等差数列导学案

合集下载

高中数学《2.2等差数列》导学案 新人教A版必修5

高中数学《2.2等差数列》导学案 新人教A版必修5

高中数学《2.2等差数列》导学案新人教A版必修52.2 等差数列【学习目标】1. 通过实例,理解等差数列的概念;2. 探索并掌握等差数列的通项公式;3. 能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。

【研讨互动 问题生成】 1.等差数列的概念 2.等差数列的通项公式 【合作探究 问题解决】⑴在直角坐标系中,画出通项公式为53-=n a n的数列的图象。

这个图象有什么特点?⑵在同一个直角坐标系中,画出函数y=3x-5的图象,你发现了什么?据此说一说等差数列qpn a n +=与一次函数y=px+q 的图象之间有什么关系。

【点睛师例 巩固提高】例1.⑴求等差数列8,5,2,…的第20项.⑵-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?例2.某市出租车的计价标准为1.2元/km ,起A .120B .105C .90D .75 3.已知等差数列2,5,8,……,该数列的第3k (k ∈N *)项组成的新数列{b n }的前4项是 。

{b n }的通项公式为 。

4.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列。

若a n =b n ,则n 的值为( ) (A )4 (B )5 (C )6 (D )7 5.关于等差数列,有下列四个命题中是真命题的个数为( )(1)若有两项是有理数,则其余各项都是有理数(2)若有两项是无理数,则其余各项都是无理数 (3)若数列{a n }是等差数列,则数列{ka n }也是等差数列(4)若数列{a n }是等差数列,则数列{a 2n }也是等差数列(A )1 (B )2 (C )3 (D )4 6.在等差数列{a n }中,a m =n, a n =m,则a m+n 的值为( )(A )m+n (B ))(21n m + (C ))(21n m -(D )07.在等差数列{a n }中,若a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为 ( )(A )30 (B )27 (C )24 (D )21 8.一个直角三角形的三条边成等差数列,则它的最短边与最长边的比为 ( )(A )4∶5 (B )5∶13 (C )3∶5 (D )12∶1310.在等差数列{a n }中,已知a 2+a 7+a 8+a 9+a 14=70,则a 8= 。

《等差数列》导学案(1)

《等差数列》导学案(1)

《等差数列》导学案(1)【学习目标】1能够理解等差数列的概念2.记住等差数列通项公式和前n 项和公式【重点难点】等差数列通项公式和前n 项和公式的应用【学法指导】 记忆 对比 类比【知识链接】 等差数列的概念 等差数列的通项公式与前n 项和公式 【学习过程】一、自主学习1.判一判(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列的公差是相邻两项的差.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数( )2.在等差数列{a n }中,已知a 1=1,a 2+a 4=10,a n =39,则n =( )A .19B .20C .21D .223.已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.4.已知2322++=n n s n 则n a =________二、合作探究问题1 准确理解等差数列的定义?等差数列的定义是判断一个数列是否为等差数列的依据.若有等差数列{a n },由定义知,当n ≥2时,有a n -a n -1=d (常数)(n ∈N *),则数列{a n }是公差为d 的等差数列.当公差d 大于零时,数列递增;当d 小于零时,数列递减;当d 等于零时,数列为常数列.问题2 在等差数列的运算中,方程思想是如何体现的?等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.问题3 等差数列前n项和公式能否看成关于n的函数,该函数是否有最值?当d≠0时,S n是关于n的且常数项为0的二次函数,则(n,S n)是二次函数图象上的一群孤立的点,由此可得:当d>0时,S n有最小值;当d<0时,S n有最大值.【当堂训练】1(2014·大纲全国卷)数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.2 等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8 B.10C.12 D.143 设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m =()A.3 B.4C.5 D.6【归纳小结】【学习反思】。

人教版高中数学全套教案导学案2.2等差数列

人教版高中数学全套教案导学案2.2等差数列

2. 2.1等差数列导学案一、课前预习: 1、预习目标:①通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;②能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题; ③体会等差数列与一次函数的关系。

2、预习内容: (1)、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母d 表示。

(2)、等差中项:若三个数b A a ,,组成等差数列,那么A 叫做a 与b 的 , 即=A 2 或=A 。

(3)、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。

(4)、等差数列的通项公式:=n a 。

二、课内探究学案例1、1、求等差数列8、5、2… …的第20项 解:由81=a 385-=-=d 20=n 得:49)3()120(820-=-⨯-+=a2、401-是不是等差数列5-、9-、13-… …的项?如果是,是第几项?解:由51-=a 4)5(9-=---=d 得14)1(45--=---=n n a n由题意知,本题是要回答是否存在正整数n ,使得: 14401-=-n 成立解得:100=n 即401-是这个数列的第100项。

例2、某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4km (不含4km )计费为10元,如果某人乘坐该市的出租车去往14km 处的目的地,且一路畅通,等候时间为0,需要支付多少车费?分析:可以抽象为等差数列的数学模型。

4km 处的车费记为:2.111=a 公差2.1=d 当出租车行至目的地即14km 处时,n=11 求11a 所以:2.232.1)111(2.1111=⨯-+=a 例3:数列53-=n a n 是等差数列吗?变式练习:已知数列{na }的通项公式qpn a n +=,其中p 、q 为常数,这个数列是等差数列吗?若是,首项和公差分别是多少? (指定学生求解) 解:取数列{na }中任意两项na 和1-n a )2(≥n[]q n p q pn a a n n +--+=--)1()(1pq p pn q pn =+--+=)(它是一个与n 无关的常数,所以{na }是等差数列?并且:q p a +=1 p d = 三、课后练习与提高 在等差数列{}n a 中,已知,10,3,21===n d a 求n a=已知,2,21,31===d a a n 求=n已知,27,1261==a a 求=d已知,8,317=-=a d 求=1a2、已知231,231-=+=b a ,则b a ,的等差中项为( )A 3B 2 C31D 213、2000是等差数列4,6,8…的( )A 第998项B 第999项C 第1001项D 第1000项 4、在等差数列40,37,34,…中第一个负数项是( ) A 第13项 B 第14项 C 第15项 D 第16项 5、在等差数列{}n a 中,已知,13,2321=+=a a a 则654a a a ++等于( )A 10B 42 C43 D456、等差数列-3,1, 5…的第15项的值为7、等差数列{}n a 中,0,2511>=d a 且从第10项开始每项都大于1,则此等差数列公差d的取值范围是 8、在等差数列{}n a 中,已知,31,10125==a a ,求首项1a 与公差d9、在公差不为零的等差数列{}n a 中,21,a a 为方程432=+-a x a x 的跟,求{}n a 的通项公式。

《等差数列的前 n 项和》 导学案

《等差数列的前 n 项和》 导学案

《等差数列的前 n 项和》导学案一、学习目标1、掌握等差数列前 n 项和公式及其推导方法。

2、能够熟练运用等差数列前 n 项和公式解决相关问题。

3、体会等差数列前 n 项和公式的应用价值,提高数学思维能力。

二、学习重难点1、重点(1)等差数列前 n 项和公式的推导和应用。

(2)利用等差数列前 n 项和公式解决实际问题。

2、难点(1)等差数列前 n 项和公式的推导过程中数学思想方法的理解。

(2)灵活运用等差数列前 n 项和公式进行变形和求解。

三、知识回顾1、等差数列的定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示。

2、等差数列的通项公式:\(a_n = a_1 +(n 1)d\)(\(a_1\)为首项,\(n\)为项数,\(d\)为公差)四、引入新课在日常生活中,我们经常会遇到这样的问题:一个等差数列的各项之和是多少?例如,一堆按等差数列排列的钢管,如何快速计算它们的总数?这就涉及到等差数列的前 n 项和。

五、等差数列前 n 项和公式的推导方法一:倒序相加法设等差数列\(\{a_n\}\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\),则\(S_n = a_1 + a_2 + a_3 +\cdots +a_n\)①我们将上式倒过来写可得:\(S_n = a_n + a_{n 1} + a_{n 2}+\cdots + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n 1})+(a_3 + a_{n 2})+\cdots +(a_n + a_1)\\&=(a_1 + a_n) +(a_1 + a_n) +(a_1 + a_n) +\cdots +(a_1 + a_n)\\&=n(a_1 + a_n)\end{align}\所以\(S_n =\frac{n(a_1 + a_n)}{2}\)又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} =\frac{n2a_1 +(n 1)d}{2}\)方法二:通项公式法由等差数列的通项公式\(a_n = a_1 +(n 1)d\)可得:\\begin{align}S_n&=a_1 +(a_1 + d) +(a_1 + 2d) +\cdots + a_1 +(n 1)d\\&=na_1 + d(1 + 2 +\cdots +(n 1))\\&=na_1 +\frac{n(n 1)}{2}d\end{align}\六、等差数列前 n 项和公式的应用1、已知\(a_1\),\(d\),\(n\),求\(S_n\)例 1:在等差数列\(\{a_n\}\)中,\(a_1 = 2\),\(d =3\),\(n = 10\),求\(S_{10}\)。

等差数列的概念导学案

等差数列的概念导学案

课题:6.2.1 等差数列的概念【学习目标】1、理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念.2、逐步灵活应用等差数列的概念和通项公式解决问题.学习重点:等差数列的概念及其通项公式.学习难点:等差数列通项公式的推导和灵活运用.【预习案】【使用说明和学法指导】1.认真阅读教材P9-12,对照学习目标,有困难或疑问请用红笔标注,并完成预习案;2.将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.一、相关知识:数列的通项公式:二、教材助读:1、等差数列的定义一般地,如果一个数列从第_____项起,每一项与它的前一项的差等于________,那么这个数列就叫做等差数列,这个________叫做等差数列的公差,公差通常用字母_____表示.2、公差为0的数列叫做 .3、等差数列的通项公式: .4、若三个数b A a ,,组成等差数列,那么A 叫做a 与b 的 ,即=A 2 或=A .三、预习自测:1、判断下列数列是否为等差数列:(1)4,7,10,13,16 (2)-3,-2,-1,1,2(3)0, 0, 0 ,0,…,0 (4)a-d ,a ,a+d2、求下列各组数的等差中项:(1)732与-136; (2)249 与42.3、求等差数列10,8 ,6,…的第二十项;4、100是不是等差数列2, 9, 16,…的项?如果是,是第几项?如果不是,请说明理由.5、在等差数列{}n a 中,d a a ,求公差,271261==.【我的疑惑】一、质疑探究探究点一:等差数列的概念,怎样判断数列是否为等差数列.例1.(等差数列概念)给出下列命题:①1,2,3,4,5是等差数列;②1,1,2,3,4,5是等差数列; ③数列6,4,2,0是公差为2的等差数列; ④数列3,2,1,---a a a a 是公差为1-a 的等差数列; ⑤数列{}12+n 是等差数列; ⑥若c b b a -=-,则c b a ,,成等差数列;⑦若()*1N n n a a n n ∈=--,则数列{}n a 成等差数列; ⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ⑨等差数列的公差是该数列中任何相邻两项的差。

22等差数列第1课时导学案

22等差数列第1课时导学案

等差数列(第 1 课时导教案)(Ⅰ)学习目标1、理解等差数列的定义;2、认识等差数列通项公式的推导过程(累加法);3、掌握等差数列的通项公式,并会简单应用。

(Ⅱ)学习过程一、旧知回首1、什么叫数列?什么是数列的通项公式?2、你还记得初中的解三角形和高中的解三角形的差别与联系吗?二、新课导学1、情形引入(1)在近地面,有这样的规律:距离地面的高度(千米)123456温度(摄氏度)3832262014()(2)在过去的几百年里,人们分别在以下年份能够目测到哈雷彗星:1682,1758,1834,1910,1986,你知道下次能目测的年份吗?为何?(3)某写字楼按层数丈量的高度分别是:层数一楼二楼三楼四楼五楼总高711151923(4)某体育场一角的看台的座位数按排数是这样摆列的:排数第一排第二排第三排第四排第五排座位数151********、研究新知(1)38,32,26,20,14,(2)1682,1758,1834,1910,1986(3)7,11,15,19,23,(4)15,17,19,21,察看以上四个数列,它们有什么共同的特色?新知 1:(等差数列定义)定义:假如一个数列从第 2 项起,每一项与它的前一项的等于,那么称这个数列等差数列。

此中这个常数叫做等差数列的,往常用字母表示。

符号表示:;思虑:(方才的楼高问题)(3)某写字楼按层数丈量的高度分别是:层数一楼二楼三楼四楼五楼总高711151923依据这个规律,你知道这栋写字楼十楼有多高吗?二十楼高呢?(你有什么好方法?)新知 2:(求通项公式)(1)已知定义式为:a n a n 1 d , n2分开写即为:a2a1da3a2da4a3da n a n 1d察看这些式子,关于求等差数列的通项公式,你有什么好想法吗?(2)因此等差数列的通项公式为:;(课本上还有一种方法求通项公式,你能看懂吗?和你的小伙伴们沟通一下吧)配套练习(仍是方才的楼高问题,你此刻会做了吗?)(3)某写字楼按层数丈量的高度分别是:层数一楼二楼三楼四楼五楼总高711151923依据这个规律,你知道这栋写字楼十楼有多高吗?二十楼高呢?3、典型例题例 1、(1)求等差数列 8,5,2 ,的第 20 项;(2) -401 是否是等差数列 -5 ,-9 ,-13 ,的项?假如是,是第几项?练习:在等差数列a n中,(1)已知a6, a912a;6,求 d 及1(2)已知a1a25, a3a4 17 ,求 a5a6的值;4、概括提升(深度思虑)写出方才例题和练习的 4 个通项公式,察看并找出它们有什么共同的特色?反之,假如一个数列的通项公式是a n3n 2 ,则这个数列必定是等差数列吗?三、讲堂小结本节你学习了哪些内容???试试说一说!四、稳固检测1、在等差数列a n中,已知 a17, a41,求 a7的值;2、在等差数列a n中,已知 a4a724, a8a5 6 ,求公差和首项;3、100 是否是等差数列6,10,14,的项,假如是,是第几项?4、在等差数列a n中,已知 a2a412, a2 a411,求通项公式 a n;5、在等差数列a n中, a4a6a2a8必定建立吗?为何,你能够证明吗?五、自我评论经过本节课的学习,你对主要内容的掌握状况为()A.很好B. 较好C.一般D.很差六、课后作业1、请经过本教案回首并整理讲堂上的内容;2、P40 习题 A 1 (写在簿本上);3、思虑并试试达成P39 练习 4 (写书上);。

高中数学等差数列(导学案)新人教版必修5

高中数学等差数列(导学案)新人教版必修5

等差数列(导学案)●教学目标(1)理解并掌握等差数列的概念(2)掌握等差数列的通项公式及应用●教学重点等差数列的概念,等差数列的通项公式。

●教学难点等差数列的性质●教学过程Ⅰ.课题导入【问题情境】1.观察下列几组数列;(1) 从0开始,每隔5数一次,可以得到数列:0,5,,, ,…(2 ) 4,5,6,7,8,9……..(3) 3,0,-3,-6,-9…….(4) -2,-4,-6,-8……..你能发现这几组数列各项之间有什么关系?2.试猜想下列几组数列的规律并完成填空:观察下面数列的特点,用适当的数字填空:(1)5,10,15,(),25,30(2)-4,-2,(),2,(),6(3)20,16,(),8,4,0(4)18,(),12,9,6,3,(5)0.5,0.5,(),0.5,0.5, 0.5【学生探究】上述几组数列有什么共同点?Ⅱ.讲授新课1.等差数列:一般地,如果一个数列从起,每一项与它的前一项的差都等于,那么这个数列就叫做等差数列。

这个常数叫做等差数列的公差,公差常用字母d表示。

(1)判断下列数列是否是等差数列①1,2,22,23,…,263②1,2,3,4,…,50③15,5,16,16,28④0,10,20,30,…,1000(2)判断下列两个小题的对错:① 数列5,3,1,-1,-3是公差为-2的等差数列。

② x,x-1,x-2,x-3是公差为x-1的等差数列。

根据等差数列的概念,你能猜出等差数列的通项公式吗?例如:上面【问题情境】中2题(1)_________公差d=___(2)_________公差d=___(3)_________公差d=___(4)_________公差d=___(5)_________公差d=___2.通项公式【猜想】等差数列的通项公式与___有关?对等差数列怎样推导通项公式?如:(一)证 (二) (三)注意:①等差数列的通项公式从形式上看是关于n 的_____函数,当d ≠0时,是n 的____函数,当d=0时,是常数列。

高中数学第二章数列2.2等差数列(一)导学案新人教A版必修

高中数学第二章数列2.2等差数列(一)导学案新人教A版必修

等差数列(一)【教学目标】1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念,深化认识并能运用.【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《等差数列(一)》课件“创设情境”部分,让学生与大家分享自己的了解。

通过让学生互相交流对几组数据的认识,教师自然地引出等差数列的定义.二、自主学习教材整理1 等差数列的含义阅读教材P36~P37思考上面倒数第二自然段,完成下列问题.1.等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.(2)符号语言:a n+1-a n=d(d为常数,n∈N*).2.等差中项(1)条件:如果a,A,b成等差数列.(2)结论:那么A叫做a与b的等差中项.(3)满足的关系式是a+b=2A.教材整理2 等差数列的通项公式阅读教材P37思考上面倒数第2行~P38,完成下列问题.1.等差数列的通项公式以a1为首项,d为公差的等差数列{a n}的通项公式a n=a1+(n-1)d.2.从函数角度认识等差数列{a n}若数列{a n}是等差数列,首项为a1,公差为d,则a n=f(n)=a1+(n-1)d=nd+(a1-d).(1)点(n,a n)落在直线y=dx+(a1-d)上;(2)这些点的横坐标每增加1,函数值增加d个单位.三、合作探究问题1 给出以下三个数列:(1)0,5,10,15,20;(2)4,4,4,4,…;(3)18,15.5,13,10.5,8,5.5.它们有什么共同的特征?提示:从第2项起,每项与它的前一项的差是同一个常数.问题2 观察所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列:(1)2,4;(2)-1,5;(3)a ,b ;(4)0,0.提示:插入的数分别为3,2,a +b 2,0.问题3 对于等差数列2,4,6,8,…,有a 2-a 1=2,即a 2=a 1+2;a 3-a 2=2,即a 3=a 2+2=a 1+2×2;a 4-a 3=2,即a 4=a 3+2=a 1+3×2.试猜想a n =a 1+( )×2.提示:n -1探究点1 等差数列的概念例1 判断下列数列是不是等差数列?(1)9,7,5,3,…,-2n +11,…;(2)-1,11,23,35,…,12n -13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…;(5)a ,a ,a ,a ,a ,….提示:由等差数列的定义得(1),(2),(5)为等差数列,(3),(4)不是等差数列. 名师点评:判断一个数列是不是等差数列,就是判断该数列的每一项减去它的前一项差是否为同一个常数,但数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N *)是不是一个与n 无关的常数.探究点2 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列. 提示:∵-1,a ,b ,c,7成等差数列,∴b 是-1与7的等差中项,∴b =-1+72=3. 又a 是-1与3的等差中项,∴a =-1+32=1. 又c 是3与7的等差中项,∴c =3+72=5. ∴该数列为-1,1,3,5,7.名师点评:在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N *),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项.探究点3 等差数列通项公式的求法及应用命题角度1 基本量(a ,d )例3 在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n .提示:由题意可得⎩⎪⎨⎪⎧ a 1+5d =12,a 1+17d =36.解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .名师点评:像本例中根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.命题角度2 等差数列的实际应用例4 某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4km(不含4km)计费10元,如果某人乘坐该市的出租车去往14km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?提示:根据题意,当该市出租车的行程大于或等于4km 时,每增加1km ,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费.令a 1=11.2,表示4km 处的车费,公差d =1.2,那么当出租车行至14km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.名师点评:在实际问题中,若一组数依次成等数额增长或下降,则可考虑利用等差数列方法解决.在利用数列方法解决实际问题时,一定要分清首项、项数等关键问题.四、当堂检测1.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-32.已知在△ABC 中,三内角A ,B ,C 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120°3.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值. 提示:3.解 ∵a 2+a 5=(a 1+d )+(a 1+4d )=2a 1+5d =4,∴d =23. ∴a n =13+(n -1)×23=23n -13. 由a n =23n -13=33, 解得n =50.五、课堂小结本节课我们学习过哪些知识内容?提示:1.判断一个数列是不是等差数列的常用方法:(1)a n +1-a n =d (d 为常数,n ∈N *)⇔{a n }是等差数列;(2)2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N *)⇔{a n }是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.六、课例点评等差数列作为第一个深入研究的特殊数列要体现研究问题的完整性,应创设学生独立思考、解决问题的教学环境,避免给出定义,给出公式,给出过程,给出思想,否则等比数列的研究将很难提升。

等差数列导学案

 等差数列导学案

§4-1 等差数列班级: 小组: 姓名:【学习目标】1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式;能在具体的问题情境中,识别数列的等差关系,并能运用有关知识解决问题.【知识要点】1.n S 与n a 之间的关系式2.一般地,如果一个数列从第_____项起,每一项减去它的前一项所得的差都等于 ,那么这个数列就叫做 ,这个常数叫做等差数列的 其通项公式为 3.若c b a ,,为等差数列,则称b 为a 与c 的 ,且=b ;c b a ,,成等差数列是c a b +=2的 条件。

4.若q p n m +=+(*,,,N q p n m ∈),在等差数列{}n a 中,则=+n m a a;5.等差数列的求和公式为=n S或 .从函数的观点看,非常数数列n a 是关于n 的一次函数,其图象是直线上均匀排开的一群孤立的点,n S 是关于n 的_______次函数;当d _______0 时,n S 有最____值,当d_______0时,n S 有最____值;当d _______0 时,等差数列为常数数列. 【基础自测】1.若{}n a 是等差数列,且11,a =-公差为3-,则8a 等于 2.已知{}n a 为等差数列, 1236a a a +==,则2a 等于3.若等差数列{a n }满足a 1+a 3=﹣2,a 2+a 4=10,则a 5+a 7的值是 4.已知{a n }是等差数列,且a 2+ a 5+ a 8+ a 11=48,则a 6+ a 7= 5.设-2是a 与b 的等差中项,4是a 2与-b 2的等差中项,则a -b =________. 【课堂探究】例1.等差数列{}n a 的前n 项和记为n S ,若575,49a S =-=-,(1)求数列{}n a 的通项公式n a 和前n 项和n S ;(2)求数列{}n a 的前24项和24T .变式训练1.在等差数列{}n a 中, 22343,21a a a a ==+.(1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .例2.(1)设等差数列{}n a 的前n 项和为n S ,且111a =-, 466a a +=-,则当n S 取最小值时,n 等于( )A. 6B. 7C. 8D. 9(2)在公差为d 的等差数列{}n a 中,已知110a =,110a =. (1)求,n d a ;(2)1220a a a +++.【课后巩固】1、已知数列{a n }满足11n n a a +=+(n ∈N +),且24618a a a ++=,则()3579log a a a ++的值为2、等差数列{}n a 中,前n 项的和为n S ,若791,5a a ==,那么15S 等于3、设等差数列{}n a 的前n 项和为n S ,若4a , 6a 是方程2850x x -+=的两根,那么9S =4、已知公差为()0d d ≠的等差数列{}n a 的前n 项和为n S ,且18a d =,则5775S S =5、在等差数列{}n a 中,161718936a a a a ++==-,其前n 项之和为n S . (1)求n S 的最小值,并求出n S 取最小值时n 的值; (2)求12||||||n n T a a a =+++..。

等差数列 导学案

等差数列 导学案

等差数列学习目标: 1.掌握等差数列的概念和通项公式.2.能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.重点:理解等差数列的概念,探索并掌握等差数列的通项公式.难点:概括通项公式推导过程中体现的数学思想方法.一、新课探究.29,22,15,8,1 ①,...46,44,42,40,38 ② ,...23,5.23,24,5.24,25 ③学生活动:观察以上三组①②③数列各自的特点,它们有什么共同特征?(小组活动)(一)等差数列的定义1.等差数列的定义:____________________________________________________________________________________________________________________________________ 数学语言符号:__________________________________例1.已知数列}{n a 的通项公式为q pn a n +=,其中q p ,为常数,那么这个数列一定是等差数列吗?练一练:下列数列是否是等差数列?如果是,写出首项和公差,如果不是,说明理由.,1)(...,135,,97,9,)2(...6-,,,3,3-68(...3)--,,4,0,-2,(...4),3,3,3,3,315,(...5)1210,6,8,,-)63(,,,-,,915...-12--62.等差中顶观察如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:(52,1-1___,()4,___,2)___,,0((0)4___,,12-)3等差中项定义___________________________________________________________ _____________________________________________________________________学生观看①②③三组数列,师生共同概括等差数列的性质:___________________________________________________________(二)等差数列的通项公式如果等差数列}{n a 首项是1a ,公差是d ,那么这个等差数列432,,a a a 如何表示?n a 呢? (学生活动,小组讨论推导等差数列的通项公式)2.例 .20,...2,5,8)1(项的第求等差数列项?的项?如果是,是第几,,是不是等差数列...13-9-5-401-)2( 分析:)1(中为了求第20项,你需要知道什么?已知的数列说明已知了那些量 )2(怎样才能判断401-是不是数列中的项?方法规律总结:求等差数列通项公式的关键步骤:二、课堂检测.,19,10)1(174d a a a 与求若等差数列中==.,3,9)2(1293a a a 求已知等差数列中==中的项?是不是等差数列......16,9,2100)3(注: 解题步骤的规范性与准确性.三、本课小结:拓展练习:=a a a a a n ,则,,的前三项依次为等差数列1-10-5-3-6-}{.1_____1.A 1-.B 2-.C2.D级,中间还有,最低一级宽级高如图:一张梯子最高一10,11033.2cm cm .d ,求公差各级的宽度成等差数列。

13等差数列导学案(一).doc

13等差数列导学案(一).doc

a 2+a 3=\3,则公差d 的值为(A 、2B 、-2C 、-3D 、在等差数列{a”}中,0^=2, 1.3等差数列(一)学习目标:1. 掌握等差数列的概念、通项公式,掌握等差中项的概念和等差数列的图像;掌 握等差数列的性质并能灵活运用。

2. 通过实例,从观察和分析等差数列中的前项和后项的关系入手,理解等差数列 的概念。

3. 经历并体验用基本的数学式子表示数的过程与方法,发展用数学语言进行交流 的能力。

学习重点:等差数列、等差中项的概念及其图像和性质。

学习难点:正确理解等差数列的概念并能运用其通项公式解决简单的问题。

一、预习案:“我学习,我主动,我参与,我收获!”1. 学法指导:认真阅读教材Pio —P12,初步了解等差数列的特性及其通项公式等,最后把自己在学习中遇到的疑惑写下来,有待上课时和老师、同学 共同探究解决。

2. 教材助读:(1) 如果一个数列从第 ___ 项起,每一项与它 _____ 一项的差是 ________常数,则这样的数列为等差数列,这个常数叫做等差数列的 _______ , 通常用字母 ______ 来表示。

(2) 首项为⑷,公差为d 的等差数列的通项公式为 ____________________ o3.预习自测:(1)下列各组数中,成等差数列的一组是() A 、丄,丄,1 B 、2, -2A /2 , 42 3 4C 、lg2, lg4, lg8D 、82, 84, 88(2)在等差数列{a”}中,a 3=5, a 6 = a 4+ 6, 则勺等于(A 、—1B> — 3 C 、-5 D 、-7★我的疑惑: ________________________________________________二、探究案:“我探究,我分析,我思考,我提高!” 探基础知识探究:1.判断下列数列是否为等差数列。

(1) a n =2n—l;(2)色=(—1)"。

高中数学必修5《数列-等差数列》导学案

高中数学必修5《数列-等差数列》导学案

第二章数列2.2等差数列一、学习目标1.理解等差解数列的定义和通项公式,会判断数列是否是等差数列,并会应用通项公式解决问题。

2.理解等差中项的定义,会应用等差中项的性质解决问题。

【重点、难点】等差数列的概念和通项公式,等差中项的性质二、学习过程【导入新课】1.等差数列的定义:a n= _________.3.等差中项若______成等差数列,则A叫a与b的等差中项,且A=_____.【典型例题】例1.在等差数列{a n}中,a2=5,a6=17,则a14=( )A.45B.41C.39D.37例2.一个各项都是正数的无穷等差数列{a n},a1和a3是方程x2-8x+7=0的两个根,求它的通项公式.例3.已知等差数列{a n}中,a2与a6的等差中项为5,a3与a7的等差中项为7,则a n=__________.【变式拓展】1.在等差数列{a n}中,已知a3+a8=10,则3a5+a7=( )A.10 B.18 C.20 D.282.在-1与7之间顺次插入三个数a,b,c,使这五个数成等差数列,此等差数列的公差d为____________.三、总结反思(1)通项公式的作用:根据通项公式,在a1,a n,d,n中知道任何三个可求另一个,也可用于等差数列的判断.等差数列的通项公式可变形为a n=dn+(a1-d),当d≠0时可把a n看作自变量为n的一次函数.(2)等差数列的单调性(1)当公差d<0时,等差数列为递减数列.(2)当公差d=0时,等差数列为常数列.(3)当公差d>0时,等差数列为递增数列.四、随堂检测1.在等差数列{a n}中,已知a1=2,a7=-4,则公差d= .2.已知首项a1=1,公差d=-2的等差数列{a n},当a n=-27时,n= .3.x-1与y+1的等差中项为5,则x+y= .4.等差数列{a n}的前三项依次为x,2x+1,4x+2,则它的第5项为.。

人教版必修五《22等差数列》导学案

人教版必修五《22等差数列》导学案

等差数列〔二〕【学习目标】1.熟练掌握等差数列的通项公式及推导公式;2. 灵活应用等差数列的定义及性质解决一些相关问题. 【自主学习】 等差数列的性质1. 在等差数列{}n a 中,d 为公差, m a 与n a 有何关系?2. 在等差数列{}n a 中,d 为公差,假设,,,m n p q N +∈且m n p q +=+,那么m a ,n a ,p a ,q a 有何关系?【自主检测】1.在等差数列{n a }中,假设1a +6a =9, 那么34a a += .2. 等差数列{}n a 中,25a =-,611a =,那么公差d = . 【典型例题】例1.在等差数列{}n a 中,510a =,1231a =,求首项1a 、公差d 和14a .小结:等差数列{}n a 中,公差d 可以由数列中任意两项m a 与n a 通过公式m na a d m n-=-求出. 例2.在等差数列{}n a 中,23101136a a a a +++=,求58a a +和67a a +.例3.在等差数列{n a }中,1a +3a +5a =-12, 且 1a ·3a ·5a =80. 求通项 n a小结:在等差数列中,假设m +n =p +q ,那么m n p q a a a a +=+,可以使得计算简化.【目标检测】1.等差数列{}n a 中7916a a +=,41a =,那么12a 的值为〔 〕.A . 15 B. 30 C. 31 D. 64 2.假设48,a ,b ,c ,-12是等差数列中连续五项,那么a = ,b = ,c = .3.在等差数列{}n a 中,14739a a a ++=,25833a a a ++=,求369a a a ++的值.4.三个数成等差数列,其和为15,其平方和为83,求此三个数.5.*成等差数列的四个数之和为26,第二数和第三数之积为40,求这四个数.【知识拓展】1.判别一个数列是否等差数列的三种方法,即:〔1〕1n n a a d +-=; 〔2〕(0)n a pn q p =+≠; 2. 假设三个数成等差数列且其和时,可设这三个数为,,a d a a d -+. 假设四个数成等差数列且其和时,可设这四个数为3,,,3a d a d a d a d --++. 【总结提升】1.在等差数列中,假设m+n=p+q ,那么m n p q a a a a +=+.注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.2. 在等差数列中,公差m na a d m n-=-.。

等差数列的性质导学案.doc

等差数列的性质导学案.doc

§等差数列(第二课时)教学目标:1、进一步了解等差数列的项数与序号之间的规律;2、理解等差数列的性质;3、掌握等差数列的性质及其应用。

教学重点:等差数列性质的灵活应用及等差数列与一次函数之间的关系教学难点:等差数列的灵活应用预习案自主学习:等差数列的常用性质:1.若数列 {a n} 是公差为 d 的等差数列:(1)d>0 时, {a n} 是;d<0时,{a n}是;d=0时,{a n}是;(2)等差数列的通项公式:a n通项公式的推广:a n a m m, n N *结论:若数列 { a n } 的通项公式为a n pn q 的形式,p,q为常数,则此数列以为公差的等差数列。

(3)多项关系:若m n p q ,m, n, p, q N *则 a m a n______________若 m n 2 p ,则a m a n2、等差数列的性:(1)若数列 { a n } 是公差 d 的等差数列,下列数列:①{c+a n}(c 任一常数 ) 是公差 ______的等差数列;②{c a n}(c 任一常数 ) 是公差 ______的等差数列;(2)若数列 { a n } 、{ } 分是公差d1和 d2的等差数列,数列 { pa n qb n}( pq是常数 ) 是公差 ________的等差数列。

(3)若{a n} 等差数列,公差d,{a 2n} 也是,公差;a m,a m+k,a m+2k,a m+3k,⋯,成,公差;合作探究:1:如果在a与b中插入一个数 A,使a,A,b成等差数列,那么 A足什么条件2:在直角坐系中,画出通公式a n3n 5 的数列的象,个象有什么特点(2)在同一直角坐系中,画出函数 y=3x-5 的象,你了什么据此等差数列anpnq的象与一次函数 y=px+q 的象之有什么关系预习自测1 、已知等差数列 {a n} 中a3 1 , a79则a5()A 、 -4 B、4 C 、-8 D、82 、已知等差数列的前三项依次为 a 1 ,a 1,2a3 ,则此数列的第n 项a n等于( )A、2n-5B、2n-3C、2n-1D、2n+13 、等差数列a n中,a4a515 ,a715,则 a2等于()A.1B. 1C.0D.2课中案类型一:等差数列性质的应用例1在数列 { a n } 中,a3a10是方程 x2-3x+5=0的两根,若数列 { a n } 是等差数列,则 a5 a8=__________变式:在等差数列 {a n} 中, 若a3a4a5a6a7 45 ,求a2a8a n例2 等差数列 { a n}中,a1+a3+a5=-12,且a1·a3·a5=80.求通项变式 : 已知等差数列{ a n } 中,a3a716, a4a60, 求{a n}通项公式an.类型二等差数列的运算例3、(1)三个数成等差数列,和为 6,积为 -24 ,求这三个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1等差数列(一)
编写:马海燕时间:2016 .5 .19班级:组名:姓名:
学习目标
1. 掌握等差数列的定义,通项公式;
2. 会求等差数列的通项公式;会证明一个数列是等差数列;
3 .探索通项公式推导过程中体现出的数学思想。

重点:对等差数列概念的理解及通项公式的运用。

难点:通项公式推导与应用。

学习过程
使用说明:(1)预习教材,用红色笔画出疑惑之处,并尝试完成
各种问题,总结规律方法;
(2)用严谨认真的态度完成导学案中要求的内容。

奖励规则:(1)认真预习案的组均加2分,特别突出的加3分;
(2)合作探究部分基础分2分,板书认真,展示精彩到位或特别突出可以根据情况加分,其他部分根据难易和回答的精彩与否加分。

第Ⅰ部分预习案(自主调研)
情景营造,情感体会实际生活中的等差数列
(1) 2000,2004,2008,2012,2016…奥运会每年开一次
(2) 2016, 2012 , 2008,2004, 2000…这组数字和上面表示一个数列吗?
(3) 22,22.5 ,23,23.5,24,24.5,25,你爸妈的鞋是吗
(4) 17,17,17,17,17…和你同龄的同学有
上面几个问题各自特点是什么有啥共同点
第Ⅱ部分合作探究(合作讨论)
★一个定义★
(1) 看课本归纳并得出等差数列的定义 定义:如果一个数列从 起,每一项与它的前一项的差等于 ,这个数列就叫做等差数列。

这个常数叫做等差数列的公差,公差通
常用字母d 表示。

(2)用符号语言描述等差数列的定义 ★一个公式★
判断下列数列是否是等差数列? 如果是等差数列,说出公差是多少?
(1)1,2,4,6,8 ( )
(2)2,4,6,8 ( )
(3)1,-1,1,-1 ( )
(4)0, 0, 0, 0,… ( )
(5)1,1/2,1/3,1/4 ( )
(6)-3,-4,-5 ( )
(7 ( )
(8) 1, 2,4,7,11 ( )
巩固练习课本P11例题1、 例题2
第Ⅲ部分 探究讨论 ★两个方法★
一、等差数列通项公式的推导方法一(迭代法)
已知等差数列{ } 的首项是 ,公差是 . 写出 、 ,并试着推导出 。

1,n a 1a d 2a 3a n a
二、等差数列的通项公式推导方法二(累加法)
归纳总结
等差数列的通项公式。

合作交流一★一个应用★
1.课本P12例题3(1)
合作交流二
2.课本P12例题3(2)
合作交流三★一个思想★
3.课本P12例题4
第Ⅳ部分 自我检测
1.求等差数列2,9,16,…的第10项
2.求等差数列0,-7/2,-7…的第n 项
3.等差数列1,-1,-3,-5 ,…,-89,它的项数是 。

4.在等差数列 中
则 。

5.数列的通项公式,则此数列是 ( ).
A.公差为2的等差数列
B.公差为5的等差数列
C.首项为2的等差数列
D.公差为n 的等差数列
第Ⅴ部分 自我评价
1.你学习了哪些内容?
(1) 一个定义,两种表述(请用文字语言描述):
(2) 一个公式(请用数学语言叙述等差数列的通项公式):
(3) 一个推导,两种方法(请说出探讨公式的两种方法):
(4) 一个思想(请描述本节课所讨论的一个重要思想):
2.在学习过程中有哪些情感体验?
3.学习效果是优秀、良好、还是一般 。

第X 部分 加强案(课后作业)
1.课本19页A 组底2题,第4题。

2.课后探究思考:若数列通项公式q pn a n +=(p ,q 为常数), 问}{n a 是否一定是等差数列?如果是,其首项和公差是什么? {}n a 2645,6,a a a =-=+1a ={}n a 25n a n =+。

相关文档
最新文档