第二章 河流与径流
合集下载
第二章水文基础知识
![第二章水文基础知识](https://img.taocdn.com/s3/m/499a199625c52cc58ad6bee2.png)
W Q•T
y Q •T •103 Q •T (mm)
F •106
1000F
径流模数(M):流域出口断面上的流量与流域面积的比值。
M=1000Q/F
径流系数(α):某时段降雨量x所形成径流深y的比例数
α =y/x
因为降雨总是会有损失,所以一般α只能小于1。
3/3
(三)流域平均降雨量的计算
流域内各站降雨量是不同的,分析流域 降雨与径流关系时,需要由降雨量计算流域 平均面雨量,根据流域内雨量资料,常用以 下方法:
1. 算术平均法
式中
——某一指定时段的流域平均雨量,mm; ——流域内的雨量站数; ——流域内第站指定时段的雨量,mm。
2. 泰森多边形法
f4 f3
2. 降水的分类 按空气抬升形成动力冷却的原因可以把降水分
为4种类型:
强度大,范围小,历时短
降水
对流雨 地形雨 气旋雨
迎风面雨多,背风面雨少
温带气旋雨
气旋前方:暖锋云系及连续性降雨 气旋后方:狭窄的冷锋云系和降雨 气旋中部:暖气团,层云或毛毛雨
热带气旋雨 水汽充足,运动强烈,易带来狂风暴雨
锋面雨
冷锋雨 暖锋雨
水面蒸发常用蒸发器进行观测。换算关 系为:
式中
——天然水面蒸发量,mm; ——蒸发器实测蒸发量,mm; ——蒸发器折算系数。
(二) 土壤蒸发 土壤蒸发比水面蒸发要复杂得多。湿润
的土壤,其蒸发过程一般可以分为三个阶段。
(三)植物散发 土壤中的水分经植物根系吸收后,输送
至叶面,再从叶面散发到大气中,称为植物 散发。
(四) 流域总蒸发
流域总蒸发是流域内所有的水面、土壤以及植 被蒸发与散发的总和。目前采用的方法是从全流 域综合角度出发,用水量平衡原理来推算流域总 蒸发量。
第二章河流概论
![第二章河流概论](https://img.taocdn.com/s3/m/271fb32d647d27284b73519f.png)
产Байду номын сангаас过程 降水过程 流域蓄渗过程
汇流过程 坡面漫流过程 河网汇流过程
2.影响径流的主要因素 2.影响径流的主要因素
气象气候因素
下垫面因素
降水
蒸发
地形
人类活动 农业措施 林牧业措施 水利措施
土壤和地质
植被和湖沼 流域形状 和面积
3.径流的特征值 3.径流的特征值
流量( ):单位时间内流过断面的水体体积。 流量(Q):单位时间内流过断面的水体体积。(m3/s) 单位时间内流过断面的水体体积 径流总量( ):某时段T内流过断面的总径流体积。 径流总量(W):某时段T内流过断面的总径流体积。 某时段 (m3) 径流深度( ):径流总量平均分布在流域上的水深。 径流深度(R):径流总量平均分布在流域上的水深。 径流总量平均分布在流域上的水深 (mm)
W = Q •T
Q •T Q •T 3 y= • 10 = ( mm ) 6 F • 10 1000 F
径流模数( ):单位流域面积上所产生的流量 径流模数(M):单位流域面积上所产生的流量。
( L / s ⋅ km 2 )
Q 3 M = ⋅ 10 F
径流系数( ):某时段降雨量x所形成径流深R 径流系数(α):某时段降雨量x所形成径流深R的 某时段降雨量 比例数
水位流量关系曲线的确定
R α = x
因为降雨总是会有损失,所以一般α只能小于1 因为降雨总是会有损失,所以一般α只能小于1。
3/3
第三节 泥沙运动与河床演变
一、泥沙运动基本规律
1. 泥沙特征 (1)泥沙粒径 等容粒径:泥沙颗粒外形不规则, 等容粒径:泥沙颗粒外形不规则,一般采用 体积与泥沙颗粒相等的球体的直径。 体积与泥沙颗粒相等的球体的直径。 设某一颗粒的体积为V 则其等容粒径为: 设某一颗粒的体积为V,则其等容粒径为:
《水利资源计算》第二章 径流量的调节计算
![《水利资源计算》第二章 径流量的调节计算](https://img.taocdn.com/s3/m/a8dc240c76c66137ee061937.png)
2.1径流调节的分类 2.1径流调节的分类
第 二 章 径 流 量 的 调 节 计 算
无调节及日调节的短期调节,一般见于发电水库。 无调节及日调节的短期调节,一般见于发电水库。河川 径流在一天或一周内的变化一般是不太大的, 径流在一天或一周内的变化一般是不太大的,而用电负荷 则白天和夜晚,或工作日和星期日间,常差异甚大。 ,则白天和夜晚,或工作日和星期日间,常差异甚大。有 了水库,就可把夜间或星期日负荷少时的多余水量,蓄存 了水库,就可把夜间或星期日负荷少时的多余水量, 起来增加白天和工作日负荷增长时的发电水量。 起来增加白天和工作日负荷增长时的发电水量。这种调节 称为日调节和周调节 日调节和周调节。 称为日调节和周调节。 我国河川径流的季节性变化很大, 我国河川径流的季节性变化很大,洪水期和枯水期水量 相差悬殊,而用水部门(发电、航运、给水) 相差悬殊,而用水部门(发电、航运、给水)在一年内需 水量变化不大。在一年范围内进行天然径流的重新分配, 水量变化不大。在一年范围内进行天然径流的重新分配, 称为年调节或季调节 年调节或季调节。 称为年调节或季调节。 将丰水年多余的水量蓄入库内, 将丰水年多余的水量蓄入库内,以补枯水年水量的不足 多年调节。 就称为多年调节 ,就称为多年调节。
2.4
第 二 章 径 流 量 的 调 节 计 算
年(季)调节水库保证供水量与设计库容的关系
2、典型年法 、 ④计算缩放倍比K来=W来,P/W来,典及K用=W用,P/W用,典 计算缩放倍比 典 典 再用此K ,再用此 来、 K用值分别乘该典型年各月来水量及各月 用水量,即得设计代表年的来、用水过程。 用水量,即得设计代表年的来、用水过程。 对所推求的设计代表年进行调节计算, ⑤对所推求的设计代表年进行调节计算,求得兴利库 即设计库容)。 容(即设计库容 。如由所选择的几个设计代表年求得的 即设计库容 结果不一致,为安全起见, 结果不一致,为安全起见,可选对工程较为不利的一年 即库容较大的一年作为设计代表年。 ,即库容较大的一年作为设计代表年。 注意:设计代表年法采用来、 注意:设计代表年法采用来、用水同频率只有在各 年来、用水之间有较好相关关系时才是正确的, 较好相关关系时才是正确的 年来、用水之间有较好相关关系时才是正确的,否则由 此求得的兴利库容不一定符合设计保证率。 此求得的兴利库容不一定符合设计保证率。
径流形成过程及其度量
![径流形成过程及其度量](https://img.taocdn.com/s3/m/731750c2de80d4d8d05a4f0d.png)
关,尤其是土壤含水量。 对于天然情况下,温度、光照基本适宜,植物的
散发过程与土壤的蒸发过程很相似,常常与土壤 的蒸发一起计算。
四、流域总蒸发
流域总蒸发(流域蒸散发):流域内的水面蒸发、 土壤蒸发、植物散发的总称。 陆地上的年降水量有60~70%通过蒸发和散发返回 大气,因此总蒸发是水文循环的重要组成要素。 流域总蒸发是通过估算求得。
工程水文学
第二章 水文循环与径流形成
水文循环及水量平衡 河流与流域 降水 下渗 蒸散发 径流
第六节 径流
内容提要
➢ 径流形成过程 ➢ 径流的度量 ➢ 河川径流的动态变化
一、径流形成过程
径流:由降水形成的,沿着流域地面和地下向河 川、湖泊、水库、洼地等流动的水流。其中流出 流域出口断面的水流称为河川径流。
入渗能力曲线 fc
fF f0
0
2020/12/3
Ft ft
下渗能力随时程而递减, 初期很大,后期逐渐变小 ,最后趋于稳定。
fc t
三、下渗 自然条件下的下渗
f f0
C
fc 0
(1)i1≥fp,按下渗能力下渗
(3)fc<i3<fp,i1下渗能力下降到稳定下渗
率前,全部雨水渗入土壤
i3
A
D
B
i2
(2)i2<fC,按降雨强度下渗
三、下渗 物理过程
(2) 渗漏阶段 下渗的水主要在毛细管力和重力共同作用下,在土壤孔 隙中形成不稳定运动,并逐步充填空隙,直到孔隙充满 水之前均称为第二阶段。该阶段水呈非饱和运动,有时 将渗润阶段和渗漏阶段合称为渗漏阶段。 (3)渗透阶段 当土壤孔隙被水充满达到饱和时,水在重力作用下向 下运动,属饱和水流运动。这时,下渗率维持稳定, 称稳定下渗率。
散发过程与土壤的蒸发过程很相似,常常与土壤 的蒸发一起计算。
四、流域总蒸发
流域总蒸发(流域蒸散发):流域内的水面蒸发、 土壤蒸发、植物散发的总称。 陆地上的年降水量有60~70%通过蒸发和散发返回 大气,因此总蒸发是水文循环的重要组成要素。 流域总蒸发是通过估算求得。
工程水文学
第二章 水文循环与径流形成
水文循环及水量平衡 河流与流域 降水 下渗 蒸散发 径流
第六节 径流
内容提要
➢ 径流形成过程 ➢ 径流的度量 ➢ 河川径流的动态变化
一、径流形成过程
径流:由降水形成的,沿着流域地面和地下向河 川、湖泊、水库、洼地等流动的水流。其中流出 流域出口断面的水流称为河川径流。
入渗能力曲线 fc
fF f0
0
2020/12/3
Ft ft
下渗能力随时程而递减, 初期很大,后期逐渐变小 ,最后趋于稳定。
fc t
三、下渗 自然条件下的下渗
f f0
C
fc 0
(1)i1≥fp,按下渗能力下渗
(3)fc<i3<fp,i1下渗能力下降到稳定下渗
率前,全部雨水渗入土壤
i3
A
D
B
i2
(2)i2<fC,按降雨强度下渗
三、下渗 物理过程
(2) 渗漏阶段 下渗的水主要在毛细管力和重力共同作用下,在土壤孔 隙中形成不稳定运动,并逐步充填空隙,直到孔隙充满 水之前均称为第二阶段。该阶段水呈非饱和运动,有时 将渗润阶段和渗漏阶段合称为渗漏阶段。 (3)渗透阶段 当土壤孔隙被水充满达到饱和时,水在重力作用下向 下运动,属饱和水流运动。这时,下渗率维持稳定, 称稳定下渗率。
第2章 设计年径流及径流随机模拟
![第2章 设计年径流及径流随机模拟](https://img.taocdn.com/s3/m/4456804b89eb172dec63b70c.png)
系列做出的频率分析成果是很接近的。
(二)线型与参数估算 经验表明,我国大多数河流的年径流频率分析,可以
采用P—Ⅲ型频率分布曲线,但规范同时指出,经分析论 证亦可采用其他线型。
(三)其他注意事项
1.参数的定量应注意参照地区综合分析成果
对中小流域设计断面径流系列计算的统计参数,有时 也会带有偶然性。因此在有条件时,应注意和地区综合分 析的统计参数成果进行合理性比较,特别是在系列较短时 尤应注意。我国已制定有全国和各地区的中小河流年径流 深和的等值线图,可以作为重要的参考资料。
二、年径流的频率分析
(一)选择
当年径流资料经过审查、插补延长、还原计算和资料 一致性和代表性论证以后,应按逐年逐月统计其径流量, 组成年径流系列和月径流系列。这些数据绝大部分可自 《水文年鉴》上直接引用,但须注意《水文年鉴》上刊布 的数字是按日历年分界的,即每年1-12月为一个完整的年 份。
在水资源利用工程中,为便于水资源的调度运用,常 采用另一种分界的方法,称水利年度。它将水库调节库容 的最低点(汛前某一月份,各地根据入汛的迟早具体确定) 作为一个水利年度的起始点,周而复始加以统计,建立起 一个新的年径流系列。当年径流系列较长时,用上述两种
第二节 有较长资料时设计年径流频率分析计算
一、年径流系列的一致性和代表性分析 (一)年径流系列的一致性分析
应用数理统计法进行年径流的分析计算时,一个重要 的前提是年径流系列应具有一致性。就是说组成该系列的 流量资料,都是在同样的气候条件、同样的下垫面条件和 同二测流断面上获得的。其中气候条件变化极为缓慢,一 般可以不加考虑。人类活动影响下垫面的改变,有时却很 显著,为影响资料一致性的主要因素,需要重点进行考虑。 测量断面位置有时可能发生变动,当对径流量产生影响时, 需要改正至同一断面的数值。
(二)线型与参数估算 经验表明,我国大多数河流的年径流频率分析,可以
采用P—Ⅲ型频率分布曲线,但规范同时指出,经分析论 证亦可采用其他线型。
(三)其他注意事项
1.参数的定量应注意参照地区综合分析成果
对中小流域设计断面径流系列计算的统计参数,有时 也会带有偶然性。因此在有条件时,应注意和地区综合分 析的统计参数成果进行合理性比较,特别是在系列较短时 尤应注意。我国已制定有全国和各地区的中小河流年径流 深和的等值线图,可以作为重要的参考资料。
二、年径流的频率分析
(一)选择
当年径流资料经过审查、插补延长、还原计算和资料 一致性和代表性论证以后,应按逐年逐月统计其径流量, 组成年径流系列和月径流系列。这些数据绝大部分可自 《水文年鉴》上直接引用,但须注意《水文年鉴》上刊布 的数字是按日历年分界的,即每年1-12月为一个完整的年 份。
在水资源利用工程中,为便于水资源的调度运用,常 采用另一种分界的方法,称水利年度。它将水库调节库容 的最低点(汛前某一月份,各地根据入汛的迟早具体确定) 作为一个水利年度的起始点,周而复始加以统计,建立起 一个新的年径流系列。当年径流系列较长时,用上述两种
第二节 有较长资料时设计年径流频率分析计算
一、年径流系列的一致性和代表性分析 (一)年径流系列的一致性分析
应用数理统计法进行年径流的分析计算时,一个重要 的前提是年径流系列应具有一致性。就是说组成该系列的 流量资料,都是在同样的气候条件、同样的下垫面条件和 同二测流断面上获得的。其中气候条件变化极为缓慢,一 般可以不加考虑。人类活动影响下垫面的改变,有时却很 显著,为影响资料一致性的主要因素,需要重点进行考虑。 测量断面位置有时可能发生变动,当对径流量产生影响时, 需要改正至同一断面的数值。
第二章 水循环及径流形成
![第二章 水循环及径流形成](https://img.taocdn.com/s3/m/549b2f22dd36a32d7375812d.png)
自动记录降雨量,不需人为干预。方便、快捷。有三种类型:称重式、 自动记录降雨量,不需人为干预。方便、快捷。有三种类型:称重式、 虹吸式和翻斗式。 虹吸式和翻斗式。
3
雷达探测
利用云、 利用云、雨、雪等对雷达无线电波的反射现象来研究天气系统。 雪等对雷达无线电波的反射现象来研究天气系统。 不同形状的雷达回波反映不同性质的天气系统。 不同形状的雷达回波反映不同性质的天气系统。从而预测探测范围内 的降水量、强度及开始和终止时刻。 的降水量、强度及开始和终止时刻。
RSI
地下分水线
RGI
△W
RGO RSO
2.2
1
河流和流域
概念
河流(River) 一 河流(River)
河流可分为河源、 一定地质和气候条件下形成的河槽与在其中的水流。河流可分为河源、 上游、中游、下游和河口五段。 上游、中游、下游和河口五段。 2 河流长度(河长L 河流长度(河长L)
自河源沿河道至河口的长度,称河长, km计 自河源沿河道至河口的长度,称河长,以km计。 3 河流横断面 如图2 所示。 如图2-2所示。 4 水系及水系形态
(1)水系 (1)水系 由干流、 由干流、支流及流域内 水库、 水库、湖泊连成的一个庞大 系统,成为水系。 系统,成为水系。
(2)水系形态 (2)水系形态 羽毛状 扇形 平形状 混合形
图 2 | 3 水 系 示 意 图
4
河网密度
流域内干支流的总长度∑ 和流域面积F之比: 流域内干支流的总长度∑L和流域面积F之比:
4
气象卫星云图 将卫星云图资料结合气象模型,通过专家系统,进行降雨量预测。 将卫星云图资料结合气象模型,通过专家系统,进行降雨量预测。
三
降水特性描述
第二章 河川径流形成的基本知识
![第二章 河川径流形成的基本知识](https://img.taocdn.com/s3/m/f5d43509fc4ffe473368abd3.png)
多年平均情况下,∆S→0
则多年平均水量平衡方程为: P - ( E + R )= 0
4) 全球水量平衡方程 大陆的水量平衡方程: 海洋的水量平衡方程:
Pc R Ec Sc
C指大陆
Po R Eo So
O指海洋
多年平均情况下:∆S→0
大陆多年平均水量平 衡方程为:
海洋的多年平均水量平 衡方程为:
闭合流域与非闭合流域 地面分水线和地下分水线相重合的流域为闭合流域;
地面与地下分水线不重合的流域为非闭合流域 一般大中河流多按闭合流域考虑
P19
地面分水线 地下分水线
地下分水线 地面分水线
合流域示意图
3) 闭合流域水量平衡方程
闭合流域:地表分水线和地下分水线重合,无水分从 地表和地下流入 则 RsI = RgI = 0; 令出流水量 R = RsO + Rg,再假设区域用水量小到 可以忽略,即 q = 0,则闭合流域水量平衡方程为: P - ( E + R )= ∆ S
中游
下游 河口
海洋
上游:直接连着河源 河口:河流的终点
河源
上游断面
洪水位
上游特点:河道坡度大,水流急,流量小,水情变化大,河谷 窄,多急滩瀑布,河槽多为基岩或砾石,冲刷下切占优势
中游断面
洪水位
中游特点:河道坡度变缓,流速减小,流量增大,河道冲淤都不 严重,河床比较稳定,下切力减弱,但侧蚀力量增强,河槽 逐渐拓宽和曲折,两岸出现滩地
二
流域
1 流域
(1)分水线:地形等高线中的极大值区域称为山峰,
山峰的下坡方向为山脊,相邻山峰之间的区域称 为鞍部。山峰、山脊和鞍部的连接线称为分水线
水文学原理第二章河流与流域
![水文学原理第二章河流与流域](https://img.taocdn.com/s3/m/b906f73c16fc700abb68fc7e.png)
洪水位
枯水位 滩地
滩地
主槽
3.河流纵比降
2.1.2
任意河段两端(水面或河底)的高差称为落差
单位河长的落差称为河段纵比降,简称比降,
河 流
用小数或千分数‰表示。 水面比降随水位的变化而变化,河底比降则 较稳定,通常河流的比降指的是河底纵比降。
基
本
特
征
2.1.2
河底纵比降可在河流纵断面图上 读取河底高程及河段长度数值后按 下式计算:
2.4
影 响 径 流 的 主 要 因 素
4.流域形状和面积
流域的长度决定了地面径流汇流的时间,狭长地 形较之宽短地形的汇流时间长,汇流过程平缓。大流 域的径流变化较之小流域的要平缓得多,这是因为大 流域面积较大,各种影响因素有更多机会能相互平衡、 相互作用,从而增大了它的径流调节能力,而使径流 变化趋于相对稳定。
河
J (h0 h1)l1 (h1 h2 )l2 (hn1 hn )ln 2h0L
流
L2
(2-1)
基
式中: J —— 河流的比降,
本
h0 ,, hn —— 自上游到下游沿 程各点
特 征
河底高程, l1,,ln —— 相邻两点间的距
L —— 全河流的长度。
离,
2.1.3
地面分水线
地下分水线 地下分水线
地面分水线
A
A
B 不透水层
透水层
B
地面分水线与地下分水线面投影面积,记为 F ,
以 Km2 计。分水线是相邻两流域的边界线,又叫 分水岭。
勾绘方法如下图所示。图中虚线即为分水线, 分水线与出口断面包围的闭合区域即为控制断面 以上的流域。
2.4
影 响 径 流 的 主 要 因 素
枯水位 滩地
滩地
主槽
3.河流纵比降
2.1.2
任意河段两端(水面或河底)的高差称为落差
单位河长的落差称为河段纵比降,简称比降,
河 流
用小数或千分数‰表示。 水面比降随水位的变化而变化,河底比降则 较稳定,通常河流的比降指的是河底纵比降。
基
本
特
征
2.1.2
河底纵比降可在河流纵断面图上 读取河底高程及河段长度数值后按 下式计算:
2.4
影 响 径 流 的 主 要 因 素
4.流域形状和面积
流域的长度决定了地面径流汇流的时间,狭长地 形较之宽短地形的汇流时间长,汇流过程平缓。大流 域的径流变化较之小流域的要平缓得多,这是因为大 流域面积较大,各种影响因素有更多机会能相互平衡、 相互作用,从而增大了它的径流调节能力,而使径流 变化趋于相对稳定。
河
J (h0 h1)l1 (h1 h2 )l2 (hn1 hn )ln 2h0L
流
L2
(2-1)
基
式中: J —— 河流的比降,
本
h0 ,, hn —— 自上游到下游沿 程各点
特 征
河底高程, l1,,ln —— 相邻两点间的距
L —— 全河流的长度。
离,
2.1.3
地面分水线
地下分水线 地下分水线
地面分水线
A
A
B 不透水层
透水层
B
地面分水线与地下分水线面投影面积,记为 F ,
以 Km2 计。分水线是相邻两流域的边界线,又叫 分水岭。
勾绘方法如下图所示。图中虚线即为分水线, 分水线与出口断面包围的闭合区域即为控制断面 以上的流域。
2.4
影 响 径 流 的 主 要 因 素
水文循环与径流形成
![水文循环与径流形成](https://img.taocdn.com/s3/m/966dcb620622192e453610661ed9ad51f01d54ee.png)
测站 A B C D E
合计
ai (%)
Pi (mm)
ai·Pi (mm)
24 45 10.8
21 57 12.0
37 69 25.5
8 66 5.3
10 78 7.8
100
61.4
ai
Ai A
n
A Ai i 1
n
P ai Pi i 1
六、我国降水量及其时空分布: ①分带性:5带; ②年内分配不均: ③年际变化大:
③填洼 ②下渗
①植物截留
R1 R2
R3
R4
径流形成过程示意图
总结: 1.产流过程:降雨扣除损失成为净雨的过程.
①降雨扣除损失后的雨量称为净雨,净雨和它形成的 径流在数量上是相等的.
②净雨是径流的来源,而径流则是净雨汇流的结果; 净雨在降雨结束时就停止了,而径流却要延长很长时间.
地面净雨→地面径流 ③ 表层流净雨→表层流或壤中流 地面径流 总径流过程
暖锋雨 特点:降雨强度小、历时长、雨区范围大.
④ 气旋雨 Ⅰ、温带气旋雨
Ⅱ、热带气旋雨
我国降水量地区分布
三、 降水量观测 器测法
方法 雷达探测 气象卫星云图
1、雨量器 分辨率0.1mm.两段制 观测,即每日8时及20时各 观测一次.雨季增加观测 段次.
每日8时至次日8时降 水量为当日降水量.
干流:水系中最高级别的河流.
水系:脉络相同的大小河流所构成的体统.
黄河流域水系图
2、河流的基本特征 ⑴河长 自##沿主河道至河口的距离称为〔km〕. 量取方法:曲线仪或分规.
⑵河流的断面: 横断面:垂直流向 纵断面:沿中泓线
3. 河道纵比降: ⑴概念
任意河段两端〔水面或水底〕的高差△h称 为落差,单位河长的落差称为河道纵比降.
第二章 径流形成过程
![第二章 径流形成过程](https://img.taocdn.com/s3/m/ac6b77983968011ca2009101.png)
蒸散发
降水
植物截留
填洼及地面滞 蓄量
不透水面积 坡面流
土壤蓄量 地下水蓄量
壤中流 潜水流
深层地 下水
径流形成过程框图
河 网 汇 流
出流过 程
2.1 径流形成过程描述
据此框图,可把径流形成过程划分为下列几个过程:
1.降水过程 从径流形成的角度看,供水过程,是径流形成的必要 条件。属于气象学的任务。
ss sm (1 eai )
式中 a 为经验常数
2.2.1植物截留
Rutter冠层截留量的计算公式如下
其中
C Q Keb(CS ) t
Q
PP11PP22
( (
P P
EPC EP )
/
S
)
当C S 当C S
式中:C是冠层实际的含水量;S是冠层蓄水容量(mm); P1是地表植被覆盖率;P2是总的叶面面积与植被覆盖的地面面积之比; K,b参数。
供水充分:ES=Ep 又:EP=f(气象因素) =f(E0)
ES=ES(EP,W)
2.2.3 流域蒸散发量计算
二、蒸发能力的确定 水面(器皿)蒸发与流域蒸发能力的区别:
1)水面(器皿)蒸发的水体是整体的,系敞开式 2)流域蒸发受土体影响,其水体存在于介质的孔隙中, 是不完整的,与周围环境热交换条件也与水面蒸发不同
2.1 径流形成过程描述
径流形成过程是一个复杂连续的物理过程.它始于降 雨过程,终于流域出口流量过程。径流形成过程可以划 分为五个:
(1)无雨期。降水前的干旱期。流域上无径流产生, 河槽处于低水期,主要靠地下水补给。
(2)初雨期。其特征是除槽面降水产生微量径流外, 流域中的降水,主要耗于植物截留、下渗、填洼和蒸散 发等。
第二章__河川径流
![第二章__河川径流](https://img.taocdn.com/s3/m/5ade0935376baf1ffc4fad25.png)
流域面积A越小,Q越小,但洪水涨落较为急剧。流域形
状影响径流汇集时间的长短和径流形成过程。若流域形 状狭长为羽毛形,则出口断面流量就小,径流过程的变
化较小而历时较长。相反,流域形状为扇形,则出口断
面流量大,径流过程的历时较短。
2.流域的自然地理特征
主要是流域的地理位置和地形
流域的地理位置一般以流域中心和流域边界的经纬度来表
顺直微弯型河段
弯曲型河段(长江下荆江蜿蜒型河段)
分叉型河段(长江南京附近八卦洲)
游荡型河段(黄河花园口)
顺直微弯型 分汊型 散乱型
弯曲型
第二节 河川径流的形成
降落在流域表面的雨水,除去损耗外,剩余的部分
从地面和地下汇入河槽中而形成河川径流。其中来自地
面的部分称为地面径流,来自地下的部分称为地下径流
(2)蒸发
流域内的蒸发是指水面蒸发、陆面蒸发、植
物散发等各种蒸发的总和。
在一次降雨过程中,蒸发对径流影响不大,但对降雨 前的流域蓄渗影响却很大;如蒸发强度大,则雨前土壤的 含水率就小,降雨的入渗损失量就增大,而径流量就减小 。因此,蒸发也是影响径流变化的重要因素。
2.下垫面因素 流域的地形、土壤、地质、植被、湖泊等自然地理 因素,相对于气候因素而言,称为下垫面因素。
(3)降水强度(mm/min或mm/h):单位时间内的降水量
降水的变化过程直接决定径流过程的趋势,降水过 程是径流形成过程的重要环节。
2.流域蓄渗过程
降水开始时并不能立即形成径流。雨水被流域内的树木、杂 草以及农作物等的茎叶截留一部分,不能落到地面,称为植物截 留;落到地面上的雨水,部分渗入土壤,称为入渗;单位时间内 的入渗量(mm)称为入渗强度(mm/min或mm/h)。降雨开始时入 渗较快,随着降雨量的不断增加,土壤中水分逐渐趋于饱和,入 渗强度减缓,达到一个稳定值,称为稳定入渗;还有一部分雨水 被蓄留在坡面的坑洼里,称为填洼。
水文学第二章第七节径流
![水文学第二章第七节径流](https://img.taocdn.com/s3/m/235363da312b3169a551a40e.png)
径流形成过程示意图
产流与汇流
❖ 在径流形成中通常将流域蓄渗过程,到形成地面汇流及早期 的表层流过程,称为产流过程,
❖ 坡地汇流与河网汇流合称为流域汇流过程或汇流过程。
流域蓄渗过程 地面汇流
流域产流过程
径流形 成过程
坡地汇流过程 壤中汇流 地下水汇流
流域汇流过程
河网汇流过程
Rs
上述三个阶段是指长时间连续降水 下发生的典型模式。实际上由于每次 降水的强度和持续时间不同,各流域 自然条件也不一样,所以,无论是不 同流域,或是同一流域在不同降水过 程中的径流形成,都可能有不同程度 的差别。
四、影响径流的主要因素
气象气候因素 降水 蒸发
人类活动 农业措施 林牧业措施 水利措施
下垫面因素 地理位置 地形地貌
土壤和地质
植被和湖沼
流域形状 和面积
降水对径流的影响
P 降雨量 S 土壤蓄存量 rs 地面产流量 qs 地面流量 Q 出口断面流量 In 截留量 fg 补给地下水量 rss 壤中产流量 qss 壤中流量 Sd 填洼量 fd 深层下渗量 rg 地下产流量 qg 地下水流量
4.径流模数M
▪ 计算公式为:M Q (单位:L/s·km2) 1000F
▪ M反映一个流域的产水能力。
世界大河径流模数比较 河流名称 尼罗河 长江 亚马逊河 径流模数 0.79 17.6 17
刚果河 10.6
5.径流系数ɑ ▪ 计算公式为: R
P
▪ 对于闭合流域:α<1
▪ 问题:径流系数为1的含义?
[思考题] ❖ 1.对于闭合流域来说,为什么径流系数必然小于1? ❖2.径流的度量方法有:( )
A 流量 B 径流量 C 径流深 D 径流系数 ❖ 3.径流形成过程中包括那些子过程,各有何特点? ❖ 4.河川径流是由流域降雨形成的,为什么久晴不雨
产流与汇流
❖ 在径流形成中通常将流域蓄渗过程,到形成地面汇流及早期 的表层流过程,称为产流过程,
❖ 坡地汇流与河网汇流合称为流域汇流过程或汇流过程。
流域蓄渗过程 地面汇流
流域产流过程
径流形 成过程
坡地汇流过程 壤中汇流 地下水汇流
流域汇流过程
河网汇流过程
Rs
上述三个阶段是指长时间连续降水 下发生的典型模式。实际上由于每次 降水的强度和持续时间不同,各流域 自然条件也不一样,所以,无论是不 同流域,或是同一流域在不同降水过 程中的径流形成,都可能有不同程度 的差别。
四、影响径流的主要因素
气象气候因素 降水 蒸发
人类活动 农业措施 林牧业措施 水利措施
下垫面因素 地理位置 地形地貌
土壤和地质
植被和湖沼
流域形状 和面积
降水对径流的影响
P 降雨量 S 土壤蓄存量 rs 地面产流量 qs 地面流量 Q 出口断面流量 In 截留量 fg 补给地下水量 rss 壤中产流量 qss 壤中流量 Sd 填洼量 fd 深层下渗量 rg 地下产流量 qg 地下水流量
4.径流模数M
▪ 计算公式为:M Q (单位:L/s·km2) 1000F
▪ M反映一个流域的产水能力。
世界大河径流模数比较 河流名称 尼罗河 长江 亚马逊河 径流模数 0.79 17.6 17
刚果河 10.6
5.径流系数ɑ ▪ 计算公式为: R
P
▪ 对于闭合流域:α<1
▪ 问题:径流系数为1的含义?
[思考题] ❖ 1.对于闭合流域来说,为什么径流系数必然小于1? ❖2.径流的度量方法有:( )
A 流量 B 径流量 C 径流深 D 径流系数 ❖ 3.径流形成过程中包括那些子过程,各有何特点? ❖ 4.河川径流是由流域降雨形成的,为什么久晴不雨
流域径流形成过程
![流域径流形成过程](https://img.taocdn.com/s3/m/2ab83add581b6bd97e19ea22.png)
流域径流形成过程
(四)河流的分段 一条河流常常可以根据其地理-地质特征分为 河源、 上游、中游、下游和河口五段。 河源 是指河流最初具有地表水流形态的地方; 上游 是指紧接河源的河谷窄、比降和流速大,水量小、 侵蚀强烈、纵横面呈阶梯状并多急滩和瀑布的河段。 中游 水量逐渐增加,比降已较和缓; 下游 河谷宽广,河道弯曲,河水流速小而流量大,淤积 作用显著,到处可见浅滩和沙洲。 河口 是河流入海、入湖或汇入更高级河流处,经常有 泥沙堆积,有时分汊现象显著,在入海、入湖处形成三 角洲。
河道流动的水流。 降水、下渗、蒸发是地球上水文循环中最活跃的因
子,也是径流形成的主要因素。流域是降水的承 受面,也是蒸发的逸出面,又是径流的下垫面。
流域径流形成过程
2.2河流与流域 河谷:河流流经的谷地 河槽(河床):河谷底部有水流的部分 左岸、右岸:面向下游 分段:河源、上、中、下游、河口。 外流河:海洋 内流河:湖泊,消失于沙漠
流域径流形成过程
流域径流形成过程
2 河流的基本特征
河流 长度
河流 纵断面
河流 基本特征ຫໍສະໝຸດ 河流 平面河流 横断面
流域径流形成过程
河长
河流的基本特征 河流长度:由河源沿主河道至河口的距离。 河道纵比降:单位长度的落差 平均比降 水系:河流的溪涧、小沟、支流、干流和湖
泊等构成的脉络相连的系统。
流域径流形成过程
流域径流形成过程
河 流 的 纵 断 面
流域径流形成过程
河流纵剖面
流域径流形成过程
iH2 H110%0 L
● 河流纵剖面:沿河流中泓线的断面。
● 河流比降:单位长度河段的落差。
某河段比降:
2)
I
H2
H1
(四)河流的分段 一条河流常常可以根据其地理-地质特征分为 河源、 上游、中游、下游和河口五段。 河源 是指河流最初具有地表水流形态的地方; 上游 是指紧接河源的河谷窄、比降和流速大,水量小、 侵蚀强烈、纵横面呈阶梯状并多急滩和瀑布的河段。 中游 水量逐渐增加,比降已较和缓; 下游 河谷宽广,河道弯曲,河水流速小而流量大,淤积 作用显著,到处可见浅滩和沙洲。 河口 是河流入海、入湖或汇入更高级河流处,经常有 泥沙堆积,有时分汊现象显著,在入海、入湖处形成三 角洲。
河道流动的水流。 降水、下渗、蒸发是地球上水文循环中最活跃的因
子,也是径流形成的主要因素。流域是降水的承 受面,也是蒸发的逸出面,又是径流的下垫面。
流域径流形成过程
2.2河流与流域 河谷:河流流经的谷地 河槽(河床):河谷底部有水流的部分 左岸、右岸:面向下游 分段:河源、上、中、下游、河口。 外流河:海洋 内流河:湖泊,消失于沙漠
流域径流形成过程
流域径流形成过程
2 河流的基本特征
河流 长度
河流 纵断面
河流 基本特征ຫໍສະໝຸດ 河流 平面河流 横断面
流域径流形成过程
河长
河流的基本特征 河流长度:由河源沿主河道至河口的距离。 河道纵比降:单位长度的落差 平均比降 水系:河流的溪涧、小沟、支流、干流和湖
泊等构成的脉络相连的系统。
流域径流形成过程
流域径流形成过程
河 流 的 纵 断 面
流域径流形成过程
河流纵剖面
流域径流形成过程
iH2 H110%0 L
● 河流纵剖面:沿河流中泓线的断面。
● 河流比降:单位长度河段的落差。
某河段比降:
2)
I
H2
H1
2第二章_河川水文基础知识
![2第二章_河川水文基础知识](https://img.taocdn.com/s3/m/f600af64b84ae45c3b358c27.png)
•
1.答:(1)搜集指定断面以上河流所在地区的地形图;(2) 在地形图上画出地面集水区的分水线;(3)用求积仪量出 地面分水线包围的面积,即流域面积。
•
2.答:闭合流域:(1)流域在非岩溶地区,没有暗河、天坑; (2)径流系数小于1;(3)出口断面能下切至岩层。
3.答:(1)毁林开荒使山区的植被受到破坏,暴雨时将会造 成严重的水土流失,使下游河道淤塞,排水不畅;(2)裸 露的坡地,下渗差,暴雨时产生地面径流大,汇流速度快, 将使洪峰大大增高。 4.答: 围垦湖泊,主要使湖泊的蓄洪容积大大减小;同时, 被围垦的土地,还要大量排渍,使河流洪水显著加剧。
Q T y 10 6 F 10 1000 F
3
Q M 103 F
y a x
例:已知某流域F=100km2,多年平均年降水量 =1200mm,多年平均年径流深=600mm。 试求:多年平均流量、多年平均年蒸发量、多 年平均年径流系数、多年平均年径流模数M。
Q
Q=0.6*100*1000*1000/(365*24*3600)=1.9m3/s Z= 1200-600=600 mm
a = 600/1200=0.5
M = 19 L/s.km2
1.已知某断面2000年年平均流量为2000m3/s,
该断面以上的积水面积为688421 km2,分别
计算年径流量、径流深、径流模数。
R 365 86400 2000 6.3072 10 m
10
10
3
R 6.3072 10 Y 91.62mm 1000 A 1000 688421
Q 2000 M 0.003 A 688421
(四)我国河流的水量补给
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WUHEE
二、流域特征 1. 分水线和流域 汇集地面水和地下水的区域 即分水线所包围的区域
闭合流域、非闭合流域
WUHEE
2. 流域基本特征 流域面积(F,km2) 河网密度(∑L/F,km/km2) 流域长度(L)和平均宽度(M) 流域形状系数(M/L) (扇状流域、羽状流域) 流域平均高度和平均坡度 流域自然地理特征 (位置、气候、下垫面)
WUHEE
第二节
径流及其形成过程
一、水文循环与水量平衡
1. 自然界的水文循环 地球上以液态、固态和气态的形式分布于海洋、陆地 、大气和生物机体中的水体构成了地球上的水圈。 水圈中的各种水体通过不断蒸发、水汽输送、凝结 降落、下渗、地面和地下径流的往复循环过程,称为水 文循环。 水文循环的范围贯穿整个水圈,向上延伸到10km左 右,下至地表以下平均1km深处。
WUHEE
WUHEE
长江:
发源于青藏高原唐古拉山主峰格拉丹东雪山; 长度:干流全长6300余公里; 流域面积:180万平方公里; 上游:宜昌以上,长4504km,面积100km2; 中游:宜昌至湖口,长955km,面积68万km2; 下游:湖口以下,长938km,面积12万km2; 比降:源头为10.8‰,三峡河段为0.18‰, 平原河段0.026‰,河口段0.005‰; 多年平均降雨量:1100mm; 多年平均年径流量:9600亿m3; 含沙量:中下游约为0.5-1.0kg/m3;
(2)土壤蒸发观测
器测法;
ΓΓИ500型
E = 0.02(G1 − G 2 ) − ( R + q ) + P
间接计算法 经验公式
WUHEE
) 植物蒸散发
土壤中的水分经植物吸收后,输送至叶面, 经由气孔逸入大气,称为植物散发; 降水时枝叶截留一部分降水在雨后蒸发的现 象,称为植物蒸发; 植物蒸散发的测定: 器测法: 水量平衡法:
红外云图
WUHEE
降雨资料的整理 将观测的雨量进行整理计算,得逐日降水量 和汛期降水摘录表,与其他水文资料一起,刊 布在水文年鉴或存入水文数据库。 降雨时程变化的表示方法:
1、2线:降雨强度过程线 ΔP i= Δt 3线:降雨量累积曲线
t
P (t ) = ∫0 i (t )dt
WUHEE
流域平均雨量计算: (1) 算术平均法 条件:流域内雨量站分布较均匀、地形起 伏变化不大。
WUHEE
下渗实验与分析: 1) 直接测定法 (1)注水法:同心环下渗仪 (2)人工降雨法
F (t ) = P (t ) − R (t )
f (t ) = i (t ) − r (t )
2) 水文分析法:流域水量平衡方程分析
F (t ) = P (t ) − R(t ) − ( S s + S v + S d )
WUHEE
大循环:海陆之间的水分交换过程,又称为外循环。 小循环:海洋上蒸发的水汽在海洋上空凝结后,以降水 的形式落到海洋里,或陆地上的水经蒸发凝结又降落 到陆地上,又称为内循环。前者称为海洋小循环,后 者称为陆地小循环。 水文循环是地球上最重要、最活跃的物质循环之一 。正是由于自然界的水文循环,才形成永无终止千变 万化的水文现象。 水文循环也是水资源具有再生性的原因。
dS (t ) f (t ) = i (t ) − r (t ) − dt
WUHEE
3)霍顿下渗公式:
f (t ) = f c + ( f 0 − f c ) e
− βt
f0:起始下渗率 fc:稳定下渗率
β :系数
WUHEE
4. 水位观测
指河流、湖泊、水库及海洋等水体的自由 水面离开固定基面的高程。 目前全国统一基面:黄海基面 水位观测设备:水尺、自记水位计
P = E
全球多年平均 降水量等于多 年平均蒸发量 ,为1130mm
Pc + Po = E c + E o 或
WUHEE
3. 流域水量平衡
( P + E1 + Rs1 + R g1 ) − ( E 2 + Rs 2 + R g 2 ) = S 2 − S1 P − E − R = ΔS P= R+E
3. 下渗
水从土壤表面渗入土壤内的运动过程,常用下 渗率的大小来描述下渗强度。 下渗率:单位时间内渗入单位面积土壤中的水 量。记为:f (mm/min,mm/h) 下渗的空间分布: (1)流域中土壤性质的空间分布不同 (2)流域内土壤含水量空间分布不同 (3)降雨在时间空间上分布不均匀 (4)流域内各处地下水位高低不一
WUHEE
5. 流量测验
单位时间通过河流某一断面的水量,m3/s。 1)流速仪测流 (1)测流原理:Q = vω 将河道断面划分为若干部分,用普通测量方法 测算出各部分断面的面积,用流速仪施测流速并计 算各部分面积上的平均流速,两者的乘机,称为部 分流量,各部分流量之和为全断面的流量。 测流工作分为:河道断面测量、流速测量。
WUHEE
(3) 等雨量线法 条件:当流域地形变化较大,而雨量站分布较密 ,能结合地形变化绘制等雨量线时。
1 P= F
∑ Pi f i
i =1
n
该方法能考虑流域地形的变化绘制等雨量线,比较好 地反映了降雨在流域上的变化,精度较高。 但是绘制等雨量线需要较多站点的资料,且每次都 要重绘,工作量大。
WUHEE
WUHEE
WUHEE
2、地球上的水量平衡 水量平衡原理:在水文循环过程中,对任一区域 、任一时段进入水量与输出水量之差额必等于其蓄水 量的变化量。 水量平衡方程:
I − O = ΔS
I、O——给定时段内输入、输出该地区的总水量 △S——时段内区域蓄水量的变化量,可正可负。
WUHEE
若以地球的整个大陆作为研究范围,其水量平衡方程为:
P1 + P2 + ... + Pn 1 n = ∑ Pi P= n n i =1
WUHEE
(2) 垂直平分法(泰森多边形法) 条件:流域雨量站分布不太均匀,为了更好地反 映各站在计算流域平均雨量中的作用。 假设:流域各处的雨量可由与其距离最近的雨量 站代表。
n fi P1 f1 + P2 f 2 + ... + Pn f n P= = ∑ Pi F F i =1
WUHEE
3. 河道纵比降: 任意河段两端(水面或 水底)的高差△h称为落差, 单位河长的落差称为河道纵比 降。 水面比降、河底比降
J=
(h0 + h1 )l1 + (h1 + h2 )l 2 + ... + (hn −1 + hn )l n − 2h0 L L2
WUHEE
4.水系及河流地貌 定律 斯特拉勒河流分 级法: 河流地貌定律: 河数律 河长律 面积律 河流比降律
Pc − R − E c = ΔS c
若以海洋为研究对象,其水量平衡方程为:
Po + R − E o = ΔS o
△Sc——大陆在研究时段内蓄水量的变化量 △So——海洋在研究时段内蓄水量的变化量 对多年平均情况, △Sc 、△So 趋于零。所以:
Pc − R = E c
合并得:
Po + R = E o
水位变化平缓时,每日8时和20时各观测1次;枯 水气每日8时观测1次;汛期一般每日观测4次。
水位观测资料整理:日平均水位、月平均水位 、年平均水位的计算。 (1)算术平均法 (2)面积包围法
WUHEE
Z=
1 [ Z 0 Δt1 + Z 1 (Δt1 + Δt 2 ) + Z 2 (Δt 2 + Δt 3 ) + ... + Z n −1 (Δt n −1 + Δt n ) + Z n (Δt n )] 48
对流层的特点:
1. 气温随高度的增加而降低 2. 具有强烈的上升和下降的气流 3. 受地表差异影响,对流层温度、湿度水平分布 不均匀。
对流层又可分三部分:下层(地面-1.5km)
中层(1.5km-6km) 上层(6km-对流层顶部)
WUHEE
对流层中与降水有关的主要气象因素有:
气温、气压、风、湿度、云、蒸发
WUHEE
二、水文观测与水文资料收集
1. 降水 水分以各种形式从大气降落到地面。 ) 形式:
)
雨、雪、霰、雹、露、霜等
)
特征要素: 降水量(mm) 降水历时(min,h,d) 降水强度(mm/h,mm/d) 降水面积(km2) 暴雨中心
WUHEE
) 与降水有关的气象因素 降水发生在大气中的对流层,对流层是地球大气 中最底的一层。
WUHEE
翻斗式 分辨率:0.1mm 降雨强度适用 范围: 4.0mm/min以内 称重式 记录降水时全部降 水的重量。优点在于能 够记录雪、冰雹及雨雪 混合降水。
WUHEE
) 雷达探测
气象雷达是利用云、雨、雪等对无 线电波的反射现象卫星云图
极轨卫星 地球静止卫星:可见光云图
WUHEE
WUHEE
降水量观测 (1)器测法 雨量器 分辨率0.1mm。两段制 观测,即每日8时及20 时各观测一次。雨季 增加观测段次,如4段 制、8段制、12段制、 24段制。 每日8时至次日8时降 水量为当日降水量。
WUHEE
(2)自计式 虹吸式: 分辨率:0.1mm 降雨强度适用 范围: 0.01~4.0mm/min 记录纸上画出的曲线, 纵坐标表示累积雨量, 横坐标表示时程, 称累积雨量过程线
1 E= (Qn Δ + rE a ) Δ+r
WUHEE
) 土壤蒸发
(1)土壤蒸发过程 三个阶段: 第一阶段:土壤充分湿润, 供水充足E接近最大蒸发能力EM; 第二阶段:土壤水分减少,W<W田,供水条件变 差,E逐渐减小; E=W/W田×EM 第三阶段:W<W断,水分运动十分缓慢,蒸发率 很小。