高考新课标全国卷数学答题卡
2024年高考数学试卷(新课标Ⅱ卷)(含答案)
2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知1i z =--,则z =( )A. 0B. 1C.D. 2【答案】C 【解析】【分析】由复数模的计算公式直接计算即可.【详解】若1i z =--,则z ==.故选:C.2. 已知命题p :x "ÎR ,|1|1x +>;命题q :0x $>,3x x =,则( )A. p 和q 都是真命题 B. p Ø和q 都是真命题C. p 和q Ø都是真命题 D. p Ø和q Ø都是真命题【答案】B 【解析】【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p Ø是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q Ø是假命题,综上,p Ø和q 都是真命题.故选:B.3. 已知向量,a b r r满足1,22a a b =+=r r r ,且()2b a b -^r r r ,则b =r ( )A.12B.C.D. 1【答案】B 【解析】【分析】由()2b a b -^r r r 得22b a b =×r r r ,结合1,22a a b =+=r r r ,得22144164a b b b +×+=+=r r r r ,由此即可得解.【详解】因为()2b a b -^r r r ,所以()20b a b -×=r r r ,即22b a b =×r r r,又因为1,22a a b =+=r r r,所以22144164a b b b +×+=+=r r r r ,从而=r b 故选:B.4. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是( )A. 100块稻田亩产量的中位数小于1050kgB. 100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C. 100块稻田亩产量的极差介于200kg 至300kg 之间D. 100块稻田亩产量的平均值介于900kg 至1000kg 之间【答案】C 【解析】【分析】计算出前三段频数即可判断A ;计算出低于1100kg 频数,再计算比例即可判断B ;根据极差计的算方法即可判断C ;根据平均值计算公式即可判断D.【详解】对于 A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , 故 A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100´´+´+´+´+´+´=,故D 错误.故选;C.5. 已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ¢,P ¢为垂足,则线段PP ¢的中点M 的轨迹方程为( )A. 221164x y +=(0y >)B. 221168x y +=(0y >)C. 221164y x +=(0y >)D. 221168y x +=(0y >)【答案】A 【解析】【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ¢,因为M 为PP ¢的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 6. 设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x Î-时,曲线()y f x =与()y g x =恰有一个交点,则=a ( )的A. 1-B.12C. 1D. 2【答案】D 【解析】【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-Î-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x Î-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x Î-,则220,1cos 0x x ³-³,当且仅当0x =时,等号成立,可得221cos 0x x +-³,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--Î-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-Î-,又因为220,1cos 0x x ³-³当且仅当0x =时,等号成立,可得()0h x ³,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.7. 已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A.12B. 1C. 2D. 3【答案】B 【解析】【分析】解法一:根据台体体积公式可得三棱台的高h =,做辅助线,结合正三棱台的结构特征求得AM =111ABC A B C -补成正三棱锥-P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V -=,进而可求正三棱锥-P ABC .【详解】解法一:分别取11,BC B C 的中点1,D D,则11AD A D ==可知1111166222ABC A B C S S =´´==´=V V 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=+=,解得h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,的则1AA=,DN AD AM MN x=--=-,可得1DD==,结合等腰梯形11BCC B可得22211622BB DD-æö=+ç÷èø,即()221616433x x+=++,解得x=,所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC A B C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则11661832P ABCV d-=´´´=,解得d=,取底面ABC的中心为O,则PO^底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAOÐ==.故选:B.8. 设函数()()ln()f x x a x b=++,若()0f x³,则22a b+的最小值为()A.18B.14C. 12D. 1【答案】C【解析】【分析】解法一:由题意可知:()f x 的定义域为(),b ¥-+,分类讨论a -与,1b b --的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b ¥-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-£-a b ,当(),1x b b Î--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b Î--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b Î--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ¥Î-+时,可知()0,ln 0x a x b +³+³,此时()0f x ³;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a Î--时,可知()0,ln 0x a x b ++,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a æö+=++=++³ç÷èø,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b ¥-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b Î--时,()ln 0x b +<,故0x a +£,所以10b a -+£;()1,x b ¥Î-+时,()ln 0x b +>,故0x a +³,所以10b a -+³;故10b a -+=, 则()2222211112222a b a a a æö+=++=++³ç÷èø,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9. 对于函数()sin 2f x x =和π()sin(24g x x =-,下列正确的有( )A. ()f x 与()g x 有相同零点 B. ()f x 与()g x 有相同最大值C. ()f x 与()g x 有相同的最小正周期D. ()f x 与()g x 的图像有相同的对称轴【答案】BC 【解析】【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =ÎZ ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+ÎZ ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+Û=+ÎZ ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+Û=+ÎZ ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10. 抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A. l 与A e 相切B. 当P ,A ,B 三点共线时,||PQ =C. 当||2PB =时,PA AB^D. 满足||||PA PB =的点P 有且仅有2个【答案】ABD 【解析】【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A e 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A e 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ^,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)ABk --==--,不满足1PA AB k k =-;于是PA AB ^不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22æöç÷èø,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360D =-´=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t æöç÷èø,由PB l ^可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360D =-´=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD11. 设函数32()231f x x ax =-+,则( )A. 当1a >时,()f x 有三个零点B. 当0a <时,0x =是()f x 的极大值点C. 存在a ,b ,使得x b =为曲线()y f x =的对称轴D. 存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD 【解析】【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ¢=-=-,由于1a >,故()(),0,x a ¥¥Î-È+时()0f x ¢>,故()f x 在()(),0,,a ¥¥-+上单调递增,(0,)x a Î时,()0f x ¢<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ¢=-,a<0时,(,0),()0x a f x ¢Î<,()f x 单调递减,,()0x Î+¥时()0f x ¢>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为33332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=ìï-=íï-=-î,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax ¢=-,()126f x x a ¢¢=-,由()02af x x ¢¢=Û=,于是该三次函数的对称中心为,22a a f æöæöç÷ç÷èøèø,由题意(1,(1))f 也是对称中心,故122aa =Û=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =Û=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b Û+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ¢¢=的解,即,33bb f a a æöæö--ç÷ç÷èøèø是三次函数的对称中心三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12. 记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.【答案】95【解析】【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=ìí+++=î,解得143a d =-ìí=î,则()10110910104453952S a d ´=+=´-+´=.故答案为:95.13. 已知a 为第一象限角,b 为第三象限角,tan tan 4a b +=,tan tan 1a b =+,则sin()a b +=_______.【答案】【解析】【分析】法一:根据两角和与差的正切公式得()tan a b +=-,再缩小a b +的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan 1tan tan a b a b a b ++===--因为π3π2π,2π,2ππ,2π22k k m m a b æöæöÎ+Î++ç÷ç÷èøèø,,Z k m Î,则()()()22ππ,22π2πm k m k a b +Î++++,,Z k m Î,又因为()tan 0a b +=-<,则()()3π22π,22π2π2m k m k a b æö+Î++++ç÷èø,,Z k m Î,则()sin 0a b +<,则()()sin cos a b a b +=-+,联立 ()()22sin cos 1a b a b +++=,解得()sin a b +=.法二: 因为a 为第一象限角,b 为第三象限角,则cos 0,cos 0a b ><,cos a ==,cos b ==,则sin()sin cos cos sin cos cos (tan tan )a b a b a b a b a b +=+=+4cos cos a b =====故答案为:14. 在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.【答案】 ①. 24 ②. 112【解析】【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124´´´=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC V 的周长.【答案】(1)π6A =(2)2++【解析】【分析】(1)根据辅助角公式对条件sin 2A A +=进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【小问1详解】方法一:常规方法(辅助角公式)由sin 2A A +=可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ÎÞ+Î,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A +=,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=Û=,解得cos A =又(0,π)A Î,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =+<<,则π()2sin (0π)3f x x x æö=+<<ç÷èø,显然π6x =时,max ()2f x =,注意到π()sin 22sin()3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A ¢==,即tan A =,又(0,π)A Î,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==r r ,由题意,sin 2a b A A ×==r r,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ×==r r r rr r r r ,则2cos ,2cos ,1a b a b =Û=r r r r ,此时,0a b =rr ,即,a b r r 同向共线,根据向量共线条件,1cos sin tanA A A×=Û=又(0,π)AÎ,故π6A=方法五:利用万能公式求解设tan2At=,根据万能公式,22sin21tA At==++,整理可得,2222(2(20((2t t t-+==-,解得tan22At==-,根据二倍角公式,22tan1tAt==-,又(0,π)AÎ,故π6A=小问2详解】由题设条件和正弦定理sin sin2sin2sin sin cosC c B B C C B B=Û=,又,(0,π)B CÎ,则sin sin0B C¹,进而cos B=π4B=,于是7ππ12C A B=--=,sin sin(π)sin()sin cos sin cosC A B A B A B B A=--=+=+=由正弦定理可得,sin sin sina b cA B C==,即2ππ7πsin sin sin6412b c==,解得b c==故ABCV的周长为2++16. 已知函数3()e xf x ax a=--.(1)当1a=时,求曲线()y f x=在点()1,(1)f处的切线方程;(2)若()f x有极小值,且极小值小于0,求a的取值范围.【答案】(1)()e110x y---=(2)()1,+¥【【解析】【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a £和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e ¢=-xf x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可.【小问1详解】当1a =时,则()e 1x f x x =--,()e 1xf x ¢=-,可得(1)e 2f =-,(1)e 1f ¢=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.【小问2详解】解法一:因为()f x 的定义域为R ,且()e ¢=-x f x a ,若0a £,则()0f x ¢³对任意x ÎR 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x ¢>,解得ln x a >;令()0f x ¢<,解得ln x a <;可知()f x 在(),ln a -¥内单调递减,在()ln ,a +¥内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a¢=+>,可知()g a 在()0,¥+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+¥;解法二:因为()f x 的定义域为R ,且()e ¢=-x f x a ,若()f x 有极小值,则()e ¢=-x f x a 有零点,令()e 0x f x a ¢=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x ¢>,解得ln x a >;令()0f x ¢<,解得ln x a <;可知()f x 在(),ln a -¥内单调递减,在()ln ,a +¥内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,¥+内单调递增,可知()g a 在()0,¥+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+¥.17. 如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC °Ð=,30BAD °Ð=,点E ,F 满足25AE AD = r r ,12AF AB =r r ,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ^;(2)求面PCD 与面PBF 所成的二面角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)由题意,根据余弦定理求得2EF =,利用勾股定理的逆定理可证得EF AD ^,则,EF PE EF DE ^^,结合线面垂直的判定定理与性质即可证明;(2)由(1),根据线面垂直的判定定理与性质可证明PE ED ^,建立如图空间直角坐标系E xyz -,利用空间向量法求解面面角即可.【小问1详解】由218,,52AB AD AE AD AF AB ==== r r r r,得4AE AF ==,又30BAD °Ð=,在AEF △中,由余弦定理得2EF ===,所以222AE EF AF +=,则AE EF ^,即EF AD ^,所以,EF PE EF DE ^^,又,PE DE E PE DE =ÌI 、平面PDE ,所以EF ^平面PDE ,又PD Ì平面PDE ,故EF ^PD ;【小问2详解】连接CE,由90,3ADC ED CD °Ð===,则22236CE ED CD =+=,在PEC V中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ^,由(1)知PE EF ^,又,EC EF E EC EF =ÌI 、平面ABCD ,所以PE ^平面ABCD ,又ED Ì平面ABCD ,所以PE ED ^,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=- r r r r,设平面PCD 和平面PBF 的一个法向量分别为1122(,,),(,,)n x y z m x y z ==r r,则11100n PC n PD ì×==ïí×==ïî r r r r ,222224020mPB x m PF x ì×=+-=ïí×=-=ïî r r r r ,令122,y x ==,得11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-r r,所以cos =设平面PCD 和平面PBF 所成角为q ,则sin q ==即平面PCD 和平面PBF .18. 某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i 15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【答案】(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【解析】【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q éù=--ëû甲,331(1)P q p éù=--×ëû乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【小问1详解】甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,\比赛成绩不少于5分的概率()()3310.610.50.686P =--=.【小问2详解】(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q éù=--ëû甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p éù=--×ëû乙,0p q <<Q ,3333()()P P q q pq p p pq \-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq éù=-+++-×-+-+--ëû()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P \>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q éù==-+--×-ëû,()()()3213511C 1P X p q q éù==--×-ëû,3223(10)1(1)C (1)P X p q q éù==--×-ëû,33(15)1(1)P X p q éù==--×ëû,()332()151(1)1533E X p q p p p q éù\=--=-+×ëû记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+×()()15[()()3()]E X E Y pq p q p q pq p q \-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,\应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19. 已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,的记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++V 的面积,证明:对任意的正整数n ,1n n S S +=.【答案】(1)23x =,20y = (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可.【小问1详解】由已知有22549m =-=,故C 的方程为229x y -=.当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y -=联立得到22392x x +æö-=ç÷èø.解得3x =-或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q -,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.【小问2详解】由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =-+,与229x y -=联立,得到方程()()229n n x k x x y --+=.展开即得()()()2221290n n n n kxk y kx x y kx ------=,由于(),n n n P x y 已经是直线()n n y k x x y =-+和229x y -=的公共点,故方程必有一根n x x =.从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k---=-=--,相应的()2221n n nn n y k y kx y k x x y k +-=-+=-.所以该直线与C 的不同于n P 的交点为222222,11n n n n n nn ky x k x y k y kx Q k k æö--+-ç÷--èø,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x ----,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +æö+-+-ç÷--èø.这就得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-.所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++-+--=---()()22222121111n n n n n n n x k x kx k k k x y x y k k k+++++==-=----.再由22119x y -=,就知道110x y -¹,所以数列{}n n x y -是公比为11kk+-的等比数列.【小问3详解】方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b = r ,(),UW c d = r,则12UVW S ad bc =-V .(若,,U V W 在同一条直线上,约定0UVW S =V )1,2UW UV UW =× r r===12ad bc ===-.证毕,回到原题.由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +¹,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n mx y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+æöæö=-+-+-ç÷ç÷+-èøèø()22111211mmn n k k x y k k æö-+æöæö=--ç÷ç÷ç÷ç÷+-èøèøèø911211m mk k k k æö-+æöæö=-ç÷ç÷ç÷ç÷+-èøèøèø.而又有()()()111,n n n n n n P P x x y y +++=---- r ,()122121,n n n n n n P P x x y y ++++++=-- r ,故利用前面已经证明的结论即得()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==---+--V ()()()()12112112n n n n n n n n x x y y y y x x ++++++=-----()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=-+---2219119119112211211211k k k k k k k k k k k k æö-+-+-+æöæöæöæö=-+---ç÷ç÷ç÷ç÷ç÷ç÷+-+-+-èøèøèøèøèø.这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +¹,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n mx y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+æöæö=-+-+-ç÷ç÷+-èøèø()22111211mmn n k k x y k k æö-+æöæö=--ç÷ç÷ç÷ç÷+-èøèøèø911211mmk k k k æö-+æöæö=-ç÷ç÷ç÷ç÷+-èøèøèø.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+æö-=-=-ç÷+-èø,以及221313229121n n n n n n n n k x y y x x y y x k ++++++æö+æö-=-=-ç÷ç÷ç÷-èøèø.两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---.移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+.故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=-- r ,()122121,n n n n n n P P x x y y ++++++=-- r.所以3n n P P + r 和12n n P P ++ r平行,这就得到12123n n n n n n P P P P P P S S +++++=V V ,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。
2023高考数学答题卡模板
2023高考数学答题卡模板本文档提供了2023年高考数学答题卡的模板,供考生使用。
答题卡结构
数学答题卡包括两个部分:选择题部分和非选择题部分。
选择题部分
选择题部分包括单项选择题和多项选择题。
每道选择题有四个选项:A、B、C和D。
考生需要在相应的选项上填涂“√”表示选择该选项。
非选择题部分
非选择题部分包含填空题、解答题等。
考生需要按照题目要求进行书写,确保清晰可见。
如何使用答题卡
以下是答题卡的使用步骤:
1. 将个人信息填写在答题卡的指定位置上,包括姓名、考号等。
2. 根据题目要求,在选择题部分的相应选项上填涂“√”。
3. 在填空题和解答题的答题区域内书写答案,确保书写清晰可辨。
4. 注意不要涂改答题卡上的个人信息和题目选项。
5. 答题卡完成后,请仔细检查答题区域的答案是否正确。
6. 在考试结束前,将答题卡交给监考人员。
注意事项
- 仔细阅读题目要求,确保正确填涂答案或书写答案。
- 注意答题卡上的规范要求,如书写位置、书写工具等。
- 不要在答题卡上做任何非题目相关的标记或涂改。
- 加强时间管理,确保在规定时间内完成答题。
请考生按照以上要求使用答题卡,祝愿大家在2023年高考数学考试中取得好成绩!。
2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)
2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1 .答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一个选项是正确的・请把正确的选项填涂在答题卡相应的位置上.1. 已知z = —1 —i,则()A. 0B. 1C. V2D. 22. 已知命题p : Vx e R , x +11> 1 ;命题 q : > 0 , x 3 = x ,贝I ( )A. p 和q 都是真命题B. ~^P 和q 都是真命题C. p 和「0都是真命题D. F 和「0都是真命题3. 已知向量口,直满足|4 = 1J q + 2,= 2,且— 则料=()A. |B. —C.匝D. 12 2 24. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表据表中数据,结论中正确的是()亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410A. 100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(歹>0),从。
2022高考数学答题卡w(全国乙卷)
请在各题目的答题区域内作答,超出黑色矩形边框限定区答案无效 数学 第 5 页 共 6 页
请在各题目的答题区域内作答,超出黑色矩形边框限定区答案无效 数学 第 6 页 共 6 页
3.请按题号顺序在各题目的答题区域内作答,超出区域书写的答案
项
无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不源自弄破。考生禁填缺考标记
缺考考生由 监考人员贴 条形码并用 2B 铅笔填涂 缺考标记
选择题 (须用 2B 铅笔填涂)
填涂样例: 正确填涂
单项选择题(本题共 12 小题,每题 5 分,共 60 分)
20.(12 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区答案无效
21.(12 分)
(二)选考题 (10 分) 请考生在 22、23 题中任选一题作答,如果多做,则按所做的第一题计分
[ 22 ] [ 23 ]
请务必用 2B 铅笔将所选题目的题号途黑,只准涂一个
请在各题目的答题区域内作答,超出黑色矩形边框限定区答案无效 数学 第 4 页 共 6 页
1[A][B][C][D]
5[A][B][C][D]
2[A][B][C][D]
6[A][B][C][D]
3[A][B][C][D]
7[A][B][C][D]
4[A][B][C][D]
8[A][B][C][D]
9[A][B][C][D] 10 [ A ] [ B ] [ C ] [ D ] 11 [ A ] [ B ] [ C ] [ D ] 12 [ A ] [ B ] [ C ] [ D ]
19.(12 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区答案无效 数学 第 1 页 共 6 页
全国高考数学试卷答题纸
【注意事项】1. 本试卷分为选择题和非选择题两部分,满分150分。
2. 本试卷共分为三页,请将答案填写在相应的答题区域。
3. 答题前,请将答案条形码粘贴在答题卡上。
4. 答题时,请使用黑色签字笔,字迹工整,严禁使用涂改液。
5. 选择题每题只有一个正确答案,非选择题答案必须写在答题卡上对应的答题区域。
6. 本试卷考试时间为120分钟。
【选择题部分(共50分)】一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x + 2,则f'(1)的值为()A. 0B. 1C. -1D. 22. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为()A. 0B. 1C. -1D. 23. 已知等差数列{an}的前三项分别为1,2,3,则第10项a10的值为()A. 27B. 28C. 29D. 304. 下列函数中,定义域为实数集的有()A. f(x) = √(x - 1)B. f(x) = |x| + 1C. f(x) = x^2 + 1D. f(x) = 1/x5. 已知函数f(x) = ax^2 + bx + c在x = 1时取得极小值,则a、b、c之间的关系为()A. a > 0,b = 0,c > 0B. a < 0,b = 0,c < 0C. a > 0,b ≠ 0,c ≠ 0D. a < 0,b ≠ 0,c ≠ 0三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形7. 下列不等式中,恒成立的有()A. x^2 + y^2 ≥ 2xyB. x^2 + y^2 ≤ 2xyC. x^2 - y^2 ≥ 0D. x^2 - y^2 ≤ 08. 下列各式中,表示圆的方程的有()A. x^2 + y^2 = 1B. x^2 + y^2 = 4C. x^2 + y^2 = 0D. x^2 + y^2 = 99. 若复数z满足|z - 1| = |z + 1|,则复数z在复平面上的轨迹为()A. 线段B. 圆C. 双曲线D. 抛物线10. 下列函数中,单调递减的有()A. f(x) = 2^xB. f(x) = x^2C. f(x) = 1/xD. f(x) = log2(x)【非选择题部分(共100分)】二、填空题(本大题共10小题,每小题5分,共50分。
新课标卷高考数学答题卡完整版
20.
21.
18.
请在各题目的答题区域内作答 答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的 答案无效
第Ⅰ卷 一、选择题效(。 共 60 分)
1A B C D 2A B C D
3A B C D
4.保持卡面清洁,不要折叠、不要弄破。
5A B C D
9A B C D
6A B C D
10 A B C D
7A B C D
11 A B C D
第4 ⅡA 卷B C 二D、填空题(8共A 20B 分C) D
12 A B C D
新课标卷高考数学答题 卡
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
2018 年普通高等
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的 答案无效
学校招生全国统一
考
试
数学试题答题卡
姓名 ________________________ 准考 证号
考生条形码粘贴处
考生禁 缺考考生由监考员填涂
填:
右边的缺考标记.
正确填涂
填 涂
错误填涂
样√ × ○
例●
注 意 事 项
1.答题前,考生先将自己的姓名、准考证号填写清楚, 并认真检查监考员所粘贴的条形码;
2.选择题必须用 2B 铅笔填涂,解答题必须用毫米黑色签 字笔书写,字体工整,笔迹清楚;
3.请按照题号顺序在各题目的答题区域内作答,超出答 题区域书写的答案无效;在草稿纸、试题卷上答题无
13、______ ___ __ ___
14、_______
_______
1三骤157、、). _解(__答共__题7_0(分解_)_答应_写__出__文_超出黑色矩形边框限定区域的 请答在案各无题效目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的
2024年高考新课标Ⅰ卷数学试题及答案
启用前·机密2024年普通高等学校招生全国统一考试数 学 试 题姓名:准考证号:本试题卷分选择题和非选择题两部分,共4页, 满分150分, 考试时间120分钟。
考生注意:1.答题前, 请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时, 请按照答题纸上 “注意事项” 的要求, 在答题纸相应的位置上规范作答, 在本试题卷上的作答一律无效。
3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内, 作图时可先使用 2B 铅笔, 确定后必须使用黑色字迹的签字笔或钢笔描黑。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集体A=x-5<x3<5,B={-3,-1,0,2,3}, 则A∩B=A.{-1,0}B.{2,3}C.{-3,-1,0}D.{-1,0,2}2.若zz-1=1+i, , 则z=A.-1-iB.-1+iC.1-iD.1+i3.已知向量a=(0.1),b=(2.x), 若b⊥(b-4a)则x=A.-2B.-1C.1D.24.已知cos(a+β)=m,tan a tanβ=2, 则cos(a-β)=A.-3mB.-m3C.m3D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23πB.33πC.63πD.93π6.已知函数f(x)=-x2-2ax-a,x<0e x+ln(x+1),x≥0在R上单调递增,则a的取范围是A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)7.当x∈[0,2π]时,曲线y=sin x与y=2sin3x-π6的交点个数为A.3B.4C.6D.88.已知函数f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时,f (x )=x ,则下列结论中一定正确的是A.f (10)>100 B.f (20)>1000C.f (10)<1000D.f (20)<10000二、选择题:本大题共 3小题,每小题 6分,共 18分。
2024年新课标全国ⅱ卷数学真题(原卷版)
2024年普通高等学校招生全国统一考试(新课标II 卷)数学注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =()A.0B.1C.D.22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量,a b 满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.12 B.2 C.2 D.14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >) B.221168x y +=(0y >)C.221164y x +=(0y >) D.221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1-B.12 C.1 D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12 B.1 C.2 D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18 B.14 C.12 D.1二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB⊥D.满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=+,则sin()αβ+=_______.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.四、解答题:本题共5小题,共分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A +=.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB = ,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii)为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11k k +-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.。
2018年新课标全国卷高考数学答题卡模板
14 、 16、
请在各题目的答题区域内作答,超出黑色矩形边框限 请在各题目的答题区域内作答,超出黑色Байду номын сангаас形边框限 请在各题目
20.
定区2域1.的答案无效
定区域的答案无效
定选区考域题的答
请从 22、 所先选题目 行评分;多 按本选考题
我所选答的
请在各题目的答题区域内作答,超出黑色矩形边框限 定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限 定区域的答案无效
请在各题目 定区域的答
体工整,笔迹清楚;
例●
3.请按照题号顺序在各题目的答题区
域内作答,超出答题区域书写的答
第Ⅰ卷 一、选择案题无(效共;6在0 草分稿)纸、试题卷上答题 无效。
1A B C D 2A B C D 3A B C D 4A B C D
4.保持卡面清洁,不要折叠、不要弄
破。56
A A
B B
C C
D D
7A B C D
姓 名 ________________________
准考证
号 考生条形码粘贴
考生禁 缺考考生由监考员
处
填涂右边的缺考标
填: 记.
1.答题前,考生先将自己的姓名、准
填正 涂
确
填
注
意
考证号填写清楚,并认真检查监考 员所粘贴的条形码;
涂 错
误
填事
2.选择题必须用 2B 铅笔填涂,解答
样 涂√ × ○ 项 题必须用毫米黑色签字笔书写,字
9A B C D
8A B C D
1 1
A A
B B
C C
D D
0 11 A B C D
2024新高考I卷数学试题及答案
2024年普通高等学校招生全国统一考试(新课标I卷)数学参考答案与解析1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准注意事项:考证号条形码粘贴在答题卡上的指定位置。
考试结束后,请将本试卷和答题卡一并上交。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|−5<x3<5},B={−3,−1,0,2,3},则A B=A.{−1,0}B.{2,3}C.{−3,−1,0}D.{−1,0,2}【答案】A.【解析】−5<x3<5⇒−513<x<513,而1<513<2,因此A B={−1,0}.故答案为A.2.若zz−1=1+i,则z=A.−1−iB.−1+iC.1−iD.1+i【答案】C.【解析】两边同时减1得:1z−1=i,进而z=1+1i=1−i.故答案为C.3.已知向量a=(0,1),b=(2,x).若b⊥(b−4a),则x=A.−2B.−1C.1D.2【答案】D.【解析】即b⋅(b−4a)=0.代入得4+x(x−4)=0,即x=2.故答案为D.4.已知cos(α+β)=m,tanαtanβ=2,则cos(α−β)=A.−3mB.−m3C.m3D.3m【答案】A.【解析】通分sinαsinβ=2cosαcosβ.积化和差12(cos(α−β)−cos(α+β))=2⋅12(cos(α−β)+cos(α+β)).即cos(α−β)=−3cos(α+β)=−3m.故选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且他们的高均为√3,则圆锥的体积为A.2√3π B.3√3π C.6√3π D.9√3π【答案】B.【解析】设二者底面半径为r,由侧面积相等有πr √r2+3=2πr⋅√3,解得r=3.故V=13⋅πr2⋅√3=√33π×9=3√3π.故答案为B.6.已知函数为f(x)=⎧{⎨{⎩−x2−2ax−a,x<0e x+ln(x+1),x⩾0在R上单调递增,则a的取值范围是A.(−∞,0]B.[−1,0]C.[−1,1]D.[0,+∞)【答案】B.【解析】x⩾0时,f′(x)=e x+11+x>0,故f(x)在[0,+∞)上单调递增.而y=−x2−2zx−a的对称轴为直线x=−a,故由f(x)在(−∞,0)上单调递增可知−a⩾0⇒a⩽0.在x=0时应有−x2−2ax−a⩽e x+ln(x+1),解得a⩾−1,故−1⩽a⩽0.故答案为B.7.当x∈[0,2π]时,曲线y=sin x与y=2sin(3x−π6)的交点个数为A.3B.4C.6D.8【答案】C.【解析】五点作图法画图易得应有6个交点.故答案为C.8.已知函数f(x)的定义域为R,f(x)>f(x−1)+f(x−2),且当x<3时f(x)=x,则下列结论中一定正确的是A.f(10)>100B.f(20)>1000C.f(10)<1000D.f(20)<10000【答案】B.【解析】f(1)=1,f(2)=2⇒f(3)>3⇒f(4)>5⇒f(5)>8⇒f(6)>13⇒⋯⇒f(11)>143⇒f(12)>232⇒f(13)>300⇒f(14)>500⇒f(15)>800⇒f(16)>1000⇒⋯⇒f(20)>1000故答案为B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从种植区抽取样本,得到推动出口后亩收入的样本均值为x =2.1,样本方差s 2=0.01.已知该种植区以往的亩收入x 服从正态分布M(1.8,0.12),假设推动出口后的亩收入Y 服从正态分布N(x,s 2),则(若随机变量Z 服从正态分布N(μ,σ2),则P (Z <μ+σ)≈0.8413)A.P (X >2)>0.2 B.P (X >2)<0.5 C.P (Y >2)>0.5 D.P (Y >2)<0.8【答案】BC.【解析】由所给材料知两正态分布均有σ=0.1及正态分布的对称性得:P (X >2)<P (X >1.9)=1−P (X <1.9)=1−0.8413<0.2,A 错误;P (X >2)<P (X >1.8)=0.5,B 正确;P (Y >2)>P (Y >2.1)=0.5,C 正确;P (Y >2)=P (Y <2.2)=0.8413>0.8,D 错误.故答案为BC.10.设函数f(x)=(x −1)2(x −4),则A.x =3是f(x)的极小值点B.当0<x <1时,f(x)<f(x 2)C.当1<x <2时,−4<f(2x −1)<0D.当−1<x <0时,f(2−x)>f(x)【答案】ACD.【解析】计算知f ′(x)=3(x −1)(x −3).故x ∈(1,3)时f(x)单调减,其余部分单调增.由此知x =3为f(x)极小值点,A 正确;由上知x ∈(0,1)时f(x)单调增,又此时x >x 2,故f(x)>f(x 2),B 错误;此时2x −1∈(1,3),故f(2x −1)∈(f(3),f(1))=(−4,0),C 正确;由f(2−x)=(x −1)2(−x −2),故f(2−x)−f(x)=2(1−x)3>0,D 正确.故答案为ACD.11.造型∝可以看作图中的曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于−2;到点F (2,0)的距离与到定直线x =a(a <0)的距离之积为4,则A.a =−2B.点(2√2,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点(x 0,y 0)在C 上时,y 0⩽4x 0+2【答案】ABD.【解析】由原点O 在曲线C 上且|OF |=2知O 到直线x =a 距离为2,由a <0知a =−2,A 正确;由x >−2知C 上点满足(x +2)√(x −2)2+y 2=4,代(2√2,0)知B 正确;解出y 2=16(x +2)2−(x −2)2,将左边设为f(x),则f ′(2)=−0.5<0.又有f(2)=1,故存x0∈(0,1)使f(x0)>1.此时y>1且在第一象限,C错误;又y2=16(x+2)2−(x−2)2<16(x+2)2,故y0<4(x0+2),D正确.故答案为ABD.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线C∶x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,过F2做平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为..【答案】3 2 .【解析】根据对称性|F2A|=|AB|2=5,则2a=|F1A|−|F2A|=8,得到a=4.另外根据勾股定理2c=|F1F2|=12,得到c=6,所以离心率e=ca=32.13.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=..【答案】ln2.【解析】设曲线分别为y1,y2,那么y′1=e x+1,得到切线方程y−1=2x,根据y′2=1x+1得到切点横坐标为−12,代入y2得到a=ln2.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为..【答案】1 2 .【解析】.由对称性,不妨固定乙出卡片顺序依次为(2,4,6,8),为了简便,设甲依次出(a,b,c,d),{a,b,c,d}∈{1,3,5,7}.首先注意到8是最大的,故甲不可能得四分.若甲得三分,则从c到a均要求得分,比较得必有c=7,b=5,a=3,d=1共一种情况;若甲得两分,则讨论在何处得分:若在b,c处,则同样c=7,b=5,进而a=1,d=3,共一种;若在a,c处,则必有c=7,a≠1,b≠5,在b=1时有全部两种,在d=1时仅一种,共三种;若在a,b处,则b∈{5,7},a≠1,c≠7.当a=5时,由上述限制,c=1时有两种,d=1时仅一种;当a=7时,a,c,d全排列六种中仅a=1的两种不行,故有四种,此情形共八种.故共有1+3+8=12种,又总数为4!=24,故所求为1−1224=12.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C=√2cos B,a2+b2−c2=√2ab.(1)求B;(2)若△ABC的面积为3+√3,求c.【解析】(1)根据余弦定理a 2+b 2−c 2=2ab cos C =√2ab ,那么cos C =√22,又因为C ∈(0,π),得到C =π4,此时cos B =12,得到B =π3.(2)根据正弦定理b =c sin B sin C =√62c ,并且sin A =sin (B+C)=sin B cos C +cos B sin C =√6+√24,那么S =12bc sin A =3+√3,解得c =2√2.16.(15分)已知A(0,3)和P (3,32)为椭圆C ∶x 2a 2+y 2b2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【解析】(1)直接代入后解方程,得到a 2=12,b 2=9,c 2=3,所以e 2=14,离心率e =12.(2)设B(x 0,y 0),则⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AB =(x 0−3,y 0−32),⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AP =(3,−32).得到9=S =12∣−32(x 0−3)−3(y 0−32)∣,或者x 0+2y 0=−6,与椭圆方程联立,得到B 1(−3,−15),B 2(0,−3),对应的直线方程y =12x 或者y =32x −3.17.(15分)如图,四棱锥P −ANCD 中,P A⊥底面ABCD ,P A =AC =2,BC =1,AB =√3.(1)若AD⊥AB ,证明:AD平面P BC ;(2)若AD⊥DC ,且二面角A −CP −D 的正弦值为√427,求AD .【解析】(1)由P A⊥面ABCD 知P A⊥AD ,又AD⊥P B ,故AD⊥面P AB .故AD⊥AB ,又由勾股定理知AB⊥BC ,故AD//BC ,进而AD//面P BC .(2)由P A⊥面ABCD .P A⊥AC ,P C =2√2,设AD =t ,则P D =√4+t 2,CD =√4−t 2,由勾股定理知P D⊥CD .则S △P CD =12√16−t 4,S △ACD =12t √4−t 2,设A到P CD距离为ℎ.由等体积,S△P CD ⋅ℎ=S△ACD⋅P A.代入解出ℎ=2t√4+t2.考虑A向CP作垂线AM,二面角设为θ则ℎ=AM sinθ=2√217.由此解出t=√3.18.(17分)已知函数f(x)=lnx2−x+ax+b(x−1)3.(1)若b=0,且f′(x)⩾0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f(x)>−2当且仅当1<x<2,求b的取值范围.【解析】函数定义域(0,2).(1)当b=0时,f′(x)=1x+12−x+a=2x(2−x)+a⩾0恒成立.令x=1得a⩾−2.当a=−2时,f′(x)=2(x−1)2x(2−x)⩾0,从而a的最小值为−2.(2)f(x)+f(2−x)=lnx2−x+ax+b(x−1)3+ln2−xx+a(2−x)+b(1−x)3=2a=2f(1),且定义域也关于1对称,因此y=f(x)是关于(1,a)的中心对称图形.(3)先证明a=−2.由题意,a=f(1)⩽−2.假设a<−2,由f(2e|b|+11+e|b|+1)> |b|+1−|b|=1,应用零点存在定理知存在x1∈(1,2e|b|+11+e|b|+1),f(x1)=0,矛盾.故a=−2.此时,f′(x)=(x−1)2x(2−x)[3bx(2−x)+2].当b⩾−23,f′(x)⩾(x−1)2x(2−x)(2−4x+2x2)⩾0,且不恒为0,故f(x)在(0,2)递增.f(x)>−2=f(1)当且仅当1<x<2,此时结论成立.当b<−23,令x0=3b−√9b2−6b3b∈(0,1),f′(x0)=0,且f′(x)<0,当x∈(x0,1),因此f(x)在(x,1)递减,从而f(x0)>f(1)=−2,而x0∉(1,2)此时结论不成立.综上,b的取值范围是[−23,+∞).19.(17分)设m为正整数,数列a1,a2,⋯a4m+2是公差不为0的等差数列,若从中删去两项a i和a j(i<j)后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,⋯a4m+2是(i,j)−可分数列.(1)写出所有的(i,j),1⩽i⩽j⩽6,使数列a1,a2,⋯a6是(i,j)−可分数列;(2)当m⩾3时,证明:数列a1,a2,⋯a4m+2是(2,13)−可分数列;(3)从1,2,⋯4m+2中一次任取两个数i和j(i<j),记数列a1,a2,⋯a4m+2是(i,j)−可分数列的概率为Pm ,证明Pm>18.【解析】记{a n }的公差为d .(1)从a 1,a 2,⋯,a 6中去掉两项后剩下4项,恰构成等差数列,公差必为d ,否则原数列至少有7项.因此剩下的数列只可能为a 1,a 2,a 3,a 4,a 2,a 3,a 4,a 5,a 3,a 4,a 5,a 6三种可能,对应的(i,j)分别为(5,6),(1,6),(1,2).(2)考虑分组(a 1,a 4,a 7,a 10),(a 3,a 6,a 9,a 12),(a 5,a 8,a 11,a 14),(a 4k−1,a 4k ,a 4k+1,a 4k+2)(4⩽k ⩽m),(当m =3时只需考虑前三组即可)即知结论成立.(3)一方面,任取两个i,j(i <j)共有C 24m+2种可能.另一方面,再考虑一种较为平凡的情况:i−1,j−i−1均可被4整除,此时,只要依次将剩下的4m 项按原顺序从头到尾排一列,每四个截取一段,得到m 组公差为d 的数列,则满足题意,故此时确实是(i,j)−可分的.接着计算此时的方法数.设i =4k+1(0⩽k ⩽m),对于每个k ,j 有(4m +2)−(4k +1)−14+1=m−k+1(种),因此方法数为m∑k=1(m −k +1)=(m +1)(m +2)2.当m =1,2,已经有(m +1)(m +2)2/C 24m+2>18.下面考虑m ⩾3.我们证明:当i −2,j −i +1被4整除,且j −i +1>4时,数列是(i,j)−可分的.首先我们将a 1,a 2,⋯,a i−2,及a j+2,a j+3,⋯,a 4m+2顺序排成一列,每4个排成一段,得到一些公差为d 的四元数组,因此我们只需考虑a i−1,a i+1,a i+2,⋯,a j−1,a j+1这j −i +1个数即可.为书写方便,我们记j −i =4t −1(t >1),并记b n =a n+i−2,即证b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组.引理:设j−1能被4整除.若b 1,b 2,⋯,b j+1是(2,j)−可分的,则b 1,b 2,⋯,b j+9是(2,j+8)−可分的.引理证明:将b 1,b 2,⋯,b j+1去掉b 2,b j 后的j −14组四元组再并上(b j ,b j+2,b j+4,b j+6),(b j+3,b j+5,b j+7,b j+9)即证.回原题.由(2),b 1,⋯,b 14是(2,13)−可分数列,且(b 1,b 3,b 5,b 7)和(b 4,b 6,b 8,b 10)知b 1,⋯,b 10是(2,9)−可分数列,因而结合引理知b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组,由此结论成立.计算此时的方法数.设i =4k+2(0⩽k ⩽m−1),则此时j 有(4m +2)−(4k +2)4−1=m −k −1种,因此方法数为m−1∑k=0(m −k −1)=m(m −1)2.因此我们有p m ⩾m(m −1)+(m +1)(m +2)2C 2m+1>18.。
2024年新课标全国卷高考数学答题卡模板
2024年新课标全国卷高考数学答题卡模板2024年新课标全国卷高考数学答题卡模板一、选择题1、【填涂答题卡】首先,请在答题卡上的相应位置正确填涂自己的姓名、考生号、座位号等个人信息。
请注意,填涂时要仔细,避免影响后续阅卷。
2、【答题提示】接下来,请在答题卡上认真阅读答题提示,了解答题要求和注意事项。
3、【选择题答题区域】在答题卡上,选择题的答题区域位于页面的左侧。
请注意,每个小题都有单独的答题区域,不要误涂到其他题目。
4、【审题】在答题前,请认真审题,了解每个小题的考察内容,避免因理解错误而导致失分。
5、【选择答案】根据题目要求,在答题卡上选择相应的答案。
请注意,选择题的答案选项是固定的,不要选错。
二、填空题1、【填涂答题卡】在答题卡上填写相应的个人信息,包括姓名、考生号、座位号等。
2、【答题提示】认真阅读答题提示,了解答题要求和注意事项。
3、【填空题答题区域】填空题的答题区域位于答题卡的右侧。
请注意,每个小题都有单独的答题区域,不要误涂到其他题目。
4、【审题】仔细阅读题目,了解题目要求和考察内容。
5、【填写答案】根据题目要求,在答题卡上填写正确的答案。
请注意,答案要清晰、明了。
三、解答题1、【填涂答题卡】在答题卡上填写相应的个人信息,包括姓名、考生号、座位号等。
2、【答题提示】认真阅读答题提示,了解答题要求和注意事项。
3、【解答题答题区域】解答题的答题区域位于答题卡的左侧。
请注意,每个小题都有单独的答题区域,不要误涂到其他题目。
4、【审题】仔细阅读题目,了解题目要求和考察内容。
5、【解答过程】根据题目要求,在答题卡上写出完整的解答过程。
请注意,步骤要清晰、逻辑要严谨。
6、【检查】在完成解答后,请务必检查解答的正确性,确保无遗漏或错误。
四、附加题1、【填涂答题卡】在答题卡上填写相应的个人信息,包括姓名、考生号、座位号等。
2、【答题提示】认真阅读答题提示,了解答题要求和注意事项。
3、【附加题答题区域】附加题的答题区域位于答题卡的右侧。
2024年新课标全国Ⅰ卷数学真题(附答案解析)
2024年普通高等学校招生全国统一考试(新课标I 卷)数学本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i -- B.1i -+ C.1i - D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1 D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m - C.3mD.3m5.)A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞B.[1,0]-C.[1,1]-D.[0,)+∞7.当]2,0[π∈x 时,曲线sin y x =与2sin 36y x π⎛⎫=-⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f > C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2N x s,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X >< C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =-B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC ∆内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC ∆的面积为3,求c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案一、单选题1、【答案】A【解析】因为{{}|,3,1,0,2,3A x x B =<<=--,又12<<,则A B = {}1,0-。
2019年新课标全国卷高考数学答题卡模板
沙市五中2019届高三第一次模拟考试 文科数学答题卡 准考证号
考生禁填: 缺考考生由监考员填涂右边的缺考标记. 填 涂 样 例 注意事项 1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码; 2.选择题必须用2B 铅笔填涂,解答题必须用0.5毫米黑色签字笔书写,字体工整,笔迹清楚; 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
正确填涂 错误填涂 √ × ○ ● 第Ⅰ卷 一、选择题(共60分) A B C D 1 A B C D 2 A B C D 3 A B C D 4 A B C D 5 A B C D 6 A C D B 7 A C D B 8 A C D B 9 A C D B 10 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 13、______ ___ __ ___ 14、_______ _______ 15、______ __ ______ 16、 第Ⅱ卷 二、填空题(共20分) 三、解答题(解答应写出文字说明,证明过程或演算步骤)(共70分) A C D B 11 A C D B 12 考 生 条 形 码 粘 贴 处 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 19. 17. 学校
班
级
姓
名
考
号。
2024全国高考真题 新课标Ⅱ卷 数学+答案
中点 M 的轨迹方程为(
A.
2
C.
2
+
16
+
16
2
4
2
4
)
= 1( > 0)
B.
2
= 1( > 0)
D.
2
+
16
+
16
2
8
2
8
= 1( > 0)
= 1( > 0)
6. 设函数() = ( + 1)2 − 1,() = + 2,当 ∈ (−1,1)时,曲线 = ()与 = ()恰有一个
.
四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.
15. 记△ 的内角 A,B,C 的对边分别为 a,b,c,已知 + √3 = 2.
(1)求 A.
(2)若 = 2,√2 = 2 ,求△ 的周长.
2024 年普通高等学校招生全国统一考试
(新课标 II 卷)
数学真题
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,
只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.
1. 已知 = −1 − ,则|| =(
A. 0
)
B. 1
C. √2
D. 2
交点,则 =(
A. −1
)
B.
1
2
C. 1
D. 2
52
7. 已知正三棱台 − 1 1 1的体积为 , = 6,
1 1 = 2,
2023年新高考(新课标)全国1卷数学试题真题(含答案解析)
2023年新高考全国Ⅰ卷数学试题本试卷共4页,22小题,满分150分.考试用时120分钟. 注意事项:1.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={−2,−1,0,1,2}和N ={x |x 2−x −6≥0},则M ∩N =( ) A. {−2,−1,0,1} B. {0,1,2}C. {−2}D. {2}2. 已知1i22iz -=+,则z z -=( ) A. i -B. iC. 0D. 13. 已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+,则( ) A. 1λμ+= B. 1λμ+=- C. 1λμ= D. 1λμ=-4. 设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. (]0,2D. [)2,+∞5. 设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ( )A.B.C.D.6. 过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.4C.4D.47. 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ). A.79 B.19C. 19-D. 79-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ). A. 12p p ≥ B. 2310p p > C. 30100p p =D. 12100p p ≤11. 已知函数()f x 的定义域为R 和()()()22f xy y f x x f y =+,则( ). A. ()00f = B. ()10f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点12. 下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有( ) A. 直径为0.99m 的球体 B. 所有棱长均为1.4m 的四面体C. 底面直径为0.01m ,高为1.8m 的圆柱体D. 底面直径为1.2m ,高为0.01m 的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14. 在正四棱台1111ABCD A B C D -中1112,1,AB A B AA ===________.15. 已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.16. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上11222,3F A F B F A F B ⊥=-,则C 的离心率为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.18. 如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P . 19. 已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时()32ln 2f x a >+.20. 设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求d .21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 22. 在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W . (1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于2023年新高考全国Ⅰ卷数学试题答案解析(2023·新高考Ⅰ卷·1·★)已知集合{2,1,0,1,2}M =--和2{|60}N x x x =--≥,则M N =( )(A ){2,1,0,1}-- (B ){0,1,2} (C ){2}- (D ){2} 答案:C解析:260(2)(3)02x x x x x --≥⇔+-≥⇔≤-或3x ≥,所以(,2][3,)N =-∞-+∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高等学校招生全国统一考试
数
学
答 题
卡
^
姓
名
_______________________________
准考证号
:
-
@
—
/
】
,
:
'
…
{
考生禁填:
缺考考生由监考员填涂右
边的缺考标记.
1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码;
2.选择题必须用2B 铅笔填涂,解答题必须用毫米黑色签字笔书写,字体工整,笔迹清楚;
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
,
4.保持卡面清洁,不要折叠、不要弄破。
条形码粘贴处
填 涂 样 例 注意事项
~
正确填涂
错误填涂 √ × ○
●
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 19、(本小题满分12分)
一、选择题(每小题5分,共60分) A > B C D 1 A C D 【 2
A B C D
3 A B ; C
D 4 A B C D 5 — A B C D 6 A C D # B 7 A C D
8 A 《 C D B 9
A
D B
'
10 13、____________________ 14、____________________ 15、____________________ 16、____________________ 二、填空题(每小题5分,共20分) 三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
】
A C D B
11 A
C
D
》
B
12 17、(本小题满分12分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
18、(本小题满分12分)。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 选做题(本小题满分10分)
请考生从给出的22、23、24三题中任选一题作答,并用2B 铅笔
在答题卡上把所选的题号涂黑,注意所做题目必须与所涂题号一致,如果多做,则按所做的第一题计分。
我所选择的题号是 [ 22 ] [ 23 ] [ 24 ]
20、(本小题满分12分)
21、(本小题满分12分)。