高中数学指数对数的运算
人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT
![人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT](https://img.taocdn.com/s3/m/8e8c7973bceb19e8b9f6ba4a.png)
讲授新课
1.对数的定义: 一般地,如果ax=N ( a > 0 , 且a ≠ 1 )
那么数x叫做以a为底N的对数,记作: 其中a叫做对数的底数, N叫做真数.
注意:限制条件是a > 0 , 且a ≠ 1
填写学案,题1
讲授新课
练习1:将下列指数式写成对数式:
① 52 = 25
(2)log
1 a
=
0
即:1的.对数是0
(3)log
a a
=
1
即:底数的对数是1
(4)对数恒等式:aloga N = N
(5)对数恒等式:loga an = n
巩固练习
1、指数式b2 = a(b 0,且b 1)相应的对数式是(D)
A log2a = b B log2 b = a
C logab=2
解:(1)64
-
2 3
=
(43
)
-
2 3
= 4-2 =
1
(4) ln e2 = -x
16
1
1
1
e-x = e2
(2)x6 = 8所以x = 86 = (23 )6 = 22 = 2 - x = 2
(3)10 x = 100所以x = 2
x = -2
讲授新课 4.对数的性质 探究活动 1、试求下列各式的值:
。
简记作
。如 loge 9 简记为 ln 9.
填写学案,题4
例题分析
例1.将下列指数式写成对数式:
(1) 54 = 625
(2)
e-6
=
1
b
(3) 10 a = 27 (4) ( 1 )m = 5.73
2019-2020学年新教材高中数学第四章指数函数与对数函数4.3.2对数的运算
![2019-2020学年新教材高中数学第四章指数函数与对数函数4.3.2对数的运算](https://img.taocdn.com/s3/m/ee4052cca8956bec0875e34d.png)
4.3.2 对数的运算1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件. 2.掌握换底公式及其推论.3.能熟练运用对数的运算性质进行化简求值.1.对数运算性质如果a>0,且a≠1,M>0,N>0,那么: (1)log a (M·N)=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n=nlog a M(n ∈R ).温馨提示:对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立.例如,log 2[(-3)·(-5)]=log 2(-3)+log 2(-5)是错误的.2.对数换底公式若c>0,且c≠1,则log a b =log c blog c a(a>0,且a≠1,b>0). 3.由换底公式推导的重要结论 (1)log an b n=log a b. (2)log an b m=m n log a b.(3)log a b·log b a =1.(4)log a b·log b c·log c d =log a d.1.我们知道am +n=a m ·a n,那么log a (M·N)=log a M·log a N 正确吗?举例说明.[答案] 不正确,例如log 24=log 2(2×2)=log 22·log 22=1×1=1,而log 24=2 2.你能推出log a (MN)(M>0,N>0)的表达式吗? [答案] 能.令a m=M ,a n=N ,∴MN =am +n,由对数定义知,log a M =m ,log a N =n ,log a (MN)=m +n , ∴log a (MN)=log a M +log a N3.判断正误(正确的打“√”,错误的打“×”) (1)积、商的对数可以化为对数的和、差.( ) (2)log a (xy)=log a x·log a y.( ) (3)log 2(-5)2=2log 2(-5).( ) (4)由换底公式可得log a b =log (-2)blog (-2)a.( )[答案] (1)√ (2)× (3)× (4)×题型一对数运算性质的应用 【典例1】 求下列各式的值: (1)log 345-log 35; (2)log 24·log 28;(3)lg14-2lg 73+lg7-lg18;(4)lg52+23lg8+lg5·lg20+(lg2)2.[思路导引] 解题关键是弄清各式与对数运算积、商、幂中的哪种形式对应. [解] (1)log 345-log 35=log 3455=log 39=log 332=2.(2)log 24·log 28=log 222·log 223=2×3=6.(3)原式=lg2+lg7-2(lg7-lg3)+lg7-(lg2+lg9) =lg2+lg7-2lg7+2lg3+lg7-lg2-2lg3=0. (4)原式=2lg5+23lg23+lg5·lg(22×5)+(lg2)2=2lg5+2lg2+lg5·(2lg2+lg5)+(lg2)2=2(lg5+lg2)+2lg5·lg2+(lg5)2+(lg2)2 =2lg10+(lg5)2+2lg5·lg2+(lg2)2 =2+(lg5+lg2)2=2+(lg10)2=2+1=3.对数式化简与求值的基本原则和方法(1)基本原则对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成同底的两对数的和(差).[针对训练] 1.计算:(1)log 535-2log 573+log 57-log 51.8;(2)log 2748+log 212-12log 242-1; (3)12lg 3249-43lg 8+lg 245. [解] (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2.(2)原式=log 2748+log 212-log 242-log 22=log 27×1248×42×2=log 2122(3)解法一:原式=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)=52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5)=12lg10=12. 解法二:原式=lg 427-lg4+lg75=lg 42×757×4=lg(2×5)=lg 10=12.题型二对数换底公式的应用【典例2】 (1)计算:①log 29·log 34; ②log 52×log 79log 513×log 734.(2)证明:①log a b·log b a =1(a>0,且a≠1;b>0,且b≠1); ②log an b n=log a b(a>0,且a≠1,n≠0). [思路导引] 利用换底公式计算、证明. [解] (1)①原式=lg9lg2·lg4lg3=lg32·lg22lg2·lg3=2lg3·2lg2lg2·lg3=4.②原式=log 52log 513·log 79log 734=log 132·log 349=lg 2lg 13·lg9lg 34=12lg2·2lg3-lg3·23lg2=-32.(2)证明:①log a b·log b a =lgb lga ·lgalgb=1. ②log an b n=lgb nlga n =nlgb nlga =lgblga=log a b.[变式] (1)若本例(2)①改为“log a b·log b c·log c d =log a d”如何证明? (2)若本例(2)②改为“log an b m=m n log a b”如何证明?[证明] (1)log a b·log b c·log c d =lgb lga ·lgc lgb ·lgd lgc =lgdlga=log a d. (2)log an bm=lgb mlga n =mlgb nlga =mn log a b.应用换底公式应注意的2个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用. (2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.[针对训练]2.·()log 227等于( )A.23B.32 C .6 D .-6[解析][答案] D3.log 2125·log 318·log 519=________.[解析] 原式=lg 125lg2·lg 18lg3·lg 19lg5=(-2lg5)·(-3lg2)·(-2lg3)lg2lg3lg5=-12.[答案] -12 题型三对数的综合应用【典例3】 (1)一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1位有效数字)?(lg2≈0.3010,lg3≈0.4771)(2)已知log 189=a,18b=5,用a 、b 表示log 3645. [思路导引] 应用换底公式化简求值.[解] (1)设最初的质量是1,经过x 年,剩余量是y ,则: 经过1年,剩余量是y =0.75; 经过2年,剩余量是y =0.752;…经过x 年,剩余量是y =0.75x; 由题意得0.75x=13,∴x=log 0.7513=lg 13lg 34=-lg3lg3-lg4≈4.∴估计经过4年,该物质的剩余量是原来的13.(2)解法一:由18b=5,得log 185=b ,又log 189=a , 所以log 3645=log 1845log 1836=log 18(9×5)log 1818×2×99=log 189+log 185log 18182-log 189=a +b2-a. 解法二:设log 3645=x ,则36x=45,即62x=5×9, 从而有182x=5×9x +1,对这个等式的两边都取以18为底的对数,得2x =log 185+(x +1)log 189, 又18b=5,所以b =log 185. 所以2x =b +(x +1)a ,解得x =a +b 2-a ,即log 3645=a +b2-a .解对数综合应用问题的3条策略(1)统一化:所求为对数式,条件转为对数式. (2)选底数:针对具体问题,选择恰当的底数. (3)会结合:学会换底公式与对数运算法则结合使用.[针对训练]4.若lg2=a ,lg3=b ,则log 512等于________. [解析] log 512=lg12lg5=lg3+2lg21-lg2=b +2a1-a.[答案]b +2a1-a5.在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg),火箭(除燃料外)的质量m(单位:kg)满足e v=⎝ ⎛⎭⎪⎫1+M m 2000(e 为自然对数的底).当燃料质量M 为火箭(除燃料外)质量m 的两倍时,求火箭的最大速度(单位:m/s).(ln3≈1.099)[解] 由e v =⎝ ⎛⎭⎪⎫1+M m 2000及M =2m ,得e v =32000,两边取以e 为底的对数,v =ln32000=2000ln3≈2000×1.099=2198(m/s).∴火箭的最大速度为2198 m/s.1.下列式子中成立的是(假定各式均有意义)( ) A .log a x·log a y =log a (x +y) B .(log a x)n=nlog a x C.log a x n=log a nx D.log a xlog a y=log a x -log a y [解析] 根据对数的运算性质知,C 正确. [答案] C2.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3 D.12[解析] 12log 612-2log 62=log 623-log 62=log 6232=log 6 3.故选C.[答案] C3.已知ln2=a ,ln3=b ,那么log 32用含a ,b 的代数式可表示为( ) A .a -b B.ab C .abD .a +b[解析] log 32=ln2ln3=ab .[答案] B4.计算log 916·log 881的值为________.[解析] log 916·log 881=lg24lg32·lg34lg23=4lg22lg3·4lg33lg2=83.[答案] 835.已知2x =3y =6z≠1,求证:1x +1y =1z .[证明] 设2x=3y=6z=k(k≠1), ∴x=log 2k ,y =log 3k ,z =log 6k ,∴1x =log k 2,1y =log k 3,1z =log k 6=log k 2+log k 3, ∴1z =1x +1y.课后作业(三十)复习巩固一、选择题 1.log 29log 23=( ) A.12B .2 C.32 D.92[解析] 原式=log 29log 23=log 232log 23=2.[答案] B2.2log 510+log 50.25=( ) A .0B .1C .2D .4[解析] 原式=log 5102+log 50.25=log 5(102×0.25)=log 525=2. [答案] C3.若a>0,且a≠1,则下列说法正确的是( ) A .若M =N ,则log a M =log a N B .若log a M =log a N ,则M =N C .若log a M 2=log a N 2,则M =N D .若M =N ,则log a M 2=log a N 2[解析] 在A 中,当M =N≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立,故A 错误;在B 中,当log a M =log a N 时,必有M>0,N>0,且M =N ,因此M =N 成立,故B 正确;在C 中,当log a M 2=log a N 2时,有M≠0,N≠0,且M 2=N 2,即|M|=|N|,但未必有M =N ,例如M =2,N =-2时,也有log a M 2=log a N 2,但M≠N,故C 错误;在D 中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立,故D 错误.[答案] B4.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a)2C .5a -2D .-a 2+3a -1[解析] ∵a=log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2. [答案] A5.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6[解析] 原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6.[答案] D 二、填空题6.lg 5+lg 20的值是________. [解析] lg 5+lg 20=lg 100=lg10=1. [答案] 17.若log a b·log 3a =4,则b 的值为________.[解析] log a b·log 3a =lgb lga ·lga lg3=lgb lg3=4,所以lgb =4lg3=lg34,所以b =34=81.[答案] 818.四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lgE -3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹.[解析] 设里氏8.0级、6.0级地震释放的能量分别为E 2、E 1, 则8-6=23(lgE 2-lgE 1),即lg E 2E 1=3.∴E 2E 1=103=1000, 即汶川大地震所释放的能量相当于1000颗广岛原子弹. [答案] 1000 三、解答题9.求下列各式的值: (1)2log 525+3log 264; (2)lg(3+5+3-5); (3)(lg5)2+2lg2-(lg2)2.[解] (1)∵2log 525=2log 552=4log 55=4, 3log 264=3log 226=18log 22=18, ∴2log 525+3log 264=4+18=22. (2)原式=12lg(3+5+3-5)2=12lg(3+5+3-5+29-5) =12lg10=12. (3)(lg5)2+2lg2-(lg2)2=(lg5)2-(lg2)2+2lg2 =(lg5+lg2)(lg5-lg2)+2lg2=lg10(lg5-lg2)+2lg2=lg5+lg2=lg10=1. 10.(1)若lgx +lgy =2lg(x -2y),求xy 的值;(2)设3x =4y=36,求2x +1y 的值(x>0,y>0).[解] (1)因为lgx +lgy =2lg(x -2y), 所以{ x>0,y>0,x -2y>0,xy =(x -2y )2.由xy =(x -2y)2,知x 2-5xy +4y 2=0,所以x =y 或x =4y.又x>0,y>0且x -2y>0,所以舍去x =y ,故x =4y ,则x y=4. (2)解法一:∵3x =36,4y =36,∴x=log 336,y =log 436.∴1x =1log 336=1log 3636log 363=log 363, 1y =1log 436=1log 3636log 364=log 364. ∴2x +1y=2log 363+log 364=log 36(9×4)=1. 解法二:对等式3x =4y =36各边都取以6为底的对数,得log 63x =log 64y =log 636, 即xlog 63=ylog 64=2.∴2x =log 63,1y=log 62. ∴2x +1y=log 63+log 62=log 66=1, 即2x +1y=1. 综合运用11.若ab>0,给出下列四个等式:①lg(ab)=lga +lgb; ②lg a b=lga -lgb ; ③12lg ⎝ ⎛⎭⎪⎫a b 2=lg a b ;④lg(ab)=1log ab 10. 其中一定成立的等式的序号是( )A .①②③④B .①②C .③④D .③ [解析] ∵ab>0,∴a>0,b>0或a<0,b<0,∴①②中的等式不一定成立;∵ab>0,∴a b>0,12lg ⎝ ⎛⎭⎪⎫a b 2=12×2lg a b =lg a b,∴③中等式成立;当ab =1时,lg(ab)=0,但log ab 10无意义,∴④中等式不成立.故选D.[答案] D12.若2.5x =1000,0.25y =1000,则1x -1y=( ) A.13B .3C .-13D .-3[解析] ∵x=log 2.51000,y =log 0.251000,∴1x =1log 2.51000=log 10002.5,同理1y=log 10000.25, ∴1x -1y =log 10002.5-log 10000.25=log 100010=lg10lg1000=13. [答案] A13.已知lg2=a ,lg3=b ,则log 36=________.[解析] log 36=lg6lg3=lg2+lg3lg3=a +b b. [答案] a +b b 14.计算log 225·log 3116·log 519·ln e =________. [解析] 原式=2lg5lg2×-4lg2lg3×-2lg3lg5×12=8. [答案] 815.设a ,b 是方程2(lgx)2-lgx 4+1=0的两个实根,求 lg(ab)·(log a b +log b a)的值.[解] 原方程可化为2(lgx)2-4lgx +1=0.设t =lgx ,则方程化为2t 2-4t +1=0,∴t 1+t 2=2,t 1·t 2=12. 又∵a,b 是方程2(lgx)2-lgx 4+1=0的两个实根, ∴t 1=lga ,t 2=lgb ,即lga +lgb =2,lga·lgb=12. ∴lg(ab)·(log a b +log b a)=(lga +lgb)·⎝ ⎛⎭⎪⎫lgb lga +lga lgb =(lga +lgb)·(lgb )2+(lga )2lga·lgb=(lga +lgb)·(lga +lgb )2-2lga·lgb lga·lgb=2×22-2×1212=12, 即lg(ab)·(log a b +log b a)=12.。
高中数学第三章指数函数和对数函数4.4.1第2课时对数的运算性质课件北师大版必修
![高中数学第三章指数函数和对数函数4.4.1第2课时对数的运算性质课件北师大版必修](https://img.taocdn.com/s3/m/cc37978e294ac850ad02de80d4d8d15abf23004e.png)
1.利用对数运算性质解题时的常用方法 (1)“拆”:将积(商)的对数拆成两对数之和(差). (2)“并”:将同底对数的和(差)并成积(商)的对数. 2.利用对数运算性质解题时的注意点 (1)拆项、并项不是盲目的,它们都是为求值而进行的. (2)对于常用对数式化简问题应注意充分运用性质“lg 5+lg 2=1”解题. (3)注意平方差公式、完全平方式的灵活应用.
角度1 由对数式求值
【典例】设lg 2=a,lg 3=b,则
lg 12 lg 5
=(
)
2a+b A.
1+a
a+2b B.
1+a
2a+b C.
1-a
a+2b D.
1-a
【思路导引】把lg 12用lg 2和lg 3表示,把lg 5用lg 2表示. 【解析】选C.因为lg 2=a,lg 3=b,
所以llgg152
2lg 2+lg 3 =
1-lg 2
2a+b =
1-a
.
角度2 由指数式求值 【典例】已知a=2lg 3,b=3lg 2,比较a,b的大小. 【思路导引】对a,b两边取对数进行判断. 【解析】因为lg a=lg 2lg 3=lg 3lg 2,lg b=lg 3lg 2=lg 2lg 3. 所以lg a=lg b,所以a=b.
M N
=
ap aq
=
ap-q,所以p-q=logaMN ;即logaMN =logaM-logaN.
1.辨析记忆(对的打“√”,错的打“×”)
(1)积、商的对数可以化为对数的和、差.( √ ) (2)loga(xy)=logax·logay.( × )
提示:在a>0,a≠1,x>0,y>0的条件下loga(xy)=logax+logay.
高中数学知识点总结指数与对数的运算规律
![高中数学知识点总结指数与对数的运算规律](https://img.taocdn.com/s3/m/c7143957f08583d049649b6648d7c1c708a10b3b.png)
高中数学知识点总结指数与对数的运算规律指数与对数是高中数学中非常重要的知识点。
掌握指数与对数的运算规律可以帮助我们解决各种问题,例如指数函数的图像、指数方程与对数方程的求解等。
下面将对指数与对数的运算规律进行总结和探讨。
一、指数的运算规律1. 相同底数的指数相加减法:对于相同底数的指数相加减法,只需保持底数不变,将指数相加减即可。
例如:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)2. 相同指数的底数相乘除法:对于相同指数的底数相乘除法,只需保持指数不变,将底数相乘除即可。
例如:a^m * b^m = (a * b)^m,a^m / b^m = (a / b)^m3. 指数的乘方运算:对于指数的乘方运算,只需将指数相乘即可。
例如:(a^m)^n = a^(m*n)4. 指数的整数次根的运算:对于指数的整数次根的运算,只需将指数开n次方即可。
例如:(a^m)^(1/n) = a^(m/n)二、对数的运算规律1. 对数运算的定义:对数是指数运算的逆运算,即log(a, x) = y 等价于a^y = x。
其中,a被称为底数,x被称为真数,y被称为对数。
2. 对数的乘法运算:对数的乘法运算可以转化为真数的乘法运算。
例如:log(a, x) + log(a, y) = log(a, (x * y))3. 对数的除法运算:对数的除法运算可以转化为真数的除法运算。
例如:log(a, x) - log(a, y) = log(a, (x / y))4. 对数的幂运算:对数的幂运算可以转化为指数的乘法运算。
例如:log(a, (x^n)) = n * log(a, x)5. 常用对数与自然对数:常用对数的底数为10,通常表示为log(x),自然对数的底数为e (自然常数),通常表示为ln(x)。
通过掌握指数与对数的运算规律,我们可以更加灵活地应用于解决实际问题,例如解决指数方程和对数方程等。
高中数学中的指数与对数函数的性质
![高中数学中的指数与对数函数的性质](https://img.taocdn.com/s3/m/5a509046b42acfc789eb172ded630b1c59ee9b8f.png)
高中数学中的指数与对数函数的性质指数与对数函数是高中数学中重要的概念,它们在数学和实际生活中都具有广泛的应用。
本文将探讨指数与对数函数的性质,包括定义、图像、性质以及应用等方面。
一、指数函数的性质指数函数是以底数为常数的幂的形式表示的函数,其中底数是一个正实数,指数是自变量。
指数函数的一般形式为:f(x) = a^x,其中a为底数,x为指数。
1. 定义和图像指数函数的定义域是全体实数,值域是正实数。
当底数a大于1时,指数函数是递增函数;当底数a介于0和1之间时,指数函数是递减函数。
指数函数的图像特点是从左下方向右上方逼近x轴,并且永远不会与x轴相交。
当底数a等于1时,指数函数 f(x) = 1^x = 1,为常函数。
2. 性质(1)指数函数的基本性质:f(x) = a^x,其中a为正实数且不等于1。
当a>1时,函数f(x)是递增函数;当0<a<1时,函数f(x)是递减函数。
当a=1时,f(x)=1^x=1,为常函数。
(2)指数运算法则:对于指数函数,指数运算有以下法则:a^m * a^n = a^(m+n)(a^m)^n = a^(m*n)(a*b)^m = a^m * b^m(3)特殊指数函数的性质:a^0 = 1 (其中a为正实数,且a≠0)a^(-n) = 1/(a^n) (其中a为正实数,且a≠0)a^(1/n) = 平方根a (其中a为正实数)a^m * a^(-m) = a^0 = 13. 应用指数函数的应用非常广泛,例如:(1)财务增长和投资回报的计算。
(2)物质的衰变和放射性的测量。
(3)自然生长和人口增长的模拟。
(4)科学实验数据的分析。
(5)信号传输和电磁波的分析等。
二、对数函数的性质对数函数是指以某个正实数为底数,使得指数等于给定数的函数。
对数函数的一般形式为:f(x) = loga(x),其中a为底数,x为实数。
1. 定义和图像对数函数的定义域是正实数,值域是全体实数。
高中数学北师大版必修1课件:第3章指数函数和对数函数4对数4.1对数及其运算4
![高中数学北师大版必修1课件:第3章指数函数和对数函数4对数4.1对数及其运算4](https://img.taocdn.com/s3/m/220f246af02d2af90242a8956bec0975f565a407.png)
合作探究 攻重难
指数式与对数式的互化
【例1】 将下列指数式化为对数式,对数式化为指数式: (1)2-7=1128;(2)33=27;(3)10-1=0.1; (4)log132=-5;(5)lg 0.001=-3;(6)ln e=1.
2
[解] (1)log21128=-7;(2)log327=3;(3)log100.1=-1;(4)12-5 =32;(5)10-3=0.001;(6)e1=e.
取对数
[探究问题] 1.已知a=2lg 3,b=3lg 2,则a,b的大小关系是什么? 提示:∵lg a=lg 2lg 3=lg 3lg 2,lg b=lg 3lg 2=lg 2lg 3. ∴lg a=lg b ∴a=b.
2.设2a=5b=m,且1a+1b=2,则m的值是什么?
提示:由2a=5b=m,取对数得alg 2=blg 5=lg m, ∴a=llgg m2 ,b=llgg m5 ,又1a+1b=2, ∴llgg m2 +llgg m5 =2,
第三章 指数函数和对数函数
§4 对 数 4.1 对数及其运算
学习目标
核心素养
1.理解对数的概念.(重点) 1.通过指数式与对数式的互化及
2.掌握指数式与对数式的互 对数的基本性质,培养逻辑推理
化.(重点) 素养.
3.掌握对数的基本性质.(难点) 2.通过推导对数运算性质的过
4.掌握对数的运算性质,理解其 程,提升数学运算素养.
利用对数与指数间的互化关系时,要注意各字母位置的对应关 系,其中两式中的底数是相同的.
1.将下列指数式化为对数式,对数式化为指数式. ①35=243;②13m=5.73;③log1216=-4; ④ln 10=2.303. [解] ①l;④e2.303=10.
高中数学公式大全指数对数函数的运算与对数换底
![高中数学公式大全指数对数函数的运算与对数换底](https://img.taocdn.com/s3/m/eb99ee500a4e767f5acfa1c7aa00b52acec79c4a.png)
高中数学公式大全指数对数函数的运算与对数换底高中数学公式大全:指数对数函数的运算与对数换底指数对数函数是高中数学中的重要内容,掌握其运算规则和对数换底的方法对于解题非常有帮助。
本文将详细介绍指数对数函数的运算与对数换底,并给出相关的数学公式大全,希望对你的学习有所帮助。
1. 指数函数的运算指数函数是形如 y = a^x 的函数,其中 a 是底数,x 是指数。
在指数函数的运算中,有以下几个重要的公式:公式一:指数相乘的法则当两个指数相乘时,底数不变,指数相加,即 a^x * a^y = a^(x+y)。
公式二:指数相除的法则当两个指数相除时,底数不变,指数相减,即 a^x / a^y = a^(x-y)。
公式三:指数的乘方法则当一个指数的数值再次乘方时,底数不变,指数相乘,即 (a^x)^y = a^(x*y)。
2. 对数函数的运算对数函数是指数函数的逆运算,常用表示形式为 y = loga(x),其中a 是底数,x 是真数。
在对数函数的运算中,有以下几个重要的公式:公式四:对数相乘的法则当两个对数相乘时,真数不变,底数相加,即 loga(x) * loga(y) = loga(x*y)。
公式五:对数相除的法则当两个对数相除时,真数不变,底数相减,即 loga(x) / loga(y) = loga(x/y)。
公式六:对数的乘方法则当一个对数的数值再次乘方时,真数不变,底数相乘,即 loga(x^p) = p * loga(x)。
3. 对数换底公式对数换底公式是指用一个底数的对数来表示另一个底数的对数。
在解题中,如果给定的对数底数与所需要的对数底数不一致,就需要使用对数换底公式。
对数换底公式有以下两种形式:公式七:以10为底数的对数换底公式对于任意一个正数 x,可以得到以 10 为底数的对数和以 e 为底数的对数之间的关系:log10(x) = ln(x)/ln(10)。
公式八:以任意底数为对数的换底公式对于任意一个正数 x,可以得到以 a 为底数的对数和以 b 为底数的对数之间的关系:loga(x) = logb(x) / logb(a)。
高一最难的数学知识点指数对数
![高一最难的数学知识点指数对数](https://img.taocdn.com/s3/m/2b04cbc4aff8941ea76e58fafab069dc5022476e.png)
高一最难的数学知识点指数对数在高中数学中,指数和对数是其中最具挑战性的知识点之一。
对于大部分高一学生来说,掌握这两个概念可能需要一些时间和努力。
本文将介绍高一最难的数学知识点之一——指数和对数,并通过例题和解析,帮助读者更好地理解和应用这些概念。
一、指数指数是数学中重要且常见的概念之一。
在数学中,指数表示一个数的乘积中,相同因子的重复次数。
指数的表示通常采用上标形式,如2³表示2的三次方。
在学习指数时,我们需要了解指数运算的基本规则。
其中包括乘法法则、除法法则和幂运算法则等。
1. 乘法法则乘法法则指出,两个具有相同底数的指数相乘,等于底数不变,指数相加。
例如,aⁿ * aᵐ = a^(n+m)。
通过使用乘法法则,我们可以简化复杂的指数运算,并进行快速计算。
2. 除法法则除法法则是乘法法则的逆运算。
两个具有相同底数的指数相除,等于底数不变,指数相减。
例如,aⁿ / aᵐ = a^(n-m)。
掌握除法法则对于解决涉及指数的复杂问题非常重要。
3. 幂运算法则幂运算法则规定,一个数的指数上再次有指数,等于底数不变,指数相乘。
即(aⁿ)ᵐ = a^(n*m)。
理解幂运算法则有助于我们处理复合指数和简化指数表达式。
二、对数对数是指数的逆运算。
在数学中,对数表示一个数以某个底数为指数时的结果。
对数有时候也被称为幂运算的反函数。
对数的表示通常采用log的形式,如logₐb表示以底数a为指数时,结果为b的对数。
掌握对数的规则和性质是理解和解决对数问题的关键。
以下是一些基本的对数性质。
1. 对数的乘法法则对数的乘法法则指出,两个数相乘后取对数,等于将两个数分别取对数再相加。
即logₐ(m*n) = logₐm + logₐn。
这个性质可以用于简化复杂的对数运算。
2. 对数的除法法则对数的除法法则是乘法法则的逆运算。
两个数相除后取对数,等于将两个数分别取对数再相减。
即logₐ(m/n) = logₐm - logₐn。
指数函数对数函数公式
![指数函数对数函数公式](https://img.taocdn.com/s3/m/9849cd2e58eef8c75fbfc77da26925c52cc5910c.png)
指数函数对数函数公式
指数函数和对数函数是高中数学中比较重要的概念,它们有着紧密
的关系,下面我们将详细介绍它们的相关知识。
一、指数函数
指数函数是一种以确定底数为底的幂次函数,其定义域可以是实数集,也可以是复数集,其一般形式可以表示为:
y = a^x
其中,a为底数,x为幂次,y为函数值。
指数函数的图像一般呈现出指数增长的趋势,当底数a大于1时,函数值随着幂次x的增大而成指数增长,当底数a介于0和1之间时,函数值随着幂次x的增大而成指数衰减。
二、对数函数
对数函数是指数函数的反函数,其定义域为正实数集,其一般形式可
以表示为:
y = loga(x)
其中,a为底数,x为函数值,y为幂次。
对数函数的图像通常为单调递增的曲线,当底数a大于1时,函数值随着自变量x的增大而增大,当底数a介于0和1之间时,函数值随着自变量x的增大而减小。
三、指数函数与对数函数的关系
对数函数是指数函数的反函数,因此指数函数和对数函数是互逆的。
对于底数为a的指数函数和以a为底的对数函数,它们之间存在以下等式:
a^(loga(x)) = x
loga(a^x) = x
这些等式将指数函数和对数函数联系起来,可以更方便地进行计算。
总之,指数函数和对数函数是高中数学中的重要概念,其关系密切,相互补充。
通过学习这些知识,我们可以更好地理解数学中的许多问题。
04高中数学《指数函数对数函数》知识点
![04高中数学《指数函数对数函数》知识点](https://img.taocdn.com/s3/m/cb72147a02768e9951e7388d.png)
.
⑤奇偶性:非奇非偶.
基本思路:
29. 解不等式: 0.3x2 x1 > 0.32x2 5x
利用指数、对数函数的图象(实质是判断
指 利用函数的增减性),把原不等式转化为一元 30. 若 log 2a 3 <0,则 a 的取值范围是
.
数 一次(或二次)不等式(组).
a a 和 ① f(x)> g(x) (a>0,a≠1)型
1、解析式:y£½ a x (a>0,且 a≠1)
2、图象:
5. 指数函数y£½ a x ( a >0 且 a ≠1)的图象过
点(3,π ) , 求 f (0)、f (1)、f (-3)的值.
6. 求下列函数的定义域:
① y 2 x2 ;
②y 1 . 4x5 2
指
7. 比较下列各组数的大小:
A. m > n
B.lg(m2 ) >lg(n2 )
C.m4>n4
D.( 1 )m<( 1 )n 22
27. 比较各组数的大小:
①log 1 0.2 2
log 1 0.21, 2
lg1.1 lg1.11
② 60.7 , 0.76 , log 0.7 6 从小到大为
③ log89
log98 ,
④ log25
loge x 简记为 lnx,称为自然对数.
设 a>0,b>0,a≠1,b≠1,M>0,N>0
16.
log 2
1 25
log3
8
=
.
① a b=N loga N=b
log9 5
② 负数和零没有对数;
③ log a 1=0, log a a=1
④ aloga N =N , log a a N N
新教材高中数学第四章指数函数与对数函数 对数的运算学案含解析新人教A版必修第一册
![新教材高中数学第四章指数函数与对数函数 对数的运算学案含解析新人教A版必修第一册](https://img.taocdn.com/s3/m/026a923ba1c7aa00b42acb0f.png)
4.3.2 对数的运算[目标] 1.理解对数的运算性质;2.能用换底公式将一般对数转化成自然对数或常用对数;3.了解对数在简化运算中的作用.[重点] 对数的运算性质的推导与应用.[难点] 对数的运算性质的推导和换底公式的应用.知识点一 对数的运算性质[填一填]如果a >0,且a ≠1,M >0,N >0.那么: (1)log a (M ·N )=log a M +log a N . (2)log a MN =log a M -log a N .(3)log a M n =n log a M (n ∈R ).[答一答]1.若M ,N 同号,则式子log a (M ·N )=log a M +log a N 成立吗? 提示:不一定,当M >0,N >0时成立,当M <0,N <0时不成立. 2.你能推导log a (MN )=log a M +log a N 与log a MN =log a M -log a N(M ,N >0,a >0且a ≠1)两个公式吗?提示:①设M =a m ,N =a n ,则MN =a m +n .由对数的定义可得log a M =m ,log a N =n ,log a (MN )=m +n .这样,我们可得log a (MN )=log a M +log a N . ②同样地,设M =a m ,N =a n ,则M N =a m -n .由对数定义可得log a M =m , log a N =n ,log a MN =m -n ,即log a MN =log a M -log a N .知识点二 换底公式[填一填]前提原对数的底数a 的取值范围a >0,且a ≠1条件 原对数的真数b 的取值范围 b >0 换底后对数的底数c 的取值范围c >0,且c ≠1公式log a b =log c blog c a换底公式常见的推论: (1)log an b n =log a b ;(2)log am b n =n m log a b ,特别log a b =1log b a ;(3)log a b ·log b a =1; (4)log a b ·log b c ·log c d =log a d .[答一答]3.换底公式的作用是什么?提示:利用换底公式可以把不同底数的对数化为同底数的对数. 4.若log 34·log 48·log 8m =log 416,求m 的值. 提示:∵log 34·log 48·log 8m =log 416,∴lg4lg3·lg8lg4·lg mlg8=log 442=2,化简得lg m =2lg3=lg9, ∴m =9.类型一 对数运算性质的应用 [例1] 计算下列各式: (1)12lg 3249-43lg 8+lg 245; (2)2lg2+lg31+12lg0.36+13lg8;(3)lg25+23lg8+lg5·lg20+(lg2)2.[分析] (1)(2)正用或逆用对数的运算性质化简;(3)用lg2+lg5=1化简.[解] (1)(方法1)原式=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)=52lg2-lg7-2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12. (方法2)原式=lg427-lg4+lg(75)=lg 42×757×4=lg(2×5)=lg 10=12. (2)原式=lg4+lg31+lg0.6+lg2=lg12lg (10×0.6×2)=lg12lg12=1.(3)原式=2lg5+2lg2+(1-lg2)(1+lg2)+(lg2)2=2(lg5+lg2)+1-(lg2)2+(lg2)2=2+1=3.利用对数的运算性质解决问题的一般思路:(1)把复杂的真数化简;(2)正用公式:对式中真数的积、商、幂、方根,运用对数的运算法则,将它们化为对数的和、差、积、商,然后再化简;(3)逆用公式:对式中对数的和、差、积、商,运用对数的运算法则,将它们化为真数的积、商、幂、方根,然后化简求值.[变式训练1] (1)计算:log 53625=43;log 2(32×42)=9.(2)计算:lg8+lg125=3;lg 14-lg25=-2;2log 36-log 34=2.类型二 换底公式的应用[例2] (1)计算:(log 32+log 92)·(log 43+log 83); (2)已知log 189=a,18b =5,试用a ,b 表示log 3645.[解] (1)原式=⎝⎛⎭⎫lg2lg3+lg2lg9⎝⎛⎭⎫lg3lg4+lg3lg8=⎝⎛⎭⎫lg2lg3+lg22lg3⎝⎛⎭⎫lg32lg2+lg33lg2=3lg22lg3·5lg36lg2=54. (2)由18b =5,得log 185=b ,∴log 3645=log 18(5×9)log 18(18×2)=log 185+log 1891+log 182=log 185+log 1891+log 18189=log 185+log 1892-log 189=a +b 2-a.利用换底公式可以统一“底”,以方便运算.在用换底公式时,应根据题目特点灵活换底.由换底公式可推出常用结论:log a b ·log b a =1.[变式训练2] 计算下列各式:(1)(log 2125+log 425+log 85)·(log 52+log 254+log 1258). (2)log 89log 23×log 6432. 解:(1)方法1:原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28 ⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22·⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法2:原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125=⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5=⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.(2)方法1:原式=log 29log 28÷log 23×log 232log 264=2log 233÷log 23×56=59.方法2:原式=lg9lg8÷lg3lg2×lg32lg64=2lg33lg2×lg2lg3×5lg26lg2=59.类型三 与对数方程有关的问题[例3] (1)若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,求xy 的值;(2)解方程:log 2x +log 2(x +2)=3. [解] (1)由题可知lg[(x -y )(x +2y )]=lg(2xy ), 所以(x -y )(x +2y )=2xy ,即x 2-xy -2y 2=0. 所以⎝⎛⎭⎫x y 2-x y -2=0. 解得x y =2或xy=-1.又因为x >0,y >0,x -y >0.所以x y =2.(2)由方程可得log 2x +log 2(x +2)=log 28. 所以log 2[x (x +2)]=log 28, 即x (x +2)=8.解得x 1=2,x 2=-4. 因为x >0,x +2>0,所以x =2.对数方程问题的求解策略:,利用对数运算性质或换底公式将方程两边写成同底的对数形式,由真数相等求解方程,转化过程中注意真数大于零这一条件,防止增根.[变式训练3] (1)方程lg x +lg(x -1)=1-lg5的根是( B ) A .-1 B .2 C .1或2D .-1或2(2)已知lg x +lg y =2lg(x -2y ),则log2xy的值为4. 解析:(1)由真数大于0,易得x >1,原式可化为lg[x (x -1)]=lg2⇒x (x -1)=2⇒x 2-x -2=0⇒x 1=2,x 2=-1(舍).(2)因为lg x +lg y =2lg(x -2y ), 所以lg xy =lg(x -2y )2,所以xy =(x -2y )2,即x 2-5xy +4y 2=0. 所以(x -y )(x -4y )=0,解得x =y 或x =4y .因为x >0,y >0,x -2y >0,所以x =y 应舍去, 所以xy=4.故log2xy=log 24=4.类型四 对数的实际应用[例4] 人们对声音有不同的感觉,这与它的强度有关系.声音强度I 的单位用瓦/平方米(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10lg II 0(单位为分贝,L 1≥0,其中I 0=1×10-12W/m 2,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:树叶沙沙声的强度是1×10-12W/m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8W/m 2,试分别求出它们的强度水平.[解] 由题意,可知树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,故LI 1=10·lg1=0,则树叶沙沙声的强度水平为0分贝;耳语的强度是I 2=1×10-10W/m 2,则I 2I 0=102,故LI 2=10lg102=20,即耳语声的强度水平为20分贝. 同理,恬静的无线电广播强度水平为40分贝.对数运算在实际生产和科学技术中运用广泛,其运用问题大致可分为两类:一类是已知对数应用模型(公式),在此基础上进行一些实际求值.计算时要注意利用“指、对互化”把对数式化成指数式.另一类是先建立指数函数应用模型,再进行指数求值,此时往往将等式两边进行取对数运算.[变式训练4] 抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.301 0)解:设至少抽n 次可使容器内空气少于原来的0.1%,则a (1-60%)n <0.1%a (设原先容器中的空气体积为a ),即0.4n <0.001,两边取常用对数得n ·lg0.4<lg0.001,所以n >lg0.001lg0.4=-32lg2-1≈7.5.故至少需要抽8次.1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( B ) A .log a b ·log c b =log c a B .log a b ·log c a =log c bC .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a c解析:由换底公式得log a b ·log c a =lg b lg a ·lg a lg c =log c b ,所以B 正确.2.2log 32-log 3329+log 38的值为( B )A.12 B .2 C .3D.13解析:原式=log 34-log 3329+log 38=log 34×8329=log 39=2.3.lg 5+lg 20的值是1.解析:lg 5+lg 20=lg(5×20)=lg 100=1.4.若a >0,且a ≠1,b >0,且b ≠1,则由换底公式可知log a b =lg b lg a ,log b a =lg a lg b ,所以log a b =1log b a ,试利用此结论计算1log 321+1log 721=1.解析:1log 321+1log 721=lg3lg21+lg7lg21=lg (3×7)lg21=1.5.计算:(1)3log 72-log 79+2log 7⎝⎛⎭⎫322;(2)(lg2)2+lg2·lg50+lg25.解:(1)原式=log 78-log 79+log 798=log 78-log 79+log 79-log 78=0.(2)原式=lg2(lg2+lg50)+2lg5=lg2·lg100+2lg5 =2lg2+2lg5=2(lg2+lg5)=2lg10=2.——本课须掌握的两大问题1.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M ±N ).2.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.。
高中数学中的指数与对数等式与不等式求解技巧
![高中数学中的指数与对数等式与不等式求解技巧](https://img.taocdn.com/s3/m/78bada5bc381e53a580216fc700abb68a882ad63.png)
高中数学中的指数与对数等式与不等式求解技巧指数和对数在高中数学中是重要的概念和工具。
它们在各种数学领域,特别是代数方程和不等式的求解中发挥着重要作用。
本文将介绍一些解决指数和对数等式与不等式的技巧和方法,帮助学生更好地掌握这些概念。
一、指数等式的求解技巧指数等式是指含有指数的等式,常见的形式如下:a^x = b, 其中 a 和 b 是已知数,x 是未知数。
解决指数等式的关键是将等式转化为等价的对数等式。
对于上面的指数等式,可以将其改写为对数等式:x = logᵦ(a)这里的 log 表示以ᵦ为底的对数。
例如,对于指数等式 2^x = 8,可以将其转化为对数等式:x = log₂(8)求解这个对数等式,可以通过以下步骤进行:1. 将底数 2 写成以 10 为底的对数:log₂(8) = log₁₀(8) / log₁₀(2)2. 使用对数的性质将对数化简:x = log₁₀(8) / log₁₀(2)3. 使用计算器或查表方法,求得 log₁₀(8) 和 log₁₀(2) 的具体值,然后进行计算得到 x 的值。
二、对数等式的求解技巧对数等式是指含有对数的等式,常见的形式如下:logᵦ(x) = c, 其中 b 和 c 是已知数,x 是未知数。
解决对数等式的关键是将等式转化为等价的指数等式。
对于上面的对数等式,可以将其改写为指数等式:x = ᵦ^c例如,对于对数等式 log₂(x) = 3,可以将其转化为指数等式:x = 2³求解这个指数等式,可以直接计算得到 x 的值:x = 2³ = 8三、指数不等式的求解技巧指数不等式是指含有指数的不等式,常见的形式如下:a^x < b, 其中 a 和 b 是已知数,x 是未知数。
解决指数不等式的关键是将不等式转化为等价的对数不等式。
对于上面的指数不等式,可以将其改写为对数不等式:x > logᵦ(b)这里的 log 表示以ᵦ为底的对数。
高中数学同步教学课件 对数运算
![高中数学同步教学课件 对数运算](https://img.taocdn.com/s3/m/d04d8b3a49d7c1c708a1284ac850ad02de8007d4.png)
探究四 利用对数恒等式化简求值
例 4 计算:
(1)71-log75;(2)100(12 lg9-lg2) ;
(3)alogab·logbc(a,b 为不等于 1 的正数,c>0).
解 (1)原式=7×7-log75=7lo7g75=75.
1 (2)原式=1002 lg9
lg 9×100-lg 2=10lg 9×1001lg 2=9×101lg 22=94.
[微体验]
1.ln3 e的值是________.
【答案】13
【解析】设
3 ln
e=x,则
ex=3
1
e,∴ex=e3
1
,∴x=3
.
2.方程 log5(1-2x)=1 的解 x=________. 【答案】-2 【解析】由 1-2x=5,解得 x=-2.
【课堂探究】
探究一 指数式与对数式的互化
例 1 (1)将下列指数式化成对数式:
[方法总结] 涉及两个以上对数,方法由外向里,逐层解决,其中将 1或0化成同底对数,有利于去掉log,从而最终解出x.
[跟踪训练3] 求值: (1)ln(lg x)=1;(2)log2(log5x)=0.
解 (1)∵ln(lg x)=1,∴lg x=e,∴x=10e. (2)∵log2(log5x)=0,∴log5x=1,∴x=5.
[微体验]
1.lg 7与ln 8的底数分别是( )
A.10,10
B.e,e
C.10,e
D.e,10
【答案】C 2.lg 100=________.
【答案】2 【解析】lg 100=lg 102=2.
知识点3 对数的基本性质
1 . 负 数 和 0 _ _ _没_有_ _ _ _ _ _ 对 数 ; 2 . 1 的 对 数 是 0 , 即 l o g a 1 = _ _ _0_ _ _ _ _ _ _ ( a > 0 且 a ≠ 1 ) ; 3 . 底 数 的 对 数 是 1 , 即 l o g a a = _ _1_ _ _ _ _ _ _ _ ( a > 0 且 a ≠ 1 ) ; 4.对数恒等式:alogaN=N.
高中数学公式大全指数运算与对数运算的基本公式
![高中数学公式大全指数运算与对数运算的基本公式](https://img.taocdn.com/s3/m/aadab99785254b35eefdc8d376eeaeaad0f3164a.png)
高中数学公式大全指数运算与对数运算的基本公式指数运算与对数运算是高中数学中重要的概念和工具。
它们在各种数学问题的求解中起着重要作用。
本文将为大家介绍指数运算与对数运算的基本公式,以及它们的应用。
一、指数运算的基本公式1.1. 乘法法则指数运算中,当两个数相乘时,它们的指数相加,底数保持不变。
即:a^m * a^n = a^(m+n)例如:2^3 * 2^4 = 2^(3+4) = 2^7 = 1281.2. 除法法则当两个指数相除时,它们的指数相减,底数保持不变。
即:a^m / a^n = a^(m-n)例如:3^5 / 3^2 = 3^(5-2) = 3^3 = 271.3. 幂的乘法法则当一个数的幂再次进行乘幂操作时,底数不变,指数相乘。
即:(a^m)^n = a^(m*n)例如:(2^3)^4 = 2^(3*4) = 2^12 = 40961.4. 幂的除法法则当一个数的幂进行除幂操作时,底数不变,指数相除。
即:(a^m)^n = a^(m/n)例如:(4^6)^2 = 4^(6/2) = 4^3 = 641.5. 负指数的定义任何非零数的负指数等于该数的倒数的正指数。
即:a^(-n) = 1 / a^n例如:2^(-3) = 1 / 2^3 = 1/8 = 0.125二、对数运算的基本公式2.1. 对数的定义对数是指数运算的逆运算。
定义如下:如果a^x = b,那么x叫做以a为底的对数,记作log_a(b) = x例如:如果2^3 = 8,则log_2(8) = 32.2. 对数的换底公式当需要求一个数在不同底数下的对数时,可以利用换底公式进行计算。
换底公式如下:log_a(b) = log_c(b) / log_c(a)其中,a、b、c分别为底数,b为真数。
例如:计算log_2(8),可以利用换底公式:log_2(8) = log_10(8) / log_10(2)2.3. 对数的乘法法则对数运算中,当两个数相乘时,它们的对数相加。
高中数学对数及对数的运算优秀课件
![高中数学对数及对数的运算优秀课件](https://img.taocdn.com/s3/m/3f24901a640e52ea551810a6f524ccbff121ca39.png)
添加幻灯片小标题
[尝试解答] (1)∵3-2=19,∴log319=-2.
(2)∵14-2=16,∴log
1 4
16=-2.
(3)∵log
1 3
27=-3,∴13-3=27.
(4)∵log 64=-6,∴( x)-6=64. x
2
3.指数与对数的互化 添加幻灯片小标题
当 a>0,a≠1 时,ax=N⇔x=
. 如:
∵23=8,∴log28= ;∵25=32,∴log232= .
4.对数的性质
(1)loga1= ;
(2)logaa= ;
(3)
和 没有对数.
5.对数恒等式
alogaN=N(a>0,且 a≠1,N>0).
[典例精析]
添加幻灯片小标题
求下列各式中 x 的值.
(1)logx27=32; (3)x=log2719;
2.2对数函数
对数与对数的运算
01 对数的概念
03 对数的运算性质
CATALOG
02 对数的性质及应用 04 换底公式
1
添加幻灯片小标题
ax b 已知a, x,求b 幂运算 已知b, x,求a 开方运算 已知a,b,求x ??运算
添加幻灯片小标题
1.定义
一般的,如果 aa 0, a 1
3
添加幻灯片小标题
6 .
[典例精析]
添加幻灯片小标题
求下列各式的值:
(1)log2(47×25);
5
(2)lg
100;
(3)lg 14-2 lg 73+lg 7-lg 18;
(4)lg 52+23 lg 8+lg 5·lg 20+(lg 2)2.
新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数的运算讲义
![新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数的运算讲义](https://img.taocdn.com/s3/m/4fd396992e3f5727a4e962be.png)
知识点一对数的运算性质若a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=log a M+log a N,(2)log a错误!=log a M—log a N,(3)log a M n=n log a M(n∈R).错误!对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立 . 例如,log2[(—3)·(—5)]=log2(—3)+log2(—5)是错误的.知识点二对数换底公式log a b=错误!(a>0,a≠1,c>0,c≠1,b>0).特别地:log a b·log b a=1(a>0,a≠1,b>0,b≠1).错误!对数换底公式常见的两种变形(1)log a b·log b a=1,即错误!=log b a ,此公式表示真数与底数互换,所得的对数值与原对数值互为倒数 .(2)log N n M m=错误!log N M,此公式表示底数变为原来的n次方,真数变为原来的m次方,所得的对数值等于原来对数值的错误!倍.[教材解难]换底公式的推导设x=log a b,化为指数式为a x=b,两边取以c为底的对数,得log c a x=log c b,即x log c a=log c b.所以x=错误!,即log a b=错误!.[基础自测]1.下列等式成立的是()A.log2(8—4)=log28—log24B.错误!=log2错误!D.log2(8+4)=log28+log24解析:由对数的运算性质易知C正确.答案:C2.错误!的值为()A.错误!B.2C.错误!D.错误!解析:原式=log39=2.答案:B3.2log510+log50.25=()A.0 B.1C.2D.4解析:原式=log5102+log50.25=log5(102×0.25)=log525=2.答案:C4.已知ln 2=a,ln 3=b,那么log32用含a,b的代数式表示为________.解析:log32=错误!=错误!.答案:错误!题型一对数运算性质的应用[教材P124例3]例1求下列各式的值:(1)lg 错误!;(2)log2(47×25).【解析】(1)lg错误!=lg 10015=错误!lg 100=错误!;(2)log2(47×25)=log247+log225=7×2+5×1=19.利用对数运算性质计算.教材反思1.对于同底的对数的化简,常用方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成对数的和(差).2.对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.跟踪训练1(1)计算:lg错误!+2lg 2—错误!—1=________.(2)求下列各式的值.1log53+log5错误!2(lg 5)2+lg 2·lg 503lg 25+错误!lg 8+lg 5·lg 20+(lg 2)2.解析:(1)lg错误!+2lg 2—错误!—1=lg 5—lg 2+2lg 2—2=(lg 5+lg 2)—2=1—2=—1.(2)1log53+log5错误!=log5错误!=log51=0.2(lg 5)2+lg 2·lg 50=(lg 5)2+(1+lg 5)lg 2=(lg 5)2+lg 2+lg 2·lg 5=lg 5(lg 5+lg 2)+lg 2=lg 5+lg 2=lg 10=1.3原式=lg 25+lg 823+lg错误!·lg(10×2)+(lg 2)2=lg 25+lg 4+(lg 10—lg 2)(lg 10+lg 2)+(lg 2)2=lg 100+(lg 10)2—(lg 2)2+(lg 2)2=2+1=3.答案:(1)—1(2)见解析利用对数运算性质化简求值.题型二对数换底公式的应用[经典例题]例2(1)已知2x=3y=a,错误!+错误!=2,则a的值为()A.36 B.6C.2错误!D.错误!(2)计算下列各式:1log89·log2732.22lg 4+lg 5—lg 8—错误!2 -3.364错误!+lg 4+2lg 5.【解析】(1)因为2x=3y=a,所以x=log2a,y=log3a,所以错误!+错误!=错误!+错误!=log a2+log a3=log a6=2,所以a2=6,解得a=±错误!.又a>0,所以a=错误!.(2)1log89·log2732=错误!·错误!=错误!·错误!=错误!·错误!=错误!.22lg 4+lg 5—lg 8—错误!2-3=lg 16+lg 5—lg 8—错误!=lg错误!—错误!=1—错误!=错误!.364错误!+lg 4+2lg 5=4+lg(4×52)=4+2=6.【答案】(1)D (2)见解析错误!1.先把指数式化为对数式,再用换底公式,把所求式化为同底对数式,最后用对数的运算性质求值.2.先用换底公式将式子变为同底的形式,再用对数的运算性质计算并约分.方法归纳(1)换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n为底的换为a为底.(2)换底公式的派生公式:log a b=log a c·log c b;log an b m=错误!log a b.跟踪训练2(1)式子log916·log881的值为()A.18 B.错误!C.错误!D.错误!(2)(log43+log83)(log32+log98)等于()A.错误!B.错误!C.错误!D.以上都不对解析:(1)原式=log3224·log2334=2log32·错误!log23=错误!.(2)原式=错误!·错误!=错误!·错误!=错误!×错误!log32=错误!.答案:(1)C (2)B利用换底公式化简求值.题型三用已知对数表示其他对数例3已知log189=a,18b=5,用a,b表示log3645.解析:方法一因为log189=a,所以9=18a.又5=18b,所以log3645=log2×18(5×9)=log2×1818a+b=(a+b)·log2×1818.又因为log2×1818=错误!=错误!=错误!=错误!=错误!,所以原式=错误!.方法二∵18b=5,∴log185=b.∴log3645=错误!=错误!=错误!=错误!=错误!=错误!.错误!方法一对数式化为指数式,再利用对数运算性质求值.方法二先求出a、b,再利用换底公式化简求值.方法归纳用已知对数的值表示所求对数的值,要注意以下几点:(1)增强目标意识,合理地把所求向已知条件靠拢,巧妙代换;(2)巧用换底公式,灵活“换底”是解决这种类型问题的关键;(3)注意一些派生公式的使用.跟踪训练3(1)已知log62=p,log65=q,则lg 5=________;(用p,q表示)(2)1已知log147=a,14b=5,用a,b表示log3528.2设3x=4y=36,求错误!+错误!的值.解析:(1)lg 5=错误!=错误!=错误!.(2)1∵log147=a,14b=5,∴b=log145.∴log3528=错误!=错误!=错误!=错误!.2∵3x=36,4y=36,∴x=log336,y=log436,∴错误!=错误!=错误!=log363,错误!=错误!=错误!=log364,∴错误!+错误!=2log363+log364=log36(9×4)=1.答案:(1)错误!(2)1错误!21(1)利用换底公式化简.(2)利用对数运算性质化简求值.课时作业22一、选择题1.若a>0,a≠1,x>y>0,下列式子:1log a x·log a y=log a(x+y);2log a x—log a y=log a(x—y);3log a错误!=log a x÷log a y;4log a(xy)=log a x·log a y.其中正确的个数为()A.0个B.1个C.2个D.3个解析:根据对数的性质知4个式子均不正确.答案:A2.化简错误!log612—2log6错误!的结果为()A.6错误!B.12错误!C.log6错误!D.错误!解析:错误!log612—2log6错误!=错误!(1+log62)—log62=错误!(1—log62)=错误!log63=log6错误!.答案:C3.设lg 2=a,lg 3=b,则错误!=()A.错误!B.错误!C.错误!D.错误!解析:错误!=错误!=错误!=错误!.答案:C4.若log34·log8m=log416,则m等于()A.3B.9C.18 D.27解析:原式可化为log8m=错误!,错误!=错误!,即lg m=错误!,lg m=lg 27,m=27.故选D.答案:D二、填空题5.lg 10 000=________;lg 0.001=________.解析:由104=10 000知lg 10 000=4,10—3=0.001得lg 0.001=—3,注意常用对数不是没有底数,而是底数为10.答案:4—36.若log5错误!·log36·log6x=2,则x等于________.解析:由换底公式,得错误!·错误!·错误!=2,lg x=—2lg 5,x=5—2=错误!.答案:错误!7.错误!·(lg 32—lg 2)=________.解析:原式=错误!×lg错误!=错误!·lg 24=4.答案:4三、解答题8.化简:(1)错误!;(2)(lg 5)2+lg 2lg 50+211+log25 2.解析:(1)方法一(正用公式):原式=错误!=错误!=错误!.方法二(逆用公式):原式=错误!=错误!=错误!.(2)原式=(lg 5)2+lg 2(lg 5+1)+21·22log =lg 5·(lg 5+lg 2)+lg 2+2错误!=1+2错误!.9.计算:(1)log 1627log 8132;(2)(log 32+log 92)(log 43+log 83). 解析:(1)log 1627log 8132=错误!×错误! =错误!×错误!=错误!×错误!=错误!. (2)(log 32+log 92)(log 43+log 83) =错误!错误!=错误!错误! =错误!log 32×错误!log 23=错误!×错误!×错误!=错误!.[尖子生题库]10.已知2x =3y =6z ≠1,求证:错误!+错误!=错误!. 证明:设2x =3y =6z =k (k ≠1),∴x =log 2k ,y =log 3k ,z =log 6k ,∴错误!=log k 2,错误!=log k 3,错误!=log k 6=log k 2+log k 3, ∴错误!=错误!+错误!.。
高中数学中的指数与对数方程的求解方法
![高中数学中的指数与对数方程的求解方法](https://img.taocdn.com/s3/m/744213fd4128915f804d2b160b4e767f5acf80e9.png)
高中数学中的指数与对数方程的求解方法在高中数学学习中,指数与对数方程是重要的内容之一。
本文将详细介绍指数与对数方程的求解方法,帮助大家更好地理解和掌握相关知识。
一、指数方程的求解方法指数方程是含有指数变量的方程。
我们通常使用以下两种方法来求解指数方程。
方法一:对数法对数法是指将指数方程转化为对数方程,通过对数的性质求解。
对于形如a^x = b的指数方程,可以通过取对数的方式转化为对数方程xlog(a) = log(b),从而求得x的值。
方法二:换底公式当指数方程中的底数无法通过对数法求解时,我们可以使用换底公式进行求解。
换底公式是指将指数方程中的底数转化为我们熟悉的底数,从而得到一个可以求解的方程。
二、对数方程的求解方法对数方程是含有对数变量的方程。
我们可以使用以下方法来求解对数方程。
方法一:指数和对数的性质利用指数和对数的性质,可以将对数方程转化为指数方程。
例如对于形如loga(x) = b的对数方程,可以转化为a^b = x的指数方程,从而求解x的值。
方法二:换底公式当对数方程中的底数无法通过指数和对数的性质求解时,我们可以使用换底公式进行求解。
换底公式是指将对数方程中的底数转化为我们熟悉的底数,从而得到一个可以求解的方程。
三、指数与对数方程的实例分析为了更好地理解指数与对数方程的求解方法,我们来看几个实例。
例一:解指数方程求解方程2^x = 16。
解:我们可以将这个指数方程转化为对数方程xlog2 = log16。
通过换底公式,我们可以将底数为2的对数转化为底数为10的对数,得到x = log16 / log2 = 4。
例二:解对数方程求解方程log2(x) = 3。
解:利用指数和对数的性质,我们可以将这个对数方程转化为指数方程2^3 = x,从而得到x = 8。
通过这些实例分析,我们可以发现在解指数与对数方程时,选用合适的方法能够简化计算过程,更准确地求解方程,并且在应用解决实际问题时也能得到准确的结果。
高中数学对数与对数函数知识点及经典例题讲解
![高中数学对数与对数函数知识点及经典例题讲解](https://img.taocdn.com/s3/m/86a6dfd2b84ae45c3a358c6b.png)
对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。
高一数学第4章 指数函数与对数函数 章末重难点归纳总结(解析版)
![高一数学第4章 指数函数与对数函数 章末重难点归纳总结(解析版)](https://img.taocdn.com/s3/m/2b7188d3951ea76e58fafab069dc5022aaea46e2.png)
第4章指数函数与对数函数章末重难点归纳总结重点一 指数对数的运算【例1】(2022·江苏)化简与求值: (1)123(31)(3)8π-(2)23log 3312514log 8lg lg25lg e 162-⎛⎫+-+-- ⎪⎝⎭(1)213102270.00210(51)8π---⎛⎫-+-+ ⎪⎝⎭.(2)2lg25lg2lg50(lg2)+⋅+ 【答案】(1)π; (2)1121551918;(4)2 【解析】(1)原式1331π3(2)=+-+π=.(2)原式232log 32252log 8lg +lg25lg8ln e 16=----161393lg(25)582=-+⨯⨯-36lg102=+-112=.(3)213102270.00210(51)8π---⎛⎫-+-+ ⎪⎝⎭()2313125150010123---⎡⎤+⎛⎫=-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦45555192=++1551918=; (4)2lg25lg2lg50(lg2)+⋅+()22lg5lg21lg5(lg2)=+++()2lg5lg2lg2lg2lg5=+++()2lg2lg5=+2=【一隅三反】1.(2022·全国·高一课时练习)计算:(1)7lg142lg lg 7lg183-+-;(2)()2lg53lg 22lg5lg 2lg5+++⨯;(3)()()223666661log 2log 33log 2log 18log 23⎛⎫++⨯ ⎪⎝⎭.(4)7log 237log 27lg 25lg 47log 1++++;lg 10lg 0.1⨯【答案】(1)0 (2)3 (3)1 (4)7 (5)4-【解析】(1)方法一:(直接运算)原式227147lg14lg lg 7lg18lg lg1037183⎛⨯⎛⎫=-+-==⎫⎪⎝⎭= ⎪⎝⎭⨯. 方法二:(拆项后运算)原式()()()2lg 272lg7lg3lg7lg 32=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=.(2)原式()()lg5lg5lg22lg2lg5lg2=⨯++++()lg5lg102lg10lg22lg5lg23=⨯++=++=. (3)原式()()3226666318log 2log 33log 2log 2=++⨯()()2236666log 2log 33log 2log 9=++⨯()()226666log 2log 32log 2log 3=++⨯()626log 2log 31=+=. (4)原式()3lg 2542527=+⨯+=+=;(5)原式()21128125lg lg1025411lg10lg102-⨯⨯===-⨯-⨯. 2.(2022·湖北)计算下列各式的值: (1)已知13x x -+=,求:221122x x x x--+-.(2)721163log 0.253432927211.58223lg25lg4()log3?4637-⎛⎫⎛⎫⨯++++ ⎪ ⎪⎝⎭⎝⎭【答案】(1)7±(2)115【解析】(1)因为()22212927x x x x--+=+-=-=,而21112221x x x x --⎛⎫-=-+= ⎪⎝⎭,所以11221x x --=±,所以2211227x x x x--+=±-.(2)原71111313333log 223442332222223lg1007log 3log 224272212333-⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯-+++=++⨯-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭115=. 3.(2022·全国·高一课时练习(理))(1)计算:())()242233330.123331228-⎛⎫⎛⎫-+⨯-= ⎪⎭- ⎪⎝⎝⎭________;(2)化简:12112133265a b a b a b---⎛⎫⋅⋅⋅ ⎪⎝⎭=⋅________. 【答案】221a【解析】(1)())()242233330.123331228-⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭421331322431332192⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥=+⨯-⨯⎢⎥ ⎪⎪⎢⎥⎝⎭⎢⎥⎝⎭⎣⎦⎢⎥⎣⎦4913212294=+⨯-=.(2)原式111111111533221032623615661a b ababa b aa b-----+--⋅⋅⋅==⋅=⋅=⋅.故答案为22,1a重点二 指数函数【例2】(2022·广东·深圳市)已知函数()()240,12x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值;(2)求函数()f x 的值域;(3)当()1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.【答案】(1)2a =(2)()1,1-(3)10,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)因为()f x 是定义在R 上的奇函数,所以()002420022a a a f a a a -+-===++,解得2a =, 当2a =时,()2121x x f x -=+,此时()()21122112x x x x f x f x -----===-++,所以2a =时,()2121x x f x -=+是奇函数.所以2a =;(2)由(1)可得()2121221212121x x x x x f x -+-===-+++,因为20x >,可得211x +>,所以10121x <<+,所以22021x -<-<+,所以211121x -<-<+,所以函数()f x 的值域为()1,1-;(3)由()220xmf x +->可得()22x mf x >-,即122221x x xm ->+-⋅,可得()()212122x xx m +->-对于()1,2x ∈恒成立, 令()211,3xt -=∈,则()()2121t t tt m t-=-++>,函数21y t t =-+在区间()1,3单调递增,所以221013133t t -+<-+=,所以103m ≥,所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭.【一隅三反】1.(2022·贵州·黔西南州金成实验学校高一期末)已知函数4()12x f x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围. 【答案】(1)证明过程见解析;(2)()(),41,-∞-+∞(3)()(),11,k ∈-∞-+∞【解析】(1)由题意得:()40102f a=-=+,解得:2a =,142()112221x x f x +=-=-++, 任取12,x x R ∈,且12x x <,则()()()()()1212122121211111122222222222()112121212121212121x x x x x x x x x x xx f x f x +++++----=--+=-==++++++++因为12,x x R ∈,且12x x <,所以1211220x x ++-<,12210,210x x +>+>,所以()()()1221111222()02121x x x x f x f x ++--=<++,故()12()f x f x <所以函数()f x 在R 上单调递增; (2)()22(4)0f x x f x ++->,即()22(4)f x x f x +>--,因为2()121x f x =-+为定义在R 上的奇函数,所以()22(4)(4)f x x f x f x +>--=-, 因为2()121xf x =-+为定义在R 上单调递增,所以224x x x +>-,解得:1x >或4x <-,所以解集为:()(),41,-∞-+∞;(3)()()211121x g x kf x k ⎛⎫=-=-- ⎪+⎝⎭有零点,当0k =时,()()11g x kf x =-=-,没有零点,不合题意,舍去; 当0k ≠时,即21121xk-=+有根, 其中当0x >时,21x >,212x +>,20121x <<+, 故()2()10,121x f x =-∈+, 又因为2()121x f x =-+在R 上为奇函数, 所以当0x <时,()2()11,021xf x =-∈-+,且()00f =, 所以2()121x f x =-+在R 上的值域为()1,1-,故()()11,00,1k ∈-⋃, 解得:()(),11,k ∈-∞-+∞,所以实数k 的取值范围为()(),11,k ∈-∞-+∞.2.(2022·全国·高一课时练习)已知函数x f xb a (,a b 为常数,0a >,且1a ≠)的图象经过点()1,6A ,3,24B .(1)试确定函数()f x 的解析式;(2)若关于x 的不等式110x xm a b ⎛⎫⎛⎫+-≥ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上恒成立,求实数m 的取值范围.【答案】(1)()32xf x =⨯(2)5,6⎛⎤-∞ ⎥⎝⎦【解析】(1)因为函数x f xb a 的图象经过点()1,6A 和3,24B ,可得3624ab b a =⎧⎨⋅=⎩,结合0a >,且1a ≠,解得2,3a b ==, 所以函数()f x 的解析式为()32xf x =⨯.(2)要使1123xxm 在区间(],1-∞上恒成立,只需保证函数1123x xy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上的最小值不小于m 即可,因为函数1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上单调递减,所以当1x =时,1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭取得最小值,最小值为56,所以只需56m即可,即实数m 的取值范围为5,6⎛⎤-∞ ⎥⎝⎦.3.(2020·广西·兴安县第二中学高一期中)已知定义域为R 的函数 2()2xxb f x a-=+ 是奇函数. (1)求a 、b 的值;(2)证明f (x )在(-∞,+∞)上为减函数;(3)若对于任意t ∈R ,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的范围 【答案】(1)1a =,1b =;(2)证明见解析;(3)13k <-【解析】(1)由已知1(0)01b f a -==+,1b =,12()21x x f x -=+, 121(1)22f a a -==-++,1112(1)1122f a a --==++,所以110221a a -+=++,解得1a =, 12()21x x f x -=+,此时()f x 定义域是R ,1221()()2112x xxxf x f x -----===-++,()f x 为奇函数. 所以1a =,1b =;(2)由(1)12()21x x f x -=+2121x=-++, 设任意两个实数12,x x ,12x x <,则1202121x x <+<+,12222121x x >++,所以1222112121x x -+>-+++,即12()()f x f x >,所以()f x 是减函数;(3)不等式22(2)(2)0f t t f t k -+-<化为22(2)(2)f t t f t k -<--, ()f x 是奇函数,则有22(2)(2)f t t f t k -<-+, ()f x 是减函数,所以2222t t t k ->-+,所以2211323()33k t t t <-=--恒成立,易知2113()33t --的最小值是13-,所以13k <-.重点三 对数函数【例3】(2022·甘肃定西·高一阶段练习)已知函数()()32log 2axf x a R x -=∈-的图象关于原点对称. (1)求a 的值;(2)当[]3,5x ∈时,()()3log 2f x x k <+恒成立,求实数k 的取值范围. 【答案】(1)1a =-(2)()1,+∞【解析】(1)函数()32log 2axf x x -=-的图象关于原点对称,则函数()32log 2axf x x -=-为奇函数,有()()f x f x -=-, 即3322log log 22ax ax x x +-=----,即322log 022ax ax x x +-⎛⎫⋅= ⎪---⎝⎭,即222414a x x 解得1a =±,当1a =时,不满足题意,∴1a =-. (2)由()()3log 2f x x k <+,得()332log log 22xx k x +<+-,即222x k x x +>--,令()24122x g x x x x x +=-=+---,易知()g x 在[]3,5x ∈上单调递减, 则()g x 的最大值为()32g =.又∴当[]3,5x ∈时,()()3log 2f x x k <+恒成立, 即222x k x x +>--在[]3,5x ∈恒成立,且20x k +>,∴22k >,1k >, 即实数k 的取值范围为()1,+∞. 【一隅三反】1.(2022·全国·高一课时练习)已知函数()()212log 23f x x ax =-+.(1)若函数()f x 的定义域为()(),13,-∞⋃+∞,求实数a 的值; (2)若函数()f x 的定义域为R ,值域为(],1∞--,求实数a 的值; (3)若函数()f x 在(],1-∞上单调递增,求实数a 的取值范围. 【答案】(1)2a =(2)实数a 的值为1或1-(3)[)1,2 【解析】(1)令()223u x x ax =-+,则由题意可知1,3为方程2230x ax -+=的两个根,所以函数()u x 的图像的对称轴方程为213222a x -+===-,即2a =. (2)由题意,对于方程2230x ax -+=,()224130a ∆=--⨯⨯<,即33a <<由函数()f x 的值域为(],1-∞-,可得当x a =时,()()212log 231f a a a a =-⨯+=-,解得1a =或1-.故实数a 的值为1或1-. (3)函数()f x 在(],1∞-上单调递增,则()223u x x ax =-+在(],1∞-上单调递减.易知函数()u x 的图像的对称轴为直线x a =,所以1a ≥. 易知()u x 在1x =时取得最小值,当1x =时,有()11230u a =-+>,得2a <, 所以实数a 的取值范围是[)1,2.2.(2022·全国·高一单元测试)已知函数()()log 1a f x bx =+(0a >且1a ≠),()11f =,()32f =. (1)求函数()f x 的解析式;(2)请从∴()()y f x f x =--,∴()()y f x f x =--,∴()()y f x f x =+-这三个条件中选择一个作为函数()g x 的解析式,指出函数()g x 的奇偶性,并证明. 注:若选择多个条件分别解答,按第一个解答计分. 【答案】(1)()()2log 1f x x =+;(2)答案见解析.【解析】(1)依题意,()()log 11log 132a a b b ⎧+=⎪⎨+=⎪⎩,2113a ba b =+⎧⎨=+⎩,而0a >且1a ≠,解得21a b =⎧⎨=⎩,所以函数()()2log 1f x x =+.(2)选择∴,()()()22log 1log 1g x x x =+--,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-, 又()()()()()()2222log 1log 1[log 1log 1]g x x x x x g x -=--+=-+--=-, 所以函数()g x 是定义在()1,1-上的奇函数. 选择∴,()()()22log 1log 1g x x x =--+,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-,又()()()()()()2222log 1log 1[log 1log 1]g x x x x x g x -=+--=---+=-, 所以函数()g x 是定义在()1,1-上的奇函数.选择∴,()()()22log 1log 1g x x x =++-,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-,又()()()22log 1log 1()g x x x g x -=-++=, 所以函数()g x 是定义在()1,1-上的偶函数. 3.(2022·全国·高一课时练习)已知函数()141log 1axf x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)当()1,x ∈+∞时,()()14log 1f x x m +-<恒成立,求实数m 的取值范围;(3)若关于x 的方程()()14log f x x k =+在[]2,3上有解,求实数k 的取值范围.【答案】(1)1a =-(2)[)1,-+∞(3)[]1,1- 【解析】(1)因为函数()141log 1axf x x -=-的图象关于原点对称,所以()()0f x f x +-=,即114411log log 011ax axx x -++=---, 所以1411log 011ax ax x x -+⎛⎫⨯= ⎪---⎝⎭恒成立, 所以11111ax ax x x -+⨯=---恒成立, 即22211a x x -=-恒成立,即()2210a x -=恒成立,所以210a -=,解得1a =±,又1a =时,()141log 1axf x x -=-无意义,故1a =-.(2)因为()1,x ∈+∞时,()()14log 1f x x m +-<恒成立,所以()11441log log 11x x m x ++-<-恒成立, 所以()14log 1x m +<在()1,x ∈+∞上恒成立,因为()14log 1y x =+是减函数,所以当()1,x ∈+∞时,()()14log 1,1x +∈-∞-,所以1m ≥-,所以实数m 的取值范围是[)1,-+∞. (3)因为()114412log log 111x f x x x +⎛⎫==+ ⎪--⎝⎭在[]2,3上单调递增,()()14log g x x k =+在[]2,3上单调递减,因为关于x 的方程()()14log f x x k =+在[]2,3上有解,所以()()()()22,33,f g f g ⎧≤⎪⎨≥⎪⎩即()()11441144log 3log 2,log 2log 3,k k ⎧≤+⎪⎨≥+⎪⎩ 解得11k -≤≤,所以实数k 的取值范围是[]1,1-.重难点四 零点定理【例4-1】(2022·课时练习)函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.【例4-2】(2022·山东)方程ln 42x x =-的根所在的区间是( )A .()01,B .()12,C .()23,D .()34,【答案】B【解析】令()ln 24f x x x =+-,显然()ln 24f x x x =+-单调递增, 又因为()12420f =-=-<,()2ln 244ln 20f =+-=>,由零点存在性定理可知:()ln 24f x x x =+-的零点所在区间为()12,, 所以ln 42x x =-的根所在区间为()12,. 故选:B【例4-3】(2022·全国·高一课时练习)函数()sin 21f x x x π=-在区间(0,3]上的零点个数为( ) A .6 B .5 C .4 D .3【答案】C【解析】函数()sin 21f x x x π=-在(]0,3上零点的个数即方程sin 210x x π-=在(]0,3x ∈上解的个数, 方程sin 210x x π-=化简可得sin 2x π=1x, 所以方程方程sin 210x x π-=的解的个数为函数sin 2y x π=与函数y =1x的图象交点的个数,其中(0,3]x ∈,在同一坐标系中作出函数sin 2y x π=与函数y =1x的图象如图所示, 由图可知在区间(]0,3上,两函数图象有4个交点, 故函数()sin 21f x x x π=-在区间(0,3]上的零点个数为4, 故选:C .【例4-4】(2021·全国·高一期末)已知函数2,()5,x x x af x x x a ⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( ) A .(0,1)[5,)+∞ B .6(0,)[5,)5+∞C .(1,5]D .6(,5]5【答案】A【解析】()()4g x f x x =-有三个零点()y f x ∴=与4||y x =的图象有三个交点. 因为0a >,所以当0x ≤时,24x x x -=-,得3x =-或0x =,所以()y f x =与4||y x =的图象有两个交点,则当0x >时,()y f x =与4||y x =的图象有1个交点. 当0x >时,令45x x =-,得1x =,所以01a <<符合题意;令24x x x =-,得5x =,所以5a 符合题意.综上,实数a 的取值范围是()[)0,15,+∞.故选:A.【一隅三反】1.(2022·浙江·余姚市实验高中高一开学考试)函数3()ln f x x x=-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,5【答案】B【解析】因为3ln ,==-y x y x 为()0,x ∈+∞上的单调递增函数,所以3()ln f x x x=-为()0,x ∈+∞上的单调递增函数,因为()31ln1301=-=-<f ,()32ln 202=-<f ,()33ln 303=->f ,由零点存在定理,(2,3)上必有唯一零点.故选:B .2.(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【答案】B【解析】sin sin()13y x x π=-+-,13sin 12=-x x ,sin()13x π=--,令sin()13x π-=,得232x k ππ-=+π,Z k ∈,526x k ππ∴=+,Z k ∈,()f x ∴在(0,2)π上的零点为5.6π故选:B3.(2022·北京大兴·高一期末)若函数2,1()(),1x a x f x x x a x ⎧-<=⎨-≥⎩恰有2个零点,则a 的取值范围是 ( )A .(1)-∞,B .(02),C .(0)+∞,D .[12),【答案】D【解析】因为()(),1f x x x a x =-≥时至多有一个零点,单调函数()2,1x f x a x =-<至多一个零点,而函数2,1()(),1x a x f x x x a x ⎧-<=⎨-≥⎩恰有2个零点,所以需满足()(),1f x x x a x =-≥有1个零点,()2,1x f x a x =-<有1个零点,所以2log 11a a <⎧⎨≥⎩,解得12a ≤<,故选:D4.(2021·广西·上林县中学高一期末)已知函数()||3f x x a =--,若函数(())f f x 无零点,则实数a 的取值范围为( ) A .(,6)-∞- B .(,6]-∞- C .(,0)-∞ D .(,0]-∞【答案】A【解析】令()t f x =,则()||30f t t a =--=的解为:3t a =±,由题意可知:()f x t =无解, 又()||33f x x a =--≥-,即min ()t f x <,又min ()3f x =-,即3333a a +<-⎧⎨-<-⎩,解得:6a <-.故选:A.5.(2022·全国·高一课时练习)函数()2ln 3f x x x =+-的零点个数为________.【答案】1【解析】解法一:令()0f x =,可得方程2ln 30x x +-=,即2ln 3x x =-, 故原函数的零点个数即为函数ln y x =与23y x =-图象的交点个数. 在同一平面直角坐标系中作出两个函数的大致图象(如图).由图可知,函数23y x =-与ln y x =的图象只有一个交点,故函数()2ln 3f x x x =+-只有一个零点,故答案为:1解法二:∴()21ln11320f =+-=-<,()22ln 223ln 210f =+-=+>,∴()()120f f <,又()2ln 3f x x x =+-的图象在()1,2上是不间断的,∴()f x 在()1,2上必有零点,又()2ln 3f x x x =+-在()0,∞+上是单调递增的,∴函数()f x 的零点有且只有一个, 故答案为:16.(2022·全国·高一课时练习)已知函数()()22,2,1,2,x x f x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有三个不同的实数根,则实数k 的取值范围是________.【答案】()0,1【解析】作出函数()f x 的图像和直线y k =,如图所示:由图可知,当()0,1k ∈时,函数()f x 的图像和直线y k =有三个交点,所以()0,1k ∈. 故答案为:()0,1或01k <<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学指数、对数的运算一.选择题(共28小题)1.(2014?济南二模)log2+log2cos的值为()A.﹣2B.﹣1C.2D.12.(2014?成都一模)计算log5+所得的结果为()A.1B.C.D.43.若a>2,b>2,且log2(a+b)+log2=log2+log2,则log2(a﹣2)+log2(b﹣2)=()A.0B.C.1D.24.(2014?泸州二模)式子log2(log216)+8×()﹣5=()A.4B.6C.8D.105.(2014?泸州一模)的值为()A.1B.2C.3D.46.(2015?成都模拟)计算21og63+log64的结果是()A.l og2B.2C.l og63D.367.(2014?浙江模拟)log212﹣log23=()A.2B.0C.D.﹣28.(2014?浙江模拟)下列算式正确的是()A.l g8+lg2=lg10B.l g8+lg2=lg6C.l g8+lg2=lg16D.l g8+lg2=lg49.(2014?和平区二模)已知3x=5y=a,且+=2,则a的值为()A.B.15C.±D.22510.(2013?枣庄二模)已知函数,则的值是()A.9B.﹣9C.D.11.(2013?婺城区模拟)已知函数f(x)=log2,若f(a)=,则f(﹣a)=()A.2B.﹣2C.D.﹣12.(2013?泸州一模)log2100+的值是()A.0B.1C.2D.313.(2013?东莞一模)已知函数f(x)=,则f(2+log32)的值为()A.B.C.D.﹣54﹣14.(2013?东城区二模)f(x)=,则f(f(﹣1))等于()A.﹣2B.2C.﹣4D.415.(2012?安徽)(log29)?(log34)=()A.B.C.2D.416.(2012?北京模拟)函数y=是()B.区间(﹣∞,0)上的减函数A.区间(﹣∞,0)上的增函数D.区间(0,+∞)上的减函数C.区间(0,+∞)上的增函数17.(2012?杭州一模)已知函数则=()A.B.e C.D.﹣e18.(2012?北京模拟)log225?log34?log59的值为()A.6B.8C.15D.3019.(2012?北京模拟)实数﹣?+lg4+2lg5的值为()A.2B.5C.10D.2020.(2012?武昌区模拟)若=()A.B.C.D.21.(2012?北京模拟)已知函数f(x)=log3(8x+1),那么f (1)等于()A.2B.l og10C.1D.0322.(2012?泸州一模)计算的值等于()A.B.3C.2D.123.(2012?泸州一模)己知lgx=log2100+25,则x的值是()A.2B.C.10D.10024.(2012?眉山二模)计算(log318﹣log32)÷=()A.4B.5C.D.25.(2011?衢州模拟)已知函数,则f(9)+f(0)=()A.0B.1C.2D.326.(2011?乐山二模)的值为()A.2B.﹣2C.4D.﹣427.(2011?琼海一模)设3a=4b=m,且=2,则m=()A.12B.2C.4D.4828.(2011?成都二模)计算:lg20﹣lg2=()A.4B.2C.l D.二.填空题(共1小题)29.(2014?黄浦区一模)方程的解是_________ .三.解答题(共1小题)30.计算以下式子:(1)﹣()0+×()﹣4;(2)log327+lg25+lg4++(﹣9.8)0.高中数学指数、对数的运算参考答案与试题解析一.选择题(共28小题)1.(2014?济南二模)log2+log2cos的值为()A.﹣2B.﹣1C.2D.1考点:对数的运算性质.专题:计算题.分析:利用对数的运算法则进行计算即可.先结合对数运算法则:log(MN)=log a M+log a N,利用二倍角的a正弦公式将两个对数式的和化成一个以2为底的对数的形式,再计算即得解答:解:====﹣2.故选A.点评:本小题主要考查对数的运算性质、对数的运算性质的应用、二倍角的正弦公式等基础知识,考查基本运算能力.属于基础题.2.(2014•成都一模)计算log5+所得的结果为()A.1B.C.D.4考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:利用指数幂的运算法则和对数的运算法则即可得出.解答:解:原式===1.故选:A.点评:本题考查了指数幂的运算法则和对数的运算法则,属于基础题.3.(2014•唐山三模)若a>2,b>2,且log2(a+b)+log2=log2+log2,则log2(a﹣2)+log2(b﹣2)=()A.0B.C.1D.2分析:对所给的等式log2(a+b)+log2=log2+log2,整理出(a﹣2)(b﹣2)=4,即可求出解答:解:∵log2(a+b)+log2=log2+log2,∴log2(a+b)+log2=0,即(a+b)×=1,整理得(a﹣2)(b﹣2)=4,∴log2(a﹣2)+log2(b﹣2)=log2(a﹣2)(b﹣2)=log24=2,故选:D.点评:本题考查对数的运算性质,熟练准确利用对数运算性质进行变形是解答的关键4.(2014•泸州二模)式子log2(log216)+8×()﹣5=()A.4B.6C.8D.10考点:对数的运算性质.专题:计算题.分析:有题设先求出log216=4以及=2﹣2,再求出log24=2以及2﹣2×=8,相加得结果.解答:解:log2(log216)+×=log24+2﹣2×=2+8=10,故答案为:D.点评:本题考查了对数和指数运算性质的应用:求式子的值,属于基础题.5.(2014•泸州一模)的值为()A.1B.2C.3D.4考点:对数的运算性质.专题:计算题.分析:利用对数运算公式log a m+log a n=log a mn,=nlog a m及对数的换底公式计算可得.解答:解:2lg2﹣lg=lg4+lg25=lg4×25=2lg10=2.故选B.点评:本题考查了对数的运算,要熟练掌握对数运算公式log a m+log a n=log a mn,=nlog a m及对数的换底公式.6.(2015•成都模拟)计算21og63+log64的结果是()A.l og2B.2C.l og63D.36考点:对数的运算性质.专题:函数的性质及应用.=log69+log64=log636=2.故选:B.点评:本题考查对数的性质的求法,是基础题,解题时要注意对数性质的合理运用.7.(2014•浙江模拟)log212﹣log23=()A.2B.0C.D.﹣2考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数运算法则求解.解答:解:log12﹣log232=log2(12÷3)=log24=2.故选:A.点评:本题考查对数的运算,解题时要认真审题,是基础题.8.(2014•浙江模拟)下列算式正确的是()A.l g8+lg2=lg10B.l g8+lg2=lg6C.l g8+lg2=lg16D.l g8+lg2=lg4考点:对数的运算性质.专题:计算题;函数的性质及应用.分析:根据对数的运算性质可求.解答:解:lg8+lg2=lg8×2=lg16,故选:C.点评:该题考查对数的运算性质,属基础题,熟记相关运算法则是解题关键.9.(2014•和平区二模)已知3x=5y=a,且+=2,则a的值为()A.B.15C.±D.225考点:对数的运算性质.专题:函数的性质及应用.分析:把指数式化为对数式,再利用对数的运算法则即可得出.解答:解:∵3x=5y=a,∴xlg3=ylg5=lga,∴,,∴2==,∴lga2=lg15,∵a>0,∴.故选:A.点评:本题考查了指数式化为对数式、对数的运算法则,属于基础题.10.(2013•枣庄二模)已知函数,则的值是()A.9B.﹣9C.D.考点:对数的运算性质.专题:计算题.分析:因为,所以f()=log2=log22﹣2=﹣2≤0,f(﹣2)=3﹣2=,故本题得解.解答:解:=f(log2)=f(log22﹣2)=f(﹣2)=3﹣2=,故选C.点评:本题的考点是分段函数求值,对于多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解.11.(2013•婺城区模拟)已知函数f(x)=log2,若f(a)=,则f(﹣a)=()A.2B.﹣2C.D.﹣考点:对数的运算性质;函数奇偶性的性质.专题:函数的性质及应用.分析:先证明函数f(x)是奇函数,从而得到 f(﹣a)=f(a),结合条件求得结果.解答:解:∵已知函数f(x)=log2,∴f(﹣x)=log2=﹣=﹣f(x),故函数f(x)是奇函数,则f(﹣a)=﹣f(a)=﹣,故选 D.点评:本题主要考查利用对数的运算性质以及函数的奇偶性求函数的值,属于基础题.12.(2013•泸州一模)log2100+的值是()A.0B.1C.2D.3考点:对数的运算性质.专题:计算题.分析:运用换底公式把写成﹣log25,然后直接运用对数式的运算性质求解.2解答:解:=.故选C.点评:本题考查了对数式的运算性质,由换底公式知,,此题是基础题.13.(2013•东莞一模)已知函数f(x)=,则f(2+log32)的值为()B.C.D.﹣54A.﹣考点:对数的运算性质;函数的值.专题:计算题.分析:先确定2+log2的范围,从而确定f(2+log32)的值3解答:解:∵2+log1<2+log32<2+log33,即2<2+log32<33∴f(2+log32)=f(2+log32+1)=f(3+log32)又3<3+log32<4∴f(3+log32)====∴f(2+log32)=故选B点评:本题考查指数运算和对数运算,要求能熟练应用指数运算法则和对数运算法则.属简单题14.(2013•东城区二模)f(x)=,则f(f(﹣1))等于()A.﹣2B.2C.﹣4D.4考点:对数的运算性质;函数的值.专题:函数的性质及应用.分析:根据分段函数的定义域,先求f(﹣1)的值,进而根据f(﹣1)的值,再求f(f(﹣1)).解答:解:由分段函数知,f(﹣1)=,所以f(f(﹣1))=f(2)=3+log22=3+1=4.故选D.点评:本题考查分段函数求值以及对数的基本运算.分段函数要注意各段函数定义域的不同.在代入求值过程中要注意取值范围.15.(2012•安徽)(log29)•(log34)=()A.B.C.2D.4考点:换底公式的应用.专题:计算题.解答:解:(log29)•(log34)===4.故选D.点评:本题考查对数的换底公式的应用,考查计算能力.16.(2012•北京模拟)函数y=是()B.区间(﹣∞,0)上的减函数A.区间(﹣∞,0)上的增函数C.区间(0,+∞)D.区间(0,+∞)上的减函数上的增函数考点:对数的概念;对数函数的图像与性质;对数函数的单调性与特殊点.专题:函数的性质及应用.分析:函数y=与数y=的图象关于y轴对称,作出函数y=的图象,直观得到函数的增区间.解答:解:如图,函数y=的图象与函数y=的图象关于y轴对称,所以函数y=是区间(﹣∞,0)上的增函数.故选A.点评:本题考查了对数函数的图象和性质,考查了数形结合,是基础题.17.(2012•杭州一模)已知函数则=()A.B.e C.D.﹣e考点:对数的运算性质;函数的值.专题:计算题.分析:根据解析式,先求,再求解答:解:∵∴∴故选A点评:本题考查分段函数求值和指数运算对数运算,分段函数求值要注意自变量的取值落在哪个范围内,要能熟练应用指数运算法则和对数运算法则.属简单题18.(2012•北京模拟)log225•log34•log59的值为()A.6B.8C.15D.30考点:对数的运算性质;对数的概念;换底公式的应用.专题:计算题.分析:把对数式的真数写成幂的形式,然后把幂指数拿到对数符号的前面,再运用换底公式化简.解答:解:log225•log34•log59==8×=8.故选B.点评:本题考查了对数的运算性质,考查了换底公式,是基础题.19.(2012•北京模拟)实数﹣•+lg4+2lg5的值为()A.2B.5C.10D.20考点:对数的运算性质;分数指数幂;对数的概念.专题:函数的性质及应用.分析:把27写成33,对数式的真数写为2﹣3,然后运用指数式和对数式的运算性质化简求值.解答:解:=.故选D.点评:本题考查了对数的运算性质,分数指数幂的运算,关键是运算性质的理解与记忆,是基础题.20.(2012•武昌区模拟)若=()A.B.C.D.考点:对数的运算性质.分析:首先利用对数的运算性质求出x,然后即可得出答案.解答:解:∵x=log34∴4x=3又∵(2x﹣2﹣x)2=4x﹣2+=3﹣2+=故选:D点评:本题考查了对数的运算性质,解题的关键是利用对数函数和指数函数的关系得出4x=3,属于基础题.21.(2012•北京模拟)已知函数f(x)=log3(8x+1),那么f (1)等于()A.2B.l og10C.1D.03考点:对数的运算性质;函数的值.专题:计算题.分析:直接在函数解析式中代入x的值求解.解答:解:因为f(x)=log(8x+1),所以f(1)=log3(8×1+1)=log39=2.3故选A.点评:本题考查了对数的运算性质,函数值的求法,直接把自变量x的值代入,是基础题.22.(2012•泸州一模)计算的值等于()A.B.3C.2D.1考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质将lg2+3lg化为lg2+lg5=lg10即可得答案.解答:解:∵lg2+3lg=lg2+3lg=lg2+3×lg5=lg2+lg5=lg10=1.故选D.点评:本题考查对数的运算性质,将3lg化为lg5是关键,属于基础题.23.(2012•泸州一模)己知lgx=log2100+25,则x的值是()A.2B.C.10D.100考点:对数的运算性质.专题:计算题.分析:直接利用对数的运算法则求解即可.解答:解:因为lgx=log100+25=2log210﹣2log25=2=lg100,2所以x=100.故选D.点评:本题考查对数函数的性质的应用,考查计算能力.24.(2012•眉山二模)计算(log318﹣log32)÷=()A.4B.5C.D.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:利用对数的运算性质将(log318﹣log32)转化为2,利用指数幂的运算性质将转化为,即可得到答案.解答:解:∵log318﹣log32==log39=2,===,∴(log318﹣log32)÷=2÷=5.故选B.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,属于基础题.25.(2011•衢州模拟)已知函数,则f(9)+f(0)=()A.0B.1C.2D.3考点:对数的运算性质.专题:计算题.分析:本题中的函数是一个分段函数,根据自变量的取值范围选择合适的解析式代入自变量9,0,分别求出两个函数值,再相加求值,解答:解:∵∴f(9)+f(0)=log39+20=2+1=3故选D点评:本题考查对数的运算性质,求解本题,关键是根据自变量选择正确的解析式代入求值,运算时要注意正确运用对数与指数的运算性质.26.(2011•乐山二模)的值为()A.2B.﹣2C.4D.﹣4考点:对数的运算性质;二倍角的正弦.专题:常规题型.分析:利用对数的运算法则进行计算即可.先结合对数运算法则:log(MN)=log a M+log a N,利用二倍角a的正弦公式将两个对数式的和化成一个以2为底的对数的形式,再计算即得.解答:解:====﹣2.故选B.点评:本小题主要考查对数的运算性质、对数的运算性质的应用、二倍角的正弦公式等基础知识,考查基本运算能力.属于基础题.27.(2011•琼海一模)设3a=4b=m,且=2,则m=()A.12B.2C.4D.48考点:对数的运算性质;换底公式的应用.专题:计算题;压轴题.分析:根据指对互化的关系式表示出a和b,再由对数的运算性质和换底公式进行求值.解答:解:由3a=4b=m得,a=,b=,∴=,=,∴+=+==2,∴m2=12,即m=2,故选B.点评:本题考查了对数的运算性质和换底公式的应用,以及指对互化的关系式,属于基础题.28.(2011•成都二模)计算:lg20﹣lg2=()A.4B.2C.l D.考点:对数的运算性质.专题:计算题.分析:运用对数的运算性质,就能够得出结果.解答:解:lg20﹣lg2=lg=lg10=1故选C.点评:本题主要考查了对数的运算性质,比较简单,是基础题.二.填空题(共1小题)29.(2014•黄浦区一模)方程的解是x=2log32 .考点:正整数指数函数.专题:计算题.分析:由方程化为2•32x﹣7•3x﹣4=0,化为(2•3x+1)(3x﹣4)=0,可得3x﹣4=0,即可得出.解答:解:由方程化为2•32x﹣7•3x﹣4=0,化为(2•3x+1)(3x﹣4)=0,∴3x﹣4=0,解得x=2log32.故答案为:x=2log32.点评:本题考查了可化为一元二次方程的指数类型方程的解法、指数式与对数式的互化,属于基础题.三.解答题(共1小题)30.计算以下式子:(1)﹣()0+×()﹣4;(2)log327+lg25+lg4++(﹣9.8)0.考点:正整数指数函数;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:利用对数的性质,指数的分数指数幂的性质,直接化简表达式,求出结果.解答:解:(1)原式==﹣3;…(6分)(2)原式=…(12分)点评:本题主要考查函数值的求法,以及对数的运算,正数的运算,考查计算能力,是基础题.。