第七章线性变换总结篇
《高等代数》第七章 线性变换
线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时
即
们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使
第七章 线性变换
(4) 多项式:
1) n 个( n 是正整数)线性变换 /A的乘积为/A的
n次幂,记为/An,即/An=/A/A.../A(n个). 规定 /A0 = /E. 当线性变换/A可逆时, 规定/A-n=(/A-1)n 2) 设 f (x) = amxm + am -1xm -1 + … + a0 是P[ x ] 中 一多项式,/A是 V 的一线性变换,则称 f (/A ) = am /A m + am -1 /A m -1 + … + a0/E
xi1, xi 2 ,, xiri
,则向量组
x11 , x12 ,, x1r1,x21 , x22 ,, x2r2, ,xs1, xs 2 ,, xsrs
线性无关.
6) 设B=X-1AX,即矩阵A与B相似. 如果i是A的特征
值,xi是A对应特征值i的特征向量,则i是B的特征值 ,且B对应特征值i的特征向量是X-1x.
是线性变换 /A 的多项式.
3) 线性变换的幂运算规律 ① /A n + m = /A n /A m , (/A n )m = /A m n (m , n 0) . ② 一般来说:(/A /B )n /A n /B n . 4) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) , 那么 h(/A ) = f (/A ) + g(/A ) , p(/A ) = f (/A ) g(/A ) .
1+ 2+ ...+n=a11+a22+...+ann; 12...n=|A|.
4) 如果1, 2, ..., s是矩阵A的互异特征值,其对应
线性变换的定义
这一章中要讨论的线性变换就是最简单的,同时也可以认为是最基本的一种变换,正如线性函数是最简单的和最基本的函数一样. 线性变换是线性代数的一个主要研究对象.
下面如果不特别声明,所考虑的都是某一固定数域P上的线性空间.
以后我们一般用黑体大写拉丁字母A,B,…表示V的线性变换,A(α)或Aα代表元素α在变换A下的像.
D(f(x))=f ’(x) .
例6 定义在闭区间[a, b]上的全体连续函数组成实数域上一线性空间,以C(a, b )代表. 在这个空间中,变换
J(f(x))=
是一线性变换.
2. 线性变换保持线性组合与线性关系式不变. 换句话说,如果β是α1,α2,…,αr的线性组合:
β=k1α1+k2α2+…+krαr
那么经过线性变换A之后,A(β)是A(α1),A(α2),…,A(αr)同样的线性组合:
A(β)=k1A(α1)+k2A(α2)+…+krA(αr)
又如果α1,α2,…,αr之间有一线性关系式
那么它们的像之间也有同样的线性关系式
k1α1+k2α2+…+krαr=0
k1A(α1)+k2A(α2)+…+krA(αr)=0
以上两点,根据定义不难验证,由此即得
但应该注意,3的逆是不对的,线性变换可能把线性无关的向量组也变成线性相关的向量组. 例如零变换就是这样.
二、线性变换的简单性质:
1. 设A是V的线性变换,则A(0)=0,A(-α)=-A(α).
这是因为
A(0)=A(0·α)=0A(α)=0 ,
不难直接从定义推出线性变换的以下简单性质:
A(-α)=A((-1)α)=(-1)A(α)=-A(α).
第七章-线性变换
x1 , x2 ,, xn P , 使 x1 1 x2 2 xn n
从而, ( ) x1 ( 1 ) x2 ( 2 ) xn ( n ).
由此知, ( ) 由 ( 1 ), ( 2 ),, ( n ) 完全确定.
二、 线性变换与矩阵
1.线性变换的矩阵
设 1 , 2 , , n为数域P上线性空间V的一组基,
为V的线性变换. 基向量的象可以被基线性表出,设
( 1 ) a11 1 a21 2 an1 n ( 2 ) a12 1 a22 2 an 2 n ( ) a a a n 1n 1 2n 2 nn n
=x1 1 x2 2 xn n
=x1 1 x2 2 xn n
由已知,即得 = .
.
由此知,一个线性变换完全由它在一组基上的作 用所决定.
( 2 ) (0,1,0) (0,1,1) 0 1 1 2 1 3
( 3 ) (0,0,1) (0,0,0) 0 1 0 2 0 3
1 0 0 ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) 0 1 0 1 1 0
和 :
数量乘积
k : k k k P
记作 1 .
的逆变换: E
n
n 的n次幂: , n为自然数
的多项式: f ( ) am m a1 a0 E
5/36
二、 线性变换的简单性质
第七章 线性变换
第七章 线性变换§1基本知识§1. 1 基本概念 1、线性变换:2、线性变换的运算 (1)加法: (2)减法: (3)数乘: (4)乘法:3、线性变换在给定基下的矩阵:4、矩阵的相似:5、矩阵的迹与范数:6、矩阵的特征多项式:7、特征值与特征根:8、线性变换的对角化:9、线性变换的值域: 10、线性变换的核:11、线性变换的秩与零度: 12不变子空间:13、若尔当块与若尔当形矩阵: 14、最小多项式:§1. 2 基本定理定理7.1设)(V L 是数域P 上的线性空间V 上的线性变换的全体构成的集合,那么)(V L 关于线性变换的加法和数乘运算也构成数域P 上的线性空间;定理7.2设n ααα,,,21 是数域P 上的n 维线性空间V 的一个基,n βββ,,,21 是V 上任意n 个向量,则存在唯一的线性变换)(V L ∈σ,使得:),,2,1()(n i i i ==βασ;定理7.3(线性变换与给定基下的矩阵的对应与运算定理)设n ααα,,,21 是数域P 上的n 维线性空间V 的一个基,对任意线性变换)(V L ∈σ,令σ和它在给定的这个基下的矩阵对应,那么这个对应是)(V L 到n n P ⨯的一一对应,且设)(,V L ∈τσ在这个基下的矩阵分别是B A ,,P k ∈,那么 (1)B A +→+τσ; (2)kA k →σ; (3)AB →στ;(4)σ可逆的充分必要条件是:A 为可逆矩阵;且11--→A σ。
定理7.4(象的坐标计算公式)设)(V L ∈σ在数域P 上的n 维线性空间V 上的基n ααα,,,21 下的矩阵是A ,V ∈α在基n ααα,,,21 下的坐标是),,,(21n x x x ,)(ασ在基n ααα,,,21 下的坐标是),,,(21n y y y ,那么:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y 2121; 定理7.5(线性变换关于不同基的矩阵相似定理)设)(V L ∈σ在数域P 上的n 维线性空间V 上的基n ααα,,,21 和n βββ,,,21 下的矩阵分别是A 和B ,基n ααα,,,21 到n βββ,,,21 的过渡矩阵是T ,那么:AT T B 1-=;定理7.6 (线性变换关于不同基的矩阵相似定理)同一线性变换在不同基下的矩阵是相似矩阵;反之,两个相似的矩阵一定可以成为同一个线性变换在两组基下的矩阵;定理7.7 相似矩阵的特征多项式相等;定理7.8 (线性变换对角化的条件)设σ是数域P 上的n 维线性空间V 上的一个线性变换,那么σ在V 的某个基下的矩阵是对角矩阵的充分必要条件是:σ有n 个线性无关的特征向量,即V 有一个由σ的特征向量构成的基; 定理7.9 属于不同特征值的特征向量一定是相性无关的;推论7.1设σ是数域P 上的n 维线性空间V 上的一个线性变换,如果σ的特征多项式在数域P 上有n 个不同的特征值,那么σ可以对角化; 推论7.2 设σ是复数域上的n 维线性空间V 上的一个线性变换,如果σ的特征多项式没有重根,那么σ可以对角化;定理7.10 设t λλλ,,,21 是线性变换σ所有不同的特征值iisi i ααα,,,21是σ的属于特征值i λ的线性无关的特征向量,那么:iiisi i s s ααααααααα,,,;;,,,;,,,21222211121121线性无关;定理7.11设σ是数域P 上的n 维线性空间V 上的一个线性变换,n ααα,,,21 是V 的一个基,σ在基n ααα,,,21 下的矩阵是A ,那么 (1)))(,),(),(()(21n L V ασασασσ =; (2)σ的秩)(A R =;定理7.12设σ是数域P 上的n 维线性空间V 上的一个线性变换,则σ的值域的一个基的原象和σ的核的一个基并起来构成V 的一个基;由此得:σ的秩+σ的零度n =。
线性变换的相关知识点总结
线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。
2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。
根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。
二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。
设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。
线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。
由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。
另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。
线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。
因此,矩阵表示是研究线性变换的重要工具。
三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。
设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。
这里的λ就是T的特征值,v就是T的特征向量。
线性变换总结篇高等代数
第 7章 线性变换知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=; 注:V 的线性变换就是其保持向量的加法与数量乘法的变换;2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈;性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关;性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关;注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s s s s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B ;4. 线性变换举例1设V 是数域P 上的任一线性空间;零变换: ()00,V αα=∀∈; 恒等变换:(),V εααα=∀∈;幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使得σ=m 0,就称σ为幂零变换;幂等变换:设σ是数域P 上的线性空间V 的线性变换,如果2σσ=,就称σ为幂等变换;2nV P =,任意取定数域P 上的一个n 级方阵A ,令:111222n n n n x x x x x x A ,P x x x σ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=∀∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 3[]V P x =,()()()()[]D f x f x ,f x P x '=∀∈; 4n nV P⨯=,()ij A a =是V 中一固定矩阵,()n n X AX ,X P τ⨯=∀∈;二.线性变换的运算、矩阵 1. 加法、乘法、数量乘法1 定义: 设V 是数域P 上的线性空间,,στ是V 的两个线性变换,定义它们的和στ+、乘积στ分别为:对任意的V α∈()()()()στασατα+=+,()()()()σταστα=任取k P ∈,定义数量乘积k σ为:对任意的V α∈()()()k k σασα=σ的负变换-σ为:对任意的V α∈()()()-=-σασα则στ+、στ、k σ与-σ都是V 的线性变换;2()L V ={σσ为V 的线性变换},按线性变换的加法和数乘运算做成数域P 上的维线性空间;2. 线性变换的矩阵1定义:设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα是V 的一组基,如果:()()()11111221221122221122n n n n n n n nn na a a a a a a a a σαααασαααασαααα=+++=+++=+++那么称矩阵112111222212n n nnnn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭为线性变换σ在基12,,,n ααα下的矩阵;此时:()()()()()()121212,,,,,,,n n n A σααασασασαααα==2线性变换的和、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设12,,,n ααα是数域P 上的n 维线性空间V 的一组基,(),L V στ∀∈,设它们在12,,,n ααα下的矩阵分别为A,B ;1():n n f L V P ⨯→,A σ是数域P 上的线性空间()L V 到数域P 上的线性空间n n P ⨯的同构映射,因此()n n L V P ⨯≅;2σ可逆⇔A 可逆3①στ+、στ与-σ在基12,,,n ααα下的矩阵分别为A B,AB +与A -; ② 任取k P ∈,k σ在基12,,,n ααα下的矩阵为kA ;③ 若σ为可逆线性变换,则1σ-在基12,,,n ααα下的矩阵为1A -;④ 设()1110mm m m f x a x a xa x a --=++++为数域P 上的任一多项式,那么()1110m m m m f a a a a σσσσε--=++++ε为V 的恒等变换在基12,,,n ααα下的矩阵为:()1110m m m m n f A a A a A a A a E --=++++;三.特征值、特征向量与对角矩阵1. 矩阵的特征值与特征向量1矩阵的特征多项式:设A 为n 级复方阵,将多项式()λλ=-A n f E A 称为A 的特征多项式;注: 1若()ijnnA a =,则:()()()()1112211λλλλ-=-=+-+++++-nn n A n nn f E A a a a A()()()11tr 1λλ-=+-++-nn n A A2 将λ-n E A 称为矩阵A 的特征矩阵,0λ-=n E A 称为矩阵A 的特征方程;2 定义:n 级方阵A 的特征多项式()λλ=-A n f E A 在复数域上的所有根都叫做其特征值根,设0λ∈C 是A 的特征值,齐次线性方程组()0λ-=n E A X 的每个非零解都叫做矩阵A 的属于其特征值0λ的特征向量;3求法:1求()λλ=-A n f E A 在复数域上的所有根12λλλn ,,,重根按重数计算;2对()1λ=k k ,n 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则矩阵A 的属于特征值λk 的全部特征向量为1122,,ηηη+++k k k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为不全为零的任意常数复数;4 重要结论:1设0λ∈C 是A 的特征值,0X 是A 的属于其特征值0λ的特征向量,()g x 为一复系数多项式;① ()0λg 为()g A 的特征值,0X 为()g A 的属于特征值()0λg 的特征向量; ② 如果A 还是可逆矩阵,那么1λ与λA分别为1-A 和*A 的特征值,0X 为1-A 的属于特征值1λ的特征向量,0X 为*A 的属于特征值λA的特征向量,③ 若12λλλn ,,,是矩阵A 的全部特征值,那么()()()12λλλn g ,g ,,g 就是()g A 的全部特征值,如果A 还是可逆矩阵,则12111λλλn,,,为1-A 的全部特征值,12λλλnA A A,,,为*A 的全部特征值;2若12λλλn,,,是矩阵A的全部特征值,那么()12tr λλλ=+++n A ,12λλλ=n A ;2. 线性变换的特征值与特征向量1定义:设σ是数域P 上的线性空间V 的线性变换,0λ∈P ,若存在0α≠∈V ,使得()0σαλα=,就称0λ为σ的一个特征值,α为σ的一个属于特征值0λ的特征向量;2线性变换的特征多项式设σ是数域P 上的n 维线性空间V 的线性变换,任取V 的一组基12,,,n ααα,设σ在该基下的矩阵为A ,称矩阵为A 的特征多项式λ-n E A 为σ的特征多项式,记为()σλλ=-n f E A ,即线性变换的特征多项式为其在任意基下矩阵的特征多项式;3求法:设σ是数域P 上的n 维线性空间V 的线性变换;1取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;2求()σλλ=-n f E A 在P 中的所有根12λλλm ,,,0≤≤m n ,重根按重数计算,且0=m 表示σ无特征值;3若0>m ,对()1λ=k t ,s 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则线性变换σ的属于特征值λk 的全部特征向量为()()121122,,,,,αααηηη+++k k n k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为P 中不全为零的任意常数;3. 矩阵相似1定义:设A,B 是数域P 上的两个n 级方阵,如果存在数域P 上的n 级可逆矩阵T ,使得1-=T AT B ,就称矩阵A 相似于矩阵B ,记为A B ;2性质:1矩阵相似是等价关系,即:设A,B,C 都是n 级方阵,那么:①A A ; ② 若A B ,那么B A ;③ 若A B 且B C ,则A C ;2若AB ,那么()()λλλλ=-==-A n B n f E A f E B ,因此矩阵A 与矩阵B 有相同的特征值,相同的迹()()tr tr =A B ,相同的行列式=A B ;3两个实对称阵相似⇔它们有相同的特征值;3有限维线性空间上的线性变换在不同基底下的矩阵彼此相似;4若1-=T AT B ,那么1-+=∀∈kkB T A T ,k Z ;4. 线性变换与矩阵可对角化 1矩阵可对角化1设A 是n 级方阵,如果存在n 级可逆矩阵T ,使得1-T AT 为对角阵,则称A 可对角化;2n 级方阵A 可对角化⇔A 有n 个线性无关特征向量; 3如果n 级方阵A 有n 个不同的特征值,则A 可对角化; 4设12λλλk ,,,是n 级方阵A 的所有不同的特征值,()()()()1212λλλλλλλλ=-=---klll A n k f E A称()12=i l i ,,,k 为λi 的代数重数;称=-i s n 秩()()12λ-=i n E A i ,,,k 为λi 的几何重数;()12≤=i i s l i ,,,k ;n 级方阵A 可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;注:1. 设齐次线性方程组()0λ-=i n E A X 的解空间为i W ,则()dim =i i s W2. 称{}λααλα=∈=i ni V CA 为n 级方阵A 的属于特征值λi 的特征子空间,那么()dim λ=i i s V2线性变换可对角化1 设σ是数域P 上的n 维线性空间V 的线性变换,如果存在V 的一组基,使得σ 在该基下的矩阵为对角阵,就称σ可对角化;2数域P 上的n 维线性空间V 的线性变换σ可对角化⇔σ有n 个线性无关特征向量; 3设σ是数域P 上的n 维线性空间V 的线性变换,如果σ有n 个不同的特征值,则σ可对角化;4设σ是数域P 上的n 维线性空间V 的线性变换,σ在V 的一组基下的矩阵为A , 设12λλλk ,,,是n 级方阵A 的所有不同的特征值;① 若12λλλ∈k ,,,P ,那么:σ可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;② 若12λλλk ,,,不全在数域P 中,则σ不可对角化;注:λi 的几何重数 =()dim λi V ,其中(){}λασαλα=∈=i iV V 为σ的属于特征值λi 的特征子空间;四.线性变换的值域与核1.定义:设σ是数域P 上的线性空间V 的线性变换,将()(){}100V σασα-=∈=,(){}V V σσαα=∈分别称为线性变换σ的核与值域()10σ-与V σ也分别记为ker σ与Im σ;2.线性变换的秩与零度: V σ与()10σ-都是V 的子空间,将()dim V σ 与()()1dim 0σ-分别称为σ的秩和零度;3. 有限维线性空间的线性变换的值域与核设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα为V 的一组基,σ 在该基下的矩阵为A ,=r 秩()A ,1122n n a a a V αααα=+++∈;1()1210n a a a ασ-⎛⎫ ⎪ ⎪∈⇔ ⎪ ⎪⎝⎭是齐次线性方程组0=AX 的解;2若12,,,ηηη-n r 是0=AX 的一个基础解系,那么12,,,γγγ-n r 其中()()12,,,1,2,,γαααη==-k n k k n r 就是()10σ-的一组基,于是:()()1dim0n r σ-=-()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈因此σ的秩和零度为n r -; 3()()()()12n V L,,,σσασασα=于是()()()12σασασαn ,,,的一个极大线性无关组就是V σ的一组基,而()()()12σασασαn ,,,的秩等于秩()A =r ,所以()dim V r σ=,即σ的秩为秩()A =r ; 4()()()1dim dim 0V n σσ-+=;3. 求法:设V 是数域P 上的n 维线性空间,σ是V 的线性变换; 1()10σ-的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 解齐次线性方程组0=AX ,得其一个基础解系12,,,ηηη-n r =r 秩()A ;③ 令()()12,,,1,2,,γαααη==-k n k k n r ,得()10σ-的一组基12,,,γγγ-n r ,()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈2V σ的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 设矩阵A 的列向量组为12,,,n ηηη,求出12,,,n ηηη的一个极大线性无关组12,,,r i i i ηηη就得到()()()12σασασαn ,,,的一个极大线性无关组()()()12σασασαri i i ,,,,()()()12σασασαri i i ,,,就是V σ的一组基;()()()()12ri i i V L ,,,σσασασα=()()(){}112212σασασα=+++∈r r r i i i i i i i i i l l l l ,l ,,l P五.不变子空间1. 定义:设σ是数域P 上的线性空间V 的线性变换,W 是V 的子空间,如果对α∀∈W ,都有()σα∈W 即()σ⊆W W ,就称W 是σ的不变子空间,也称σ-子空间; 2. 设V 是数域P 上的线性空间,那么{}0与V 都是V 的任一线性变换的不变子空间; 3. 设σ是数域P 上的线性空间V 的线性变换,λ是σ的任意一个特征值,那么σ的特征子空间(){}λασαλα=∈=V V 都是σ的不变子空间;4. 线性变换的循环子空间:设σ是数域P 上的0n >维线性空间V 的线性变换,任取0V α≠∈,必存在正整数m ,使得()()1m ,,,ασασα-线性无关,而()()m ,,,ασασα线性相关,令()()()1m W L ,,,ασασα-=,则W 是σ的不变子空间,称W 为σ的循环子空间;5. 设V 是数域P 上的n 维线性空间,σ是V 的线性变换,W 是σ的不变子空间,()0<dim =<W m n ,取W 的一组基12,,,αααm ,将其扩充为V 的一组基121,,,,,,ααααα+m m n ,那么σ在该基下的矩阵为1230⎛⎫⎪⎝⎭A A A ,其中1A 为σW在W 的基12,,,αααm 下的矩阵;六.若尔当 Jordan 标准形1.若尔当块与若尔当形矩阵: 1若尔当块:形式为()0000100000100001t tJ ,t λλλλλ⨯⎛⎫⎪ ⎪⎪=⎪⎪ ⎪⎝⎭ 的矩阵称为若尔当块,其中λ为复数;2若尔当形矩阵:由若干个若尔当块组成的准对角阵称为若尔当形矩阵,其一般形状如:12s A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭其中:111i ii ii ii k k A λλλλ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,且12s ,,,λλλ中有些可以相等;2. 复数域上有限维线性空间上的线性变换与复方阵1设σ是复数域C 上的0n >维线性空间V 的任意一个线性变换,那么必存在V 的一组基,使得σ在该基下的矩阵为若尔当形矩阵;2每个n 级复矩阵都与一个若尔当形矩阵形矩阵相似;3. 设σ是复数域上的0n >维线性空间V 的线性变换,那么σ幂零⇔σ的特征值都为零;。
第七章 线性变换
,即A
1
B .
可以证明,可逆线性变换一定是双射,从而它就是线性空间到其自身的同构映射。
类似于方阵的幂与多项式概念,关于线性变换,也有所谓幂与多项式概念,具体如下 定义 1.7 设 A L(V ), 利用乘法定义可以归纳地定义线性变换的正整数次幂:
2
A
A A , A
3
A
2
A , , A
第七章
线性变换
变换的思想是数学中一个十分重要的思想,几乎可以说无处不在,也可以这么说,如 果不研究变换,数学就变得死水一潭、没有意义。线性变换是高等代数中一个重要概念, 它对研究线性空间本身结构有着重要作用,为矩阵运算的简化以及矩阵的分解提供了方法。
§1
线性空间上的线性变换及其运算
如果说同构映射反映了两个线性空间之间的关系, 那么, 这一节将要介绍的线性空间上 的线性变换反映的将是线性空间到其自身的关系。 定义 1.1 设 V 是数域 P 上一个线性空间,如果映射 A : V V 满足:
3
( x, y, z )T 3 , 定义 A ( x, y, 0)T 3 , 证明: A 是 3 上的线性变换。
4. 设 A 是实数域 上 3 维线性空间 中绕 Oz 轴由 Ox 向 Oy 方向旋转 90 的变换,证
3
明: A 是 上的线性变换,并且 A 5. 6. 证明性质 1.1, 1.3.
3
4
E .
在 P[ x] 中, 对任意 f ( x) P[ x], A f ( x) f' ( x), B f ( x) xf ( x), 其中 f' ( x) 是 f ( x) 的导函数,证明: AB BA E , 这里E 为恒等变换。
线性变换知识点总结
线性变换知识点总结一、引言线性变换是线性代数中的重要概念,它是在向量空间中的一种特殊映射。
线性变换具有许多重要的性质和应用,因此研究线性变换对于理解线性代数和应用数学有着重要的意义。
本文将从线性变换的基本概念、性质和应用进行总结,希望能够帮助读者对线性变换有更深入的理解。
二、线性变换的定义线性变换是向量空间之间的一种映射,具体来说,设V和W是两个向量空间,f:V→W是从V到W的映射。
如果对于V中的任意向量u、v和任意标量a,b,都有f(au+bv)=af(u)+bf(v)那么f称为一个线性变换。
三、线性变换的矩阵表示线性变换可以用矩阵来表示,假设V和W是n维向量空间,我们选择V和W的基,那么可以得到V和W中的向量可以用n维列向量表示。
设f:V→W是一个线性变换,选择V和W的基分别为{v1,v2,...,vn}和{w1,w2,...,wn},那么f的矩阵表示为[f]=(f(v1) f(v2) ... f(vn))其中f(vi)表示w中的基向量wi在f映射下的像,也就是f(vi)对应的列向量。
根据线性变换的定义,我们可以得到映射f的矩阵表示满足下列关系f(av1+bv2)=af(v1)+bf(v2)等价于[f](av1+bv2)=a[f]v1+b[f]v2其中[f]v1和[f]v2为f(v1)和f(v2)的列向量表示。
四、线性变换的性质1. 线性变换的保直性线性变换f:V→W将V中的任意向量线性映射到W中,这种映射保持向量之间的直线性质,即通过f映射后的图像仍然是一条直线。
这是线性变换的一个重要性质,它保证了线性变换后的图像具有一些有用的性质,比如直线上的点在f映射后仍然在同一条直线上。
2. 线性变换的局部性线性变换f:V→W保持向量之间的“相对位置”不变,即如果向量v1和v2之间的相对位置关系在V中是一定的,那么在映射f下,向量f(v1)和f(v2)之间的相对位置关系也是一定的。
这一性质对于理解线性变换的几何意义有着重要的作用,它意味着线性变换可以保持向量之间的某些几何性质。
第七章 线性变换
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
7线性变换
因为
(A + B ) ( + ) = A ( + ) + B ( + ) = (A ( ) + A ( ) ) + (B () + B ( )) = (A ( ) + B ( ) ) + (A () + B ( )) = (A + B ) ( ) + ( A + B ) ( ) , (A + B ) ( k ) = A ( k ) + B ( k ) = k A ( ) + k B ( )
可能把线性无关的向量组也变成线性相关的向量
组. 例如零变换就是这样.
17
§2 线性变换的运算
线性变换的乘积
线性变换的加法
线性变换的数量乘法 线性变换的逆变换
线性变换的多项式
举例
18
一、线性变换的乘积
1. 定义 线性空间的线性变换作为映射的特殊情形当然 可以定义乘法.
定义2
设 A , B 是线性空间 V 的两个线性变
15
= -A ( ).
性质 2
线性变换保持线性组合与线性关系式不变.
换句话说,如果 是 1 , 2 , … , r 的线性组合:
= k11 + k22 + … + krr ,
那么经过线性变换 A 之后, A ( ) 是 A ( 1 ), A ( 2 ) , …, A ( r ) 同样的线性组合: A ( ) = k1A ( 1 ) + k2A ( 2 ) + …+ krA ( r ) . 又如果 1 , 2 , … , r 之间有关系式
T( + ) = - ( + )+ 2( + , ) = [- + 2 ( , ) ] + [- + 2 ( , ) ] = T( ) + T ( )
第七章 线性变换复习概述
第七章线性变换§1 线性变换的定义一、线性变换的定义线性空间V到自身的映射称为V 的一个变换.定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元素βα,和数域P中任意数k,都有α+)=A (α)+A (β);A (βA(αk)=A k(α).一般用花体拉丁字母A,B,…表示V的线性变换,A (α)或Aα代表元素α在变换A下的像.§3 线性变换和矩阵一、线性变换关于基的矩阵设V是数域P上n维线性空间.n εεε,,,21 是V 的一组基,现在建立线性变换与矩阵关系.空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式n n x x x εεεξ+++= 2211 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系:A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε)上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换Å与ℬ在这组基上的作用相同,即A i ε=B i ε, ,,,2,1n i =那么A = B .结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换Å使A i ε=i α .,,2,1n i =定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换Å使A i ε=i α .,,2,1n i =定义2 设n εεε,,,21 是数域P 上n维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出:⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=.,,22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是A (n εεε,,,21 )=(A (1ε),A Å(2ε),…, A (n ε))=A n ),,,(21εεε其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵.定理3 设线性变换A 在基n εεε,,,21 下的矩阵是A ,向量ξ在基n εεε,,,21 下的坐标是),,,(21n x x x ,则A ξ在基n εεε,,,21 下的坐标),,,(21n y y y 可以按公式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y 2121 计算.二、同一个线性变换在不同基下的矩阵的关系.线性变换的矩阵是与空间中一组基联系在一起的.一般说来,随着基的改变,同一个线性变换就有不同的矩阵.为了利用矩阵来研究线性变换,有必要弄清楚线性变换的矩阵是如何随着基的改变而改变的.定理4设线性空间V 中线性变换A 在两组n εεε,,,21 (6) n ηηη,,,21 (7)下的矩阵分别为A 和B ,从基(6)到(7)的过渡矩阵是X ,于是AX X B 1-=.定理4 告诉我们,同一个线性变换A 在不同基下的矩阵之间的关系.定义3 设A ,B 为数域P 上两个n 级方阵,如果可以找到数域P 上的n 级可逆方阵X ,使得AX X B 1-=,就说A 相似于B ,记作B A ~.相似是矩阵之间的一种关系,这种关系具有下面三个性质:1. 反身性:A A ~2. 对称性:如果B A ~,那么A B ~.3. 传递性:如果B A ~,C B ~,那么C A ~.定理5 线性变换在不同基下所对应的矩阵是相似的;反过来,如果两个矩阵相似,那么它们可以看作同一个线性变换在两组基下所对应的矩阵.矩阵的相似对于运算有下面的性质.如果XA XB 111-=, X A X B 212-=,那么 X A A X B B )(21121+=+-,X A A X B B )(21121-=由此可知,如果AX X B 1-=,且)(x f 是数域P 上一多项式,那么X A f X B f )()(1-=利用矩阵相似的这个性质可以简化矩阵的计算.例1 设V 是数域P 上一个二维线性空间,21,εε是一组基,线性变换A 在21,εε下的矩阵是⎪⎪⎭⎫ ⎝⎛-0112 计算A 在V 的另一组基21,ηη下的矩阵,这里⎪⎪⎭⎫ ⎝⎛--=2111),(),(2121εεηη §4 特征值与特征向量一、线性变换的特征值和特征向量的概念定义4 设A 是数域P 上线性空间V的一个线性变换,如果对于数域P 中一数0λ,存在一个非零向量ξ,使得A ξ=0λξ (1)那么0λ称为A 的一个特征值,而ξ叫做A 的属于特征值0λ的一个特征向量.如果ξ是线性变换A 的属于特征值0λ的特征向量,那么ξ的任何一个非零倍数ξk 也是A 的属于特征值0λ的特征向量.这说明特征向量不是被特征值所唯一决定的.相反,特征值却是被特征向量所唯一决定的,因为,一个特征向量只能属于一个特征值.二、特征值与特征向量的求法 设V 是数域P 上n 维线性空间,n εεε,,,21 是它的一组基,线性变换A 在这组基下的矩阵是A .设0λ是特征值,它的一个特征向量ξ在n εεε,,,21 下的坐标是n x x x 00201,,, ,则A ξ的坐标是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x A 00201 . ξλ0的坐标是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 002010 λ 因此(1)式相当于坐标之间的等式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x x x x A 00201000201 λ (2) 或0)(002010=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-n x x x A E λ 这说明特征向量ξ的坐标),,,(00201n x x x 满足齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++,,,02211202222121101212111n n nn n n n n n n x x a x a x a x x a x a x a x x a x a x a λλλ 即⎪⎪⎩⎪⎪⎨⎧=-+---=---+-=----,0)(,0)(,0)(022112222012112121110n nn n n n n n n x a x a x a x a x a x a x a x a x a λλλ (3) 由于0≠ξ,所以它的坐标n x x x 00201,,, 不全为零,即齐次方程组有非零解.而齐次方程组有非零解的充要条件是它的系数行列式为零,即00212220211121100=---------=-nnn n n n a a a a a a a a a A E λλλλ. 定义5 设A 是数域P 上一个n 级矩阵,λ是一个数字.矩阵A E -λ的行列式.212222111211nn n n n na a a a a a a a a A E ---------=-λλλλ(4)叫做矩阵A 的特征多项式,这是数域P 上的一个n 次多项式.上面的分析说明,如果0λ是线性变换A 的特征值,那么0λ一定是矩阵A 的特征多项式的一个根;反过来,如果0λ是矩阵A 的特征多项式在数域P 中的一个根,即00=-A E λ,那么齐次方程组(3)就有非零解.这时,如果),,,(00201n x x x 是方程组(3)的一个非零解,那么非零向量)0202101n n x x x εεεξ+++= 满足(1),即0λ是线性变换A 的一个特征值,ξ就是属于特征值0λ的一个特征向量.因此确定一个线性变换A 的一个特征值与特征向量的方法可以分成以下几步:1.在线性空间V 中取一组基n εεε,,,21 ,写出A 在这组基下的矩阵A ;2.求出A 的特征多项式A E -0λ在数域P 中全部的根,它们也就是线性变换A 的全部特征值;3.把所求得的特征值逐个地代入方程组(3),对于每一个特征值,解方程组(3),求出一组基础解系,它们就是属于这个特征值的几个线性无关的特征向量在基n εεε,,,21 下的坐标,这样,也就求出了属于每个特征征的全部线性无关的特征向量.矩阵A 的特征多项式的根有时也称为A 的特征值,而相应的线性方程组(3)的解也就称为A 的属于这个特征值的特征向量.例1 (1)设21λλ,是线性变换A 的两个不同特征值,21,αα是分别属于21λλ,的特征向量,试证明21αα+不是A 的特征向量。
第七章 线性变换
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++3)设向量组n ααα,,,21 线性相关,则向量组)(),(),(21n T T T ααα 也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21 是V 的一个基,且n n a a a εεεεσ12211111)(+++= n n a a a εεεεα22221122)(+++=n nn n n n a a a εεεεσ ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσ =A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσ ==则称A 为线性变换σ在基n εεε,,,21 下的矩阵。
4. 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
高等代数第七章线性变换
高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。
二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。
只要取一组足够好的基,就可以得到足够好的矩阵。
某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。
三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。
第七章 线性变换
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量,n V αβ∈,有 )()()(βαβαT T T +=+ 2) 对任意向量,n V k F α∈∈,有)()(ααkT k T =则称T 为n V 中的线性变换。
2. 线性变换的性质及运算 1)0)0(=T ,)()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++3)设向量组n ααα,,,21 线性相关,则向量组)(),(),(21n T T T ααα 也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:εσσσσ0111)(a a a a f m m m m ++++=-- 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21 是V 的一个基,且n n a a a εεεεσ12211111)(+++= n n a a a εεεεα22221122)(+++=n nn n n n a a a εεεεσ ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσ =A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσ == (*)则称A 为线性变换σ在基n εεε,,,21 下的矩阵。
4. 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对应与逆矩阵。
高等代数第七章线性变换复习讲义
⾼等代数第七章线性变换复习讲义第七章线性变换⼀.线性变换的定义和运算1.线性变换的定义(1)定义:设V是数域p上的线性空间,A是V上的⼀个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的⼀个线性变换。
(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V.它们都是V的线性变换。
(3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P.2.线性变换的性质设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0;(2)A(-α)=-A(α),任意α∈V;(3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,αs线性⽆关时,不能推出A(α1),A(α2),…,A(αs)线性⽆关。
3.线性变换的运算4.线性变换与基的关系(1)设ε1,ε2,…,εn是线性空间v的⼀组基,如果线性变换A和B在这组基上的作⽤相同,即Aεi=Bεi,i=1,2,…,n,则有A=B.(2)设ε1,ε2,…,εn是线性空间v的⼀组基,对于V 中任意⼀组向量α1,α2,…,αn,存在唯⼀⼀个线性变换A 使Aεi=αi,i=1,2,…,n.⼆.线性变换的矩阵1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的⼀组基,A是V中的⼀个线性变换,基向量的像可以被基线性表出Aε1=a11ε1+a21ε2+…an1εnAε2=a12ε1+a22ε2+…an2εn……Aεn= a1nε1+a2nε2+…annεn⽤矩阵表⽰就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中a 11 a 12 …… a 1na 21 a 22 …… a 2nA= ……a n1 a n2 …… a nn称为A在基ε1,ε2,…,εn下的矩阵。
第七章线性空间与线性变换
式加法和数与多项式的乘法,构成线性空间 P[ x]n
例5 所有收敛的实数数列按数列极限的加法和数乘,
构成线性空间 l 。
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间,
或矩阵 A 的核空间或零空间,即
对于 (1,2 ), =(1,2 ) 及 k R ,定义
加法 (1+1 ,2 +2 +11)
数乘
k
(k1
,
k2 +
1 2
k(k
1)12 )
判断 V 是否构成 R 上的线性空间.
三、线性空间的基本性质
定理12 如果 V 是数域 F 上的线性空间,则
(1) 线性空间V 中的零向量 是唯一的。
例14 集合 T1 {x x [x1, x2, 0]T , x1, x2 R} 是向 量空间。它是 R3 在 ox1 x2 平面上的投影子空间。
例15 R3 中过原点的直线是R3 的一个子空间。
判定非空集合是否为线性空间,要验算运算的封闭性, 以及8条运算律,相当地麻烦。至于判定线性空间的子 集是否为线性空间,就比较方便了。
(A1) 加法交换律: , (A2) 加法结合律:( ) ( ),
(A3) 具有加法单位元(零向量) R2 ,使得
(A4) 具有加法逆元(负向量) R2 ,使得 ( )
(M1) 数乘的结合律:k(l ) (kl) (M2) 数乘的单位元:1 (D1) 分配律1: k( ) k k (D2) 分配律2:(k l) k l
分析: 容易验证 1, 2, 3 线性无关,因此
也是 P[ x]3 的基。 由高等数学中的泰勒公式,可知
第七章 线性变换_18961
第七章 线性变换习题精解1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A ),,(),,(233221321x x x x x x x +=;4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是.3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk ,A ≠)(αk k A()α.4)是.因取),,(),,,(321321y y y x x x ==βα,有A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α故A 是P 3上的线性变换.5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换.6)是.因任取][)(],[)(x P x g x P x f ∈∈则.A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g )A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=则A (ka)=-i , k(A a)=i, A (ka )≠k A (a) 8)是.因任取二矩阵Y X ,n n P ⨯∈,则A (=+=+=+BYC BXC C Y XB Y X )()A X +A YA (k X )=k BXC k kXB ==)()(A X 故A 是n n P ⨯上的线性变换.2.在几何空间中,取直角坐标系oxy,以A 表示将空间绕ox 轴由oy 向oz 方向旋转90度的变换,,以B 表示绕oy 轴向ox 方向旋转90度的变换,以C 表示绕oz 轴由ox 向oy 方向旋转90度的变换.证明:A 4=B 4=C 4=E,AB ≠BA,A 2B 2=B 2A 2并检验(AB )2=A 2B 2是否成立. 解 任取一向量a=(x,y,z),则有 1) 因为A a=(x,-z,y), A 2a=(x,-y,-z) A 3a=(x,z,-y), A 4a=(x,y,z)B a=(z,y,-x), B 2a=(-x,y,-z) B 3a=(-z,y,x), B 4a=(x,y,z)C a=(-y,x,z), C 2a=(-x,-y,z) C 3a=(y,-x,z), C 4a=(x,y,z) 所以A 4=B 4=C 4=E 2) 因为AB (a)=A (z,y,-x)=(z,x,y) BA (a)=B (x,-z,y)=(y,-z,-x) 所以 AB ≠BA 3)因为A 2B 2(a)=A 2(-x,y,-z)=(-x,-y,z) B 2A 2(a)=B 2(x,-y,-z)=(-x,-y,z) 所以A 2B 2=B 2A 23) 因为(AB )2(a)=(AB )(AB (a))_=AB (z,x,y)=(y,z,x) A 2B 2(a)=(-x,-y,z) 所以(AB )2≠A 2B 23.在P[x] 中,A ')(f x f =),(x B )()(x xf x f = 证明:AB-BA=E证 任取∈)(x f P[x],则有(AB-BA ))(x f =AB )(x f -BA )(x f =A ())(x xf -B ('f ))(x =;)(xf x f +)(x -'xf )(x =)(x f 所以 AB-BA=E4.设A,B 是线性变换,如果AB-BA=E,证明: A k B-BA k =k A 1-k (k>1) 证 采用数学归纳法. 当k=2时A 2B-BA 2=(A 2B-ABA)+(ABA-BA 2)=A(AB-BA)+(AB-BA)A=AE+EA=2A 结论成立.归纳假设m k =时结论成立,即A m B-BA m =m A 1-m .则当1+=m k 时,有A 1+m B-BA 1+m =(A 1+m B-A m BA)+(A m BA-BA 1+m )=A m (AB-BA)+(A m B-BA m )A=A m E+m A1-m A=)1(+m A m即1+=m k 时结论成立.故对一切1>k 结论成立. 5.证明:可逆变换是双射.证 设A 是可逆变换,它的逆变换为A 1-.若a ≠b ,则必有A a ≠A b,不然设Aa=A b,两边左乘A 1-,有a=b,这与条件矛盾. 其次,对任一向量b,必有a 使A a=b,事实上,令A 1-b=a 即可. 因此,A 是一个双射.6.设1ε,2ε, ,n ε是线性空间V 的一组基,A 是V 上的线性变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 7章 线性变换7、1知识点归纳与要点解析一.线性变换的概念与判别 1、线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。
注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。
2、线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3、线性变换的性质设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈L 。
性质1、 ()()00,σσαα==-;性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。
性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL也线性无关。
注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果:11111221221122221122s s s sm m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L LL LL记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫⎪⎪= ⎪⎪⎝⎭L LL L M M M L于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换,12,,,m βββL 就是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++L L LLLL记:()()()()()1212,,,,m m σβββσβσβσβ=L L那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L M M M L设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭L LM M M L,12,,,m ηηηL 就是矩阵B 的列向量组,如果12,,,r i i i ηηηL 就是12,,,m ηηηL 的一个极大线性无关组,那么()()()12,r i i i σβσβσβL 就就是()()()12,m σβσβσβL 的一个极大线性无关组,因此向量组()()()12,m σβσβσβL 的秩等于秩()B 。
4、 线性变换举例(1)设V 就是数域P 上的任一线性空间。
零变换: ()00,V αα=∀∈; 恒等变换:(),V εααα=∀∈。
幂零线性变换:设σ就是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使得σ=m0,就称σ为幂零变换。
幂等变换:设σ就是数域P 上的线性空间V 的线性变换,如果2σσ=,就称σ为幂等变换。
(2)nV P =,任意取定数域P 上的一个n 级方阵A ,令:111222n n n n x x x x x x A ,P x x x σ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=∀∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M M 。
(3)[]V P x =,()()()()[]D f x f x ,f x P x '=∀∈。
(4)n nV P⨯=,()ij A a =就是V 中一固定矩阵,()n n X AX ,X P τ⨯=∀∈。
二.线性变换的运算、矩阵 1、 加法、乘法、数量乘法(1) 定义: 设V 就是数域P 上的线性空间,,στ就是V 的两个线性变换,定义它们的与στ+、乘积στ分别为:对任意的V α∈()()()()στασατα+=+,()()()()σταστα=任取k P ∈,定义数量乘积k σ为:对任意的V α∈()()()k k σασα=σ的负变换-σ为:对任意的V α∈()()()-=-σασα则στ+、στ、k σ与-σ都就是V 的线性变换。
(2)()L V ={σσ为V 的线性变换},按线性变换的加法与数乘运算做成数域P 上的维线性空间。
2、 线性变换的矩阵(1)定义:设V 就是数域P 上的n 维线性空间,σ就是V 的线性变换,12,,,n αααL 就是V的一组基,如果:()()()11111221221122221122n n n n n n n nn na a a a a a a a a σαααασαααασαααα=+++=+++=+++L L LLLL那么称矩阵112111222212n n n n nn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭LL M M M L为线性变换σ在基12,,,n αααL 下的矩阵。
此时:()()()()()()121212,,,,,,,n nnA σααασασασαααα==L L L(2)线性变换的与、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设12,,,n αααL 就是数域P 上的n 维线性空间V 的一组基,(),L V στ∀∈,设 它们在12,,,n αααL 下的矩阵分别为A,B 。
1)():n n f L V P ⨯→,A σa 就是数域P 上的线性空间()L V 到数域P 上的线性空间n n P ⨯的同构映射,因此()n n L V P ⨯≅。
2)σ可逆⇔A 可逆3)①στ+、στ与-σ在基12,,,n αααL 下的矩阵分别为A B,AB +与A -; ② 任取k P ∈,k σ在基12,,,n αααL 下的矩阵为kA ; ③ 若σ为可逆线性变换,则1σ-在基12,,,n αααL 下的矩阵为1A -;④ 设()1110mm m m f x a x a xa x a --=++++L 为数域P 上的任一多项式,那么()1110m m m m f a a a a σσσσε--=++++L (ε为V 的恒等变换)在基12,,,n αααL 下的矩阵为:()1110m m m m n f A a A a A a A a E --=++++L 。
三.特征值、特征向量与对角矩阵1、 矩阵的特征值与特征向量(1)矩阵的特征多项式:设A 为n 级复方阵,将多项式()λλ=-A n f E A 称为A 的特征多项式。
注: 1)若()ijnnA a =,则:()()()()1112211λλλλ-=-=+-+++++-L L nn n A n nn f E A a a a A()()()11tr 1λλ-=+-++-L nn n A A2) 将λ-n E A 称为矩阵A 的特征矩阵,0λ-=n E A 称为矩阵A 的特征方程。
(2) 定义:n 级方阵A 的特征多项式()λλ=-A n f E A 在复数域上的所有根都叫做其特征值(根),设0λ∈C 就是A 的特征值,齐次线性方程组()0λ-=n E A X 的每个非零解都叫做矩阵A 的属于其特征值0λ的特征向量。
(3)求法:1)求()λλ=-A n f E A 在复数域上的所有根12λλλL n ,,,(重根按重数计算);2)对()1λ=L k k ,n 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηL kk k k l (=-k l n 秩()λ-k n E A ),则矩阵A 的属于特征值λk 的全部特征向量为1122,,ηηη+++L k k k k k k k l k l s s s ,其中12,,,,L k k k k l s s s 为不全为零的任意常数(复数)。
(4) 重要结论:1)设0λ∈C 就是A 的特征值,0X 就是A 的属于其特征值0λ的特征向量,()g x 为一复系数多项式。
① ()0λg 为()g A 的特征值,0X 为()g A 的属于特征值()0λg 的特征向量; ② 如果A 还就是可逆矩阵,那么1λ与λA分别为1-A 与*A 的特征值,0X 为1-A 的属于特征值1λ的特征向量,0X 为*A 的属于特征值λA的特征向量,③ 若12λλλL n ,,,就是矩阵A 的全部特征值,那么()()()12λλλL n g ,g ,,g 就就是()g A 的全部特征值,如果A 还就是可逆矩阵,则12111λλλL n,,,为1-A 的全部特征值,12λλλL nA A A,,,为*A 的全部特征值;2)若12λλλL n,,,就是矩阵A 的全部特征值,那么()12tr λλλ=+++L n A ,12λλλ=L n A 。
2、 线性变换的特征值与特征向量(1)定义:设σ就是数域P 上的线性空间V 的线性变换,0λ∈P ,若存在0α≠∈V ,使得()0σαλα=,就称0λ为σ的一个特征值,α为σ的一个属于特征值0λ的特征向量。
(2)线性变换的特征多项式设σ就是数域P 上的n 维线性空间V 的线性变换,任取V 的一组基12,,,n αααL ,设σ 在该基下的矩阵为A ,称矩阵为A 的特征多项式λ-n E A 为σ的特征多项式,记为()σλλ=-n f E A ,即线性变换的特征多项式为其在任意基下矩阵的特征多项式。
(3)求法:设σ就是数域P 上的n 维线性空间V 的线性变换。
1)取定V 的一组基12,,,n αααL ,求出σ在该基下的矩阵A ; 2)求()σλλ=-n f E A 在P 中的所有根12λλλLm ,,,(0≤≤m n ,重根按重数计算,且0=m 表示σ无特征值)。
3)若0>m ,对()1λ=L k t ,s 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηL k k k k l (=-k l n 秩()λ-k n E A ),则线性变换σ的属于特征值λk 的全部特征向量为()()121122,,,,,αααηηη+++L L k k n k k k k k l k l s s s ,其中12,,,,L k k k k l s s s 为P 中不全为零的任意常数。
3、 矩阵相似(1)定义:设A,B 就是数域P 上的两个n 级方阵,如果存在数域P 上的n 级可逆矩阵T ,使得1-=T AT B ,就称矩阵A 相似于矩阵B ,记为:A B 。
(2)性质:1)矩阵相似就是等价关系,即:设A,B,C 都就是n 级方阵,那么:①:A A ; ② 若:A B ,那么:B A ;③ 若:A B 且:B C ,则:A C 。