x2+(p+q)x+pq型多项式的因式分解

合集下载

因式分解的16种方法

因式分解的16种方法

因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:3x2x x3x1)分解因式技巧1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

2021初中数学八年级下册同步讲练第四章重点:因式分解类型题举例(解析版)

2021初中数学八年级下册同步讲练第四章重点:因式分解类型题举例(解析版)

第四章 重点突破训练:因式分解类型题举例考点1:由因式分解的结果求参数典例:(2018·安徽初一期中)已知多项式kx 2-6xy -8y 2可写成(2mx +2y )(x -4y )的形式,求k ,m 的值. 【答案】k =2,m =1.【解析】解:∵多项式kx 2-6xy -8y 2可写成(2mx +2y )(x -4y )的形式, ∴kx 2-6xy -8y 2=(2mx +2y )(x -4y ), =2mx 2-8mxy +2xy -8y 2, =2mx 2-(8m -2)xy -8y 2, ∴8m -2=6, 解得:m =1, 故k =2,m =1. 方法或规律点拨此题主要考查了多项式乘以多项式,正确得出m 的值是解题关键. 巩固练习1.(2020·福建宁德·初二期末)多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),则m 的值是( ) A .4 B .﹣4 C .10 D .﹣10【答案】B【解析】解:∵多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7), ∴m =﹣7+3=﹣4. 故选:B .2.(2020·江苏相城·初一期末)若代数式x 2﹣mx+4因式分解的结果是(x+2)2,则m 的值是( ) A .﹣4 B .4 C .﹣2 D .±4【答案】A【解析】解:因为(x+2)2=x 2+4x+4, 所以m 的值为:﹣4. 故选:A .3.(2020·贵州铜仁·初一期末)多项式26x mx ++可因式分解为()()23x x --,则m 的值为 ( ) A .6 B .5± C .5 D .5-【答案】D【解析】解:∵26x mx ++=()()23x x --=x 2-5x+6, ∴m=-5 故选D4.(2019·四川大邑·初二期末)已知多项式x 2+bx+c 分解因式为(x+3)(x ﹣1),则b 、c 的值为( )A .b =3,c =﹣2B .b =﹣2,c =3C .b =2,c =﹣3D .b =﹣3,c =﹣2【答案】C【解析】解:根据题意得:x 2+bx+c =(x+3)(x-1)=x 2+2x-3, 则b =2,c =﹣3, 故选:C .5.(2020·山东中区·济南外国语学校初二期中)已知多项式x 2+ax ﹣6因式分解的结果为(x +2)(x +b ),则a +b 的值为( ) A .﹣4 B .﹣2C .2D .4【答案】A【解析】解:根据题意得:x 2+ax ﹣6=(x +2)(x +b )=x 2+(b +2)x +2b , ∴a =b +2,2b =﹣6, 解得:a =﹣1,b =﹣3, ∴a +b =﹣1﹣3=﹣4, 故选:A .6.(2020·江苏广陵·初一期中)若2(32)()2x x p mx nx ++=+-,则下列结论正确的是( ) A .6m = B .1n =C .2p =-D .3mnp =【答案】B【解析】解:∵2(32)()2x x p mx nx ++=+-, ∴(3x+2)(x+p )=3x 2+(3p+2)x+2p=mx 2-nx-2, ∴m=3,p=-1,3p+2=-n , ∴n=1, 故选B.7.(2020·重庆南开中学期末)若2(2)()x x m x x n ++=-+,则m n +=__________. 【答案】-3【解析】解:∵x 2+x+m=(x-2)(x+n )=x 2+(n-2)x-2n , ∴n-2=1,m=-2n , 解得n=3,m=-2×3=-6, ∴m+n=-6+3=-3. 故答案为-3.8.(2020·江苏南京·初一期中)若x 2+ax ﹣2=(x ﹣1)(x +2),则a =_____. 【答案】1【解析】由题意知,a =﹣1+2=1; 故答案是:1.9.(2020·黑龙江虎林·初二期末)多项式kx 2-9xy -10y 2可分解因式得(mx +2y )(3x -5y ),则k =_______,m =________.【答案】k=9 m=3【解析】解:∵kx 2-9xy-10y 2=(mx+2y )(3x-5y ),∴kx 2-9xy-10y 2=3mx 2-5mxy+6xy-10y 2=3mx 2-(5mxy-6xy )-10y 2,∴3,569,m k m =⎧⎨-=⎩ 解得:9,3.k m =⎧⎨=⎩ 故答案为:9,3.10.(2020·常德市淮阳中学初一期中)若多项式31x -可以因式分解成2(1)(1)x x ax -++,那么a =_____. 【答案】1【解析】解:()()()()23211111x x ax x a x a x -++=+-+--,即()()3321111x a x x x a -+-=+--,110a a ∴-=-=,解得:1a =. 故答案为:1.11.(2019·深圳市罗湖外语学校初中部初二期中)多项式25x ax ++因式分解得(5)()x x b ++,则a =_______,b =________. 【答案】6 1【解析】解:∵(x+5)(x+b )=x 2+(b+5)x+5b ,∴x 2+ax+5=x 2+(b+5)x+5b . ∴5{55b a b +==解得6{1a b == 故答案为:6;1.考点2:利用因式分解进行简便计算 典例:(2019·湖南邵东·初一期中)计算: ①2032﹣203×206+1032 ②20192﹣2018×2020. 【答案】①10000;②1.【解析】解:①原式=2032﹣2×203×103+1032 =(203﹣103)2=1002 =10000;②原式=20192﹣(2019﹣1)×(2019+1) =20192﹣(20192﹣1) =20192﹣20192+1 =1.方法或规律点拨本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:()()22a b a b a b +-=-.完全平方公式:()2222a b a ab b ±=±+.巩固练习1.(2020·广西兴宾·初一期中)计算:2222211111(1)(1)(1)...(1)(1)56799100-⨯-⨯-⨯⨯-⨯-的结果是( ) A .101200B .101125 C .101100D .1100【答案】B 【解析】解:原式=111111111111111111115566779999100100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=46576898100991015566779999100100⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ =41015100⨯ =101125. 故选:B .2.(2020·全国初二课时练习)计算:1252-50×125+252=( ) A .100 B .150 C .10000 D .22500【答案】C【解析】1252﹣2×25×125+252=(125-25)2=1002=10000. 故选C .3.(2020·全国初二课时练习)计算:752-252=( ) A .50 B .500 C .5000 D .7100【答案】C【解析】原式=(75+25)×(75-25)=100×50=5000, 故选C .4.(2020·河南初二期末)已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( ) A .2018 B .2019C .2020D .2021.【答案】B【解析】解:2021201920102010-()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯ ∴x=2019 故选:B .5.(2020·河北定兴·初一期末)利用因式分解计算2221000252248=-__________. 【答案】500【解析】解:()()222210001000100010005002522482522482522485004⨯===-+-⨯. 故答案为:500.6.(2020·江苏锡山·初一期末)计算:2222020200119=200119--⨯__.【答案】2【解析】2222020200119200119--⨯ 222(200119)200119200119+--=⨯ 22222001220011919200119200119+⨯⨯+--=⨯ 2200119200119⨯⨯=⨯2=.故答案为:2.7.(2020·辽宁省丹东市第二十一中学初二期中)计算2018×512﹣2018×492的结果是_____. 【答案】403600【解析】2018×512-2018×492 =2018×(512-492)=2018×(51+49) ×(51-49) =2018×100×2 =403600.故答案为:4036008.(2020·重庆沙坪坝·初三期末)计算:2222221098721-+-++-=…__________. 【答案】55【解析】2222221098721-+-++-…=()()()()()()10910987872121+-++-+++-… =19+15+11+7+3 =55故答案为:559.(2018·湖南靖州·初一期末)计算:6002-599×601=__________. 【答案】1【解析】解:2222600599601600(6001)(6001)60060011-⨯=--+=-+=.故答案为:1.10.(2019·四川恩阳·期末)用简便方法计算20082﹣4016×2007+20072的结果是_____. 【答案】1.【解析】20082﹣4016×2007+20072, =20082﹣2×2008×2007+20072, =(2008﹣2007)2, =1.11.(2019·河南遂平·初二期中)计算:2246.5293.0453.4853.48+⨯+=__________. 【答案】10000【解析】解:原式=()222246.52246.5253.4853.48=46.5253.48=100=10000+⨯⨯++故答案为:10000.12.(2020·沭阳县马厂实验学校初一期中)利用因式分解计算: (1)342+34×32+162 (2)38.92-2×38.9×48.9+48.92 【答案】(1)2500;(2)100.【解析】解:(1)342+34×32+162=342+2×34×16+162=(34+16)2=502=2500; (2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=(-10)2=100. 13.(2019·湖南芷江·初一期末)()1把328x x -分解因式.()2把()()2216282m n n m n n +-++分解因式.()3计算:222222221234562017201837114035----+++⋅⋅⋅+【答案】(1)2(x +2)(x −2)(2)(8m +3n )2(3)−1009 【解析】(1)2x 3−8x =2(x 2−4) =2(x +2)(x −2);(2)()()2216282m n n m n n +-++=[4(2m +n )-n]2=(8m +3n )2;(3)222222221234562017201837114035----+++⋅⋅⋅+=(12)(12)(34)(34)(56)(56)(20172018)(20172018)37114035-+-+-+-++++⋅⋅⋅+ =1−2+3−4+5−6+…+2017−2018 =−1×1009 =−1009.考点3:利用十字相乘法进行因式分解 典例:(2019·河北涿鹿·期末)阅读与思考 x 2+(p+q )x+pq 型式子的因式分解x 2+(p+q )x+pq 型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p )(x+q )=x 2+(p+q )x+pq ,因式分解是整式乘法相反方向的变形,利用这种关系可得x 2+(p+q )x+pq =(x+p )(x+q ).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x 2﹣x ﹣6分解因式.这个式子的二次项系数是1,常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),因此这是一个x 2+(p+q )x+pq 型的式子.所以x 2﹣x ﹣6=(x+2)(x ﹣3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x 2﹣x ﹣6=(x+2)(x ﹣3).这种分解二次三项式的方法叫“十字相乘法”. 请同学们认真观察,分析理解后,解答下列问题: (1)分解因式:y 2﹣2y ﹣24.(2)若x 2+mx ﹣12(m 为常数)可分解为两个一次因式的积,请直接写出整数m 的所有可能值. 【答案】(1)(y+4)(y ﹣6);(2)﹣1,1,﹣4,4,11,﹣11【解析】解:(1)y 2﹣2y ﹣24=(y+4)(y ﹣6); (2)若212(3)(4)x mx x x +-=-+ ,此时1m = 若212(3)(4)x mx x x +-=+- ,此时1m =- 若212(1)(12)x mx x x +-=-+ ,此时11m = 若212(1)(12)x mx x x +-=+- ,此时11m =- 若212(2)(6)x mx x x +-=-+ ,此时4m =212(2)(6)x mx x x +-=+- ,此时4m =-综上所述,若x 2+mx ﹣12(m 为常数)可分解为两个一次因式的积, m 的值可能是﹣1,1,﹣4,4,11,﹣11. 方法或规律点拨本题主要考查了十字相乘法分解因式,读懂题意,理解题中给出的例子是解题的关键. 巩固练习1.(2020·四川成都实外开学考试)计算结果为a 2﹣5a ﹣6的是( ) A .(a ﹣6)(a+1) B .(a ﹣2)(a+3)C .(a+6)(a ﹣1)D .(a+2)(a ﹣3)【答案】A【解析】解:a 2﹣5a ﹣6=(a ﹣6)(a+1). 故选:A .2.(2020·湖南鹤城·初一期末)将下列多项式因式分解,结果中不含有因式1a +的是( ) A .21a - B .221a a ++C .2a a +D .22a a +-【答案】D【解析】解:21(1)(1)a a a -=+-,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-,∴结果中不含有因式1a +的是选项D ;故选:D .3.(2020·上海市静安区实验中学初一课时练习)已知()()245x x m x x n --=--,则m ,n 的值是( )A .5m =,1n =B .5m =-,1n =C .5m =,1n =-D .5m =-,1n =-【答案】C【解析】解:由x 2-4x-m=(x-5)(x-n ),得:-5-n=-4,(-5)(-n )=-m 所以n=-1,m=5. 故选:C .4.(2020·全国初二课时练习)下列各式中,计算结果是2718x x +-的是( ) A .(1)(18)x x -+ B .(2)(9)x x ++C .(3)(6)x x -+D .(2)(9)x x -+【答案】D【解析】原式=(x -2)(x +9) 故选D.5.(2020·湖南茶陵·初一期末)分解因式x 2+3x +2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).这样,我们可以得到x 2+3x +2=(x +1)(x +2).请利用这种方法,分解因式2x 2﹣3x ﹣2=_____.【答案】(2x +1)(x ﹣2) 【解析】解:原式=(2x +1)(x ﹣2), 故答案为(2x +1)(x ﹣2)6.(2020·上海市静安区实验中学初一课时练习)因式分解:2239x x -- 【答案】()()233x x +- 【解析】2239x x -- =()()233x x +-.7.(2020·上海市静安区实验中学初一课时练习)()()22238316x xx x ---+【答案】()()2241x x -+【解析】原式()2234x x =--()()241x x =-+⎡⎤⎣⎦ ()()2241x x =-+8.(2020·上海市静安区实验中学初一课时练习)因式分解:()()2550x y x y -+-- 【答案】()()105x y x y -+--【解析】()()2550x y x y -+-- =()()105x y x y -+--.9.(2020·上海市静安区实验中学初一课时练习)32233672m n m n mn -- 【答案】()()364mn m n m n -+【解析】解:原式()223224mn m mn n =--()()364mn m n m n =-+.10.(2020·上海市静安区实验中学初一课时练习)因式分解:26a a -- 【答案】()()32a a -+ 【解析】26a a -- =()()32a a -+.11.(2020·上海市静安区实验中学初一课时练习)因式分解42241336x x y y -+ 【答案】()()()()2233x y x y x y x y +-+-【解析】解:42241336x x y y -+()()222249x yxy =--()()()()2233x y x y x y x y =+-+-12.(2019·湖南广益实验中学初二月考)阅读下面材料,解答后面的问题:“十字相乘法”能将二次三项式分解因式,对于形如22ax bxy cy ++的关于x ,y 的二次三项式来说,方法的关键是将2x 项系数a 分解成两个因数1a ,2a 的积,即12a a a =•,将2y 项系数c 分解成两个因式1c ,2c 的积,即12c c c =•,并使1221a c a c +正好等于xy 项的系数b ,那么可以直接写成结果:221221()()ax bxy cy a x c y a y c y ++=++例:分解因式:2228x xy y --解:如图1,其中111=⨯,8(4)2-=-⨯,而21(4)12-=⨯-+⨯ 所以2228(4)(2)x xy y x y x y --=-+而对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次式也可以用十字相乘法来分解.如图2.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成fk 乘积作为第三列,如果mq np b +=,mk nj d +=,即第1、2列,第2、3列和第1、3列都满足十字相乘规则,则原式()()mx py f nx qy k =++++例:分解因式222332x xy y x y +-+++解:如图3,其中111=⨯,3(1)3-=-⨯,212=⨯ 而2131(1)=⨯+⨯-,1(1)231=-⨯+⨯,31211=⨯+⨯ 所以222332(1)(32)x xy y x y x y x y +-+++=-+++请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①2263342x xy y -+= . ②22261915x xy y x y --++-= .(2)若关于x ,y 的二元二次式22718340x xy y x my +--+-可以分解成两个一次因式的积,求m 的值. 【答案】(1)(27y)(36)x x y --;(235)(23)x y x y +--+;(2)61或-82. 【解析】解:(1)①如下图,其中623,427(6),332(6)3(7)=⨯=-⨯--=⨯-+⨯-, 所以,2263342(27)(36)x xy y x y x y -+=--;②如下图,其中221,63(2),1553=⨯-=⨯--=-⨯,而12213,1933(5)(2),123(5)1-=-⨯+⨯=⨯+-⨯-=⨯+-⨯, 所以,22261915(235)(23)x xy y x y x y x y --++-=+--+;(2)如下图,其中111,189(2),4058=⨯-=⨯--=-⨯, 而72119,315(8)1,=-⨯+⨯-=⨯+-⨯95(8)(2)61m =⨯+-⨯-=或9(8)(2)582m =⨯-+-⨯=-,∴若关于x ,y 的二元二次式22718340x xy y x my +--+-可以分解成两个一次因式的积,m 的值为61或-82.13.(2020·全国初二课时练习)运用十字相乘法分解因式:(1)232x x --; (2)210218x x ++; (3)22121115x xy y --; (4)2()3()10x y x y +-+-.【答案】(1)(32)(1)x x +-;(2)(21)(58)x x ++;(3)(35)(43)x y x y -+;(4)(5)(2)x y x y +-++. 【解析】(1)232(32)(1)x x x x --=+-. (2)210218(21)(58)x x x x ++=++. (3)22121115(35)(43)x xy y x y x y --=-+.(4)2()3()10[()5][()2](5)(2)x y x y x y x y x y x y +-+-=+-++=+-++. 考点4:利用分组分解法进行因式分解典例:(2020·全国初二课时练习)将下列各式因式分解: (1)421x x ++;(2)22268x x y y +-+-.【答案】(1)()()2211x x x x ++-+;(2)(2)(4)x y x y +--+.【解析】解:(1)原式42221x x x =++-()2221x x =+-()()2211x x x x =++-+;(2)原式222169x x y y =++-+-()()222169x x y y =++--+ ()()2213x y =+--()()1313x y x y =++-+-+ ()()24x y x y =+--+.方法或规律点拨本题考查了多项式的因式分解,正确变形、熟练掌握分解因式的方法是解题的关键. 巩固练习1.(2019·河南太康·期中)已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值为_____. 【答案】3【解析】解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018, ∴a-b=-1,a-c=-2,b-c=-1, ∴a 2+b 2+c 2-ab-bc-ac=2222222222a b c ab bc ac ++---=222()()()2a b a c b c -+-+-=222(1)(2)(1)2-+-+-=3,故答案为:3.2.(2020·全国初二课时练习)分解因式:2224a ab b ++-=__________. 【答案】(2)(2)a b a b +++- 【解析】解:原式=(a+b )2-22 =(a+b+2)(a+b-2),故答案为:(a+b+2)(a+b-2).3.(2020·全国初二课时练习)分解因式:2222b c bc a ++-=_______. 【答案】()()b c a b c a +++-【解析】解:原式22()()()b c a b c a b c a =+-=+++-. 故答案为:()()b c a b c a +++-4.(2020·湖南天元·建宁实验中学初一开学考试)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

第7讲 因式分解--满分班

第7讲 因式分解--满分班

第7讲 因式分解⎧⎪⎪⎨⎪⎪⎩提公因式法公式法因式分解分组分解法十字相乘法7.1 提公因式法一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.知识网络图知识概述1.(2017秋•十堰期末)若m ﹣n=﹣2,mn=1,则m 3n +mn 3=( )A .6B .5C .4D .32.(2018春•柯桥区期中)多项式(x +2)(2x ﹣1)﹣(x +2)可以因式分解成2(x +m )( x +n ),则m ﹣n 的值是( )A .0B .4C .3D .13.(2018春•太仓市期中)(﹣8)2018+(﹣8)2017能被下列哪个数整除?( )A .3B .5C .7D .917.(2017秋•泸县校级期中)2x 3﹣24x 2+54x .7.2公式法一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.二、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 小试牛刀再接再厉 知识概述形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.1.(2018•威海)分解因式:﹣a 2+2a ﹣2= _______.2.(2018•成都)已知x +y=0.2,x +3y=1,则代数式x 2+4xy +4y 2的值为_____ .3.(2017秋•沂水县期末)已知m=2n +1,则m 2﹣4mn +4n 2﹣5的值为______.4.(2017春•庆元县期末)先阅读材料,再回答问题:分解因式:(a ﹣b )2﹣2(a ﹣b )+1解:设a ﹣b=M ,则原式=M 2﹣2M +1=(M ﹣1)2再将a ﹣b=M 还原,得到:原式=(a ﹣b ﹣1)2上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:(x +y )(x +y ﹣4)+4(2)若a 为正整数,则(a ﹣1)(a ﹣2)(a ﹣3)(a ﹣4)+1为整数的平方,试说明理由.小试牛刀再接再厉5.(2017秋•杜尔伯特县校级期中)分解因式:x 2﹣120x +3456分析:由于常数项数值较大,则采用x 2﹣120x 变为差的平方形式进行分解: x 2﹣120x +3456=x 2﹣2×60x +3600﹣3600+3456=(x ﹣60)2﹣144=(x ﹣60+12)(x ﹣60﹣12)=(x ﹣48)(x ﹣72)请按照上面的方法分解因式:x 2+86x ﹣651.7.3分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.方法 分类 分组方法特点 分组分解法 四项 二项、二项①按字母分组②按系数分组 ③符合公式的两项分组 三项、一项先完全平方公式后平方差公式 五项 三项、二项各组之间有公因式 六项三项、三项二项、二项、二项各组之间有公因式 三项、二项、一项 可化为二次三项式1.(2017秋•西城区校级期中)分解因式:(1)x 2﹣y 2+4y ﹣4=_______;(2)x 2﹣4xy +4y 2﹣2x +4y ﹣3=______.2.(2018春•金牛区校级月考)因式分解(1)x 2(a ﹣1)+y 2(1﹣a )知识概述小试牛刀(2)x 2﹣y 2+4x ﹣2y +33.(2016秋•昌江区校级期末)分解因式:a 2+4b 2+c 4﹣4ab ﹣2ac 2+4bc 2﹣1.4.(2017秋•灵台县校级月考)把下列各式分解因式:(1)(a 2+a +1)(a 2﹣6a +1)+12a 2;(2)(2a +5)(a 2﹣9)(2a ﹣7)﹣91;(3);(4)(x 4﹣4x 2+1)(x 4+3x 2+1)+10x 4;(5)2x 3﹣x 2z ﹣4x 2y +2xyz +2xy 2﹣y 2z .7.4十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号(2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.1.(2017秋•醴陵市期末)计算(ax +b )(cx +d )=acx 2+adx +bcx +bd=acx 2+(ad +bc )再接再厉 知识概述小试牛刀x+bd,倒过来写可得:acx2+(ad+bc)x+bd=(ax+b)(cx+d).我们就得到一个关于的二次三项式的因式分解的一个新的公式.我们观察公式左边二次项系数为两个有理数的乘积,常数项也为两个有理数的乘积,而一次项系数恰好为这两对有理数交叉相乘再相加的结果.这种因式分解的方法叫十字交叉相乘法.如图1所示.示例:例如因式分解:12x2﹣5x﹣2解:由图2可知:12x2﹣5x﹣2=(3x﹣2)(4x+1)请根据示例,对下列多项式因式分解:①2x2+7x+6②6x2﹣7x﹣32.(2017秋•黔南州期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay,x2+2xy+y2﹣1分组分解法:解:原式=(ax+bx)+(ax+by)解:原式=(x+y)2﹣1=x(a+b)+y(a+b)=(x+y+1)(x+y﹣1)=(a+b)(x+y)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣2=(x+1+2)(x+l﹣2)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(l)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7.再接再厉3.(2017秋•临颍县期末)仔细阅读下面例题,解答问题;例题,已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式3x2+5x﹣m有一个因式是(3x﹣1),求另一个因式以及m的值.4.(2017秋•阳泉期末)阅读与思考x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p)(x+q)=x2+(p+q)x+pq,因式分解是整式乘法相反方向的变形,利用这种关系可得x2+(p+q)x+pq=(x+p)(x+q).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x2﹣x﹣6分解因式.这个式子的二次项系数是1,常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),因此这是一个x2+(p+q)x+pq型的式子.所以x2﹣x﹣6=(x+2)(x﹣3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x2﹣x﹣6=(x+2)(x﹣3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:y2﹣2y﹣24.(2)若x2+mx﹣12(m为常数)可分解为两个一次因式的积,请直接写出整数m的所有可能值.5.(2018春•慈利县期中)阅读材料题:在因式分解中,有一类形如x2+(m+n)x+mn的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).运用上述方法分解因式:(1)x2+6x+8;(2)x2﹣x﹣6;(3)x2﹣5xy+6y2;(4)请你结合上述的方法,对多项式x3﹣2x2﹣3x进行分解因式.6.(2018春•邗江区期中)阅读与思考:整式乘法与因式分解是方向相反的变形.由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x+12=_____;(2)分解因式:(x2﹣3)2+(x2﹣3)﹣2;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能的值______.7.5因式分解的应用小试牛刀1.(2018春•苏州期中)已知a=+2012,b=+2013,c=+2014,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值_____.2.(2018•南岸区模拟)材料1:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也成立.材料2:两位数m和三位数n,它们各个数位上的数字都不为0,将数m任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为F (m,n),例如:F(12,345)=13+14=15+23+24+25=114;F(11,369)=13+16+19+13+16+19=96.(1)填空:F(16,123)=_____,并求证:当n能被3整除时,F(m,n)一定能被6整除;(2)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除时,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中F(s,t)的最大值.再接再厉3.(2018•九龙坡区校级模拟)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6整除);又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…(1)我们发现,3和6,4和12,5和20,6和30…,都是两个数的祖冲之数组;由此猜测n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想.(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.4.(2018•重庆模拟)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后,能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.5.(2018•江津区一模)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出三个)(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可);(3)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.2018暑期领跑班·初二数学11。

初中数学专题复习资料-----多项式的因式分解

初中数学专题复习资料-----多项式的因式分解
分解因式要求结果到不能再分解为止。 【例题 7】、把下列各式因式分解:
1、(08 年沈阳)
2、(08 年浙江绍兴)
3、(08 年山东)
【练习】
一、填空题:
1、分解因式 2x2 4x
; 4x2 9
; x2 4x 4

2、分解因式; a(x y)2 b( y x)2 _______________ ;
完 公 因 式 后 , 另 一 因 式 的 项 数 与 原 多 项 式 的 项 数 相 同 ); ③、将多项式写成等于两个因式相乘(公因式与余式的积)的形势。
第1页共4页
【例题 3】、把下列各式因式分解:
1、 14abc 7ab 49ab2c ;
2、 xx y yy x; 3、 mx y2 x y
①确定公因式的系数:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;
②确定公因式的字母:公因式的字母取各项都含有的相同的字母(相同的多项式);
③ 确 定 公 因 式 的 指 数 :各 字 母 的 指 数 取 各 项 中 字 母 次 数 最 低 的( 多 项 式 的 次 数 取 最 低 的 )。如
(1) x2 7x 6 ;
(2) x2 13x 36 ;
(3) x2 5x 24 ;
(4) x2 2x 15 ;
(5) x2 xy 6 y2 ;
(6) (x2 x)2 8(x2 x) 12
【例题 6】、把下列各式因式分解:
(1) 12x2 5x 2
(2) 8a 4a2 4;
初中数学专题复习资料-----多项式的因式分解
【知识点归纳 1】 一、因式分解的定义:
把 一 个 多 项 式 化 为 几 个 整 式 的 积 的 形 式 ,这 种 变 形 叫 做 把 这 个 多 项 式 因 式 分 解 ,也 叫 作 分 解 因 式。

(完整word)初中数学十字相乘法因式分解

(完整word)初中数学十字相乘法因式分解

初中数学十字相乘法因式分解要点:一、2()x p q x pq +++型的因式分解特点是:(1)二次项的系数是1(2)常数项是两个数之积(3)一次项系数是常数的两个因数之和。

对这个式子先去括号,得到:pq x q p x +++)(2)()(22pq qx px x pq qx px x +++=+++=))(()()(q x p x p x q p x x ++=+++=1的二次三项式分解因式。

二、一般二次三项式2ax bx c ++的分解因式大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++。

反过来,就可得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,那么2ax bx c ++就可以分解成1122()()a x c a x c ++.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法。

【典型例题】[例1] 把下列各式分解因式。

(1)232++x x (2)672+-x x 分析:(1)232++x x 的二次项的系数是1,常数项212⨯=,一次项系数213+=,这是一个pq x q p x +++)(2型式子。

(2)672+-x x 的二次项系数是1,常数项)6()1(6-⨯-=,一次项系数=-7)1(- )6(-+,这也是一个pq x q p x +++)(2型式子,因此可用公式pq x q p x +++)(2+=x ( ))(q x p +分解以上两式。

解:(1)因为212⨯=,并且213+=,所以)2)(1(232++=++x x x x(2)因为)6()1(6-⨯-=,并且)6()1(7-+-=-,所以)6)(1(672--=+-x x x x[例2] 把下列各式因式分解。

因式分解50题(配完整解析)

因式分解50题(配完整解析)

因式分解50题(配完整解析)考点卡片一.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.二.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.22平方差公式:a ﹣b =(a +b )(a ﹣b );222完全平方公式:a ±2ab +b =(a ±b );2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.三.因式分解-分组分解法1、分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.2、对于常见的四项式,一般的分组分解有两种形式:①二二分法,②三一分法.例如:①ax +ay +bx +by =x (a +b )+y (a +b )=(a +b )(x +y )22②2xy ﹣x +1﹣y 22=﹣(x ﹣2xy +y )+12=1﹣(x ﹣y )=(1+x ﹣y )(1﹣x +y )四.因式分解-十字相乘法等借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.2①x +(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q )2②ax +bx +c (a ≠0)型的式子的因式分解这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一2次项b ,那么可以直接写成结果:ax +bx +c =(a 1x +c 1)(a 2x +c 2).五.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x ﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解2x 2﹣2=x 2﹣(2)2=(x+2)(x-2)一.填空题(共5小题)1.因式分解:-2x 2+2x =.2.因式分解:a 3+2a =.3.分解因式:8x 2-8xy +2y 2=.4.分解因式:ab 2+a 2b =.5.因式分解2x 2y -8y =.二.解答题(共45小题)6.分解因式(1)n 2(m -2)-n (2-m )(2)(a 2+4b 2)2-16a 2b 2.7.因式分解(1)(2a +b )2-(a +2b )2(2)16x 4-8x 2y 2+y 48.已知m -2n =-2,求下列多项式的值:(1)5m -10n +10m 2(2)+n 2-mn -3.49.因式分解:(x 2-3)2+2(3-x 2)+1.10.因式分解:m 2(m -4)2+8m (m -4)+16.11.分解因式:4(a +2)2-9(a -1)2.12.(x 2+4)2-16x 2.13.因式分解:(x -6x )+18(x -6x )+81.14.分解因式:(1)x 4-2x 2+1;(2)a 4-8a 2b 2+16b 4;(3)(a 2+4)2-16a 2;(4)(m 2-4m )2+8(m 2-4m )+16.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )217.分解因式:(x +3)2-(x -3)2.18.(x -5y )2-(x +5y )219.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 221.分解因式:(1)-3x 2+6xy -3y 2;222222222(2)(a +b )(a -b )+4(b -1).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 223.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+927.把下列各式因式分解:(1)12x 4-6x 3-168x 2(2)a 5(2-3a )+2a 3(3a -2)2+a (2-3a )3(3)abc (a 3+b 3+c 3+2abc )+(a 3b 3+b 3c 3+c 3a 3)28.分解因式(1)16-a 4(2)y 3-6xy 2+9x 2y(3)(m +n )2-4m (m +n )+4m 2(4)9-a 2+4ab -4b 229.因式分解(1)-a 2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;124242(4)(x -4x +1)(x +3x +1)+10x 4;31.分解因式:(1)12abc -2bc 2(2)2a 3-12a 2+18a (3)9a (x -y )+3b (x -y )(4)(x +y )2+2(x +y )+1(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .(6)(a+b)(a-b)+4(b-1)32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b235.把下列多项式分解因式:(1)27xy2-3x121x+xy+y22222(3)a-b-1+2b(4)x2+3x-436.因式分解:(1)x2-xy-12y2;(2)(2)a2-6a+9-b237.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(5)p2-5p-36(6)x5-x3(7)(x-1)(x-2)-6(8)a2-2ab+b2-c238.把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+x+1;(4)x3+5x2+3x-9;(5)2a4-a3-6a2-a+2.39.分解因式(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m40.分解因式:(x 2+x +1)(x 2+x +2)-12.41.分解因式:(x 2+4x +8)2+3x (x 2+4x +8)+2x 2.42.分解因式:(1)2a (y -z )-3b (z -y );(2)-x 2+4xy -4y 2;(3)x 2-2(在实数范围内分解因式);(4)4-12(x -y )+9(x -y )2.43.阅读下面的问题,然后回答,分解因式:x 2+2x -3,解:原式=x 2+2x +1-1-3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2-4x +3(2)4x 2+12x -7.44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:22x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a+2a)(x+a-2a)=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2-8a+15;(2)若a+b=6,ab=4,求:①a2+b2;②a4+b4的值;(3)已知x是实数,试比较x2-6x+11与-x2+6x-10的大小,说明理由.11146.小亮在对a4+分解因式时,步骤如下:a4+=a4+a2+-a2(添加a2与-a2,前444三项可利用完全平方公式)1=(a2+)2-a2(写成完全平方式与最后一项又符合平方差公式)211=(a2+a+)(a2-a+).22请你利用上述方法分解因式4x4+1.47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.因式分解50题(配完整解析)参考答案与试题解析一.填空题(共5小题)1.因式分解:-2x2+2x=-2x(x-1).【解答】解:-2x2+2x=-2x(x-1),故答案为:-2x(x-1).2.因式分解:a3+2a=a(a2+2).【解答】解:a3+2a=a(a2+2),故答案为a(a2+2).3.分解因式:8x2-8xy+2y2=2(2x-y)2.【解答】解:原式=2(4x2-4xy+y2)=2(2x-y)2.故答案为:2(2x-y)2.4.分解因式:ab2+a2b=ab(a+b).【解答】解:原式=ab(a+b).故答案是:ab(a+b).5.因式分解2x2y-8y=2y(x+2)(x-2).【解答】解:2x2y-8y=2y(x2-4)=2y(x+2)(x-2)故答案为:2y(x+2)(x-2).二.解答题(共45小题)6.分解因式(1)n2(m-2)-n(2-m)(2)(a2+4b2)2-16a2b2.【解答】解:(1)原式=n(m-2)(n+1);(2)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.7.因式分解(1)(2a+b)2-(a+2b)2(2)16x4-8x2y2+y4【解答】解:(1)(2a+b)2-(a+2b)2=(2a+b-a-2b)(2a+b+a+2b)=3(a-b)(a+b);(2)16x4-8x2y2+y4=(4x2-y2)2=(2x+y)2(2x-y)2.8.已知m-2n=-2,求下列多项式的值:(1)5m-10n+10m2(2)+n2-mn-3.4【解答】解:(1)m-2n=-2,∴原式=5(m-2n)+10=-10+10=0;m-2n=-2,(2)11∴原式=(m2+4n2-4mn)=(m-2n)2-3=1-3=-2.449.因式分解:(x2-3)2+2(3-x2)+1.【解答】解:(x2-3)2+2(3-x2)+1=(x2-3)2-2(x2-3)+1=(x2-3-1)2=(x2-4)2=(x+2)2(x-2)2.10.因式分解:m2(m-4)2+8m(m-4)+16.【解答】解:原式=[m(m-4)]2+2⨯m(m-4)⨯4+42=[m(m-4)+4]2=(m2-4m+4)2=[(m-2)2]2=(m-4)4.11.分解因式:4(a+2)2-9(a-1)2.【解答】解:4(a+2)2-9(a-1)2=[2(a+2)-3(a-1)][2(a+2)+3(a-1)]=(7-a)(5a+1).12.(x2+4)2-16x2.【解答】解:(x2+4)2-16x2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2.13.因式分解:(x-6x)+18(x-6x)+81.222【解答】解:(x-6x)+18(x-6x)+81222=(x2-6x+9)2=(x-3)4.14.分解因式:(1)x4-2x2+1;(2)a4-8a2b2+16b4;(3)(a2+4)2-16a2;(4)(m2-4m)2+8(m2-4m)+16.【解答】解:(1)原式=(x2-1)2=[(x+1)(x-1)]2=(x+1)2(x-1)2;(2)原式=(a2-4b2)2=[(a+2b)(a-2b)]2=(a+2b)2(a-2b)2;(3)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2;(4)原式=(m2-4m+4)2=[(m -2)2]2=(m -2)4.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.【解答】解:(1)x -4xy +4y =(x -2y );(2)4a -12ab +9b =(2a -3b );(3)a b +2ab +1=(ab +1).16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )2【解答】解:(1)(2x -y +z )(2x -y -z )222222222222222=(2x -y )2-z 2=4x 2+y 2-4xy -z 2;(2)25(a +b )2-16(a -b )2=[5(a +b )-4(a -b )][5(a +b )+4(a -b )]=(a +9b )(9a +b ).17.分解因式:(x +3)2-(x -3)2.【解答】解:(x +3)2-(x -3)2=(x +3-x +3)(x +3+x -3)=12x .18.(x -5y )2-(x +5y )2【解答】解:(x -5y )2-(x +5y )2=(x -5y +x +5y )(x -5y -x -5y )=-20xy .19.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.【解答】解:(1)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(2)(3m +2n )2-(2m +3n )2=[(3m +2n )-(2m +3n )][(3m +2n )+(2m +3n )]=(m -n )(5m +5n )=5(m -n )(m +n ).20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 2【解答】解:(1)原式=(a -b )(x -y +x +y )=2x (a -b ).(2)原式=5m (2x -y +n )(2x -y -n ).21.分解因式:(1)-3x 2+6xy -3y 2;(2)(a +b )(a -b )+4(b -1).【解答】解:(1)-3x 2+6xy -3y 2=-3(x 2-2xy +y 2)=-3(x -y )2;(2)(a +b )(a -b )+4(b -1)=a 2-b 2+4b -4=a 2-(b -2)2=(a +b -2)(a -b +2).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 2【解答】解:(1)原式=9a 2(x -y )-4b 2(x -y )=(x -y )(3a +2b )(3a -2b );(2)原式=-(4a 2-4ab +b 2)=-(2a -b )2.23.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.【解答】解:(1)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2);(2)ax 2-4axy +4ay 2=a (x 2-4xy +4y )=a (x -2y )2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )【解答】解:(1)原式=-a (25x 2-10x +1)=-a (5x -1)2;(2)原式=4x 2(a -b )-y 2(a -b )=(a -b )(2x +y )(2x -y ).25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)【解答】解:(1)原式=5(x 2+2x +1)=5(x +1)2;(2)原式=a 2-16+3a +6=a 2+3a -10=(a -2)(a +5).26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+9【解答】解:(1)9m 2-25n 2=(3m +5n )(3m -5n );(2)m 2-mn +n 2141=(m-n)2;2(3)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2;(4)(y2-1)2+6(1-y2)+9=[(1-y2)+3]2=(1-y2+3)2.=(4-y2)2=(2+y)2(2-y)2.27.把下列各式因式分解:(1)12x4-6x3-168x2(2)a5(2-3a)+2a3(3a-2)2+a(2-3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【解答】解:(1)原式=6x2(2x2-x-28)=6x2(2x+7)(x-4);(2)原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3=a(2-3a)[a4+2a2(2-3a)+(2-3a)2]=a(2-3a)(a2+2-3a)2=a(2-3a)(a-1)2(a-2)2;(3)原式=a4bc+a3(b3+c3)+2a2b2c2+abc(b3+c3)+b3c3=bc(a4+2a2bc+b2c2)+a(b3+c3)(a2+bc)=bc(a2+bc)2+a(b3+c3)(a2+bc)=(a2+bc)[bc(a2+bc)+a(b3+c3)]=(a2+bc)[(bca2+ab3)+(b2c2+ac3)]=(a2+bc)[ab(ca+b2)+c2(b2+ac)]=(a2+bc)(b2+ac)(c2+ab).28.分解因式(1)16-a4(2)y3-6xy2+9x2y(3)(m+n)2-4m(m+n)+4m2(4)9-a2+4ab-4b2【解答】解:(1)原式=(4+a2)(4-a2)=(4+a2)(2+a2)(2-a2);(2)原式=y(y2-6xy+9x2)=y(y-3x)2;(3)原式=(m+n-2m)2=(n-m)2;(4)原式=9-(a-2b)2=(3-a+2b)(3+a-2b).29.因式分解(1)-a2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.【解答】解:(1)-a 2-a =-a (a +1)(2)(x +y )(5m +3n )2-(x +y )(m -n )2=(x +y )(5m +3n +m -n )(5m +3n -m +n )=(x +y )(6m +2n )(4m +4n )=8(x +y )(3m +n )(m +n )(3)(a 2+6a )2+18(a 2+6a )+81=(a 2+6a +9)2=(a +3)4(4)x 2-4x -y 2+4=(x -2)2-y 2=(x -2+y )(x -2-y )30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;12(4)(x 4-4x 2+1)(x 4+3x 2+1)+10x 4;【解答】解:(1)令a 2+1=b ,则原式=(b +a )(b -6a )+12a 2(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .=b 2-5ab -6a 2+12a 2=b 2-5ab +6a 2=(b -2a )(b -3a )=(a 2+1-2a )(a 2+1-3a )=(a -1)2(a 2-3a +1);(2)原式=[(2a +5)(a -3)][(a +3)(2a -7)]-91=(2a 2-a -15)(2a 2-a -21)-91=(2a 2-a )2-36(2a 2-a )+224=(2a 2-a -28)(2a 2-a -8)=(a -4)(2a +7)(2a 2-a -8);(3)设x +y =a ,xy =b ,则原式=b (b +1)+(b +3)-2(a +)-(a -1)212=(b 2+2b +1)-a 2=(b +1+a )(b +1-a )=(xy +1+x +y )(xy +1-x -y );(4)令x 4+1=a ,则原式=(a -4x 2)(a +3x 2)+10x 4=a 2-x 2a -2x 4=(a -2x 2)(a +x 2)=(x 4+1-2x 2)(x 4+1+x 2)=(x +1)2(x -1)2(x 2+x +1)(x 2-x +1);(5)原式=(2x3-x2z)+(-4x2y+2xyz)+(2xy2-y2z) =x2(2x-z)-2xy(2x-z)+y2(2x-z)=(2x-z)(x2-2xy+y2)=(2x-z)(x-y)2.31.分解因式:(1)12abc-2bc2(2)2a3-12a2+18a(3)9a(x-y)+3b(x-y)(4)(x+y)2+2(x+y)+1(5)x2-1+y2-2xy(6)(a+b)(a-b)+4(b-1)【解答】解:(1)12abc-2bc2=2bc(6a-c);(2)2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2;(3)9a(x-y)+3b(x-y)=3(x-y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2;(5)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(6)(a+b)(a-b)+4(b-1)=a2-b2+4b-4=a2-(b-2)2=(a-b+2)(a+b-2).32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.【解答】解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(2)16(a-b)2-9(a+b)2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(4a-4b+3a+3b)(4a-4b-3a-3b)=(7a-b)(a-7b);(3)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(4)(m+n)2-2(m2-n2)+(m-n)2=[(m+n)-(m-n)]2=(m+n-m+n)2=(2n)2=4n2;(5)x2-5x+6=(x-2)(x-3);(6)x2-5x-6=(x-6)(x+1);(7)x2+5x-6=(x+6)(x-1);(8)x2+5x+6=(x+2)(x+3).33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.【解答】解:(1)-3x3-6x2y-3xy2;=-3x(x2+2xy+y2)=-3x(x+y)2;(2)(a2+9)2-36a2=(a2+9+6a)(a2+9-6a)=(a+3)2(a-3)2;(3)25m2-(4m-3n)2=(5m)2-(4m-3n)2,=(5m+4m-3n)(5m-4m+3n)=3(3m-n)(m+3n);(4)(x2-2x)2-2(x2-2x)-3=(x2-2x-3)(x2-2x+1)=(x-3)(x+1)(x-1)2.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b2【解答】解:(1)x2-5x-6=(x-3)(x+2);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);=y2-(x2-6x+9)=y2-(x-3)2=(y+x-3)(y-x+3);(4)(a2+4b2)2-16a2b2=(a2+4b2+4ab)(a2+4b2-4ab) =(a+2b)2(a-2b)2.35.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-4【解答】解:(1)27xy2-3x =3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=1(x2+2xy+y2 2)=1(x+y)22;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).36.因式分解:(1)x2-xy-12y2;(2)a2-6a+9-b2【解答】解:(1)x2-xy-12y2,=(x+3y)(x-4y);(2)a2-6a+9-b2,=(a-3)2-b2,=(a-3+b)(a-3-b).37.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(6)x 5-x 3(7)(x -1)(x -2)-6(8)a 2-2ab +b 2-c 2【解答】解:(1)8a 3b 2-12ab 3c =4ab 2(2a 2-3bc );(2)-3ma 3+6ma 2-12ma =-3ma (a 2-2a +4)=-3ma (a -2)2;(3)2(x -y )2-x (x -y )=(x -y )(2x -2y -x )=(x -y )(x -2y );(4)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(5)p 2-5p -36=(p -9)(p +4);(6)x 5-x 3=x 3(x 2-1)=x 3(x +1)(x -1);(7)(x -1)(x -2)-6=x 2-3x +2-6=(x -4)(x +1);(8)a 2-2ab +b 2-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).38.把下列各式分解因式:(1)4x 3-31x +15;(2)2a 2b 2+2a 2c 2+2b 2c 2-a 4-b 4-c 4;(3)x 5+x +1;(4)x 3+5x 2+3x -9;(5)2a 4-a 3-6a 2-a +2.【解答;(;(5522232】解:(1)4x 3-31x +15=4x 3-x -30x +15=x (2x +1)(2x -1)-15(2x -1)=(2x -1)(2x 2+x -15)=(2x -1)(2x -5)(x +3)2)2a b +2a c +2b c -a -b -c =4a b -(a +b +c +2a b -2a c -2b c )=(2ab )-(a +b -c )=(2ab +a +b -c )(2ab -a -b +c )=(a +b +c )(a +b -c )(c +a -b )(c -a +b )32222)3x +x +1=x -x +x +x +1=x (x -1)+(x +x +1)=x (x -1)(x +x +1)+(x +x +1)=(x +x +1)(x -x 2+1);(;(4)x 3+5x 2+3x -9=(x 3-x 2)+(6x 2-6x )+(9x -9)=x 2(x -1)+6x (x -1)+9(x -1)=(x -1)(x +3)25)2a -a -6a -a +2=a (2a -1)-(2a -1)(3a +2)=(2a -1)(a -3a -2)=(2a -1)(a +a -a -a -2a -2)=(2a -1)[a (a +1)-a (a +1)-2(a +1)]=(2a -1)(a +1)(a 2-a -2)=(a +1)(a -2)(2a -1).39.分解因式(1)20a 3x -45ay 2x(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m【解答】解:(1)原式=5ax (4a 2-9y 2)=5ax (2a +3y )(2a -3y );(2)原式=(1+3x )(1-3x );(3)原式=(2x )2-12x +9=(2x -3)2;(4)原式=(2xy-1)2;(5)原式=(p+4)(p-9);(6)原式=(y-3)(y-4);(7)原式=3(x2-2x+1)=3(x-1)2;(8)原式=-a(a2-2a+1)=-a(a-1)2;(9)原式=m(m2-m-20)=m(m+4)(m-5).40.分解因式:(x2+x+1)(x2+x+2)-12.【解答】解:设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x-1)(x+2)(x2+x+5)41.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.【解答】解:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).42.分解因式:(1)2a(y-z)-3b(z-y);(2)-x2+4xy-4y2;(3)x2-2(在实数范围内分解因式);(4)4-12(x-y)+9(x-y)2.【解答】解:(1)原式=2a(y-z)+3b(y-z)=(y-z)(2a+3b);(2)原式=-(x2-4xy+4y2)=-(x-2y)2;(3)原式=(x+2)(x-2);(4)原式=[3(x-y)-2]2=(3x-3y-2)2.43.阅读下面的问题,然后回答,分解因式:x2+2x-3,解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2-4x+3(2)4x2+12x-7.【解答】解:(1)x2-4x+3=x2-4x+4-4+3=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2)4x 2+12x -7=4x 2+12x +9-9-7=(2x +3)2-16=(2x +3+4)(2x +3-4)=(2x +7)(2x -1)44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.【解答】解:(1)(2)设x -2x =y原式=y (y +2)+1222(x 2-4x +4)2=(x -2)4,∴该同学因式分解的结果不彻底.=y 2+2y +1=(y +1)2=(x 2-2x +1)2=(x -1)4.故答案为:不彻底.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:x 2+2ax -3a 2=(x 2+2ax +a 2)-a 2-3a 2=(x +a )2-4a 2=(x +a +2a )(x +a -2a )=(x +3a )(x -a )像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a 2-8a +15;(2)若a +b =6,ab =4,求:①a 2+b 2;②a 4+b 4的值;(3)已知x 是实数,试比较x 2-6x +11与-x 2+6x -10的大小,说明理由.【解答】解:(1)a 2-8a +15=(a 2-8a +16)-1=(a -4)2-12=(a -3)(a -5);(2)a +b =6,ab =4,a2+b2=(a+b)2-2ab=36-8=28.a4+b4=(a2+b2)2-2a2b2=282-2⨯16=752.(3)x2-6x+11=(x-3)2+22,-x2+6x-10=-(x-3)2-1-1,∴x2-6x+11>-x2+6x-10.46.小亮在对a4+1114分解因式时,步骤如下:a4+4=a4+a2+4-a2三项可利用完全平方公式)=(a2+12)2-a2(写成完全平方式与最后一项又符合平方差公式)=(a2+a+12)(a2-a+12).请你利用上述方法分解因式4x4+1.【解答】解:4x4+1=4x4+4x2+1-4x2=(2x2+1)2-4x2=(2x2+2x+1)(2x2-2x+1).47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.【解答】解:(1)x2+3x+2=(x+1)(x+2);(2)x2-3x+2=(x-1)(x-2);(3)x2+2x-3=(x+3)(x-1);(4)x2-2x-3=(x-3)(x+1);(5)x2+5x+6=(x+3)(x+2);(6)x2-5x-6=(x-6)(x+1);(7)x2+x-6=(x+3)(x-2);a2与-a2,前(添加(8)x2-x-6=(x-3)(x+2);(9)x2-5x-36=(x-9)(x+4);(10)x2+3x-18=(x+6)(x-3);(11)2x2-3x+1=(2x-1)(x-1);(12)6x2+5x-6=(2x+3)(3x-2).48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.【解答】解:(x+1)(x+3)(x+6)(x+8)+9=[(x+1)(x+8)][(x+3)(x+6)]+9=(x2+9x+8)(x2+9x+18)+9=(x2+9x)2+26(x2+9x)+153=(x2+9x+9)(x2+9x+17).49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.【解答】解:(1)x4-7x2+6=(x2-1)(x2-6)=(x+1)(x-1)(x+6)(x-6);(2)x4-5x2-36=(x2-9)(x2+4)=(x+3)(x-3)(x2+4)(3)4x4-65x2y2+16y4=(2x2-4y2)2-49x2y2=(2x2-4y2+7xy)(2x2-4y2-7xy)=(2x-1)(2x+1)(1-4y)(1+4y);(4)a6-7a3b3-8b6=(a3-8b3)(a3+b3)=(a-2b)(a2+2ab+b2)(a+b)(a2-ab+b2)=(a-2b)(a+b)3(a2-ab+b2);(5)6a4-5a3-4a3=6a4-9a3=3a3(2a-3);(6)4a6-37a4b2+9a2b4=a2(4a4-37a2b2+9b4)=a2(4a4-12a2b2+9b4-25a2b2)=a2[(2a2-3b2)2-25a2b2]=a2(2a+1)(2a-1)(1-3b)(1+3b).50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.【解答】解:(1)原式=[(x+y)2-4][(x+y)2+5]=(x+y+2)(x+y-2)(x2+y2+2xy+5);(2)原式=(x2-2x)2-11(x2-2x)+24=(x2-2x-3)(x2-2x-8)=(x-3)(x+1)(x-4)(x+2);(3)原式=(x+1)(x+3)(x-5)(x-7)-105=(x2-4x-5)(x2-4x-21)-105=(x2-4x)2-26(x2-4x)=(x2-4x)(x2-4x-26)=x(x-4)(x2-4x-26)(4)原式=(x2-6-5x)(x2-6+x)=(x-6)(x+1)(x-2)(x+3).第21页(共21页)。

十字相乘法

十字相乘法

十字相乘法十字相乘法十字相乘法能把某些二次三项式分解因式。

要务必注意各项系数的符号。

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

十字相乘法能把某些二次三项式分解因式。

这种方法的关键是把二次项系数a分解成两十字相乘法个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。

当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把χ×2+7χ+12进行因式分解. .上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).讲解:x^2-3x+2=如下:╳x 2左边x乘x=x^2右边-1乘-2=2中间-1乘x+-2乘x(对角)=-3x上边的【x+(-1)】乘下边的【x+(-2)】就等于(x-1)*(x-2)x^2-3x+2=(x-1)*(x-2)例题例1把2x^2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3+2×1=51 3╳2 11×1+2×3=71 -1╳2 -31×(-3)+2×(-1)=-51 -3╳1×(-1)+2×(-3)=-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 2x^2-7x+3=(x-3)(2x-1).一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即a^2+bx+c=(a1x+c1)(a2x+c2).像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2把6x^2-7x-5分解因式.分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种2 1╳3 -52×(-5)+3×1=-7是正确的,因此原多项式可以用十字相乘法分解因式.解 6x^2-7x-5=(2x+1)(3x-5)指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是1 -3╳1×5+1×(-3)=2所以x^2+2x-15=(x-3)(x+5).例3把5x^2+6xy-8y^2分解因式.分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即1 2╳5 -41×(-4)+5×2=6解 5x^2+6xy-8y^2=(x+2y)(5x-4y).指出:原式分解为两个关于x,y的一次式.例4把(x-y)(2x-2y-3)-2分解因式.分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.解 (x-y)(2x-2y-3)-2=(x-y)[2(x-y)-3]-2=2(x-y) ^2-3(x-y)-21 -2╳2 11×1+2×(-2)=-3=[(x-y)-2][2(x-y)+1]=(x-y-2)(2x-2y+1).指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.例5x^2+2x-15分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

因式分解知识点总结

因式分解知识点总结

第一讲 因式分解一,知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

即:多项式→几个整式的积例:111()333ax bx x a b +=+ 因式分解,应注意以下几点。

1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:〔1〕提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

⎧⎪⎨⎪⎩系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:333234221286a b c a b c a b c -+的公因式是 .解析:从多项式的系数和字母两局部来考虑,系数局部分别是12、-8、6,它们的最大公约数为2;字母局部33323422,,a b c a b c a b c 都含有因式32a b c ,故多项式的公因式是232a b c .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

例1:把2233121824a b ab a b --分解因式.解析:此题的各项系数的最大公约数是6,相同字母的最低次幂是ab ,故公因式为6ab 。

解:2233121824a b ab a b -- 226(234)ab a b a b =--例2:把多项式3(4)(4)x x x -+-分解因式解析:由于4(4)x x -=--,多项式3(4)(4)x x x -+-可以变形为3(4)(4)x x x ---,我们可以发现多项式各项都含有公因式〔4x -〕,所以我们可以提取公因式〔4x -〕后,再将多项式写成积的形式.解:3(4)(4)x x x -+-=3(4)(4)x x x ---=(3)(4)x x --例3:把多项式22x x -+分解因式解:22x x -+=2(2)(2)x x x x --=-- 〔2〕运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

因式分解方法总结

因式分解方法总结

因式分解方法总结一、定义定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).因式分解与整式乘法为相反变形,同时也是解一元二次方程中公式法的重要步骤.二、因式分解三原则1.分解要彻底(是否有公因式,是否可用公式)2.最后结果只有小括号3.最后结果中多项式首项系数为正(例如:23(31)x x x x -+=-+)三、基本方法(一) 提公因式法 ()ma mb mc m a b c ++=++如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式法.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取次数最低的;(3)取相同的多项式,多项式的指数取次数最低的;(4)所有这些因式的乘积即为公因式.(5)如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数,提出“-”号时,多项式的各项都要变号.例2、 39999-能被100整除吗?还能被那些数整除? (二) 公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.1、平方差公式: 22()()a b a b a b -=+-2、完全平方公式:2222()a ab b a b ±+=±3、立方和公式: 3322()()a b a b a ab b +=+-+4、立方差公式: 3322()()a b a b a ab b -=-++5、2222222()a b c ab bc ca a b c +++++=++6、完全立方公式:3223333()a a b ab b a b ±+±=±7、3332223()()a b c abc a b c a b c ab bc ca ++-=++++---例3、 分解因式2244a ab b ++(2003年南通市中考题)解: 22244(2)a ab b a b ++=+例4、已知,,a b c 是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==(三)分组分解法能分组分解的多项式一般有四项或大于四项,一般的分组分解有两种形式:二二分法、三一分法.1.分组后能直接提取公因式.例5、分解因式 am an bm bn +++.解: 原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例6、分解因式 bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

因式分解的十二种方法及多项式因式分解的一般步骤

因式分解的十二种方法及多项式因式分解的一般步骤

因式分解的十二种方法及多项式因式分解的一般步骤把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x -2x -x(2003XX市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003XX市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

部编数学八年级上册专题14因式分解(解析版)(重点突围)含答案

部编数学八年级上册专题14因式分解(解析版)(重点突围)含答案

专题14 因式分解考点一 判断是否是因式分解考点二 公因式及提提公因式分解因式考点三 已知因式分解的结果求参数考点四 运用公式法分解因式考点五 十字相乘法分解因式考点六 分组分解法分解因式考点七 因式分解的应用考点一 判断是否是因式分解例题:(2021·福建省泉州市培元中学八年级期中)下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(1)1x x x x -+=-+C .229(9)(9)x y x y x y -=+-D .2412(6)(2)--=-+x x x x 【答案】D【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解即可.【详解】解:A 、右边不是积的形式,故本选项错误,不符合题意;B 、右边不是积的形式,故本选项错误,不符合题意;C 、()()22933x y x y x y -=+-,故本项错误,不符合题意;D 、是因式分解,故本选项正确,符合题意.故选:D .【点睛】此题考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【变式训练】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.【详解】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C .等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意;故选:D .【点睛】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.2.(2022·江苏宿迁·七年级期末)下列等式从左到右的变形是因式分解的是( )A .()ax ay a x y -=-B .()()2224x x x +-=-C .()2243223x x x x +-=+-D .32632a b a ab=×【答案】A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解: A .是因式分解,运用了提公因式法,符合题意;B .是整式的乘法运算,不符合题意;C .不是因式分解,右边不是乘积的形式,不符合题意,D .左边是单项式,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的定义,把一个多项式转化成几个整式积的形式.掌握因式分解的定义是解题的关键.考点二 公因式及提提公因式分解因式例题:(2022·江苏·南师附中新城初中黄山路分校七年级期中)多项式322363x y x y -的公因式是______.【答案】223x y 【分析】根据“公因式的系数为各项系数的最大公约数,各项相同字母的最低次幂是公因式的因式”求出公因式的即可.【详解】解:∵各项系数6、3的最大公约数是3,各项都含有的字母是x 与y ,x 的最低指数是2,y 的最低指数是2,∴该多项式的公因式为:223x y .故答案为:223x y .【点睛】本题考查公因式,掌握公因式的确定方法是解决问题的关键.【变式训练】1.(2022·宁夏·中宁县第三中学八年级期中)分解因式233x x -=_______【答案】3x (x -1)【分析】原式提取公因式即可得到结果.【详解】解:233x x -=3x (x -1);故答案为:3x (x -1).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2022·湖南·双牌县第一中学七年级期中)多项式2x 2-12xy 2+8xy 3的公因式是_____________.【答案】2x【分析】按照公因式的提取方法提取公因式即可.【详解】解:2232128x xy xy -+232(64)x x y y =-+多项式的公因式为2x .故答案为:2x .【点睛】此题考查了多项式的公因式,解题的关键是记住提取公因式方法,方法如下:方法如下:公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.考点三 已知因式分解的结果求参数例题:(2021·河北·石家庄市藁城区尚西中学八年级阶段练习)把多项式26x mx ++因式分解得(x +3)(x +2),则m =_____.【答案】5【分析】把(x +3)(x +2)展开,利用多项式相等的条件即可求出m 的值.【详解】解:∵26x mx ++=(x +3)(x +2)=256x x ++,∴m =5,故答案为:5.【点睛】本题考查多项式乘多项式,熟练掌握多项式乘多项式的运算法则是解题的关键.【变式训练】1.(2022·河北保定·八年级期末)若多项式228x ax +-因式分解为(4)(7)x x -+,则=a ________.【答案】3【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出a 即可.【详解】解:()()22477428328x x x x x x x -+=+--=+-,∵多项式228x ax +-因式分解为(4)(7)x x -+,∴a =3,故答案为:3.【点睛】本题考查了多项式乘法和因式分解,熟知因式分解和整式乘法互为逆运算是解题的关键.2.(2022·浙江舟山·七年级期末)已知二次三项式25x x m -+分解后有一个因式为()2x -,则m =______.【答案】6【分析】设另一个因式为(x +n ),根据多项式乘多项式运算法则可得二元一次方程组,求解即可.【详解】解:设另一个因式为(x +n ),得x 2-5x +m =(x -2)(x +n ),则x 2-5x +m =x 2+(n -2)x -2n .∴252n n m -=-ìí-=î,解得36n m =-ìí=î.∴m 的值为6.故答案为:6.【点睛】本题考查了因式分解,多项式乘多项式,解二元一次方程组等知识点,能得出关于m 、n 的方程组是解此题的关键.考点四 运用公式法分解因式例题:(2022·黑龙江大庆·八年级期末)因式分解:(1)321025m n m n mn -+; (2)()()2224649p p -+-+【答案】(1)2(5)mn m -(2)22()1)(1p p +-【分析】(1)先提公因式mn ,再利用完全平方公式继续分解即可;(2)先利用完全平方公式分解因式,再利用平方差公式继续分解即可.(1)解:321025m n m n mn-+2(1025)mn m m =-+2(5)mn m =-;(2)解:()()2224649p p -+-+()2243p éù=-+ëû()221p =-()()211p p éù=+-ëû()()2211p p =+-.【点睛】此题考查因式分解.熟练掌握因式分解的步骤和方法是关键.注意因式分解一定要分解到每一个因式不能再分解为止.【变式训练】1.(2022·江苏宿迁·七年级期末)因式分解(1)2218m -;(2)()222224a b a b +-.【答案】(1)2(3)(3)m m +-(2)()()22a b a b +-【分析】(1)提取公因数后利用平方差公式分解因式;(2)先用平方差公式,再结合完全平方公式分解因式;(1)解:原式=2222(9)2(3)2(3)(3)m m m m -=-=+-(2)原式=()()()()()()2222222222222a b a b a b ab ab b b ab a a +-+-+=+-=+【点睛】本题主要考查平方差公式()()22a b a b a b -=+-和完全平方公式()2222a b a b ab ±=+±的灵活运用,熟记公式是解题关键.2.(2021·河南·鹤壁市淇滨中学八年级阶段练习)分解因式:(1)416a - (2)2229x xy y -+- (3)5322472m m m---【答案】(1)()()()2422a a a ++-(2)()()33x y x y -+--(3)()2226m m -+【分析】(1)利用平方差公式分解因式即可;(2)先利用完全平方公式分解因式,再利用平方差公式分解因式即可;(3)先提公因式,然后利用完全平方公式分解因式即可.(1)解:416a -()()2244a a =+-()()()2422a a a =++-.(2)解:2229x xy y -+-()29x y =--()()33x y x y =-+--.(3)解:5322472m m m---()4221236m m m =-++()2226m m =-+.【点睛】本题主要考查了分解因式,熟练掌握平方差公式和完全平方公式,是解题的关键.考点五 十字相乘法分解因式例题:(2022·上海·七年级专题练习)因式分解:21124x y xy y-+【答案】()()38y x x --【分析】首先提取公因式,然后再用十字相乘法分解因式即可.【详解】解:21124x y xy y-+()21124y x x =-+()()38y x x =--.【点睛】此题考查了因式分解,熟练掌握提取公因式和十字相乘法是本题的关键.【变式训练】1.(2022·上海·七年级专题练习)因式分解:()()2223242410x x x x ----【答案】(3)(8)(4)(6)x x x x +--+【分析】先把式子化成()()22222432410x x x x ----,再运用十字相乘法分解因式即可.【详解】解:原式=()()22222432410x x x x ----=22(245)(242)x x x x ---+=22(524)(224)x x x x --+-=(3)(8)(4)(6)x x x x +--+【点睛】此题考查了因式分解,解题的关键是学会用十字相乘法进行因式分解.2.(2022·福建三明·八年级期中)阅读下面材料完成分解因式.()2x p q x pq ++型式子的因式分解()2x p q x pq++2x px qx pq=+++()()2x px qx pq =+++()()x x p q x p =+++()()x p x q =++.这样,我们得到()()()2x p q x pq x p x q +++=++.利用上式可以将某些二镒项系数为1的二次三项式分解因式.例把232x x ++分解因式分析:232x x ++中的二次项系数为1,常数项212=´,一次项系数312=+,这是一个()2x p q x pq +++型式子.解:()()()223212212x x x x x x ++=+++=++请仿照上面的方法将下列多项式分解因式.(1)21024x x ++(2)223336a ab b --【答案】(1)()()46x x ++(2)()()343a b a b -+【分析】(1)仿照题意进行分解因式即可;(2)仿照题意进行分解因式即可.(1)解:21024x x ++()26424x x =+++()()46x x =++;(2)解:223336a ab b --()22312a ab b =--()2233412a ab b éù=+--ëû()()343a b a b =-+.【点睛】本题主要考查了分解因式,正确理解题意是解题的关键.考点六 分组分解法分解因式例题:(2022·广东·南山实验教育集团八年级期中)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:()()()()()224242222222x y x y x y x y x y x y x y --+=+---=-+-.这种分解因式的方法叫分组分解法.请利用这种方法分解因式22216x xy y -+-.【答案】()()44x y x y -+--【分析】把前三项分为一组,最后一项单独作为一组,然后利用平方差公式进行分解即可解答.【详解】解:22216x xy y -+-2()16x y =--()()44x y x y =-+--.【点睛】本题考查了因式分解-分组分解法,公因式,因式分解-运用公式法,合理进行分组是解题的关键.【变式训练】1.(2022·江苏·扬州市江都区第三中学七年级期中)先阅读以下材料,然后解答问题,分解因式.mx nx my ny+++()()mx nx my ny =+++()()x m n y m n =+++()()m n x y =++;也可以mx nx my ny+++()()mx my nx ny =+++()()m x y n x y =+++()()m n x y =++.以上分解因式的方法称为分组分解法,(1)请用分组分解法分解下列因式:①2()--+a x y x y②2244x y x --+(2)拓展延伸①若22228160x xy y x -+-+=求x ,y 的值;(2)()()22x y x y -++、()()22222a b a ab b -+-+(3)()()22x y x y -+--【分析】(1)阅读材料可知分组须有“预见性”,预见下一步能继续分解,即可求解;(2)根据分组分解的方法,依据下一步利用公式进行分组;(3)根据分组分解法因式分解即可求解.(1)分组后能出现公因式,分组后能应用公式(2)22x y x y -++=()()22x y x y -++,22222a a b ab b +--+=()()22222a b a ab b -+-+,故答案为:()()22x y x y -++,()()22222a b a ab b -+-+.(3)2224x xy y -+-()()()2422x y x y x y =--=-+--.【点睛】本题考查了因式分解,掌握分组分解法是解题的关键.考点七 因式分解的应用(2)16(3)9【分析】(1)通过完全平方公式进行变式得()()22310a b ++-=,然后由非负数性质求得结果;(2)由22228160x y xy y +-++=得()()2240x y y -++=,然后由非负数性质求得结果;(3)把方程通过变式得()()222140a b -+-=,然后由非负数性质求得a 、b ,根据三角形三边关系进而得c ,便可求得三角形的周长.(1)解:由2262100a b a b ++-+=得,()()22310a b ++-=,∵()23a -≥0,()210b -³,∴a -3=0,b -1=0,∴a =3,b =1.故答案为:3;1;(2)由22228160x y xy y +-++=,得,()()2240x y y -++=,,4x y y \==-,∴4,4x y =-=-,∴16xy =;(3)由22248180a b a b +--+=得()()222140a b -+-=,∴1,4a b ==,∵△ABC 的三边长a 、b 、c 都是正整数,∴4141c -<<+,∴35c <<,∴4c =,∴△ABC 的周长为1449++=.【点睛】本题考查了因式分解的应用,三角形的三边关系,偶次方的非负性,理解阅读材料中的解题思路是解题的关键.【变式训练】()()2240x y y -++=∴x -y =0,y -4=0,∴x =y =4,∴x y ×=16;(3)∵a +b =8,∴b =8-a ,∵21041ab c c -+=,∴2281610250a a c c -++-+=,∴()()22450a c -+-=,∴a -4=0,c -5=0,∴a =4,c =5,∴b =4,∴△ABC 的周长为a +b +c =4+4+5=13.【点睛】本题考查了因式分解的应用,三角形的三边关系,偶次方的非负性,理解阅读材料中的解题思路是解题的关键.2.(2022·江苏·扬州中学教育集团树人学校七年级期中)先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:∵2222690m mn n n ++-+=,∴2222690m mn n n n +++-+=,∴()()2230m n n ++-=,∴m +n =0,n ﹣3=0∴m =﹣3,n =3问题:(1)不论x ,y 为何有理数,2210845x y x y +-++的值均为( )A .正数B .零C .负数D .非负数(2)若2222440x y xy y +-++=,求y x 的值.(3)已知a ,b ,c 是△ABC 的三边长,满足2210841a b a b +=+-,且c 是△ABC 中最长的边,求c 的取值范∴()()22450a b -+=-,∴a -5=0,b -4=0,∴a =5,b =4,∵a ,b ,c 是△ABC 的三边长,且c 是△ABC 中最长的边,∴554c £<+,即5≤c <9,即c 的取值范围是5≤c <9.【点睛】此题考查了完全平方公式因式分解、非负数的性质、三角形三边关系的应用等知识,利用完全平方公式变形是解题的关键.一、选择题1.(2021·湖南·衡阳市第十七中学八年级期中)多项式4ab 2+16a 2b 2﹣12a 3b 2c 的公因式是( )A .4ab 2cB .ab 2C .4ab 2D .4a 3b 2c【答案】C【分析】根据确定多项式各项公因式的方法,①定系数,即确定各项系数的最大公约数②定字母,即确定各项相同字母因式(或相同多项式因式)③定指数,即各项相同字母因式(或相同多项式因式)的指数最低次幂,确定公因式即可【详解】原式224(143)ab a a c =+-∴公因式为4ab 2故选:C【点睛】本题考查了确定公因式的方法,关键是掌握确定公因式的方法.2.(2022·山东·济南市济阳区创新中学八年级期中)下列各式从左到右的变形,属于因式分解的是( )A .()()2111x x x +-=-B .()()22x y x y x y -=+-C .()22121x x x x -+=-+D .2322842x y x y y =×【答案】B【分析】根据因式分解的定义是把一个多项式转化成几个整式积的形式,依次进行分析判断可得答案.【详解】解:A . ()()2111x x x +-=-,是整式的乘法,不是因式分解,故A 错误;B . ()()22x y x y x y -=+-,把一个多项式转化成几个整式积的形式,故B 正确;C . ()22121x x x x -+=-+,没把一个多项式转化成几个整式积的形式,故C 错误;D . 2322842x y x y y =×,不是把一个多项式转化成几个整式积的形式,故D 错误.故选:B .【点睛】本题考查因式分解的意义,注意掌握因式分解是把一个多项式转化成几个整式积的形式.3.(2022·四川·成都市龙泉驿区新思源学校八年级阶段练习)对任意自然数n ,代数式()()2275n n +--的值一定能被( )整除.A .6B .24C .4D .8【答案】B【分析】先将题目中的代数式化简,即可得到题目中的代数式一定可以被哪个数整除,本题得以解决.【详解】解:∵()()2275n n +--=[(n +7)+(n -5)][(n +7)-(n -5)]=(n +7+n -5)(n +7-n +5)=(2n +2)×12=24(n +1),∴代数式()()2275n n +--的值一定能被24整除,故选:B .【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.4.(2021·江苏无锡·九年级期中)已知a ,b 是一个等腰三角形的两边长,且满足2268250a b a b +--+=,则这个等腰三角形的周长为( )A .10B .11C .10或11D .12【答案】C【分析】先将25改成9+16,运用完全平方公式将原等式化为平方和为0的形式,继而求出a ,b 的值,最后根据等腰三角形的性质即可得出结论.【详解】解:∵2268250a b a b +--+=,∴2269816))0((a a b b +++=﹣﹣,∴22()(340)ab +=﹣﹣,∴a =3,b =4.分两种情况讨论:①当腰为3时,3+3>4,能构成三角形,等腰三角形的周长为3+3+4=10,②当腰为4时,3+4>4,能构成三角形,等腰三角形的周长为4+4+3=11.综上所述:该等腰三角形的周长为10或11.故选C .【点睛】本题考查了完全平方公式及等腰三角形的性质.解题的关键是将25改成9+16,运用完全平方公式将原等式化为平方和为0的形式.5.(2021·浙江·嵊州市马寅初初级中学七年级期中)小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:21,31,1x a b x a x --++,,,分别对应下列六个字: 中, 爱, 我, 数, 学,马, 现将 223(1)3(1)a x b x ---因式分解,结果呈现的密码信息可能是( )A .我爱学B .爱马中C .我爱马中D .马中数学【答案】C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:()()223131a x b x --- ()()231x a b =--=()()()311x x a b +--,∵21,31,1x a b x a x --++,,,分别对应下列六个字:中, 爱, 我, 数, 学,马,∴结果呈现的密码信息可能是:我爱马中,故选:C .【点睛】本题考查了因式分解的综合应用,正确将所给的式子进行因式分解是解决本题的关键.二、填空题6.(2022·广东汕头·八年级期末)因式分解:2m 3﹣2m =______________.【答案】2(1)(1)m m m +-【点睛】本题考查了求代数式的值和因式分解以及整式计算,解题关键是熟练利用因式分解把所求代数式变形,然后整体代入求值.9.(2022·河南平顶山·八年级期末)若三角形ABC 的三边长a ,b ,c 满足22a ab c bc +=+,则三角形ABC 的形状是_______.【答案】等腰三角形【分析】通过对a +2ab =c +2bc 的变形得到(2b +1)(a -c )=0,由此得到a =c ,易判断三角形ABC 的形状.【详解】解:∵a +2ab =c +2bc ,∴a -c +2ab -2bc =0,即(2b +1)(a -c )=0,∵a ,b ,c 是△ABC 的边长,∴b >0,∴2b +1≠0,∴a -c =0,∴a =c ,即三角形ABC 的形状是等腰三角形,故答案为:等腰三角形.【点睛】该题主要考查了因式分解及其应用问题,等腰三角形的判定,解题的关键是牢固掌握分组分解法或提公因式法,灵活选用有关方法来变形、化简、求值或证明.10.(2022·辽宁沈阳·八年级期末)如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a 的正方形,两块是边长为b 的正方形,三块是长为a ,宽为b 的矩形(a b >).观察图形,发现多项式2232a ab b ++可因式分解为____________.【答案】()(2)a b a b ++【分析】图中大长方形的面积有两种求法,一是由三个正方形的面积与三个小长方形的面积之和计算,二是由大长方形的长(2)a b +与宽()a b +的乘积计算,两者相等即可确定多项式2232a ab b ++因式分解的结果.【详解】解:结合图形,可得长方形的面积为2222232S a ab ab ab b b a ab b =+++++=++,长方形的面积也可以为()(2)S a b a b =++,∴2232a ab b ++=()(2)a b a b ++.故答案为:()(2)a b a b ++.【点睛】本题主要考查了因式分解与几何图形的面积,弄清图形中的面积关系是解题关键.三、解答题11.(2021·河北·石家庄市藁城区尚西中学八年级阶段练习)分解因式:(1)221218x x -+;(2)224()9()a x y b y x -+-;【答案】(1)()223x -(2)()()()2323x y a b a b -+-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.(1)解:221218x x -+=()2269x x =-+()223x =-;(2)224()9()a x yb y x -+-()()2249a x y b x y =---()()2249x y a b =--()()()2323x y a b a b =-+-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2022·浙江·杭州市实验外国语学校七年级期中)因式分解(1)3221624x x x -+-(2)222222a b x y ay bx--+-+【答案】(1)()()226x x x ---(2)()()a yb x a y b x -+---+【分析】(1)先提公因式,再利用十字相乘法继续分解即可解答;(2)先根据完全平方公式进行分组,再利用平方差公式继续分解即可解答.(1)解:3221624x x x-+-()22812x x x =--+()()226x x x =---(2)解:222222a b x y ay bx--+-+()()222222a ay y b bx x =-+--+()()22a y b x =---()()a yb x a y b x =-+---+【点睛】本题考查了提公因式法与公式法的综合运用,因式分解—分组分解法,一定要注意如果多项式的各项含有公因式,必须先提公因式.13.(2021·福建省泉州实验中学八年级期中)因式分解:(1)241616a a -+;(2)()()216a x y y x -+-;(3)22962x x y y ---;(4)()()2222223m m m m ----.【答案】(1)()242a -;(2)()()()44x y a a -+-;(3)()()332x y x y +--;(4)()()()212321m m m m +--+.【分析】(1)先提取公因式,再利用完全平方公式分解即可求解;(2)先进行公式变形为()()216a x y x y ---,再提取公因式,最后用平方差公式分解即可;(3)先将原式分组为()()22962x y x y --+再分别利用平方差公式和提公因式法分解,最后提公因式即可;(4)先利用十字相乘法进行分解,再次利用十字相乘法进行分解即可求解.(1)解:241616a a -+=()2444a a -+()242a =-;(2)解:()()216a x y y x -+-()()216a x y x y =---()()216x y a =--()()()44x y a a =-+-;(3)解:22962x x y y---()()22962x y x y =--+()()()3323x y x y x y =+--+()()332x y x y =+--(4)()()2222223m m m m ----()()222321m m m m =---+()()()212321m m m m =+--+ .【点睛】本题考查了将多项式因式分解,因式分解的一般方法是先提公因式,再利用公式法分解,如果此方法无法正常分解,一般可以利用十字相乘法或分组分解法进行因式分解,注意因式分解一定要彻底.14.(2021·山西临汾·八年级期中)在数学课外探究小组活动中,有一道这样的题目:对多项式()()2242464a a a a -+-++进行因式分解.指导老师的讲解过程如下.解:令24a a t -=,则原式222(2)(6)48124816(4)t t t t t t t =+++=+++=++=+.∵24t a a =-,∴原式()2244a a =-+.老师解答到此就停止了,并提出了以下2个问题:(1)上述解答的结果是否分解到最后?_______(填“是”或“否”).如果否,直接写出最后的结果______(如果是则不用填写).(2)请模仿以上方法对多项式()()222221b b b b --++进行因式分解.【答案】(1)否;()42a -(2)()41b -【分析】(1)检查解答结果继续应用完全平方公式进行分解即可;(2)利用题目提供的信息进行分解因式即可.(1)解:∵()()()222424422a a a a éù-+=-=-ëû,∴上述解答的结果没有分解到最后.故答案为:否;()42a -.(2)解:令22b b t -=,则()()222221b b b b --++()21t t =++221t t =++()21t =+∵22b b t -=,∴原式()2221b t =-+()221b éù=-ëû()41b =-【点睛】本题主要考查了因式分解,读懂题意,熟练掌握完全平方公式,是解题的关键.15.(2022·四川·八年级期中)由整式的乘法运算法则可得()()()2.ax b cx d acx ad bc x bd ++=+++由于我们道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可如可把()2acx ad bc x bd +++中的x 着作是未知数.a 、b 、c 、d 在作常数的二次三项式:通过观察()()()2.acx ad bc x bd ax b cx d +++=++可知此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数.此分解过程可以用十字相乘的形式形象地表示成如图1,此分解过程可形象地表述为“坚乘得首、尾,叉乘凑中项,这种分解的方法称为十字相乘法.如:将二次三项式2273x x ++的二项式系数2与常数项3分别进行适当的分解,如图2,则()()2273321x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法因式分解:24913x x +-;(2)用十字相乘法因式分解:()2()1235x y x y +-++;(3)结合本题知识,因式分解:222887146x xy y x y ++--+.【答案】(1)()()4131x x +-(2)()()57x y x y +-+-(3)()()24322x y x y +-+-【分析】(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.(1)解:()()249134131x x x x +-=+-;(2)解:()()()2()123557x y x y x y x y +-++=+-+-;(3)解:222887146x xy y x y ++--+()222447146x xy y x y =++--+()22(2)726x y x y =+-++()()22322x y x y éù=+-+-ëû()()24322x y x y =+-+-.【点睛】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.16.(2022·广东广州·八年级期末)常见的分解因式的方法有提公因式法、公式法及十字相乘法,而有的多项式既没有公因式,也不能直接运用公式分解因式,但是某些项通过适当的调整能构成可分解的一组,用分组来分解一个多项式的因式,这种方法叫分组分解法.如x 2+2xy +y 2﹣16,我们细心观察这个式子就会发现,前三项符合完全平方公式,分解后与后面的部分结合起来又符合平方差公式,可以继续分解,过程为:x 2+2xy +y 2﹣16=(x +y )2﹣42=(x +y +4)(x +y ﹣4).它并不是一种独立的因式分解的方法,而是为提公因式或运用公式分解因式创造条件.阅读材料并解答下列问题:(1)分解因式:2a 2﹣8a +8;(2)请尝试用上面的方法分解因式:x 2﹣y 2+3x ﹣3y ;(3)若△ABC 的三边a ,b ,c 满足a 2﹣ab ﹣ac +bc =0,请判断△ABC 的形状并加以说明.【答案】(1)()222a -(2)()()3x y x y ++-(3)等腰三角形【分析】(1)先提公因式2,再利用完全平方公式分解;(2)先分组,再利用分组分解法求解;(3)把等式左边利用分组分解法因式分解得到()()0a c a b --=,利用三角形三边的关系得到a =c 或a =b ,从而可判断△ABC 的形状.(1)解:2288a a -+=()2244a a -+=()222a -;(2)2233x y x y--+=()()()3x y x y x y -++-=()()3x y x y ++-;(3)2a ab ac bc--+=2a ab bc ac--+=()()a abc b a -+-=()()a abc a b ---=()()a c ab --=0∴a =c 或a =b∴△ABC 为等腰三角形.【点睛】本题考查了利用完全平方公式分解因式,提公因式的方法分解因式,分组分解法是,因式分解的应用,等腰三角形的定义,理解题意,掌握“整体法分解因式”是解本题的关键.17.(2022·江西吉安·八年级期末)阅读与思考:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解的多项式,比如:四项的多项式一般按照“两两”分组或“三一”分组,进行分组分解.例1:“两两分组”:ax ay bx by+++解:原式()()ax ay bx by =+++()()a x yb x y =+++()()a b x y =++例2:“三一分组”:2221xy x y +-+解:原式2221x xy y =++-()21x y =+-()()11x y x y =+++-归纳总结:用分组分解法分解因式要先恰当分组,然后用提公因式法或运用公式法继续分解.请同学们在阅读材料的启发下,解答下列问题:(1)分解因式:①255x xy x y -+-;②2244m n m --+;(2)已知ABC V 的三边,,a b c 满足220a b ac bc --+=,试判断ABC V 的形状.【答案】(1)①(5)()x x y +-;②(2)(2)m n m n -+--;(2)ABC V 是等腰三角形.【分析】(1)①将原式进行分组,然后再利用提取公因式法进行因式分解;②将原式进行分组,然后利用完全平方公式和平方差公式进行因式分解;(2)将原式进行分组,然后利用平方差公式和提公因式法进行因式分解,然后结合三角形三边关系和多项式乘法的计算法则分析判断.【详解】解:(1)①255x xy x y-+-2()(55)x xy x y =-+-()5()x x y x y =-+-()(5)x y x =-+;②2244m n m --+22(44)m m n =-+-22(2)m n =--(2)(2)m n m n =-+--;(2)220a b ac bc --+=Q ,22()()0a b ac bc \---=,()()()0a b a b c a b \+---=,()()0a b a b c \-+-=,a Q ,b ,c 是ABC V 的三边,a b c \+>,0a b c \+->,0a b \-=,a b \=,即ABC V 是等腰三角形.【点睛】本题考查了因式分解的应用,掌握提取公因式的技巧和完全平方公式:2222()a ab b a b ++=+,平方差公式22()()a b a b a b -=+-是解题关键.。

《整式的乘法与因式分解》单元测试题(带答案)

《整式的乘法与因式分解》单元测试题(带答案)
9.下列算式能用平方差公式计算的是
A. B. C. D.
[答案]D
[解析]
[分析]
根据平方差公式(A+B)(A-B)=A2-B2对各选项分别进行判断即可.
[详解]能用平方差公式计算的是 ,
故选D.
[点睛]本题考查了平方差公式,熟练掌握平方差公式(A+B)(A-B)=A2-B2是解本题的关键.
10.下列从左到右的变形,是因式分解的是
4.下列计算正确的是()
A 3A2﹣4A2=A2B.A2•A3=A6C.A10÷A5=A2D.(A2)3=A6
5.下列各式中,运算正确的是()
A. B. C. D.
6.下列运算错误的是()
A.(m2)3=m6B.A10÷A9=AC.x3•x5=x8D.A4+A3=A7
7.化简(A2)A3所得 结果是()
(2)用两种不同的方法求图中阴影部分的面积.
11.下列运算正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘除法法则,幂的乘方,积的乘方一一判断即可.
[详解]解:A、错误.应该是x3•x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(A B3)2=A2B6.
D、正确.
故选D.
[点睛]本题考查同底数幂的乘除法法则,幂的乘方,积的乘方等知识,解题的关键是熟练掌握基本知识.
∴A2﹣4A+4+B2﹣8B+16=0,
∴(A﹣2)2+(B﹣4)2=0,
又∵(A﹣2)2≥0,(B﹣4)2≥0,
∴A﹣2=0,B﹣4=0,
∴A=2,B=4,
∴△A B C的周长为A+B+C=2+4+3=9,

因式分解二

因式分解二

因式分解(二)【内容介绍】本次资料主要包含数学科目,重点指导学生了解因式分解,掌握因式分解的解题方法;主要是通过要点梳理,帮助大家综合掌握因式分解的解题方法,再通过典型例题的分析,帮助大家了解常考题型。

建议大家深入学习掌握要点梳理,认真研读例题,并在日常学习中注重练习,实现对学习目标的综合把握。

【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:++x bx c 2⎩+=⎨⎧=p q bpq c ++=++x bx c x p x q 2)()(++x bx c 2c >c 0、p q <c 0、p q b 、p q ++x bx c 2、b c c b ++ax bx c 2a a =a a a 12c =c c c 12,,,a a c c 1212按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、+a c a c 1221++ax bx c 2b +=a c a c b 1221+a x c 11+a x c 22++=++ax bx c a x c a x c 11222)()(a公式法或分组分解法进行分解要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法. 【典型例题】 类型一、十字相乘法1、将下列各式分解因式: (1); (2); (3)【答案与解析】解:(1)因为所以:原式= (2)因为所以:原式=(3)【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.2、将下列各式分解因式: (1); (2) −+x x 10162−−x x 1032−=−x x x 78+−x x 78)()(−−=−x x x 2810−−x x 28)()(−−=−+−=−+−x x x x x x 1033105222)()()(+−x x 55232++x x 66512(3); (4).【思路点拨】(3)题可看成常数项,.(4)题可将看成一个整体来分解因式. 【答案与解析】 解:(1);(2).(3);(4)因为所以:原式【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,注意观察式子结构,能够看作整体的看作整体.3、将下列各式分解因式: (1);(2)【答案与解析】 解:(1)因为−−x xy y 61622−y 162−=−⨯−+=−y y y y y y 1682,8262+x 2)(+−=x x 55232⎝⎭ ⎪+−⎛⎫x x 513)(⎝⎭⎝⎭⎪⎪++=++⎛⎫⎛⎫x x x x 662351112−−=−+x xy y x y x y 6168222)()(−+−+=−+x x x 25242292)()()(⎣⎦⎣⎦⎡⎤⎡⎤=+−+−x x 225522)()(=−+x x 2158)()(+=y y y 91019所以:原式= (2)因为所以:原式=【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 类型二、分组分解法4、先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等. 如“2+2”分法:ax+ay+bx+by =(ax+ay )+(bx+by ) =a (x+y )+b (x+y ) =(x+y )(a+b ) 如“3+1”分法: 2xy+y 2-1+x 2 =x 2+2xy+y 2-1 =(x+y )2-1 =(x+y+1)(x+y-1)请你仿照以上方法,探索并解决下列问题: (1)分解因式:x 2-y 2-x-y ;++y y 2335)()(−=x x x 21183+−x x 2379)()((2)分解因式:45am2-20ax2+20axy-5ay2;(3)分解因式:4a2+4a-4a2b-b-4ab+1.【思路点拨】(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可;(3)重新分组利用完全平方公式分解因式得出即可.【答案与解析】解:(1)x2-y2-x-y=(x+y)(x-y)-(x+y)=(x+y)(x-y-1);(2)45am2-20ax2+20axy-5ay2=45am2-5a(4x2-4xy+y2)=5a[9m2-(2x-y)2]=5a(3m-2x+y)(3m+2x-y);(3)4a2+4a-4a2b-b-4ab+1=(4a2+4a+1)-b(4a2+4a+1)=(2a+1)2(1-b).【总结升华】此题主要考查了提取公因式法分解因式以及分组分解法分解因式,正确分组是解题关键.【考点精讲】考点1:利用因式分解进行简便计算典例:计算:①2032-203×206+1032②20192-2018×2020. 【答案】①10000;②1.【解析】解:①原式=2032-2×203×103+1032 =(203-103)2 =1002 =10000;②原式=20192-(2019-1)×(2019+1) =20192-(20192-1) =20192-20192+1 =1.方法或规律点拨本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:+−=−a b a b a b 22)()(.完全平方公式:±=±+a b a ab b 2222)(.巩固练习1.(2020·广西兴宾·初一期中)计算:−⨯−⨯−⨯⨯−⨯−56799100(1)(1)(1)...(1)(1)1111122222的结果是( )A .200101B .125101C .100101D .1001 【答案】B 【解析】解:原式=⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⨯+⨯−⨯+⨯−⨯+⨯⨯−⨯+⨯−⨯+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫556677999910010011111111111111111111 =⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯55667799991001004657689810099101=⨯51004101 =125101. 故选:B .2.(2020·全国初二课时练习)计算:1252-50×125+252=( ) A .100 B .150C .10000D .22500【答案】C【解析】1252-2×25×125+252=(125-25)2=1002=10000. 故选C .3.(2020·全国初二课时练习)计算:752-252=( ) A .50 B .500C .5000D .7100【答案】C【解析】原式=(75+25)×(75-25)=100×50=5000, 故选C .4.(2020·河南初二期末)已知−=⨯⨯x 2010201020102009201120212019,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】解:−2010201020212019=⨯⨯=⨯−⨯+⨯−⨯−20102009201120102010120101=201020101=2010201020102019201920192201922019)()()(∴⨯⨯=⨯⨯x 2010200920112010200920112019 ∴x=2019故选:B .5.(2020·河北定兴·初一期末)利用因式分解计算−=2522481000222__________. 【答案】500【解析】解:−+−⨯===⨯252248252248252248500450010001000100010002222)()(. 故答案为:500.考点2:利用十字相乘法进行因式分解 典例:阅读与思考x 2+(p+q )x+pq 型式子的因式分解x 2+(p+q )x+pq 型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p )(x+q )=x 2+(p+q )x+pq ,因式分解是整式乘法相反方向的变形,利用这种关系可得x 2+(p+q )x+pq =(x+p )(x+q ).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x 2-x-6分解因式.这个式子的二次项系数是1,常数项-6=2×(-3),一次项系数-1=2+(-3),因此这是一个x 2+(p+q )x+pq 型的式子.所以x 2-x-6=(x+2)(x-3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x 2-x-6=(x+2)(x-3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题: (1)分解因式:y 2-2y-24.(2)若x 2+mx-12(m 为常数)可分解为两个一次因式的积,请直接写出整数m 的所有可能值.【答案】(1)(y+4)(y-6);(2)-1,1,-4,4,11,-11 【解析】解:(1)y 2-2y-24=(y+4)(y-6);(2)若+−=−+x mx x x 12(3)(4)2,此时=m 1 若+−=+−x mx x x 12(3)(4)2,此时=−m 1 若+−=−+x mx x x 12(1)(12)2,此时=m 11若+−=+−x mx x x 12(1)(12)2,此时=−m 11 若+−=−+x mx x x 12(2)(6)2,此时=m 4 若+−=+−x mx x x 12(2)(6)2,此时=−m 4综上所述,若x 2+mx-12(m 为常数)可分解为两个一次因式的积, m 的值可能是-1,1,-4,4,11,-11. 方法或规律点拨本题主要考查了十字相乘法分解因式,读懂题意,理解题中给出的例子是解题的关键. 巩固练习1.(2020·四川成都实外开学考试)计算结果为a 2-5a-6的是( ) A .(a-6)(a+1) B .(a-2)(a+3) C .(a+6)(a-1) D .(a+2)(a-3)【答案】A【解析】解:a 2-5a-6=(a-6)(a+1). 故选:A .2.(2020·湖南鹤城·初一期末)将下列多项式因式分解,结果中不含有因式+a 1的是( )A .−a 12B .++a a 212C .+a a 2D .+−a a 22【答案】D【解析】解:−=+−a a a 1(1)(1)2,+++a a a 21=122)(+=+a a a a (1)2,+−=+−a a a a 2(2)(1)2,∴结果中不含有因式+a 1的是选项D ; 故选:D .3.(2020·上海市静安区实验中学初一课时练习)已知−−=−−x x m x x n 452)()(,则m ,n 的值是( )A .=m 5,=n 1B .=−m 5,=n 1C .=m 5,=−n 1D .=−m 5,=−n 1【答案】C【解析】解:由x 2-4x-m=(x-5)(x-n ), 得:-5-n=-4,(-5)(-n )=-m 所以n=-1,m=5. 故选:C .4.(2020·全国初二课时练习)下列各式中,计算结果是+−x x 7182的是( ) A .−+x x (1)(18) B .++x x (2)(9) C .−+x x (3)(6) D .−+x x (2)(9)【答案】D【解析】原式=(x -2)(x +9)故选D.5.(2020·湖南茶陵·初一期末)分解因式x 2+3x +2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).这样,我们可以得到x 2+3x +2=(x +1)(x +2).请利用这种方法,分解因式2x 2-3x -2=_____.【答案】(2x +1)(x -2) 【解析】解:原式=(2x +1)(x -2), 故答案为(2x +1)(x -2)考点3:利用分组分解法进行因式分解 典例:将下列各式因式分解: (1)++x x 142;(2)+−+−x x y y 26822.【答案】(1)++−+x x x x 1122)()(;(2)+−−+x y x y (2)(4).【解析】解:(1)原式=++−x x x 21422=+−x x 1222)(=++−+x x x x 1122)()(;(2)原式=++−+−x x y y 216922=++−−+x x y y 216922)()( =+−−x y 1322)()(=++−+−+x y x y 1313)()( =+−−+x y x y 24)()(. 方法或规律点拨本题考查了多项式的因式分解,正确变形、熟练掌握分解因式的方法是解题的关键. 巩固练习1.已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2-ab-bc-ac 的值为_____.【答案】3【解析】解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018, ∴a-b=-1,a-c=-2,b-c=-1, ∴a 2+b 2+c 2-ab-bc-ac=++−−−a b c ab bc ac 2222222222=−+−+−a b a c b c 2()()()222=−+−+−2(1)(2)(1)222=3,故答案为:3.2.分解因式:++−=a ab b 2422__________. 【答案】+++−a b a b (2)(2) 【解析】解:原式=(a+b )2-22 =(a+b+2)(a+b-2), 故答案为:(a+b+2)(a+b-2).3.分解因式:++−=b c bc a 2222_______.【答案】+++−b c a b c a ()()【解析】解:原式=+−=+++−b c a b c a b c a ()()()22.故答案为:+++−b c a b c a ()()4.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如−−+x y x y 42422,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

【KS5U推荐】初升高衔接教材 高一预科班数学精品课程二十讲(课件):第二讲 因式分解

【KS5U推荐】初升高衔接教材 高一预科班数学精品课程二十讲(课件):第二讲 因式分解

【例2】因式分解:
(1) 3a3b 81b4
(2) a7 ab6
解 : (1) 3a3b 81b4 3b(a3 27b3 ) 3b(a 3b)(a2 3ab 9b2 ).
(2) a7 ab6 a(a6 b6 ) a(a3 b3 )(a3 b3 ) a(a b)(a2 ab b2 )(a b)(a2 ab b2 ) a(a b)(a b)(a2 ab b2 )(a2 ab b2 ).
【例7】因式分解:(1)x2 xy 6 yபைடு நூலகம் (2)( x2 x)2 8( x2 x) 12
解 : (1)x2 xy 6 y2 x2 yx 62 ( x 3 y)( x 2 y). (2)( x2 x)2 8( x2 x) 12 ( x2 x 6)( x2 x 2) ( x 3)( x 2)( x 2)( x 1).
【例5】因式分解:2ax 10ay 5by bx
解 : 2x2 4xy 2 y2 8z2 2( x2 2xy y2 4z2 ) 2[( x y)2 (2z)2 ] 2( x y 2z)( x y 2z).
2020年3月29日星期日
三、十字相乘法
1. x2 ( p q)x pq 型的因式分解
【例8】因式分解:(1)12x2 5x 2
解 : (1)12x2 5x 2 (3x 2)(4x 1).
(2)5x2 6xy 8 y2
3 2
41
(2)5x2 6xy 8 y2 ( x 2 y)(5x 4 y).
1 2
5 4
2020年3月29日星期日
三、十字相乘法
【例9】因式分解:
2020年3月29日星期日
三、十字相乘法
2.一般二次三项式 ax2 bx c 型的因式分解

因式分解常用方法(方法最全最详细)

因式分解常用方法(方法最全最详细)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因2-b 2=(a+b)(a-b) ;3 (a+b)(a 2-ab+b 2) =a 3+b 34 (a-b)(a 2+ab+b 2) = a 3-b 32±2ab+b 2=(a ±b) 2;a 3 4+b 3=(a+b)(a 2-ab+b 2) ; a 3-b 3=(a-b)(a 2+ab+b 2).式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 ----------- a(2) (a ±b) 2= a 2±2ab+b 2 -------------- a面再补充两个常用的公式:(5) a 2+b 2+c2+2ab+2bc+2ca=(a+b+c) 2;(6) a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca) ;ab bc ca ,例.已知a,b,c是ABC 的三边,且a2 b2 c2则ABC 的形状是( )A.直角三角形B等腰三角形 C 等边三角形 D 等腰直角三角形2 2 2 2 2 2解:a2b2 c2ab bc ca 2a22b22c22ab 2bc 2ca(a b)2 (b c)2 (c a)2 0 a b c三、分组分解法.(一)分组后能直接提公因式例 1 、分解因式:am an bm bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

因式分解的14种方法

因式分解的14种方法

所以 7 x 2 -19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 ⑸裂项法 这种方法指把多项式的某一项拆开或填补上互为相反数的两项 (或几项) , 使原式适合 于提公因式法、运用公式法或分组分解法进行分解。这钟方法的实质是分组分解法。要注 意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b). ⑹配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方 差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也 要注意必须在与原多项式相等的原则下进行变形。 例如: x 2 +3x-40 = x 2 +3x+2.25-42.25 = x 1.5 6.5
2 2
=(x+8)(x-5).
⑺应用因式定理 对于多项式 f(x)=0,如果 f(a)=0,那么 f(x)必含有因式 x-a. 例如:f(x)= x 2 +5x+6,f(-2)=0,则可确定 x+2 是 x 2 +5x+6 的一个因式。(事实上,
x 2 +5x+6=(x+2)(x+3).)
注意:1、对于系数全部是整数的多项式,若 X=q/p(p,q 为互质整数时)该多项式值 为零,则 q 为常数项约数,p 最高次项系数约数; 2、对于多项式 f(a)=0,b 为最高次项系数,c 为常数项,则有 a 为 c/b 约数 ⑻换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因 式分解,最后再转换回来,这种方法叫做换元法。 注意:换元后勿忘还元. 例如在分解( x 2 +x+1)( x 2 +x+2)-12 时,可以令 y= x 2 +x,则 原式=(y+1)(y+2)-12 =y 2 +3y+2-12=y 2 +3y-10 =(y+5)(y-2)

【3】因式分解及技巧

【3】因式分解及技巧

因式分解及技巧1. 因式分解基础复习因式分解:把一个多项式化成几个整式的积的形式。

因式分解与整式的乘法是个互逆的过程,例如:22()()a b a b a b +-=-是整式的乘法,通过握手原则进行多乘多;22()()a b a b a b -=+-则是因式分解,结果为两个整式乘积的形式。

因式分解中,基础的方法为:一提、二套、三分。

一提:提公因式(1)2212246a b ab ab -+;(2)32a a a --+;(3)()(1)()(1)a b m b a n -+---;总结:提公因式法中,公因式的形式不受限制,可以是单个字母,也可以是个形式复杂的单项式,更可能是一个多项式。

二套:套公式法(1)228168ax axy ay -+-;(2)44x y -;(3)4221a a -+;(4)22222()4a b a b +-.总结:主要考虑平方差公式和完全平方公式,当然其他的公式如果能够记熟,对于做题的帮助也是非常巨大,例如立方和、立方差、完全立方公司等等,甚至是利用杨辉三角对高次多项式因式分解 例如:222946412x y z xy xz yz ++-+-三分:分组分解(1)22144a ab b ---;(2)22699a a b ++-;(3)2299ax bx a b +--;(4)22244a a b b -+-.总结:分组分解比较考验对分组后公因式的预判和对公式的熟悉程度,是因式分解技巧的初步体现;在面对超过三项的多项式时,要耐心观察特征,尝试不同分组,思考时要明确方向。

2. 秒杀利器——十字相乘单十字相乘对象:二次三项式原理:2()()()x p q x pq x p x q +++=++2()()()mnx mq np x pq mx p nx q +++=++22()()()mnx mq np xy pqy mx py nx qy +++=++十字图:(1)243x x ++;(2)26x x +-;(3)223x x -++;(4)221x x +-;(5)22512x x +-;(6)2232x xy y +-;(7)2221315x xy y ++ (8)22(1)12(1)16a a ---+;(9)(1)(2)12x x ++-; (10)222221x xy y x y -+-++.双十字相乘关于两个字母的二次六项式(内含两个字母可能会组成的所有可能的项),考虑双十字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把一个多项式分解的一般步骤是 1 如果多项式各项有公因式,那么先提公因式.
2 如果各项没有因式,可以尝试用公式来分.
3 如果上述方法不能分解,可以尝试用分组分 解法分解. 4 因式分解,必须进行到每个多项式因式不能 分解为止.
例3 :
(1) x2y2 - 5x2y + 6x2 (2) 81x5y5 - 16xy
x2 + 3 x + 2
= (x + 1)(x + 2)
(2)分析: x2 - 7 x + 6的二 次项系数是1,常数项 6 = (-1) × (-6),一次项系数 -7=(1)+(-6),同样可以写成x2+[(1)+(-6)]x+(-1) × (-6)的形式, 所以:
解:
x2 - 7 x + 6 = ( x - 1) ( x - 6 )
步骤:1.竖分常数项、二次项 系数 2.交叉相乘和相加,检验中项 系数 3.横写因式不能忘
例如:分解 x 2 - 10 x + 21
1 -3
x - 3 x - 7
1
-7
注意:处理系数时要带符号一起处理
所以:原式= ( x - 3 ) ( x - 7 )
例2:
(1) x2 + x - 2 (2) x2 - 2x - 15
x2+(3+6)x+3×6 x2+(7+8)x+7×8 x2+ (p+q) x+ pq
x2+(2+3)x+2×3 第三项系数 x2+(3+6)x+3×6 x2+(7+8)x+7×8 x2+(p+q)x+pq
(即常数项)
x2+(2+3)x+2×3 x2+(3+6)x+3×6 第二项系 数(即一次 项系数) x2+(7+8)x+7×8 x2+(p+q)x+pq
特点:
(1)二次项系数是1
(2)常数项是两个数之积
(3)一次项系数是常数项两个 因数之和
因此以上例题我们都可以用
x2+(p+q)x+pq的形式来表示
那么我们来回顾一下x2+(p+q)x+pq
是如何分解因式的: x2 + ( p + q ) x + pq = x2 + px + qx + pq = ( x2 + px ) + ( qx + pq ) =x(x+p)+q(x+p)
x2+15x+56
x2+(7+8)x+7×8
x2+(p+q)x+pq
x2+(p+q)x+pq
观察以上各个多项式,分别 从每个多项式的每一项的系 数考虑,看看它们有没有什 么共同点?
第一项系数(即二次项系数)
第三项系数(即常数项)
第二项系数(即一次项系数)
归纳
x2+(2+3)x+2×3 第一项系 数(即二次 项系数)
x2+(p+q)x+pq型多项式的因式分解
华师版《数学》八年级上
教学目标,重点难点
x2+(p+q)x+pq型多项式的识别
十 字 相 乘 法
x2+(p+q)x+pq型多项式的因式分解
经讨论分析得出十字相乘法,并利用十字相 乘法分解形如: x2+(p+q)x+pq的 多项式 例题讲解 课堂练习 小结 作业
=(x+p)(x+q)
所以
x2+(p+q)x+pq=(x+p)(x+q)
利用这一结果我们可以直接将某些二 次项系数是1的二次三项式进行因式 分解
例1
(1) (2)
x2 + 3 x + 2 x2 - 7 x + 6
(1) 分析: x2 + 3 x + 2的二次 项系数是1,常数项2=1× 2,一 次项系数3=1+2,可以写 x2+(1+2)x+1× 2的形式,所以: 解:
分析 书写过程
解:
(1) x2y2 - 5x2y + 6x2 第一步 : 先提出各项的公因式 x2,得到 : x2y2 - 5x2y - 6x2 = x2 ( y2 - 5y + 6 ) 第二步 : 用十字相乘法继续分解y2 - 5y + 6
1 1 -2 -3
可得 :原式= ( x – 2 ) ( x – 3 )
教学目标:
1 了解形如x2+(p+q)x+pq型的多项式, 2 会用十字相乘法分解形如x2+(p+q)x+pq 的多项式 重点: 利用十字相乘法分解因式。
难点:
常数项为正,分为两个同号的数相乘;常 数项为负,分为两个异号的数相乘。
观察:
x2+5x+6
x2+9x+18 x2+(2+3)x+2×3 x2+(3+6)x+3×6
分析(1) x2 + x - 2的两次项系数是 1,常数项-2=(-1) × 2,一次项系数 1=(-1)+2,得:
1 -1
x - 1 x + 2
1
2
所以,原式= ( x - 1 ) ( x + 2 )
(2) x2 - 2x - 15
熟练之后,可以直接用十字相乘法如下:
1 3
歌谣:
1 -5
竖分常数,交叉验, 横写因式不能忘
所以,原式= ( x + 3 ) ( x - 5 )
归纳填空:
(1)常数项是正数时,它分解成两 同 个_______ 号因数,它们和 一次 相同 项系数符号_____.
(2)常数项是负数时,它分解成两 异 个_______ 号因数,其中绝对值较 大 ______ 的因数和一次项系数符 号相同.
课堂小结:
从例1中我们可以看到对形如 x2+(p+q)x+pq 的多项式进行因式分解时,主要是 通过讨论多项式各个项的系数来 分解的,因此我们可以用一个简便 的方法来分解这一类因式,即十字 相乘法.
例如:分解 x 2 + 8 x + 12
1 2
x + 2
1
6
x + 6
解:原式= ( x + 2 ) ( x + 6 )
相关文档
最新文档