当显示R1?时,输入圆曲线半径.即R1=400, 按EXE键确认.4.当显示F?时, 输入ZH点座标方位角.即F=166°15′17″, 按EXE键确认.5.当显示G?时,输入转角方向,本题为右转角,故G=1, 按EXE键确认.6.当显示F?时,显示结果F=173°25′0.1″(HY点座标方位角) , 按EXE键确认.7.当显示L1?时,输入圆曲线长度L1=327.858-153.711=174.147,按EXE键确认.8.当显示F?时,显示结果F=198°21′41″(YH点座标方位角) , 按EXE键确认.计算实例(圆曲线段)1.当显示N?时,输入1,表示按里程增大的方向计算逐桩座标的,同时以此作为线路的左右方向.按EXE键确认.2.当显示X0?时,输入起点X轴座标,即X0=794904.425, 按EXE键确认.3当显示Y0?时,输入起点Y轴座标,即Y0=538693.887, 按EXE键确认.4.当显示S0?时, 输入起点里程桩号及HY点桩号.S0=153.711, 按EXE键确认.5.当显示F0?时, 输入起点线的座标方位角,即F0=173°25′0.1″按EXE键确认6.当显示LS?时, 输入待该线元长度,即LS=327.858-153.711=174.147, 按EXE键确认.7.当显示F0?时, 输入起点线元半径,因为为圆曲线,所以线元半径F0=400按EXE键确认.8.当显示FN?时, 输入起点线元半径,因为该段曲线为圆曲线,所以线元半径FN=400,按EXE键确认.9.当显示Q?时, 表示线路转角方向,右偏时Q=1, 按EXE键确认.10.当显示S?时, 表示所求座标点的里程桩号,如S=327.858, 按EXE键确认.11. 当显示Z?时,所求点距该桩号中桩的距离.Z=0时为中桩,左为负,右为正.12. 当显示XS时,显示X轴座标结果即XS=794732.56213. 当显示YS时,显示Y轴座标结果即YS=538676.160计算实例(YH~HZ)段输入方法同上.只是起点座标改为YH点座标.1.当显示N?时,输入1,表示按里程增大的方向计算逐桩座标的,同时以此作为线路的左右方向.按EXE键确认.2.当显示X0?时,输入起点X轴座标,即X0=794732.562, 按EXE键确认.3当显示Y0?时,输入起点Y轴座标,即Y0=538676.160, 按EXE键确认.4.当显示S0?时, 输入起点里程桩号及YH点桩号.S0=327.858, 按EXE键确认.5.当显示F0?时, 输入起点线的座标方位角,即F0=198°21′41″按EXE键确认6.当显示LS?时, 输入该线元长度,即LS=427.858-327.858=100, 按EXE键确认.7.当显示F0?时, 输入起点线元半径,因该缓和曲线起点与圆曲线相接,所以线元半径F0=400按EXE键确认.8.当显示FN?时, 输入起点线元半径,因为该缓和曲线终点与直线相接,所以线元半径FN=1045,按EXE键确认.9.当显示Q?时, 表示线路转角方向,右偏时Q=1, 按EXE键确认.10.当显示S?时, 表示所求座标点的里程桩号,如S=427.858, 按EXE键确认.11. 当显示Z?时,所求点距该桩号中桩的距离.Z=0时为中桩,左为负,右为正.12. 当显示XS时,显示X轴座标结果即XS=794640.66913. 当显示YS时,显示Y轴座标结果即YS=538636.895。

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算⎩⎨⎧++0i m i0i m i sina L Y Y cosa L X X == 式中:Xm 、Ym ——直线段起点M 坐标Li ——直线段上任意点i 到线路起点M 的距离 a 0——直线段起点M 到JD1的方位角 二、圆曲线上任一点的坐标推算①、圆曲线上任一点i 相对应的圆心角:i i L R180πϕ︒=式中:Li ——圆曲线上任一点i 离开ZY 或YZ 点的弧长②、圆曲线上任一点i 的直角坐标:⎩⎨⎧-)(==i iii cos 1R Y Rsin X ϕϕ(可不计算).③、圆曲线ZY 或YZ 点到任一点i 的偏角:i ii L R902πϕ︒∆==④、圆曲线ZY 或YZ 点到任一点i 的弦长:)sin(2)2sin(2C i i iR R ∆=ϕ=⑤、圆曲线ZY 或YZ 点到任一点i 的弦长的方位角:i jd yz jd zy i a a ∆±→→或=⑥、所以圆曲线上任意点i 的坐标为:⎩⎨⎧++i i YZ ZY iii YZ ZY i sina C Y Y cosa C X X 或或==例题:已知一段圆曲线,R=3500m ,Ls =553.1m ,交点里程K50+154.734,ZY 点到JD 方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY 点里程K49+877.607,YZ 点里程K50+430.707,起点坐标为x =389823.196,y =507787.251,求K50+200处中点坐标及左右各偏12.5m 的坐标。

解:K50+200处的曲线长度为Li =322.393mK50+200相对应的方位角:"'︒⨯⨯︒︒52.39165393.3223500180L R 180i ===ππa K50+200相对应的偏角:"'︒⨯⨯︒︒∆76.19382393.322350090L R 902i ii ====ππϕ K50+200到zy 点的弦长:m 279.32276.19382sin 35002Rsin 2C i i ==="'︒⨯⨯∆ zy 点到K50+200中桩的方位角:"'︒"'︒+"'︒∆+→06.38113276.193823.1823129a a i jd zy i ===K50+200左、右偏12.5m 的方位角:"'︒︒-"'︒︒-+82.5739449082.573913490a a ===左i A "'︒︒+"'︒︒++82.57391349082.573913490a a ===右i A 所以K50+200处的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++6484.50802606.381132sin 279.322251.507787sina C Y Y 4354.38960706.381132cos 279.322196.389823cosa C X X i i ZY ii i ZY i ======K50+200左偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++4656.50803582.573944sin 5.126484.508026sina 5.21Y Y 3256.38961682.573944cos 5.124354.389607cosa 5.21X X i i ======左左左左 K50+200右偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++5386.50803582.5739341sin 5.126484.508026sina 5.21Y Y 6482.38959882.5739341cos 5.124354.389607cosa 5.21X X i i ======右右右右 三、缓和曲线上任一点的坐标推算切线角:πβ︒⨯1802RL L s 2i i=缓和曲线上任意点i 的偏角:πβδ︒⨯180RL 6L 3s 2i ii ==缓和曲线ZH 或HZ 点到任意点i 的方位角为:i jd H Z jd ZH a a i δ±→→或=缓和曲线上任意点i 的坐标为:⎪⎪⎩⎪⎪⎨⎧-s 3ii 2s 25i i i 6RL L y L 40R L L x ==缓和曲线ZH 或HZ 点到任意点i 的弦长:22i yx C +=所以缓和曲线上任意点i 的坐标为:⎩⎨⎧++i i HZ ZH iii HZ ZH i sina C Y Y cosa C X X 或或==例题:已知一段缓和曲线,ZH 点到JD 方向方位角为A=183°17′08.9″,线路左偏43°31′02″,ZH 点里程为K52+001.615,ZH 点坐标x =388071.927,y =508789.089,R =960m ,Ls =120m ,求K52+100处的中点坐标及左右各偏12.5m 的坐标。

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算⎩⎨⎧++0i m i0i m i sina L Y Y cosa L X X == 式中:Xm 、Ym ——直线段起点M 坐标Li ——直线段上任意点i 到线路起点M 的距离 a 0——直线段起点M 到JD1的方位角 二、圆曲线上任一点的坐标推算①、圆曲线上任一点i 相对应的圆心角:i i L R180πϕ︒=式中:Li ——圆曲线上任一点i 离开ZY 或YZ 点的弧长②、圆曲线上任一点i 的直角坐标:⎩⎨⎧-)(==i iii cos 1R Y Rsin X ϕϕ(可不计算).③、圆曲线ZY 或YZ 点到任一点i 的偏角:i ii L R902πϕ︒∆==④、圆曲线ZY 或YZ 点到任一点i 的弦长:)sin(2)2sin(2C i i iR R ∆=ϕ=⑤、圆曲线ZY 或YZ 点到任一点i 的弦长的方位角:i jd yz jd zy i a a ∆±→→或=⑥、所以圆曲线上任意点i 的坐标为:⎩⎨⎧++i i YZ ZY iii YZ ZY i sina C Y Y cosa C X X 或或==例题:已知一段圆曲线,R=3500m ,Ls =553.1m ,交点里程K50+154.734,ZY 点到JD 方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY 点里程K49+877.607,YZ 点里程K50+430.707,起点坐标为x =389823.196,y =507787.251,求K50+200处中点坐标及左右各偏12.5m 的坐标。

解:K50+200处的曲线长度为Li =322.393mK50+200相对应的方位角:"'︒⨯⨯︒︒52.39165393.3223500180L R 180i ===ππa K50+200相对应的偏角:"'︒⨯⨯︒︒∆76.19382393.322350090L R 902i ii ====ππϕ K50+200到zy 点的弦长:m 279.32276.19382sin 35002Rsin 2C i i ==="'︒⨯⨯∆ zy 点到K50+200中桩的方位角:"'︒"'︒+"'︒∆+→06.38113276.193823.1823129a a i jd zy i ===K50+200左、右偏12.5m 的方位角:"'︒︒-"'︒︒-+82.5739449082.573913490a a ===左i A "'︒︒+"'︒︒++82.57391349082.573913490a a ===右i A 所以K50+200处的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++6484.50802606.381132sin 279.322251.507787sina C Y Y 4354.38960706.381132cos 279.322196.389823cosa C X X i i ZY ii i ZY i ======K50+200左偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++4656.50803582.573944sin 5.126484.508026sina 5.21Y Y 3256.38961682.573944cos 5.124354.389607cosa 5.21X X i i ======左左左左 K50+200右偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++5386.50803582.5739341sin 5.126484.508026sina 5.21Y Y 6482.38959882.5739341cos 5.124354.389607cosa 5.21X X i i ======右右右右 三、缓和曲线上任一点的坐标推算切线角:πβ︒⨯1802RL L s 2i i=缓和曲线上任意点i 的偏角:πβδ︒⨯180RL 6L 3s 2i ii ==缓和曲线ZH 或HZ 点到任意点i 的方位角为:i jd H Z jd ZH a a i δ±→→或=缓和曲线上任意点i 的坐标为:⎪⎪⎩⎪⎪⎨⎧-s 3ii 2s 25i i i 6RL L y L 40R L L x ==缓和曲线ZH 或HZ 点到任意点i 的弦长:22i yx C +=所以缓和曲线上任意点i 的坐标为:⎩⎨⎧++i i HZ ZH iii HZ ZH i sina C Y Y cosa C X X 或或==例题:已知一段缓和曲线,ZH 点到JD 方向方位角为A=183°17′08.9″,线路左偏43°31′02″,ZH 点里程为K52+001.615,ZH 点坐标x =388071.927,y =508789.089,R =960m ,Ls =120m ,求K52+100处的中点坐标及左右各偏12.5m 的坐标。

带有缓和曲线的圆曲线逐桩坐标计算例题

带有缓和曲线的圆曲线逐桩坐标计算例题

精心整理带有缓和曲线的圆曲线逐桩坐标计算例题:某山岭区二级公路,已知交点的坐标分别为JD1(40961.914,91066.103)、 JD2(40433.528,91250.097)、JD3(40547.416,91810.392),JD2里程为K2+200.000,R=150m,缓和曲线长度为40m,计算带有缓和曲线的圆曲线的逐桩坐标。

(《工程测量》第202页36题)解:(1)转角、缓和曲线角、曲线常数、曲线要素、主点里程、主点坐标计算1 坐标方位角2转角 α(左转曲线)3 缓和曲线角4 曲线内移值5 切线增长值6曲线 要素 切线长曲线长 外距切曲差7主点里程ZH 桩号JD ZH =(桩号)h T - K2+048.562 HY桩号ZH HY =(桩号)S L + K2+088.562 YH 桩号HY YH =(桩号)y L + K2+263.998 HZ 桩号YH HZ =(桩号)S L + K2+303.998 QZ 桩号HZ QZ =(桩号)2/h L - K2+176.280 JD 桩号QZ JD =(桩号)2/h D + K2+200.000 8主点坐标ZHHZ QZ方法一:偏角法(坐标正算)(2)第一缓和段坐标计算228370'''= β308416012'''= α桩号弧长偏角方位角 (左转) 弦长XiYiZH:1604803 40576.543 91200.296(3)圆曲线段坐标计算1490153-0'''==-βααJD ZY 切线(4)第二缓和段坐标计算228370'''= β方法二:切线支距法(坐标系转换)K2+048.562 +060 11.438 01230 1603533 11.438 40565.754 91204.097 +080 31.438 13423 1591340 31.438 40547.149 92211.446 HY K2+088.562 4023247158151639.96840539.41991215.104桩号弧长 偏角 方位角(左转) 弦长 X YHY:K2+088.562153094140539.419 91215.104 +100 11.438 21104 1505837 11.435 40529.420 91220.652 +120 31.438 60015 1470926 31.380 40513.055 91232.122+140 51.438 94926 1432015 +16071.438 133837 1393104QZ: K2+176.28087.718 164510 136243186.473 40476.789 91274.728+180 91.438 +200 111.438 +220 131.438 +240 151.438 +260171.438YH:K2+263.998175.4363330211193920165.60640457.480 91359.018 桩号弧长偏角方位角 (左转)弦长X iY iYH: K2+263.998 4023247261032439.96840457.48091359.018+280 23.998 05500 2592537 23.996 40459.290 91374.911 +300 3.9980013225830373.99840462.89791394.582HZ K2+303.998258303740463.69391398.500(2)第一缓和段坐标计算1212sin cos ααy x X X ZH i ++=1212cos sin ααy x Y Y ZH i -+=(本题为左转曲线)(3)圆曲线段坐标计算228370'''= βp =0.444m q =19.988m308416012'''= αZH (40576.543,91200.296)(4)第二缓和段坐标计算2323sin cos ααy x X X HZ i +-=2323cos sin ααy x Y Y HZ i --=(本题为左转曲线)桩号X i Y i ZH: K2+048.562 040576.543 91200.296 +060 11.438 11.438 0.042 40565.755 91204.096 +080 31.438 31.417 0.863 40547.156 92211.446 HY K2+088.5624039.9291.77840539.41991215.104桩号X iY iHY:K2+088.56240539.419 91215.104 +100 11.438 120030 51.196 3.726 40529.419 91220.651 +120 31.438 193852 70.4249.17740513.052 91232.122+140 51.438 271714 +16071.438 345536QZ: K2+176.28087.718 410843 118.68437.48740476.788 91274.728+180 91.438 423358+200 111.438 +220 131.438 +240 151.438 +260171.438YH:K2+263.998175.436743904 164.638 110.74040457.479 91359.018桩号X i Y i YH: K2+263.998 40 39.929 1.778 40457.482 91359.017 +280 23.998 23.992 0.384 40459.290 91374.912 +300 3.9983.9980.00240462.89891394.582HZ40463.693 91398.500 K2+303.998。

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算⎩⎨⎧++0i m i0i m i sina L Y Y cosa L X X == 式中:Xm 、Ym ——直线段起点M 坐标Li ——直线段上任意点i 到线路起点M 的距离 a 0——直线段起点M 到JD1的方位角 二、圆曲线上任一点的坐标推算①、圆曲线上任一点i 相对应的圆心角:i i L R180πϕ︒=式中:Li ——圆曲线上任一点i 离开ZY 或YZ 点的弧长②、圆曲线上任一点i 的直角坐标:⎩⎨⎧-)(==i iii cos 1R Y Rsin X ϕϕ(可不计算).③、圆曲线ZY 或YZ 点到任一点i 的偏角:i ii L R902πϕ︒∆==④、圆曲线ZY 或YZ 点到任一点i 的弦长:)sin(2)2sin(2C i i iR R ∆=ϕ=⑤、圆曲线ZY 或YZ 点到任一点i 的弦长的方位角:i jd yz jd zy i a a ∆±→→或=⑥、所以圆曲线上任意点i 的坐标为:⎩⎨⎧++i i YZ ZY iii YZ ZY i sina C Y Y cosa C X X 或或==例题:已知一段圆曲线,R=3500m ,Ls =553.1m ,交点里程K50+154.734,ZY 点到JD 方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY 点里程K49+877.607,YZ 点里程K50+430.707,起点坐标为x =389823.196,y =507787.251,求K50+200处中点坐标及左右各偏12.5m 的坐标。

解:K50+200处的曲线长度为Li =322.393mK50+200相对应的方位角:"'︒⨯⨯︒︒52.39165393.3223500180L R 180i ===ππa K50+200相对应的偏角:"'︒⨯⨯︒︒∆76.19382393.322350090L R 902i ii ====ππϕ K50+200到zy 点的弦长:m 279.32276.19382sin 35002Rsin 2C i i ==="'︒⨯⨯∆ zy 点到K50+200中桩的方位角:"'︒"'︒+"'︒∆+→06.38113276.193823.1823129a a i jd zy i ===K50+200左、右偏12.5m 的方位角:"'︒︒-"'︒︒-+82.5739449082.573913490a a ===左i A "'︒︒+"'︒︒++82.57391349082.573913490a a ===右i A 所以K50+200处的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++6484.50802606.381132sin 279.322251.507787sina C Y Y 4354.38960706.381132cos 279.322196.389823cosa C X X i i ZY ii i ZY i ======K50+200左偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++4656.50803582.573944sin 5.126484.508026sina 5.21Y Y 3256.38961682.573944cos 5.124354.389607cosa 5.21X X i i ======左左左左 K50+200右偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++5386.50803582.5739341sin 5.126484.508026sina 5.21Y Y 6482.38959882.5739341cos 5.124354.389607cosa 5.21X X i i ======右右右右 三、缓和曲线上任一点的坐标推算切线角:πβ︒⨯1802RL L s 2i i=缓和曲线上任意点i 的偏角:πβδ︒⨯180RL 6L 3s 2i ii ==缓和曲线ZH 或HZ 点到任意点i 的方位角为:i jd H Z jd ZH a a i δ±→→或=缓和曲线上任意点i 的坐标为:⎪⎪⎩⎪⎪⎨⎧-s 3ii 2s 25i i i 6RL L y L 40R L L x ==缓和曲线ZH 或HZ 点到任意点i 的弦长:22i yx C +=所以缓和曲线上任意点i 的坐标为:⎩⎨⎧++i i HZ ZH iii HZ ZH i sina C Y Y cosa C X X 或或==例题:已知一段缓和曲线,ZH 点到JD 方向方位角为A=183°17′08.9″,线路左偏43°31′02″,ZH 点里程为K52+001.615,ZH 点坐标x =388071.927,y =508789.089,R =960m ,Ls =120m ,求K52+100处的中点坐标及左右各偏12.5m 的坐标。

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算⎩⎨⎧++0i m i0i m i sina L Y Y cosa L X X == 式中:Xm 、Ym ——直线段起点M 坐标Li ——直线段上任意点i 到线路起点M 的距离 a 0——直线段起点M 到JD1的方位角 二、圆曲线上任一点的坐标推算①、圆曲线上任一点i 相对应的圆心角:i i L R180πϕ︒=式中:Li ——圆曲线上任一点i 离开ZY 或YZ 点的弧长②、圆曲线上任一点i 的直角坐标:⎩⎨⎧-)(==i iii cos 1R Y Rsin X ϕϕ(可不计算).③、圆曲线ZY 或YZ 点到任一点i 的偏角:i ii L R902πϕ︒∆==④、圆曲线ZY 或YZ 点到任一点i 的弦长:)sin(2)2sin(2C i i iR R ∆=ϕ=⑤、圆曲线ZY 或YZ 点到任一点i 的弦长的方位角:i jd yz jd zy i a a ∆±→→或=⑥、所以圆曲线上任意点i 的坐标为:⎩⎨⎧++i i YZ ZY iii YZ ZY i sina C Y Y cosa C X X 或或==例题:已知一段圆曲线,R=3500m ,Ls =553.1m ,交点里程K50+154.734,ZY 点到JD 方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY 点里程K49+877.607,YZ 点里程K50+430.707,起点坐标为x =389823.196,y =507787.251,求K50+200处中点坐标及左右各偏12.5m 的坐标。

解:K50+200处的曲线长度为Li =322.393mK50+200相对应的方位角:"'︒⨯⨯︒︒52.39165393.3223500180L R 180i ===ππa K50+200相对应的偏角:"'︒⨯⨯︒︒∆76.19382393.322350090L R 902i ii ====ππϕ K50+200到zy 点的弦长:m 279.32276.19382sin 35002Rsin 2C i i ==="'︒⨯⨯∆ zy 点到K50+200中桩的方位角:"'︒"'︒+"'︒∆+→06.38113276.193823.1823129a a i jd zy i ===K50+200左、右偏12.5m 的方位角:"'︒︒-"'︒︒-+82.5739449082.573913490a a ===左i A "'︒︒+"'︒︒++82.57391349082.573913490a a ===右i A 所以K50+200处的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++6484.50802606.381132sin 279.322251.507787sina C Y Y 4354.38960706.381132cos 279.322196.389823cosa C X X i i ZY ii i ZY i ======K50+200左偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++4656.50803582.573944sin 5.126484.508026sina 5.21Y Y 3256.38961682.573944cos 5.124354.389607cosa 5.21X X i i ======左左左左 K50+200右偏12.5m 的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++5386.50803582.5739341sin 5.126484.508026sina 5.21Y Y 6482.38959882.5739341cos 5.124354.389607cosa 5.21X X i i ======右右右右 三、缓和曲线上任一点的坐标推算切线角:πβ︒⨯1802RL L s 2i i=缓和曲线上任意点i 的偏角:πβδ︒⨯180RL 6L 3s 2i ii ==缓和曲线ZH 或HZ 点到任意点i 的方位角为:i jd H Z jd ZH a a i δ±→→或=缓和曲线上任意点i 的坐标为:⎪⎪⎩⎪⎪⎨⎧-s 3ii 2s 25i i i 6RL L y L 40R L L x ==缓和曲线ZH 或HZ 点到任意点i 的弦长:22i yx C +=所以缓和曲线上任意点i 的坐标为:⎩⎨⎧++i i HZ ZH iii HZ ZH i sina C Y Y cosa C X X 或或==例题:已知一段缓和曲线,ZH 点到JD 方向方位角为A=183°17′08.9″,线路左偏43°31′02″,ZH 点里程为K52+001.615,ZH 点坐标x =388071.927,y =508789.089,R =960m ,Ls =120m ,求K52+100处的中点坐标及左右各偏12.5m 的坐标。

圆曲线、缓和曲线计算例题《精选》

圆曲线、缓和曲线计算例题《精选》

圆曲线坐标计算公式β=180°/π×L/R(L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α ±β/2)×CY=Y1+sin (α ±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。

X、Y代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2LS2X=X1+cos (α ±β/3)×CY=Y1+sin (α ±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

直线坐标计算公式X=X1+cosα×L Y=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L代表起算点到准备算的距离。

左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

例题:直线坐标计算方法α(方位角)=18°21′47″X1=84817.831 Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算: X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680 Y边=Y中+sin(α±90°)×L Y边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941起始里程DK186+421.02曲线半径2500缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算: X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH 点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086Y1=926.832 曲线半径2500曲线长748.75起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C=弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算: X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算: X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算⎩⎨⎧++0i m i0i m i sina L Y Y cosa L X X == 式中:Xm 、Ym ——直线段起点M 坐标Li ——直线段上任意点i 到线路起点M 的距离 a 0——直线段起点M 到JD1的方位角 二、圆曲线上任一点的坐标推算①、圆曲线上任一点i 相对应的圆心角:i i L R180πϕ︒=式中:Li ——圆曲线上任一点i 离开ZY 或YZ 点的弧长②、圆曲线上任一点i 的直角坐标:⎩⎨⎧-)(==i iii cos 1R Y Rsin X ϕϕ(可不计算).③、圆曲线ZY 或YZ 点到任一点i 的偏角:i ii L R 902πϕ︒∆== ④、圆曲线ZY 或YZ 点到任一点i 的弦长:)sin(2)2sin(2C i i iR R ∆=ϕ=⑤、圆曲线ZY 或YZ 点到任一点i 的弦长的方位角:i jd y z jd zy i a a ∆±→→或=⑥、所以圆曲线上任意点i 的坐标为:⎩⎨⎧++i i YZ ZY i ii YZ ZY i sina C Y Y cosa C X X 或或==例题:已知一段圆曲线,R=3500m ,Ls =,交点里程K50+,ZY 点到JD 方向方位角为A=129°23′″,右偏9°3′″,ZY 点里程K49+,YZ 点里程K50+,起点坐标为x =,y =,求K50+200处中点坐标及左右各偏的坐标。

解:K50+200处的曲线长度为Li =K50+200相对应的方位角:"'︒⨯⨯︒︒52.39165393.3223500180L R 180i===ππa K50+200相对应的偏角:"'︒⨯⨯︒︒∆76.19382393.322350090L R 902i ii ====ππϕK50+200到zy 点的弦长:m 279.32276.19382sin 35002Rsin 2C i i ==="'︒⨯⨯∆ zy 点到K50+200中桩的方位角:"'︒"'︒+"'︒∆+→06.38113276.193823.1823129a a i jd zy i ===K50+200左、右偏的方位角:"'︒︒-"'︒︒-+82.5739449082.573913490a a ===左i A "'︒︒+"'︒︒++82.57391349082.573913490a a ===右i A所以K50+200处的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++6484.50802606.381132sin 279.322251.507787sina C Y Y 4354.38960706.381132cos 279.322196.389823cosa C X X i i ZY ii i ZY i ====== K50+200左偏的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++4656.50803582.573944sin 5.126484.508026sina 5.21Y Y 3256.38961682.573944cos 5.124354.389607cosa 5.21X X i i ======左左左左 K50+200右偏的坐标为:⎩⎨⎧"'︒⨯++"'︒⨯++5386.50803582.5739341sin 5.126484.508026sina 5.21Y Y 6482.38959882.5739341cos 5.124354.389607cosa 5.21X X i i ======右右右右 三、缓和曲线上任一点的坐标推算切线角:πβ︒⨯1802RL L s 2i i =缓和曲线上任意点i 的偏角:πβδ︒⨯180RL 6L 3s 2i ii ==缓和曲线ZH 或HZ 点到任意点i 的方位角为:i jd HZ jd ZH a a i δ±→→或=缓和曲线上任意点i 的坐标为:⎪⎪⎩⎪⎪⎨⎧-s 3ii 2s 25i i i 6RL L y L 40R L L x ==缓和曲线ZH 或HZ 点到任意点i 的弦长:22iy x C +=所以缓和曲线上任意点i 的坐标为:⎩⎨⎧++i i HZ ZH i ii HZ ZH i sina C Y Y cosa C X X 或或==例题:已知一段缓和曲线,ZH 点到JD 方向方位角为A=183°17′″,线路左偏43°31′02″,ZH 点里程为K52+,ZH 点坐标x =,y =,R =960m ,Ls =120m ,求K52+100处的中点坐标及左右各偏的坐标。

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式(附带例题)

圆曲线和缓和曲线坐标推算公式(附带例题)本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算Xi=Xm Licosa0 Y=Y Lsinami0 i式中:Xm、Ym――直线段起点M坐标Li――直线段上任意点i到线路起点M的距离a0――直线段起点M到JD1的方位角二、圆曲线上任一点的坐标推算①、圆曲线上任一点i相对应的圆心角:i=180Li R式中:Li――圆曲线上任一点i离开ZY或YZ点的弧长Xi=Rsin i②、圆曲线上任一点i的直角坐标:(可不计算).Y=R(1 cos )i i本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算③、圆曲线ZY或YZ点到任一点i的偏角:i=i2=90Li R④、圆曲线ZY或YZ点到任一点i的弦长:Ci=2Rsin(i2) 2Rsin( i)⑤、圆曲线ZY或YZ点到任一点i的弦长的方位角:ai=azy jd或yz jd iXi=XZY或YZ Cicosai⑥、所以圆曲线上任意点i的坐标为:Y=Y CsinaiiZY或YZ i例题:已知一段圆曲线,R=3500m,Ls=553.1m,交点里程K50+154.734,ZY点到JD方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY点里程K49+877.607,YZ点里程K50+430.707,起点坐标为x=__.196,y=__.251,求K50+200处中点坐标及左右各偏12.5m的坐标。

解:K50+200处的曲线长度为Li=322.393m180 180 Li=322.393=5 16 39.52 K50+200相对应的方位角:a=R 3500K50+200相对应的偏角:i=i2=90 90Li=322.393=2 38 19.76 R 3500K50+200到zy点的弦长:Ci=2Rsin i=2 3500 sin2 38 19.76 =322.279m zy点到K50+200中桩的方位角:ai=azy jd i=129 23 18.3 2 38 19.76 =132 1 38.06K50+200左、右偏12.5m的方位角:a左=Ai a 90 =134 39 57.82 90 =44 39 57.82 a右=Ai a 90 =134 39 57.82 90 =134 39 57.82 所以K50+200处的坐标为:.196 322.279 cos132 1 38.06 =__.4354 Xi=XZY Cicosai=__ Y=Y Csina=__.251 322.279 sin132 1 38.06 =__.6484ZYii i 本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算K50+200左偏12.5m的坐标为:.4354 12.5 cos44 39 57.82 =__.3256 X左=Xi 12.5cosa左=__Y=Y 12.5sina=__.6484 12.5 sin44 39 57.82 =__.4656i左左K50+200右偏12.5m的坐标为:.4354 12.5 cos134 39 57.82 =__.6482 X右=Xi 12.5cosa右=__ Y=Y 12.5sina=__.6484 12.5 sin134 39 57.82 =__.5386i右右三、缓和曲线上任一点的坐标推算L2i180=切线角:i2RLsL2i180缓和曲线上任意点i的偏角:i==36RLsi缓和曲线ZH或HZ点到任意点i的方位角为:ai=aZH jd或HZ jd iL5i xi=Li40R2L2s3缓和曲线上任意点i的坐标为:L y=ii 6RLs22缓和曲线ZH或HZ点到任意点i的弦长:Cix yXi=XZH或HZ Cicosai所以缓和曲线上任意点i的坐标为:Y=Y CsinaiiZH或HZ i本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算例题:已知一段缓和曲线,ZH点到JD方向方位角为A=183°17′08.9″,线路左偏43°31′02″,ZH点里程为K52+001.615,ZH点坐标x=__.927,y=__.089,R=960m,Ls=120m,求K52+100处的中点坐标及左右各偏12.5m的坐标。

(完整版)缓和曲线、圆曲线测设计算例题

(完整版)缓和曲线、圆曲线测设计算例题

已知曲线半径R=6000,缓和曲线长度l 0=280,交点JD27坐标及相邻方位角已在图中给出,ZH 点里程为DK2+100。

请计算:1、曲线要素中的切线长T 、曲线长L 、外矢距E ;2、HY 、QZ 、YH 、HZ 的里程;3、ZH 点坐标及其左边桩3米的坐标;4、DK2+180的坐标及右边桩2米的坐标;5、DK2+660的坐标及右边桩35米的坐标。

永州α=225-17-08.0JD27(D K 2+100)(1000.000,1000.000)α=232-35-13.9H Z Q ZHZ H Y YH附公式:m 为缓和曲线切垂距,m= l 0/2- l 03/(240R 2)p 为缓和曲线内移距,P= l 02/(24R )- l 04/(2688R 3)缓和曲线方程式:X=h - h 5/(40R 2l 2)+ h 9/(3456 R 4l 4)Y=h 3/(6Rl )- h 7/(336 R 3l 3)+ h 11/(42240 R 5l 5)解:1、转向角α=α2-α1=7°18′05.9″切线长T=(R+P )tg (α/2)+m = 522.863曲线长L=(R απ)/180+l 0= 1044.626外矢距E=(R+P )sec (α/2)-R=12.746式中m 为缓和曲线切垂距,m= l 0/2- l 03/(240R 2)=139.9974p 为缓和曲线内移距,P= l 02/(24R )- l 04/(2688R 3)=0.54442、HY 点里程为DK2+100+280=DK2+380;QZ 点里程为DK2+100+1044.626/2=DK2+622.313;HZ 点里程为DK2+100+1044.626=DK3+144.626;YH 点里程为DK3+144.626-280=DK2+864.6263、JD27到ZH 点的方位角αJD27-ZH =232°35′13.9″-180=52°35′13.9″ JD27到ZH 点的坐标增量为:△x =T ×cos αJD27-ZH =317.667m△y =T ×sin αJD27-ZH =-415.299m于是ZH 点坐标为X ZH = x JD27+ △x = 1317.667my ZH = Y JD27+△y =1415.299mZH点到左边桩3米的方位角αZH-左边桩= 232°35′13.9″-90=142°35′13.9″左边桩3米的坐标为:X左= x ZH+ 3×cosαZH-左边桩= 1315.284mY左= y ZH +3×sinαZH-左边桩=1417.122m4、DK2+180的坐标及右边桩2米的坐标:DK2+180在缓和曲线上,计算过程为:ZH点到JD27的方位角αZH-JD1= =232°35′13.9″DK2+180到ZH点的缓和曲线长度h为180-100=80根据缓和曲线方程式:X=h - h5/(40R2l2)+ h9/(3456 R4l4)=80.000Y=h3/(6Rl)- h7/(336 R3l3)+ h11/(42240 R5l5)=0.0508由X和Y可以求出DK5+900与ZH的距离D和它的偏角δ:D=√(X2+ Y2)=80.000δ=arctg(Y/ X)=0°02′11.0″于是DK2+180的坐标(X1,Y1)为:X1= 1317.667+Dcos(232°35′13.9″-δ)=1269.022Y1 = 1415.299+Dsin(232°35′13.9″-δ)=1351.788DK2+300右边桩2米的坐标(X2,Y2)为:X2= 1269.022+2×cos(232°35′13.9″-3δ+90)=1270.608Y2= 1351.788+2×sin(232°35′13.9″-3δ+90)=1350.5705、圆曲线点DK2+660计算过程为:曲中点QZ的里程推算为DK2+622.313, DK2+660到QZ的圆曲线长度为660-622.313=37.687,所对应的圆心角为O′=(180*37.687)/(πR)=0°21′35.6″, JD27到圆心O的方位角αJD27-O=225°17′08.0″-(180-7°18′05.9″)/2=138°56′10.95″圆心O的坐标为:X3 =1000+(E+R)cos(138°56′10.95″)=-3533.494Y3= 1000+(E+R)sin(138°56′10.95″)=4949.753DK2+660的坐标(X4,Y4)为:X4= X3++ R cos(138°56′10.95″+180- O′)=965.544Y4 = Y3+Rsin(138°56′10.95″+180- O′)=980.035DK2+660右边桩35米的坐标(X5,Y5)为:X5= X3++ (R+35)×cos(138°56′10.95″+180- O′)=991.788Y5= Y3+(R+35)×sin(138°56′10.95″+180- O′)=956.878。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带有缓和曲线的圆曲线逐桩坐标计算
例题:某山岭区二级公路,已知交点的坐标分别为JD1(40961.914,91066.103)、JD2(40433.528,91250.097)、JD3(40547.416,91810.392),JD2里程为
K2+200.000,R=150m,缓和曲线长度为40m,计算带有缓和曲线的圆曲线的逐桩坐标。

(《工程测量》第202页36题)
解:(1)转角、缓和曲线角、曲线常数、曲线要素、主点里程、主点坐标计算
方法一:偏角法(坐标正算)
(2)第一缓和段坐标计算 228370'''= β 308416012'''= α
(3)圆曲线段坐标计算 1490153-0'''==-
βααJD ZY 切线
桩号
弧长
里程里程桩点ZY -=i l
偏角 02
31β⎪⎪⎭
⎫ ⎝⎛=∆S i i L l 方位角 i c i ∆-=12αα (左转) 弦长
22590S
i
i i L R l l c -= Xi i c i ZH i c X X αcos +=
Yi
i
c i ZH i c Y Y αsin +=
ZH:
K2+048.562
0 160 48 03 40576.543 91200.296 +060 11.438 0 12 30 160 35 33 11.438 40565.754 91204.097 +080 31.438 1 34 23 159 13 40 31.438 40547.149 92211.446 HY
K2+088.562 40
2 32 47 158 15 16
39.968
40539.419
91215.104
桩号
弧长
里程里程桩点HY -=i l
偏角
π
︒=∆90R l i
i
方位角(左转) i JD ZY c i
∆=---0βαα
弦长
i
i R c ∆=sin 2
X
i
c i HY i c X X αcos +=
Y
i c i HY i c Y Y αsin +=
HY: K2+088.562
0βαα-=-JD ZY 切线
153 09 41 40539.419 91215.104 +100 11.438 2 11 04 150 58 37 11.435 40529.420 91220.652 +120 31.438 6 00 15 147 09 26 31.380 40513.055
91232.122
+140 51.438 9 49 26 143 20 15 +160
71.438 13 38 37 139 31 04 QZ: K2+176.280
87.718 16 45 10
136 24 31
86.473 40476.789
91274.728
+180 91.438 +200 111.438 +220 131.438 +240 151.438 +260
171.438 YH:K2+263.99
8
175.436
33 30 21
119 39 20
165.606
40457.480
91359.018
(4)第二缓和段坐标计算22
8
3
7
0''
'
= β
桩号弧长
里程
里程
桩点
-
Z
H
l
i
=
偏角
2
3
1
β
⎪⎪




=

S
i
i L
l
方位角
i
c i

+
=
32
α
α
(左转)
弦长
2
2
5
90
S
i
i
i L
R
l
l
c
-
=
X i
i
c
i
i
c
X

cos
HZ
+
=
Y i
i
c
i
HZ
i
c
Y

sin
+
=
YH:
K2+263.998
40 2 32 47 261 03 2439.96840457.480 91359.018
+280 23.998 0 55 00 259 25 37 23.996 40459.290 91374.911 +300 3.998 0 01 32 258 30 37 3.998 40462.897 91394.582 HZ
K2+303.998
32
α
258 30 37
40463.693 91398.500
方法二:切线支距法(坐标系转换)
(2)第一缓和段坐标计算
308416012'''= α
1212sin cos ααy x X X ZH i ++= 1212cos sin ααy x Y Y ZH i -+=(本题为左转曲线)
(3)圆曲线段坐标计算
228370'''= β p = 0.444m q = 19.988m 308416012'''= α ZH (40576.543 , 91200.296)
sin cos ααy x X X ++= cos sin ααy x Y Y -+=
(4)第二缓和段坐标计算 73037812'''= α
2323sin cos ααy x X X HZ i +-= 2323cos sin ααy x Y Y HZ i --=(本题为左转曲线)。

相关文档
最新文档