2020年中考数学复习 专题3 规律探索与阅读理解(精讲)试题
2020年中考数学 中考试题精选 探索规律(含解答)-
探索规律型问题【解题指导】探索数、式、符号的变化规律;探究几何问题的结论——探索图形规律. 1、(2004浙江省嘉善县)用边长为1cm 的小正方形搭如下的塔状图形,则第n 次所搭图形的周长是 ___________cm (用含n 的代数式表示).2、(2004年泰州市)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n 个图中小黑点的个数为y .图⑴ 填表:⑵ 当n =8时,y =__________.⑶ 根据上表中的数据,把n 作为横坐标,把y 作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y ),其中1≤n ≤5.⑷ 请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,现在你能够写出该函数的解析式吗?【探索与交流】1、(金华市)观察一列数:3,8,13,18,23,28……依此规律,在此数列中比2000大的最小整数是_______________. 2、(舟山市)古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 _____ . 3、一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按····· · · · · ·· · ······· · ·· · · · · · · · · · ·· ·· · · · · · ·· · · ·第1次 第2次 第3次 第4次 ······照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的_____________A .31,32,64;B .31,62,63;C .31,32,33;D .31,45,46 4、(2004江苏省徐州市)下面的图形是由边长为l 的正方形按照某种规律排列而组成的.(1)观察图形,填写 下表:图形 ① ② ③ 正方形的个数 8 图形的周长18(2)推测第n 个图形中,正方形的个数为________,周长为_______(都用含n 的代数式表示).(3)这些图形中,任意一个图形的周长与它所含正方形个数之间的函数关系式为______________________________.5、观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4……请你将猜想到的规律用自然数n (n ≥1)表示出来 .6、一个由数字1和0组成的2005位的数码,其排列规律是101101110101101110101101110……,其中“0”的个数为____________. 7、(扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是13212021210123=⨯+⨯+⨯+⨯,那么将二进制数2)1111(转换成十进制形式是数_______ .A 、8B 、15C 、20D 、308、观察下列算式:,221=, 422=,823=,1624=,3225=,6426=12827= ,25628=通过观察,用你所发现的规律写出98的末位数字是 .9、研究下列算式:1=12; 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52;…用代数式表示此规律(n 为正整数)1+3+5+7+……+(2n-1)=______________________.用文字语言表述是:____________________________________.10、观察下面几个算式,你发现了什么规律: 1+2+1=4; 1+2+3+2+1=9;1+2+3+4+3+2+1=16; 1+2+3+4+5+4+3+2+1=25;……利用上面的规律,你能不能迅速算出1+2+3+……+99+100+99+……+3+2+1=_____11、(山西省)联欢会上,小红按照4个红气球、3个黄气球、2个绿气球的顺序把气球串起来装饰会场,第56个气球的颜色是 .12、(大连市)借助计算器可以求得2222222243,4433,444333,44443333++++……,仔细观察上面几道题的计算结果,试猜想2220032003444+333=L L个个_______________;13、将一边长为16厘米的正方形纸片,剪成四个大小一样的小正方形,然后将其中的一个再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环下去,剪6次一共剪出多少个小正方形?所剪得正方形个数S和所剪次数n有什么关系?用数学表达式表示为.14、(山东省)下面是按照一定规律画出的一列“树型”图:……经观察发现:图(2)比图(1)多2个“树枝”,图(3)比(2)多5个“树枝”,图(4)比(3)多10个“树枝”,照此规律,图(7)比(6)多出 _ 个“树枝”.15、(资阳市)如图,已知四边形ABCD是梯形(标注的数字为边长),按图中所示的规律,用2003个这样的梯形镶嵌而成的四边形的周长是___________.1211DCBA图5……16、(2004年十堰市)有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.21B.41C.81D.16117、(南昌市)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第四个图案中有白色地砖_________块;(2)第n个图案中有白色地砖___________块.18、(宁夏)一组线段AB和CD把正方……第10题图第三个第二个第一个A C AD CADBADC形分成形状相同、面积相等的四部分.现给出四种分法,如图所示.请你从中找出线段AB、CD的位置及关系存在的规律.符合这种规律的线段共有多少组?(不再添加辅助线和其它字母)19、(吉林)如图所示,用用样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围);……20、(黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.n=1答案1、4n;2(1)21;(2)57;(3)略;(4)y=n2-n+1;1、2003;2、47;3、B;4、(1)13、28;18、38;(2)5n+3,10n+8;(3)C=2n+2;5、n2+n=n(n+1);6、668;7、B;8、8;9、n2;10、1002;11、红;12、55…5(2003个);13、19个;14、80个;15、6011;16、B;17、(1)18;(2)4n+2;18、AB ⊥CD,AB、CD交于正方形的中心;无数组;19、(1)n+3,n+2;(2)y=n2+5n+6;20、图(2)成立;图(3)不成立;过点P作BC的平行线,转化为图(1);图(3)中结论:h1+h2-h3=h。
(最新)2020年中考数学压轴题题型专练:规律探索题(含答案)
第 4 题图 3n+2 【解析】观察图案可知,图案分成两部分,横向的横子数量依次为 3, 5,7,…,纵向的棋子数量依次为 2,3,4,…,∴第 n 个图案棋子数量为 2n+1 +(n+1)=3n+2. 5. 如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包 括两个顶点)都摆有 n(n≥3)盆花,每个图案中花盆总数为 S,按照图中的规律可以 推断 S 与 n(n≥3)的关系是________.
第 3 题图
(1)4033ab 2
【解析】由题意得,菱形
I1
的面积为:1AG 2
·AE=1×1a×1b=(1)3ab, 22 2 2
菱形
I2
的面积为:12FQ
·FN=1×(1×1a)×(1×1b)=(1)5ab;…;菱形 2 22 22 2
In
的面积为:(1)2n 2
+1ab.∴当
n=2016
时,菱形
第 3 题图 (0,21009) 【解析】点 B 的位置依次落在第一象限、y 正半轴、第二象限、 x 负半轴、第三象限、y 负半轴、第四象限、x 正半轴…,每 8 次一循环.2018÷8 = 252……2,所以 B2018 落在 y 轴正半轴,故 B2018 的横坐标是 0;OBn 是正方形 的对角线,OB1= 2,OB2= 2= ( 2)2,OB3= 2 2= ( 2)3,…,所以 OB2018 = ( 2)2018= 21009,所以 B2018 的坐标为(0,21009). 4. 如图,正△ABO 的边长为 2,O 为坐标原点,A 在 x 轴上,B 在第二象限, △ABO 沿 x 轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚 3 次后 点 B 的对应点的坐标是________,翻滚 2017 次后 AB 中点 M 经过的路径长为 ________.
中考数学复习 专题3 规律探索与阅读理解(精讲)试题
专题三 规律探索与阅读理解毕节中考备考攻略规律探索与阅读理解指的是给出一定条件,让考生认真分析、仔细观察、综合归纳、大胆猜想,得出结论,并加以验证的数学探索题.纵观近5年毕节中考数学试卷,规律探索与阅读理解多次出现,其中2014年第18题考查数的规律,2017年第20题考查式的计算规律,2018年第20题考查式的计算规律.预计2019年将继续考查规律探索与阅读理解,有可能考查图形规律的探索.从特殊情况入手探索发现规律→综合归纳→猜想得出结论→验证结论.中考重难点突破数的规律例1 (2018·绵阳中考)将全体正奇数排成一个三角形数阵.根据以上排列规律,数阵中第25行的第20个数是( A )A .639B .637C .635D .633【解析】根据三角形数阵可知,第n 行奇数的个数为n 个,则前(n -1)行奇数的总个数为1+2+3+…+(n -1)=n (n -1)2,第n 行(n≥3)从左向右的第m 个数为第⎣⎢⎡⎦⎥⎤n (n -1)2+m 个奇数,即2[n (n -1)2+m -1]+1=n 2-n +2m -1.把n =25,m =20代入计算,即可得出答案.式的计算规律例2 (2018·成都中考)已知a >0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,…(即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2 018=__-a +1a__.【解析】S 1=1a ,S 2=-S 1-1=-1a -1=-a +1a ,S 3=1S 2=-a a +1,S 4=-S 3-1=a a +1-1=-1a +1,S 5=1S 4=-(a+1),S 6=-S 5-1=(a +1)-1=a,S 7=1S 6=1a ,…,由此得出规律:S n 的值每6个一循环.由2 018=336×6+2,可得S 2 018=S 2,继而可得出答案.图形的变化规律例3 (2018·重庆中考A 卷)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( C )A.12B.14C.16D.18【解析】第①个图案中三角形的个数为2+2=2×2=4; 第②个图案中三角形的个数为2+2+2=2×3=6; 第③个图案中三角形的个数为2+2+2+2=2×4=8; ……第○,n )个图案中三角形的个数为2(n +1). 把n =7代入2(n +1)即可得出答案.坐标的规律例4 (2018·广州中考)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1 m ,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△OA 2A 2 018的面积是( A )A .504 m 2B .1 0092 m 2 C .1 0112m 2 D .1 009 m 2【解析】依题可得A 2(1,1),A 4(2,0),A 8(4,0),A 12(6,0),…, ∴A 4n (2n,0),∴A 2 016(即A 4×504)的坐标为(1 008,0). ∴A 2 018(1 009,1).∴A 2A 2 018=1 009-1=1 008.∴S △OA 2A 2 018=12×1×1 008.,1.(2018·十堰中考)如图是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( B )A .210B .41C .5 2D .2512.(2018·宜昌中考)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”.请观察图中的数字排列规律,则a,b,c 的值分别为( B )A .a =1,b =6,c =15B .a =6,b =15,c =20C .a =15,b =20,c =15D .a =20,b =15,c =63.(2018·滨州中考)观察下列各式:1+112+122=1+11×2, 1+122+132=1+12×3, 1+132+142=1+13×4, ……请利用你所发现的规律,计算:1+112+122+1+122+132+1+132+142+…+1+192+1102,其结果为__9910__.4.(2018·随州中考)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10,…)和“正方形数”(如1,4,9,16,…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m +n 的值为( C )A .33B .301C .386D .5715.(2018·东营中考)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =15x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果点A 1(1,1),那么点A 2 018的纵坐标是__⎝ ⎛⎭⎪⎫322 017__.6.(2018·桂林中考)将从1开始的连续自然数按图规律排列:规定位于第m 行,第n 列的自然数10记为(3,2),自然数15记为(4,2),….按此规律,自然数2 018记为__(505,2)__.行 \ 列第1列第2列第3列第4列第1行 1 2 3 4第2行8 7 6 5第3行9 1011 12第4行16 15 14 13……………第n行…………毕节中考专题过关1.(2018·枣庄中考)将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 1415 16第5行25 24 23 22 21 20 19 18 17……则2 018在第__45__行.2.(2018·张家界中考)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64, 27=128, 28=256,…,则2+22+23+24+25+…+22 018的末位数字是( B)A.8B.6C.4D.03.(2018·德州中考)我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.(a+b)0 (1)(a+b)1………………1 1(a+b)2……………1 2 1(a+b)3…………1 3 3 1(a+b)4………1 4 6 4 1(a+b)5……1 5 10 10 5 1根据“杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为( B)A.84B.56C.35D.284.(2018·绍兴中考)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( D)A.16张B.18张C.20张D.21张5.(2018·重庆中考B卷)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( B)…A.11B.13C.15D.176.(2018·绍兴中考)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,如图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( B)7.(2018·济宁中考)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( C)8.(2018·烟台中考)如图,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为( C)A.28B.29C.30D.319.(2018·遵义中考)每一层三角形的个数与层数的关系如下图所示,则第2 018层的三角形个数为__4__035__.10.(2018·白银中考)如图是一个运算程序的示意图,若开始输入x的值为625,则第2 018次输出的结果为__1__.11.如图,在数轴上,A1,P两点表示的数分别是1,2,A1,A2关于点O对称,A2,A3关于点P对称,A3,A4关于点O对称,A4,A5关于点P对称,…,依此规律,则点A14表示的数是__-25__.。
2020届中考数学试题分类汇编:规律探索(含精析)
(2020•衡阳)观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n=﹣.考点:规律型:数字的变化类.分析:根据题意可知a1=1﹣,a2=﹣,a3=﹣,…故a n=﹣.解答:解:通过分析数据可知第n个等式为:a n=﹣.故答案为:﹣.点评:本题考查了数字变化规律,培养学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.(2020,娄底)如图,是用火柴棒拼成的图形,则第n个图形需__________根火柴棒.(2020•益阳)下表中的数字是按一定规律填写的,表中a的值应是21 .1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.(2020,永州)电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)3()图甲A B C D GE F2341322422221111111133()图乙00(2020•荆州)观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 ﹣128a 8.考点: 规律型:数字的变化类. 专题:规律型. 分析: 根据单项式可知n 为双数时a 的前面要加上负号,而a 的系数为2(n ﹣1),a 的指数为n .解答:解:第八项为﹣27a 8=﹣128a 8. 点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.(2020•达州)如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2020BC 和∠A 2020CD 的平分线交于点A 2020,则∠A 2020= 度。
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。
2020年中考数学高频重点《数的规律探索》专题突破精练精解(含答案)
【中考数学】专题17 数的规律探索【达标要求】规律探索型问题是指由给出的几个具体的结论来探求与它相关的一般性结论的问题,本节主要包括“数字规律探索”、“代数式规律探索”类型.【知识梳理】数字规律类试题一般是给定一些具有某种特定关系的数字,考查学生的观察、分析、类比、猜想和归纳能力.常有以下类型:(1)等差数列类.即相邻数字的差值相等,整个数字序列依次递增或递减的一类数.(2)等比数列类.即相邻数字的比值相等.(3)加、减、乘、除、平方规律型.(4)个位数字规律类.在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.解决规律探索型问题的策略是:通过对所给的一组(或一串)式子及结论,进行全面细致地观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以应用.【精练精解】1.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数为112=--1,﹣1的差倒数()11112=--,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2019的值是( )A .5B .14-C .43D .452.观察下列各式:=1112+=⨯1+(112-)=1123+=⨯1+(1123-)=1134+=⨯1+(1134-),… 请利用你发现的规律,计算:+L,其结果为.3.按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1 C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1 4.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.10245.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,…,若第n个数为57,则n=()A.50B.60C.62D.716.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.87.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()8.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.89.按一定规律排列的一列数依次为:22a-,55a,810a-,1117a,…(a≠0),按此规律排列下去,这列数中的第n个数是_______.(n为正整数)10.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(4,4),A2(8,0)组成的折线依次平移8,16,24,…个单位得到的,直线y=kx+2与此折线有2n(n≥1且为整数)个交点,则k的值为.6.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.7.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是.8.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD12=AC时,tanα134=;如图2,当CD13=AC时,tanα2512=;如图3,当CD14=AC时,tanα3724=;……依此类推,当CD11n=+AC(n为正整数)时,tanαn= .9.如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为1,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)10.如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D1作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)= .11.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为 .12.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 个.13.如图,在平面直角坐标系中,四边形OA 1B 1C 1,A 1A 2B 2C 2,A 2A 3B 3C 3,…都是菱形,点A 1,A 2,A 3,…都在x 轴上,点C 1,C 2,C 3,…都在直线y 3=x 3+上,且∠C 1OA 1=∠C 2A 1A 2=∠C 3A 2A 3=…=60°,OA 1=1,则点C 6的坐标是 .14.我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15.依上述规律,解决下列问题:(1)若s=1,则a2= ;(2)若s=2,则a0+a1+a2+…+a15= .15.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.16.观察下列式子第1个式子:2×4+1=9=32第2个式子:6×8+1=49=72第3个式子:14×16+1=225=152……请写出第n个式子:.17.如图,直线y13x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.18.如图,点B1在直线l:y12=x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x 轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)19.如图,点A1,A2,A3…,A n在x轴正半轴上,点C1,C2,C3,…,∁n在y轴正半轴上,点B1,B2,B3,…,B n在第一象限角平分线OM上,OB1=B1B2=B1B3=…=B n﹣1B n2=a,A1B1⊥B1C1,A2B2⊥B2C2,A3B3⊥B3C3,…,A n B n⊥B n∁n,…,则第n个四边形OA n B n∁n的面积是.20.如图,在平面直角坐标系中,直线l1:y=x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y3=于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C 2019B 2019B 2020的面积是 .21.阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S =1+2+22+…+22017+22018①则2S =2+22+…+22018+22019②②﹣①得2S ﹣S =S =22019﹣1∴S =1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29= ;(2)3+32+…+310= ;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程).22.观察以下等式:第 1个等式:211111=+,第2个等式:211326=+,第3个等式:2115315=+,第4个等式:2117428=+,第5个等式:2119545=+,…… 按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.23.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依此类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为,第5项是.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+()d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?24.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.25.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.专题17 数的规律探索【达标要求】规律探索型问题是指由给出的几个具体的结论来探求与它相关的一般性结论的问题,本节主要包括“数字规律探索”、“代数式规律探索”类型.【知识梳理】数字规律类试题一般是给定一些具有某种特定关系的数字,考查学生的观察、分析、类比、猜想和归纳能力.常有以下类型:(1)等差数列类.即相邻数字的差值相等,整个数字序列依次递增或递减的一类数.(2)等比数列类.即相邻数字的比值相等.(3)加、减、乘、除、平方规律型.(4)个位数字规律类.在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.解决规律探索型问题的策略是:通过对所给的一组(或一串)式子及结论,进行全面细致地观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以应用.【精练精解】1.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数为112=--1,﹣1的差倒数()11112=--,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2019的值是( )A .5B .14-C .43D .45 【答案】D .【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a 2019相同的数即可得解.【详解】∵a 1=5,a 211111154a ===---,a 3211411514a ===-⎛⎫-- ⎪⎝⎭,a 43114115a ===--5,… ∴数列以5,14-,45三个数依次不断循环. ∵2019÷3=673,∴a 2019=a 345=. 故选D .2.观察下列各式:=1112+=⨯1+(112-)=1123+=⨯1+(1123-)=1134+=⨯1+(1134-),… 请利用你发现的规律,计算:+L ,其结果为 . 【答案】201820182019. 【分析】根据题意找出规律,根据二次根式的性质计算即可.+L =1+(112-)+1+(1123-)+…+1+(1120182019-) =2018+111111112233420182019-+-+-++-L =201820182019.故答案为:201820182019.3.按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1B .(﹣1)n x2n ﹣1C .(﹣1)n ﹣1x 2n +1D .(﹣1)n x 2n +1【答案】C .【分析】观察指数规律与符号规律,进行解答便可. 【详解】∵x 3=(﹣1)1﹣1x2×1+1,﹣x 5=(﹣1)2﹣1x2×2+1,x 7=(﹣1)3﹣1x2×3+1,﹣x 9=(﹣1)4﹣1x2×4+1,x 11=(﹣1)5﹣1x 2×5+1,……由上可知,第n 个单项式是:(﹣1)n ﹣1x 2n +1.故选C .4.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a +b )n(n 为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角” (a +b )0=1 (a +b )1=a +b (a +b )2=a 2+2ab +b 2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.1024【答案】C.【分析】由“杨辉三角”的规律可知,令a=b=1,代入(a+b)9计算可得所有项的系数和.【详解】由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512.故选C.5.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,…,若第n个数为57,则n=()A.50 B.60 C.62 D.71【答案】B.【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】11,12,21,13,22,31,14,23,32,41,…,可写为:11,(12,21),(13,22,31),(14,2 3,32,41),…,∴分母为11开头到分母为1的数有11个,分别为12345678910111110987654321,,,,,,,,,,,∴第n个数为57,则n=1+2+3+4+…+10+5=60.故选B.6.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0 B.1 C.7 D.8【答案】A.【分析】首先得出尾数变化规律,进而得出70+71+72+…+72019的结果的个位数字.【详解】∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.故选A.7.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.8.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0 B.1 C.7 D.8解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.故选:A.9.按一定规律排列的一列数依次为:22a-,55a,810a-,1117a,…(a≠0),按此规律排列下去,这列数中的第n个数是_______.(n为正整数)【答案】312 (1)1nnan--⋅+.【解析】第1个数为31112 (1)11a⨯--⋅+,第2个数为23122 (1)21a⨯--⋅+,第3个数为33132 (1)31a⨯--⋅+,第4个数为34142 (1)41a⨯--⋅+,…,所以这列数中的第n个数是312 (1)1nnan--⋅+.故答案为312 (1)1nnan--⋅+.10.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(4,4),A2(8,0)组成的折线依次平移8,16,24,…个单位得到的,直线y=kx+2与此折线有2n(n≥1且为整数)个交点,则k的值为.【答案】14n -.【分析】由点A1、A2的坐标,结合平移的距离即可得出点A n的坐标,再由直线y=kx+2与此折线恰有2n(n ≥1,且为整数)个交点,即可得出点A n+1(8n,0)在直线y=kx+2上,依据依此函数图象上点的坐标特征,即可求出k值.【详解】∵A1(0,0),A2(8,0),A3(16,0),A4(24,0),…,∴A n(8n﹣8,0).∵直线y=kx+2与此折线恰有2n(n≥1且为整数)个交点,∴点A n+1(8n,0)在直线y=kx+2上,∴0=8nk+2,解得:k14n =-.故答案为:14n -.6.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.【答案】(﹣22017,2).【分析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【详解】由题意得:A1的坐标为(1,0),A2的坐标为(1),A3的坐标为(﹣2,,A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣,A6的坐标为(16,﹣,A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣.∵2019÷6=336…3,∴点A2019的方位与点A23的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为2故答案为:(﹣22017,2.7.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是.【答案】(47,16).【分析】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y1133x=+,把C5的纵坐标代入即可求得横坐标.【详解】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,….∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…,∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y13=x13+.∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y13=x13+,解得x=47,∴C5的坐标是(47,16).故答案为:(47,16).8.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD 12=AC 时,tan α134=; 如图2,当CD 13=AC 时,tan α2512=;如图3,当CD 14=AC 时,tan α3724=;……依此类推,当CD 11n =+AC (n 为正整数)时,tan αn = . 【答案】22122n n n++.【分析】探究规律,利用规律解决问题即可.【详解】观察可知,正切值的分子是3,5,7,9,…,2n +1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n +1,2(21)12n +-,2(21)12n ++中的中间一个,∴tan αn222121(21)1222n n n n n++==+-+. 故答案为:22122n n n ++.9.如图所示,在平面直角坐标系xoy 中,一组同心圆的圆心为坐标原点O ,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l 0,l 1,l 2,l 3,…都与x 轴垂直,相邻两直线的间距为1,其中l 0与y 轴重合若半径为2的圆与l 1在第一象限内交于点P 1,半径为3的圆与l 2在第一象限内交于点P 2,…,半径为n +1的圆与l n 在第一象限内交于点P n ,则点P n 的坐标为 .(n 为正整数)【答案】(n).【分析】连OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3.在Rt△OA1P1中,OA1=1,OP1=2,由勾股定理得出A1P1==A2P2=,A3P3=P1的坐标为( 1,P2的坐标为( 2,P3的坐标为(3),……,得出规律,即可得出结果.【详解】连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===A2P2==,A3P3=……,∴P1的坐标为( 1,P2的坐标为( 2),P3的坐标为(3),……,…按照此规律可得点P n的坐标是(n,即(n)故答案为:(n).10.如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D1作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D 2019F 2019)= .【答案】40380.【分析】∵D 1F 1∥AC ,D 1E 1∥AB ,可得1111D F AB DE AC AB-=,因为AB =5,BC =4,则有4D 1E 1+5D 1F 1=20;同理有如下规律4D 2E 2+5D 2F 2=20,…,4D 2019E 2019+5D 2019F 2019=20. 【详解】∵D 1F 1∥AC ,D 1E 1∥AB ,∴111D F BF AC AB =,即1111D F AB DE AC AB-=. ∵AB =5,BC =4,∴4D 1E 1+5D 1F 1=20,同理4D 2E 2+5D 2F 2=20,…,4D 2019E 2019+5D 2019F 2019=20,∴4(D 1E 1+D 2E 2+…+D 2019E 2019)+5(D 1F 1+D 2F 2+…+D 2019F 2019)=20×2019=40380. 故答案为:40380.11.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为 .【答案】(2,4,2).【分析】根据点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论. 【详解】根据题意得:点C 的坐标可表示为(2,4,2). 故答案为:(2,4,2).12.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 个. 【答案】3.【分析】求出第一次编号中砸碎3的倍数的个数,得余下金蛋的个数,再求第二次编号中砸碎的3的倍数的个数,得余下金蛋的个数,依次推理便可得到操作过程中砸碎编号是“66”的“金蛋”总个数. 【详解】∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)∵140÷3=46...2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋.∵63<66,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.故答案为:3.13.如图,在平面直角坐标系中,四边形OA 1B 1C 1,A 1A 2B 2C 2,A 2A 3B 3C 3,…都是菱形,点A 1,A 2,A 3,…都在x轴上,点C 1,C 2,C 3,…都在直线y 3=x 3+上,且∠C 1OA 1=∠C 2A 1A 2=∠C 3A 2A 3=…=60°,OA 1=1,则点C 6的坐标是 .【答案】(47,.【分析】根据菱形的边长求得A 1、A 2、A 3…的坐标然后分别表示出C 1、C 2、C 3…的坐标找出规律进而求得C 6的坐标.【详解】∵OA 1=1,∴OC 1=1,∴∠C 1OA 1=∠C 2A 1A 2=∠C 3A 2A 3=…=60°,∴C 1的纵坐标为:sin 60°•OC 1=横坐标为cos 60°•OC 112=,∴C 1(12.∵四边形OA 1B 1C 1,A 1A 2B 2C 2,A 2A 3B 3C 3,…都是菱形,∴A 1C 2=2,A 2C 3=4,A 3C 4=8,…,∴C 2的纵坐标为:sin 60°•A 1C 2=y =+求得横坐标为2,∴C 2(2),C 3的纵坐标为:sin 60°•A 2C 3入y 3=x 3+求得横坐标为5,∴C 3(5,),∴C 4(11,,C 5(23,,∴C 6(47,.故答案为:(47,.14.我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a +b )n的展开式(按b 的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s +x )15的展开式按x 的升幂排列得:(s +x )15=a 0+a 1x +a 2x 2+…+a 15x 15.依上述规律,解决下列问题: (1)若s =1,则a 2= ;(2)若s =2,则a 0+a 1+a 2+…+a 15= .【答案】(1)105;(2)315.【分析】(1)根据图形中的规律即可求出(1+x )15的展开式中第三项的系数为前14个数的和; (2)根据x 的特殊值代入要解答,即把x =1代入时,得到结论.【详解】(1)由图2知:(a +b )1的第三项系数为0,(a +b )2的第三项的系数为:1,(a +b )3的第三项的系数为:3=1+2,(a +b )4的第三项的系数为:6=1+2+3,…,∴发现(1+x )3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴s=1,则a2=1+2+3+…+14=105.故答案为:105;(2)∵(s+x)15=a0+a1x+a2x2+…+a15x15.当x=1时,a0+a1+a2+…+a15=(2+1)15=315.故答案为:315.15.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.【答案】6058.【分析】根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数.【详解】由图可得:第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇.故答案为:6058.16.观察下列式子第1个式子:2×4+1=9=32第2个式子:6×8+1=49=72第3个式子:14×16+1=225=152……请写出第n个式子:.【答案】(2n+1﹣2)×2n+1+1=(2n+1﹣1)2.【分析】由题意可知:①等号左边是两个连续偶数的积(其中第二个因数比第一个因数大2)与1的和;右边是比左边第一个因数大1的数的平方;②第1个式子的第一个因数是22﹣2,第2个式子的第一个因数是23﹣2,第3个式子的第一个因数是24﹣2,以此类推,得出第n个式子的第一个因数是2n+1﹣2,从而能写出第n 个式子.【详解】∵第1个式子:2×4+1=9=32,即(22﹣2)×22+1=(22﹣1)2,第2个式子:6×8+1=49=72,即(23﹣2)×23+1=(23﹣1)2,第3个式子:14×16+1=225=152,即(24﹣2)×24+1=(24﹣1)2,……,∴第n 个等式为:(2n +1﹣2)×2n +1+1=(2n +1﹣1)2. 故答案为:(2n +1﹣2)×2n +1+1=(2n +1﹣1)2. 17.如图,直线y 13=x +1与x 轴交于点M ,与y 轴交于点A ,过点A 作AB ⊥AM ,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,A n ﹣1B n ﹣1C n ﹣1A n 中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为 .【答案】42223n n -.【分析】根据直线y 13=x +1与x 轴交于点M ,与y 轴交于点A ,可分别求出OA 、OM 的长,得出tan ∠AMO 13=,根据同角的余角相等可得∠OAB =∠AMO ,得出tan ∠OAB 13OB OA ==,进而得出OB 13=,进而表示出S 1,S 2,…,S n .【详解】在直线y 13=x +1中,当x =0时,y =1;当y =0时,x =﹣3;∴OA =1,OM =3,∴tan ∠AMO 13=. ∵∠OAB +∠OAM =90°,∠AMO +∠OAM =90°,∴∠OAB =∠AMO ,∴tan ∠OAB 13OB OA ==,∴OB 13=.∵12133-=,∴2124()39S ==,易得tan 1113B C CBB tan OAB BC ∠==∠=,∴11111333B C BC AC AB ===,∴1143A B AB =,∴221416()39S S ==,同理可得23211616()99S S S ==,34311616()99S S S ==,…,4442421111222221616422222()()()99933333n n n n n n n n S S ------⎛⎫==⨯=⨯=⨯= ⎪⎝⎭.故答案为:42223n n -.18.如图,点B 1在直线l :y 12=x 上,点B 1的横坐标为2,过B 1作B 1A 1⊥l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;按照这个规律进行下去,点∁n 的横坐标为 (结果用含正整数n 的代数式表示)【答案】173()22n -+. 【分析】根据点B 1的横坐标为2,在直线l :y 12=x 上,可求出点B 1的坐标,由作图可知图中所有的直角三角形都相似,两条直角边的比都是1:2,然后依次利用相似三角形的性质计算出C 1、C 2、C 3、C 4……的横坐标,根据规律得出答案.【详解】过点B 1、C 1、C 2、C 3、C 4分别作B 1D ⊥x 轴,C 1D 1⊥x 轴,C 2D 2⊥x 轴,C 3D 3⊥x 轴,C 4D 4⊥x 轴,……垂足分别为D 、D 1、D 2、D 3、D 4…… ∵点B 1在直线l :y 12=x 上,点B 1的横坐标为2,∴点B 1的纵坐标为1,即:OD =2,B 1D =1,图中所有的直角三角形都相似,两条直角边的比都是1:2,1111121111112B D DA C D D A OD B D A D C D =====L ,∴点C 1的横坐标为:212++(32)0,点C 2的横坐标为:212++(32)0+(32)014⨯+(32)152=+(32)054⨯+(32)1 点C 3的横坐标为:212++(32)0+(32)014⨯+(32)1+(32)114⨯+(32)252=+(32)054⨯+(32)154⨯++(32)2 点C 4的横坐标为:52=+(32)054⨯+(32)154⨯+(32)254⨯+(32)3……点∁n 的横坐标为:52=+(32)054⨯+(32)154⨯+(32)254⨯+(32)354⨯+(32)454⨯+L L (32)n ﹣15524=+[(32)0+(32)1×+(32)2+(32)3+(32)4……]+(32)n ﹣1 173()22n -=+ 故答案为:173()22n -+19.如图,点A 1,A 2,A 3…,A n 在x 轴正半轴上,点C 1,C 2,C 3,…,∁n 在y 轴正半轴上,点B 1,B 2,B 3,…,B n 在第一象限角平分线OM 上,OB 1=B 1B 2=B 1B 3=…=B n ﹣1B n =,A 1B 1⊥B 1C 1,A 2B 2⊥B 2C 2,A 3B 3⊥B 3C 3,…,A n B n ⊥B n ∁n ,…,则第n 个四边形OA n B n ∁n 的面积是 .【答案】2238n a .【分析】过点C 1作C 1E ⊥OB 1于点E ,过点A 1作A 1F ⊥OB 1于点F ,过点B 1分别作B 1H ⊥OC 1于点H ,B 1N ⊥OA 1于点N ,先证明:△B 1HC 1≌△B 1NA 1(AAS ),再证明:△B 1C 1E ≌△A 1B 1F (AAS ),即可证得:C 1E +A 1F =B 1F +OF =OB 1,进而可得:1111111238OB C OB A OA B C S S S a =+=V V 四边形,同理可得:22222328OA B C S a =⋅四边形,33322338OA B C S a =⋅四边形,…,22223388n n n OA B C n a S a n =⋅=四边形. 【详解】如图,过点C 1作C 1E ⊥OB 1于点E ,过点A 1作A 1F ⊥OB 1于点F ,过点B 1分别作B 1H ⊥OC 1于点H ,B 1N ⊥OA 1于点N .∵∠B 1OC 1=∠B 1OA 1,∴B 1H =B 1N .∵∠HB 1N =∠C 1BA 1=90°,∴∠HB 1C 1=∠NB 1A 1.∵∠B 1HC 1=∠B 1NA 1=90°,∴△B 1HC 1≌△B 1NA 1(AAS ),∴B 1C 1=B 1A 1. ∵∠C 1B 1F +∠A 1B 1F =90°,∠A 1B 1F =90°,∴∠C 1B 1F =∠B 1A 1F . ∵∠C 1EB 1=∠B 1FA 1=90°,∴△B 1C 1E ≌△A 1B 1F (AAS ),∴C 1E =B 1F . ∵∠B 1OA 1=45°,∴∠FA 1O =45°,∴A 1F =OF ,∴C 1E +A 1F =B 1F +OF =OB 1.1111111112OB C OB A OA B C S S S OB =+=V V 四边形•C 1E 1111122OB A F OB +⋅=(C 1E +A 1F )2221113)2228OB a ===,同理,222222221132)2228OA B C S OB a ===⋅四边形,333222231133)3228OA B C S OB a ===⋅四边形,…,2222221133)2288n n nn OA B C n a S OB n a n ===⋅=四边形. 故答案为:2238n a .20.如图,在平面直角坐标系中,直线l 1:y =x 轴交于点A 1,与y 轴交于点A 2,过点A 1作x 轴的垂线交直线l 2:y 3=x 于点B 1,过点A 1作A 1B 1的垂线交y 轴于点B 2,此时点B 2与原点O 重合,连接A 2B 1交x 轴于点C 1,得到第1个△C 1B 1B 2;过点A 2作y 轴的垂线交l 2于点B 3,过点B 3作y 轴的平行线交l 1于点A 3,连接A 3B 2与A 2B 3交于点C 2,得到第2个△C 2B 2B 3……按照此规律进行下去,则第2019个△C 2019B 2019B 2020的面积是 .【分析】根据一次函数解析式的求法和相似三角形的性质解答即可.【详解】∵y =x 轴交于点A 1,与y 轴交于点A 2,∴()(12100A A -,,,在y 3x =中,当x =﹣1时,y =,∴113B ⎛⎫-- ⎪ ⎪⎝⎭,,设直线A 2B 1的解析式为:y =kx +b,可得:b k b ⎧=⎪⎨-+=⎪⎩得:3k b ⎧=⎪⎨⎪=⎩,∴直线A 2B 1的解析式为:3y x =,令y =0,可得:x 34=-,∴C 2(34-,0),∴11221111139224388C B B S B C A B =⋅=⨯⨯==V ∵△A 1B 1B 2∽△A 2B 2B 3,∴△C 1B 1B 2∽△C 2B 2B 3,∴2231122223221211()()9C B B C B B S B B A B S B B A B ====V V,∴2231129C B B C B B S S ==V V3342239C B B C B B S S ==V V ,∴△C 2019B 2019B 2020的面积==.21.阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S =1+2+22+…+22017+22018①则2S =2+22+…+22018+22019②②﹣①得2S ﹣S =S =22019﹣1 ∴S =1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;(3)求1+a +a 2+…+a n的和(a >0,n 是正整数,请写出计算过程).【答案】(1)210﹣1;(2)11332-;(3)①当a =1时,原式=n +1;②当a ≠1时,1+a +a 2+a 3+a 4+..+a n 111n a a +-=-.【分析】(1)利用题中的方法设S =1+2+22+…+29,两边乘以2得到2S =2+22+…+29,然后把两式相减计算出S 即可;(2)利用题中的方法设S =1+3+32+33+34+…+310,两边乘以3得到3S =3+32+33+34+35+…+311,然后把两式相减计算出S 即可;(3)利用(2)的方法计算. 【详解】(1)设S =1+2+22+…+29① 则2S =2+22+…+210② ②﹣①得2S ﹣S =S =210﹣1 ∴S =1+2+22+…+29=210﹣1. 故答案为:210﹣1.(2)设S =3+3+32+33+34+…+310①,则3S =32+33+34+35+…+311②,②﹣①得2S =311﹣3,所以S 11332-=,即3+32+33+34+…+31011332-=.故答案为:11332-;(3)设S =1+a +a 2+a 3+a 4+..+a n ①,则aS =a +a 2+a 3+a 4+..+a n +a n +1②,②﹣①得:(a ﹣1)S =a n +1﹣1,分两种情况讨论:①当a =1时,不能直接除以a ﹣1,此时原式=n +1;②当a ≠1时,a ﹣1才能做分母,所以S 111n a a +-=-,即1+a +a 2+a 3+a 4+..+a n 111n a a +-=-.22.观察以下等式:第 1个等式:211111=+,第2个等式:211326=+,第3个等式:2115315=+,第4个等式:2117428=+,第5个等式:2119545=+,……按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明. 【答案】(1)21111666=+;(2)()2112121n n n n =+--. 【分析】(1)根据已知等式即可得; (2)根据已知等式得出规律()2112121n n n n =+--,再利用分式的混合运算法则验证即可. 【详解】(1)第6个等式为:21111666=+. 故答案为:21111666=+; (2)()2112121n n n n =+-- 证明:∵右边()()112112212121n n n n n n n -+=+===---左边,∴等式成立. 故答案为:()2112121n n n n =+--. 23.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依此类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为 ,第5项是 .。
(全国120套)2020年中考数学试卷分类汇编 规律探索题
(全国120套)2020年中考数学试卷分类汇编规律探索题1、〔绵阳市2019年〕把所有正奇数从小到大排列,并按如下规律分组:〔1〕,〔3,5,7〕,〔9,11,13,15,17〕,〔19,21,23,25,27,29,31〕,…,现用等式A M=〔i,j〕表示正奇数M是第i组第j个数〔从左往右数〕,如A7=〔2,3〕,那么A2019=〔 C 〕A、〔45,77〕B、〔45,39〕C、〔32,46〕D、〔32,23〕[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n, a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n=1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2019 ,2019不在第45组当n=32时,a n = 1923 < 2019 ,(2019-1923)÷2+1=46, A2019=(32,46).如果是非选择题:那么2n2-4n+3≤2019,2n2-4n-2018≤0,假如2019是某组的第一个数,那么2n2-4n-2018=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2019在第32组,但不是第32组的第一个数,a32=1923, (2019-1923)÷2+1=46.(注意区别a n和A n)2、〔2019济宁〕如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,那么平行四边形AO4C5B的面积为〔〕A、 cm2B、 cm2C、cm2D、cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.应选B、点评:此题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2019年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有〔〕A、21个交点B、18个交点C、15个交点D、10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6, 所以,六条直线的最多交点数为:12×5×6=15,4、〔2019•资阳〕从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征〔 〕正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,假设要得到2019个正方形,那么需要操作的次数是〔 〕解答以下问题:3+32+33+34…+32019的末位数字是〔〕A、0B、1C、3D、7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32019的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2019÷4=503…1,∴3+32+33+34…+32019的末位数字相当于:3+7+9+1+…+3的末尾数为3,应选:C、点评:此题主要考查了数字变化规律,根据得出数字变化规律是解题关键.7、〔2019•德州〕如图,动点P从〔0,3〕出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2019次碰到矩形的边时,点P的坐标为〔〕图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需〔〕根火柴.11、〔2019•孝感〕如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,那么第6个五边形数是51 .线OA上某点开始按逆时针方向依次在射线上描点并连线,假设将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2019个点在射线OC 上.3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.假设P〔37,m〕在第13段抛物线C13上,那么m =_________.答案:2解析:C1:y=-x(x-3)〔0≤x≤3〕C2:y=〔x-3〕(x-6)〔3≤x≤6〕C3:y=-〔x-6〕(x-9)〔6≤x≤9〕C4:y=〔x-9〕(x-12)〔9≤x≤12〕┉C13:y=-〔x-36〕(x-39)〔36≤x≤39〕,当x=37时,y=2,所以,m=2。
中考数学《规律探索》专题复习试题含解析
中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
中考数学复习专题3规律探索与阅读理解(精讲)课件
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
毕节中考备考攻略
中考重难点突破
毕节中考专题过关
2020年中考数学一轮专项复习——规律探索(含答案)
2020年中考数学一轮专项复习——规律探索中考备考攻略规律探索型问题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题.纵观宜宾近五年中考,往往以选择题、填空题形式出现,这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖.其目的是考查收集、分析数据、处理信息的能力.所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题.规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,既考查分析、解决问题能力,也考查观察、联想、归纳能力以及探究能力和创新能力.题型可涉及填空题、选择题或解答题.中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .451.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( )A. a 10+b 19 B .a 10-b 19 C .a 10-b 17 D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数: .3.已知:1+112+122=112,1+122+132=116,1+132+142=1112,…,根据此规律1+192+1102= .4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法:设S=1+2+22+…+22 017+22 018,①则2S=2+22+…+22 018+22 019.②②-①,得2S-S=S=22 019-1.∴S=1+2+22+…+22 017+22 018=22 019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n、…,若前n行点数和为930,则n=()A.29B.30C.31D.325.将全体正奇数排成一个三角形数阵:13 57911131517192123252729………………根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是()A B C D6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … 火柴棒根数4710131619…(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 .8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 .中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 .,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 .5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= .6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.10.一列火车自A 城驶往B 城,沿途有n 个车站(包括起点站A 和终点站B ),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x -1)个车站发给该站的邮包(x -1)个,还要装上后面行程中要停靠的(n -x )个车站的邮包(n -x )个.(1)根据题意,完成下表:车站序号 在第x 个车站启程时邮政车厢上的邮包总个数1 n -12 (n -1)-1+(n -2)=2(n -2)3 2(n -2)-2+(n -3)=3(n -3)4 3(n -3)-3+(n -4)=4(n -4)5 … … n 0(2)根据上表写出列车在第x 个车站启程时,邮政车厢上共有的邮包个数y (用x 、n 表示); (3)当n =18时,列车在第几个车站启程时邮车上的邮包个数最多?参考答案中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( D )A .5B .-14C .43D .45【解析】∵a 1=5,a 2=11-a 1=11-5=-14,a 3=11-a 2=11-⎝⎛⎭⎫-14=45,a 4=11-a 3=11-45=5,…,∴数列以5、-14、45三个数依次不断循环.∵2 019÷3=673,∴a 2 019=a 3=45.1.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( B )A .a 10+b 19B .a 10-b 19C .a 10-b 17D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数:2n -1n 2+1W. 3.已知:1+112+122=112,1+122+132=116, 1+132+142=1112,…,根据此规律1+192+1102= 1190 W. 4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法: 设S =1+2+22+…+22 017+22 018,① 则2S =2+22+…+22 018+22 019.② ②-①,得2S -S =S =22 019-1.∴S =1+2+22+…+22 017+22 018=22 019-1. 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程).解:(1)210-1;(2)311-12; (3)设S =1+a +a 2+…+a n ,①则aS =a +a 2+a 3+…+a n +a n +1.②②-①,得(a -1)S =a n +1-1.∴S =a n +1-1a -1,即1+a +a 2+…+a n =an +1-1a -1.点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n 、…,若前n 行点数和为930,则n =( B )A .29B .30C .31D .32【解析】设前n 行的点数和为S ,则S =2+4+6+…+2n =(2n +2)n2=n (n +1). 若S =930,则n (n +1)=930,即(n +31)(n -30)=0,∴n 1=-31(不合题意,舍去),n 2=30.5.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 … … … … … …根据以上排列规律,数阵中第25行的第20个数是( A ) A .639 B .637 C .635 D .633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是( B )A B C D【解析】根据题意可知前面4个笑脸循环出现,因为2 018÷4=504……2,所以第2 018个图形是循环出现到第2个图形.6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … n火柴棒根数4 7 10 13 16 19 … 3n +1(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?解:(1)见上表;(2)由3(n +1)+1=22,解得n =6. ∴这位同学最后摆的图案是第7个图案.图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( C )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n【解析】根据相似三角形的性质,对应高的比等于相似比,得出h 2=1+12h 1,依次得出h 3、h 4、…、h n ,再对h n 进行计算变形即可.,7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( D )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 (505,505) .【解析】根据各个点(点A 1和第四象限内的点除外)分别位于象限的角平分线上,逐步探索出下标和各点坐标之间的关系,根据规律推出点A 2 018的坐标.通过观察可得序号是4的倍数的点在第三象限,由2 018÷4=504……2,得点A 2 018在第一象限,其横、纵坐标都为(2 018-2)÷4+1=505.,8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 (47,16) W.中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( D )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 (2n -1,2n -1) W.,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 1 838 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 (-22 017,22 0173) W.5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= 1 W.6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 (3n +1) 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形共有 6 058 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.解:尝试 (1)由题意,得-5-2+1+9=3,故前4个台阶上的数字的和是3; (2)由题意,得-2+1+9+x =3,所以x =-5;应用 由题意知台阶上的数从下到上每4个循环,因为31÷4=7……3,所以7×3+1-2-5=15, 即从下到上前31个台阶上数的和是15. 发现 “1”所在的台阶数为4k -1.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.解:(1)1n -1n +1;(2)1-1n +1;[原式=1-12+12-13+13-14+…+1n -1n +1=1-1n +1.](3)∵x -1+(xy -2)2=0,∴x -1=0,xy -2=0, 解得x =1,y =2.则原式=11×2+12×3+13×4+…+12 018×2 019=1-12 019=2 018 2 019.10.一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包(x-1)个,还要装上后面行程中要停靠的(n-x)个车站的邮包(n-x)个.(1)根据题意,完成下表:(2(3)当n=18时,列车在第几个车站启程时邮车上的邮包个数最多?解:(1)见上表;(2)y=x(n-x);(3)当n=18时,y=x(18-x)=-x2+18x=-(x-9)2+81.当x=9时,y取最大值,所以列车在第9个车站启程时,邮政车厢上的邮包个数最多.。
2020年部编人教版全国各地中考数学真题分类精析汇编(38)规律探索
规律探索一、选择题1.(5分)(2020•毕节地区,第18题5分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.2.(2020•武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()3. (2020•株洲,第8题,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.点评:本题考查了坐标确定位置,点的坐标的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.二.填空题1. (2020•湘潭,16题,3分)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2020.2. (2020•扬州,第18题,3分)设a1,a2,…,a2020是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2020=69,(a1+1)2+(a2+1)2+…+(a2020+1)2=4001,则a1,a2,…,a2020中为0的个数是165.考点:规律型:数字的变化类.分析:首先根据(a1+1)2+(a2+1)2+…+(a2020+1)2得到a12+a22+…+a20202+2152,然后设有x个1,y个﹣1,z个0,得到方程组,解方程组即可确定正确的答案.解答:解:(a1+1)2+(a2+1)2+…+(a2020+1)2=a12+a22+…+a20202+2(a1+a2+…+a2020)+2020 =a12+a22+…+a20202+2×69+2020=a12+a22+…+a20202+2152,设有x个1,y个﹣1,z个0∴,化简得x﹣y=69,x+y=1849解得x=959,y=890,z=165∴有959个1,890个﹣1,165个0,故答案为:165.点评:本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,难度较大.二.填空题1. (2020•珠海,第10题4分)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8.考点:等腰直角三角形专题:规律型.分析:利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.解答:解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.点评:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.2.(2020年四川资阳,第16题3分)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是(,).考点:规律型:点的坐标;等边三角形的性质.菁优网分析:根据O(0,0)A(2,0)为顶点作△OAP1,再以P1和P1A的中B为顶点作△P1BP2,再P2和P2B的中C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.解答:解:由题意可得,每一个正三角形的边长都是上个三角形的边长的,第六个正三角形的边长是,故顶点P6的横坐标是,P5纵坐标是=,P6的纵坐标为,故答案为:(,).点评:本题考查了点的坐标,根据规律解题是解题关键.3.(2020年云南省,第14题3分)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=.(用含n的代数式表示,n是正整数,且n≥2)考点:规律型:数字的变化类.分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解答:解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.4.(2020•邵阳,第18题3分)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动28 次后该点到原点的距离不小于41.5.(2020•孝感,第18题3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).6.(2020•滨州,第18题4分)计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得= 102020.7.(2020•德州,第17题4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2020的坐标为(4027,4027).考点:二次函数图象与几何变换.专题:规律型.分析:根据抛物线y=x2与抛物线y n=(x﹣a n)2+a n相交于A n,可发现规律,根据规律,可得答案.解答:解:M1(a1,a1)是抛物线y1=(x﹣a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x﹣a1)2+a1相交于A1,得x2=(x﹣a1)2+a1,即2a1x=a12+a1,x=(a1+1).∵x为整数点∴a1=1,M1(1,1);M2(a2,a2)是抛物线y2=(x﹣a2)2+a2=x2﹣2a2x+a22+a2顶点,抛物线y=x2与y2相交于A2,x2=x2﹣2a2x+a22+a2,∴2a2x=a22+a2,x=(a2+1).∵x为整数点,∴a2=3,M2(3,3),M3(a3,a3)是抛物线y2=(x﹣a3)2+a3=x2﹣2a3x+a32+a3顶点,抛物线y=x2与y3相交于A3,x2=x2﹣2a3x+a32+a3,∴2a3x=a32+a3,x=(a3+1).∵x为整数点∴a3=5,M3(5,5),所以M2020,2020×2﹣1=4027(4027,4027),故答案为:(4027,4027)点评:本题考查了二次函数图象与几何变换,定点沿直线y=x平移是解题关键.8.(2020•菏泽,第14题3分)下面是一个某种规律排列的数阵:根据数阵的规律,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是(用含n的代数式表示)﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.9.(2020年山东泰安,第24题4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2020的横坐标为.分析:首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2020的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.三.解答题1. (2020•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.菁优网分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.。
【通用版】2020年中考数学总复习 第二轮 中考题型专题 专题复习(三)阅读理解题试题
专题复习(三) 阅读理解题1.(2016·湖州)定义:若点P(a ,b)在函数y =1x 的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y =ax 2+bx 称为函数y =1x 的一个“派生函数”.例如:点(2,12)在函数y =1x 的图象上,则函数y =2x 2+12x 称为函数y =1x的一个“派生函数”.现给出以下两个命题:(1)存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧;(2)函数y =1x 的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题 提示:(1)∵P(a,b)在y =1x 上,∴a 和b 同号.∴对称轴在y 轴左侧.∴存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧,是假命题;(2)∵函数y =1x 的所有“派生函数”为y =ax 2+bx ,∴x =0时,y =0.∴所有“派生函数”的图象都经过原点.∴函数y =1x的所有“派生函数”的图象都经过同一点,是真命题.故选C.2.(2016·永州)我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:27 3根据上表规律,某同学写出了三个式子:①log 216=4;②log 525=5;③log 212=-1.其中正确的是(B)A .①②B .①③C .②③D .①②③3.(2016·益阳)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(1,-3).4.(2016·雅安)P 为正整数,现规定P !=P(P -1)(P -2)×…×2×1,若m !=24,则正整数m =4. 5.(2016·凉山)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为a ,b ,c ,记p =a +b +c2,那么三角形的面积为S =p (p -a )(p -b )(p -c ).①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式:S =下面我们对公式②进行变形: 14[a 2b 2-(a 2+b 2-c 22)2] =(12ab )2-(a 2+b 2-c 24)2 =(12ab +a 2+b 2-c 24)(12ab -a 2+b 2-c 24) =2ab +a 2+b 2-c 24·2ab -a 2-b 2+c24=(a +b )2-c 24·c 2-(a -b )24=a +b +c 2·a +b -c 2·a +c -b 2·b +c -a 2=p (p -a )(p -b )(p -c ).这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦—秦九韶公式.问题:如图,在△ABC 中,AB =13,B C =12,AC =7,⊙O 内切于△ABC,切点分别是D 、E 、F.(1)求△ABC 的面积; (2)求⊙O 的半径.解:(1)∵AB=13,BC =12,AC =7, ∴p =13+12+72=16.∴S =p (p -a )(p -b )(p -c )=16×(16-12)×(16-7)×(16-13) =24 3.(2)连接OE 、OF 、OD 、OB 、OC 、OA.设⊙O 的半径为r. ∵BC 切⊙O 于E 点,∴OE ⊥BC. ∴S △OBC =12BC·OE=12ar.同理:S △OAC =12br ,S △OAB =12cr.∴S △ABC =S △OBC +S △OAC +S △OAB =12r(a +b +c).∴12r(12+7+13)=243,解得r =332.6.(2016·重庆)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n|=0,∴n ×n 是m 的最佳分解. ∴对任意一个完全平方数m ,总有F(m)=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t′,则t′=10y +x , ∵t 为“吉祥数”,∴t ′-t =(10y +x)-(10x +y)=9(y -x)=18. ∴y -x =2,即y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79. ∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179. ∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F(t)的最大值是57.7.(2015·遂宁改编)阅读下列材料,并用相关的思想方法解决问题. 计算:(1-12-13-14)×(12+13+14+15)-(1-12-13-14-15)×(12+13+14).令12+13+14=t ,则 原式=(1-t)×(t+15)-(1-t -15)×t=t +15-t 2-15t -t +t 2+15t=15. 问题:(1)计算:(1-12-13-14-…-12 015)×(12+13+14+…+12 016)-(1-12-13-14-…-12 016)×(12+13+14+…+12 015); (2)解方程:(x 2+5x +1)(x 2+5x +7)=7. 解:(1)令12+13+14…+12 015=t ,则原式=(1-t )×(t+12 016)-(1-t -12 016)×t=t +12 016-t 2-12 016t -t +t 2+12 016t=12 016. (2)令x 2+5x =t ,则原方程化为(t +1)(t +7)=7.整理,得t 2+8t =0,解得t =0或t =-8.①当t =0时,x 2+5x =0,解得x =0或x =-5;②当t =-8时,x 2+5x =-8,即x 2+5x +8=0.∵Δ=b 2-4ac =52-4×1×8=-7<0, ∴此方程无解.因此原方程的解是x =0或x =-5.8.(2016·郴州)设a 、b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a⊕b=⎩⎪⎨⎪⎧b a (a >0),a -b (a≤0),例如:1⊕(-3)=-31=-3,(-3)⊕2=(-3)-2=-5,(x 2+1)⊕(x-1)=x -1x 2+1(因为x 2+1>0).参照上面材料,解答下列问题: (1)2⊕4=2,(-2)⊕4=-6;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x),求x 的值.解:∵x>12,∴2x -1>0.∴(2x -1)⊕(4x 2-1)=4x 2-12x -1=(2x +1)(2x -1)2x -1=2x +1.∵-4<0,∴(-4)⊕(1-4x)=-4-(1-4x)=-4-1+4x =-5+4x.∴2x +1=-5+4x ,解得x =3.9.(2016·咸宁)阅读理解:我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形后成为一个平行四边形.设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sin α的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是1203猜想证明:(2)若矩形的面积为S 1,其变形后的平行四边形面积为S 2,试猜想S 1,S 2,1sin α之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD 中,E 是AD 边上的一点,且AB 2=AE·AD,这个矩形发生变形后为平行四边形A 1B 1C 1D 1,E 1为E 的对应点,连接B 1E 1,B 1D 1,若矩形ABCD 的面积为4m(m >0),平行四边形A 1B 1C 1D 1的面积为2m(m >0),试求∠A 1E 1B 1+∠A 1D 1B 1的度数.图1 图2 图3解:(2)猜想:1sin α=S 1S 2.理由如下:如图3,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h. 则S 1=ab ,S 2=ah ,sin α=hb.∴S 1S 2=ab ah =b h ,1sin α=b h .∴1sin α=S 1S 2. (3)由AB 2=AE·AD,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1.又∵∠B 1A 1E 1=∠D 1A 1B 1,∴△B 1A 1E 1∽△D 1A 1B 1.∴∠A 1B 1E 1=∠A 1D 1B 1. ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1.∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)中1sin α=S 1S 2,可知1sin ∠A 1B 1C 1=4m2m =2.∴sin ∠A 1B 1C 1=12.∴∠A 1B 1C 1=30°.∴∠A 1E 1B 1+∠A 1D 1B 1=30°.10.(2016·邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF ,BE 是△ABC 的中线,且AF⊥BE,垂足为P ,设BC =a ,A C =b ,AB =c.求证:a 2+b 2=5c 2. 该同学仔细分析后,得到如下解题思路:先连接EF ,利用EF 为△ABC 的中位线得到△EPF∽△BPA,故EP BP =PF PA =EF BA =12,设PF =m ,PE =n ,用m ,n 把PA ,PB分别表示出来,再在Rt △APE ,Rt △BPF 中利用勾股定理计算,消去m ,n 即可得证. (1)请你根据以上解题思路帮尤秀同学写出证明过程; (2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图2所示,求MG 2+MH 2的值.解:(1)连接EF ,设PF =m ,PE =n. ∵AF ,BE 是△ABC 的中线,∴EF 为△ABC 的中位线,AE =12b ,BF =12a.∴EF ∥AB ,EF =12c.∴△EPF ∽△BPA. ∴EP BP =PF PA =EF BA =12,即n PB =m PA =12. ∴PB =2n ,PA =2m.在Rt △AEP 中,∵PE 2+PA 2=AE 2, ∴n 2+4m 2=14b 2.①在Rt △BFP 中,∵PF 2+PB 2=BF 2, ∴m 2+4n 2=14a 2.②①+②,得5(n 2+m 2)=14(a 2+b 2).在Rt △EFP 中,∵PE 2+PF 2=EF 2, ∴n 2+m 2=14c 2.∴5·14c 2=14(a 2+b 2),即a 2+b 2=5c 2.(2)连接EF.∵四边形ABCD 为菱形, ∴AD ∥BC ,AD =BC ,BD ⊥AC.∵E ,F 分别为线段AO ,DO 的中点, ∴EF ∥AD ,EF =12AD.∴EF ∥BC ,EF =12BC.∴E ,F 分别是BM ,CM 的中点.由(1)的结论得MB 2+MC 2=5BC 2=5×32=45. ∵AG ∥BC ,∴△AEG ∽△CEB. ∴AG BC =AE CE =13.∴AG=1. 同理可得DH =1.∴GH =AD -AG -DH =1. 又∵GH∥BC,∴MG MB =MH MC =GH BC =13.∴MB =3GM ,MC =3MH.∴9MG 2+9MH 2=45,即MG 2+MH 2=5.11.(2016·永州)问题探究: 1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”). 2.解决问题已知等边△ABC 的边长为2.(1)如图1,若AD⊥BC,垂足为D ,试说明AD 是△ABC 的一条面径,并求AD 的长; (2)如图2,若M E∥BC,且ME 是△ABC 的一条面径,求面径ME 的长;(3)如图3,已知D 为BC 的中点,连接AD ,M 为AB 上的一点(0<AM <1),E 是DC 上的一点,连接ME ,ME 与AD 交于点O ,且S △MOA =S △DOE .①求证:ME 是△ABC 的面径; ②连接AE ,求证:MD∥AE;(4)请你猜测等边三角形ABC 的面径长l 的取值范围(直接写出结果).提示:x 2+y 2≥2xy. 解:(1)∵AB=AC =BC =2,AD ⊥BC , ∴BD =DC =1,∴S △ABD =S △ACD . ∴线段AD 是△ABC 的面径. 又∵∠B=60°,∴AD =B D·tanB = 3.(2)∵ME∥BC,且ME 是△ABC 的一条面径, ∴△AME ∽△ABC ,S △AME S △ABC =12.∴ME BC =12.(3)①证明:∵D 为BC 的中点,∴S △ABD =S △ACD . ∴S 四边形BDOM +S △MOA =S 四边形ACEO +S △DOE . 又S △MOA =S △DOE ,∴S 四边形BDOM +S △DOE =S 四边形ACEO +S △MOA , 即S △BME =S 四边形ACEM . ∴ME 是△ABC 的面径.②作MN⊥AE 于N ,DF ⊥AE 于F , 则MN∥DF. ∵S △MOA =S △DOE ,∴S △MOA +S △AOE =S △DOE +S △AOE , 即S △AEM =S △AED .∴12AE·MN=12AE·DF.∴MN=DF. 又∵MN∥DF,∴四边形MNFD 是平行四边形. ∴DM ∥AE.(4)作MH⊥BC 于H ,设BM =x ,BE =y , ∵DM ∥AE ,∴BM BA =BD BE .∴x 2=1y.∴xy=2.在Rt △MBH 中,∵∠MHB =90°,∠B =60°,BM =x , ∴BH =12x ,MH =32x.∴ME =MH 2+EH 2=(32x )2+(y -12x )2=x 2+y 2-xy ≥2xy -xy , 即ME≥ 2.∵ME 、AD 都是等边△ABC 的面径,∴等边△ABC 的面径长l 的取值范围是2≤l≤ 3.。
2020年中考数学试卷解析分类汇编(第1期)专题36-规律探索
规律探索一.选择题1.(2015湖南邵阳第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.解答:解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2015湖北鄂州第10题3分)在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A.B.C.D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•山东威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A.B.C.D.考点:正多边形和圆..专题:规律型.分析:连结OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A10B10C10D10E10F10的边长=()9×2,然后化简即可.解答:解:连结OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A10B10C10D10E10F10的边长=()9×2=.故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•山东日照,第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a +b )3=a 3+3a 2b +3ab 2+b 3; (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4; (a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5; (a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6; (a +b )7=a 7+7a 6b +21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7; 第8个式子系数分别为:1,8,28,56,70,56,28,8,1; 第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1, 则(a +b )10的展开式第三项的系数为45. 故选B .点:此题考查了完全平方公式,熟练掌握公式是解本题的关键6 , (2015•山东临沂,第11题3分)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( )(A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015. 【答案】C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n -1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是,所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为.故选C考点:探索规律7.(2015·河南,第8题3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是( ) A .(2014,0) B .(2015,-1) C . (2015,1) D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索. ∵半圆的半径r =1,∴半圆长度=π, ∴第2015秒点P 运动的路径长为:2π×2015, ∵2π×2015÷π=1007…1,∴点P 位于第1008个半圆的中点上,且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) . 图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n =( ) A .14 B .15 C .16 D .17考点: 规律型:图形的变化类..分析: 分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n 个图形中小圆的个数为n (n ﹣1)+5.据此可以再求得“龟图”中有245个“○”是n 的值. 解答: 解:第一个图形有:5个○, 第二个图形有:2×1+5=7个○, 第三个图形有:3×2+5=11个○, 第四个图形有:4×3+5=17个○, 由此可得第n 个图形有:[n (n ﹣1)+5]个○, 则可得方程:[n (n ﹣1)+5]=245 解得:n 1=16,n 2=﹣15(舍去). 故选:C .点评: 此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.8. (2015•四川省宜宾市,第7题,3分)如图,以点O 为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、……、20,阴影部分是由第l 个圆和第2个圆,第3个圆和第4个圆,……,第l 9个圆和第20个圆形成的所有圆环,则阴影部分的面积为( B ) A .231π B .210π C .190π D .171π9. (2015•浙江宁波,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上第8题的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【 】 A .201521 B .201421 C . 2015211-D . 2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,… ∴21111122h =+=-, 32211111222h =++=-,42331111112222h =+++=-,…20152201420141111112222h =+++⋅⋅⋅+=-.故选D . 二.填空题1.(2015•甘肃武威,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 45 ,2016是第 63 个三角形数.题.2. (2015•浙江衢州,第15题4分)已知,正六边形在直角坐标系的位置如图所示,,点在原点,把正六边形沿轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点的坐标是▲ .【答案】.【考点】探索规律题(图形的变化类----循环问题);正六边形的性质;含30度角角三角形的性质.【分析】如答图,根据翻转的性质,每6次为一个循环组依次循环.∵,∴经过2015次翻转之后,为第336个循环组的第5步.∵,∴在中,.∴.∴在中,.∴.∴的横坐标为,纵坐标为.∴经过2015次翻转之后,点的坐标是.3. (2015•浙江湖州,第16题4分)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推…,若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是__________________________【答案】.考点:正方形的性质;相似三角形的判定及性质;规律探究题.4. (2015•四川省内江市,第16题,5分)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.(2015·深圳,第15题分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳。
通用版2020年中考数学二轮复习专题:规律探索问题
, A2 1,0 ,
33
同理可得 A3 ,
,
22
A4 2,0 ,
A5 5 ,
3
,
22
A6 3,0 ,
73
A7 ,
,
22
由上可知,每一个点的横坐标为序号的一半,纵坐标每
2019 ÷ 6=336 …,3
A2019
2019 , 3 22
6 个点依次为: 3 ,0, 3 ,0, 10 【解析】根据题意分析可得:第 1 幅图中有 1 个. 第 2 幅图中有 2×2﹣ 1= 3 个. 第 3 幅图中有 2×3﹣ 1= 5 个. 第 4 幅图中有 2×4﹣ 1= 7 个.
…. 可以发现,每个图形都比前一个图形多
2 个.
故第 n 幅图中共有( 2n﹣ 1)个. 当图中有 2019 个菱形时,
( 1)写出第 6 个等式:
;
( 2)写出你猜想的第 n 个等式:
( 用含 n 的等式表示 ),并证明 .
1.【答案】 B
【解析】 1, 1 , 2 , 1 , 2 , 3 , 1 , 2 , 3 , 4 , … ,可写为:
1 12 123 1 234 , , , , , , , , , ,…,
12 1 3 2 1 4 3 2 1
2n﹣ 1= 2019 n= 1010, 故答案为 1010
【点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规 律.
4.【答案】 3
【解析】 2019 4 504 3 , 故第 2019 个图案中的指针指向与第 3 个图案相同, 故答案为: 3
【点睛】
本题考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三 规律探索与阅读理解毕节中考备考攻略规律探索与阅读理解指的是给出一定条件,让考生认真分析、仔细观察、综合归纳、大胆猜想,得出结论,并加以验证的数学探索题.纵观近5年毕节中考数学试卷,规律探索与阅读理解多次出现,其中2014年第18题考查数的规律,2017年第20题考查式的计算规律,2018年第20题考查式的计算规律.预计2019年将继续考查规律探索与阅读理解,有可能考查图形规律的探索.从特殊情况入手探索发现规律→综合归纳→猜想得出结论→验证结论.中考重难点突破数的规律例1 (2018·绵阳中考)将全体正奇数排成一个三角形数阵.根据以上排列规律,数阵中第25行的第20个数是( A )A .639B .637C .635D .633【解析】根据三角形数阵可知,第n 行奇数的个数为n 个,则前(n -1)行奇数的总个数为1+2+3+…+(n -1)=n (n -1)2,第n 行(n≥3)从左向右的第m 个数为第⎣⎢⎡⎦⎥⎤n (n -1)2+m 个奇数,即2[n (n -1)2+m -1]+1=n 2-n +2m -1.把n =25,m =20代入计算,即可得出答案.式的计算规律例2 (2018·成都中考)已知a >0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,…(即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2 018=__-a +1a__.【解析】S 1=1a ,S 2=-S 1-1=-1a -1=-a +1a ,S 3=1S 2=-a a +1,S 4=-S 3-1=a a +1-1=-1a +1,S 5=1S 4=-(a+1),S 6=-S 5-1=(a +1)-1=a,S 7=1S 6=1a ,…,由此得出规律:S n 的值每6个一循环.由2 018=336×6+2,可得S 2 018=S 2,继而可得出答案.图形的变化规律例3 (2018·重庆中考A 卷)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( C )A.12B.14C.16D.18【解析】第①个图案中三角形的个数为2+2=2×2=4; 第②个图案中三角形的个数为2+2+2=2×3=6; 第③个图案中三角形的个数为2+2+2+2=2×4=8; ……第○,n )个图案中三角形的个数为2(n +1). 把n =7代入2(n +1)即可得出答案.坐标的规律例4 (2018·广州中考)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1 m ,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△OA 2A 2 018的面积是( A )A .504 m 2B .1 0092 m 2 C .1 0112m 2 D .1 009 m 2【解析】依题可得A 2(1,1),A 4(2,0),A 8(4,0),A 12(6,0),…, ∴A 4n (2n,0),∴A 2 016(即A 4×504)的坐标为(1 008,0). ∴A 2 018(1 009,1).∴A 2A 2 018=1 009-1=1 008.∴S △OA 2A 2 018=12×1×1 008.,1.(2018·十堰中考)如图是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( B )A .210B .41C .5 2D .2512.(2018·宜昌中考)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”.请观察图中的数字排列规律,则a,b,c 的值分别为( B )A .a =1,b =6,c =15B .a =6,b =15,c =20C .a =15,b =20,c =15D .a =20,b =15,c =63.(2018·滨州中考)观察下列各式:1+112+122=1+11×2, 1+122+132=1+12×3, 1+132+142=1+13×4, ……请利用你所发现的规律,计算:1+112+122+1+122+132+1+132+142+…+1+192+1102,其结果为__9910__.4.(2018·随州中考)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10,…)和“正方形数”(如1,4,9,16,…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m +n 的值为( C )A .33B .301C .386D .5715.(2018·东营中考)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =15x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果点A 1(1,1),那么点A 2 018的纵坐标是__⎝ ⎛⎭⎪⎫322 017__.6.(2018·桂林中考)将从1开始的连续自然数按图规律排列:规定位于第m 行,第n 列的自然数10记为(3,2),自然数15记为(4,2),….按此规律,自然数2 018记为__(505,2)__.行 \ 列第1列第2列第3列第4列第1行 1 2 3 4第2行8 7 6 5第3行9 1011 12第4行16 15 14 13……………第n行…………毕节中考专题过关1.(2018·枣庄中考)将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 1415 16第5行25 24 23 22 21 20 19 18 17……则2 018在第__45__行.2.(2018·张家界中考)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64, 27=128, 28=256,…,则2+22+23+24+25+…+22 018的末位数字是( B)A.8B.6C.4D.03.(2018·德州中考)我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.(a+b)0 (1)(a+b)1………………1 1(a+b)2……………1 2 1(a+b)3…………1 3 3 1(a+b)4………1 4 6 4 1(a+b)5……1 5 10 10 5 1根据“杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为( B)A.84B.56C.35D.284.(2018·绍兴中考)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( D)A.16张B.18张C.20张D.21张5.(2018·重庆中考B卷)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( B)…A.11B.13C.15D.176.(2018·绍兴中考)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,如图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( B)7.(2018·济宁中考)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( C)8.(2018·烟台中考)如图,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为( C)A.28B.29C.30D.319.(2018·遵义中考)每一层三角形的个数与层数的关系如下图所示,则第2 018层的三角形个数为__4__035__.10.(2018·白银中考)如图是一个运算程序的示意图,若开始输入x的值为625,则第2 018次输出的结果为__1__.11.如图,在数轴上,A1,P两点表示的数分别是1,2,A1,A2关于点O对称,A2,A3关于点P对称,A3,A4关于点O对称,A4,A5关于点P对称,…,依此规律,则点A14表示的数是__-25__.。