平均数中位数和众数练习题
北师大版高中数学必修3第1章《平均数、中位数、众数、极差、方差、标准差》练习
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 【解析】 平均值的大小与方差的大小无任何联系,故A 错,由方差的公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]知C 错.对于D ,方差大的表示其射击环数比较分散,而非射击水平高,故D 错.【答案】 B2.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 为 ( )A .21B .22C .20D .23【解析】 由中位数的概念知x +232=22,所以x =21. 【答案】 A3.(2016·长沙四校联考)为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图1-4-3所示,则下列关于该同学数学成绩的说法正确的是( )图1-4-3A .中位数为83B .众数为85C .平均数为85D .方差为19【解析】易知该同学的6次数学测试成绩的中位数为84,众数为83,平均数为85.【答案】 C4.为了了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高为1.60 m;从南方抽取了200个男孩,平均身高为1.50 m.由此可推断我国13岁男孩的平均身高为()A.1.54 m B.1.55 mC.1.56 m D.1.57 m【解析】x=300×1.60+200×1.50300+200=1.56(m).【答案】 C5.为了普及环保知识,增强环境意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)如图1-4-4所示,假设得分值的中位数为m e,众数为m0,平均值为x,则()图1-4-4A.m e=m0=xB.m e=m0<xC.m e<m0<xD.m0<m e<x【解析】由图知30名学生的得分情况依次为2个人得3分,3个人得4分、10个人得5分、6个人得6分、3个人得7分,2个人得8分、2个人得9分、2个人得10分,中位数为第15、16个数的平均数,即m e=5+62=5.5,5出现次数最多,故m0=5.x=130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m 0<m e <x . 【答案】 D 二、填空题6.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数的茎叶图如右图1-4-5所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为________.图1-4-5【解析】 由茎叶图可知,学生甲的演唱分数分别为79,83,84,86,84,88,93,去掉一个最高分和一个最低分后,得分如下:83,84,84,86,88,则平均数为85,方差为s 2=15×[(-2)2+(-1)2+(-1)2+12+32]=3.2.【答案】 85,3.27.一组数据的方差为s 2,将这一组数据中的每个数都乘2,所得到的一组新数据的方差为________.【解析】 每个数都乘以2,则x =2x , S =1n [(2x 1-2x )2+…+(2x n -2x )2] =4n [(x 1-x )2+…+(x n -x )2]=4s 2. 【答案】 4s 28.由正整数组成的一组数据x 1,x 2,x 3,x 4其平均数和中位数都是2,且标准差等于1,则这组数据为________(从小到大排列).【解析】 不妨设x 1≤x 2≤x 3≤x 4且x 1,x 2,x 3,x 4为正整数. 由条件知⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,即⎩⎨⎧x 1+x 2+x 3+x 4=8,x 2+x 3=4,又x1、x2、x3、x4为正整数,∴x1=x2=x3=x4=2或x1=1,x2=x3=2,x4=3或x1=x2=1,x3=x4=3. ∵s=1 4[](x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=1,∴x1=x2=1,x3=x4=3.由此可得4个数分别为1,1,3,3.【答案】1,1,3,3三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50(2)求这50户居民每天丢弃旧塑料袋的标准差.【解】(1)平均数x=150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97.所以标准差s≈0.985.10.(2014·广东高考)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.【解】 (1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:120(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.[能力提升]1.(2015·山东高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图1-4-5所示的茎叶图.考虑以下结论:图1-4-5①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为()A.①③B.①④C.②③D.②④【解析】甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.【答案】 B2.对“小康县”的经济评价标准:①年人均收入不小于7 000元;②年人均食品支出不大于收入的35%.某县有40万人口,年人均收入如下表所示,年人均食品支出如图1-4-6所示.则该县()图1-4-6A.是小康县B.达到标准①,未达到标准②,不是小康县C.达到标准②,未达到标准①,不是小康县D.两个标准都未达到,不是小康县【解析】 由图表可知年人均收入为(2 000×3+4 000×5+6 000×5+8 000×6+10 000×7+12 000×5+16 000×3)÷40=7 050(元)>7 000元,达到了标准①;年人均食品支出为(1 400×3+2 000×5+2 400×13+3 000×10+3 600×9)÷40=2 695(元),则年人均食品支出占收入的2 6957 050×100%≈38.2%>35%,未达到标准②.所以不是小康县.【答案】 B3.已知样本9,10,11,x ,y 的平均数为10,方差为4,则xy =________. 【解析】 由题意得⎩⎪⎨⎪⎧9+10+11+x +y5=10,15[(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2]=4.化简得x +y =20, ① (x -10)2+(y -10)2=18, ② 由①得x 2+y 2+2xy =400, ③ 代入②化简得xy =91. 【答案】 914.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)甲班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.【解】 (1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以名次来判断学习成绩的好坏,小刚得了85分,说明他对本阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。
平均数,中位数,众数练习题
平均数,中位数,众数练习题平均数在现实生活中较为常用,但是它易受极端值的影响,因此在某些情境下,用平均数刻画数据的集中趋势就不太合适,这时就需要选择恰当的统计量刻画数据的集中趋势. 中位数和众数都是刻画数据集中趋势的统计量. 是一个反映数据集中趋势的位置代表值,能够表明一组数据排序最中间的统计量,可以提供这组数据中,约有一半的数据大于(或小于)中位数.众数是表明一组数据出现次数最多的统计量,当一组数据有较多的重复数据时,众数往往是人们所关心的一个统计量,它提供了哪个(或哪些)数据出现的次数最多.一.中位数的概念及计算方法将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.二.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数.三.平均数、众数和中位数这三个统计量的各自特点.1.平均数计算要用到所有的数据,任何一个数据的变动都会相应引起平均数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大.2.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,缺点是当众数有多个且众数的频数相对较小时可靠性小,局限性大.3.中位数仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势,中位数的计算很少.例1.数据-3,-2,1,3,6,x,5的中位数是1,且x为正整数,那么这组数据的众数是【】A. 2B. 1C. 10D.-2【分析】因为数据-3,-2,1,3,6,x,5的中位数是1,且所给数据的个数是7,是奇数,所以把这些数据按照从小到大排列,数字1应该处在第4的位置上,也就是:-3,-2,,x,1,3,5,6;由此可知x不大于1的正整数,所以x=1.答案为B类型一:表格式呈现数据例2.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表:则这9名学生每周做家务劳动的时间的众数及中位数分别是【】A.3时,2.5.时 B. 1时,2时 C 3时,3时D. 2 时,2时【分析】根据表格可知:每周不做家务的有2人,做1小时家务的有2人,做2小时家务的有3人,做3小时家务的有1人,做4小时家务的有1人,所以这9名学生每周做家务的时间的众数是:2时;把这9个数据按照从小到大排列,处于第5个数是中位数,也是2时答案为:D类型二.折线图呈现数据,分析数据的集中趋势.例3.为了解九年级学生的体育锻炼的时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图,如图所示,那么关于该班45名同学一周参加体育锻炼时间的说法错误的是【】A. 众数是9时B. 中位数是9时C. 平均数是9时D.锻炼时间不低于9时的有14名类型三.条形图呈现数据,分析数据的集中趋势.例4.一方有难,八方支援,我国某地发生强烈地震,给当地人民造成了巨大损失,灾难发生后,某中学举行了爱心捐款活动,全校同学纷纷拿出自己的零花钱,踊跃捐款支援灾区人民,小慧对捐款情况进行了抽样调查,抽取了40名同学的捐款数据,把数据进行统计整理后,绘制了条形图如图所示,图中从左到右各长方形高度之比为3:4:5:7:1.(1)捐款20元的同学有名;(2)40名同学捐款数据的中位数是;(3)若该校捐款金额不少于34500元,请估算该校捐款同学的人数至少有多少?练习 1.某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图如图所示,试根据统计图提供的信息,回答下列问题:(1)共抽取了名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均分是,众数是;女生体育成绩的中位数是.(3)若将不低于47分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约有多少名?练习2.物理老师布置了10道选择题作为课堂练习,如图所示是全班解题情况的统计,做对题数的中位数为,众数为.类型四.扇形图与条形图或表格相结合呈现数据,解答相关问题.例5.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图所示的统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图中的m的值为;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?例6.某市以泉水闻名,为保护泉水,造福子孙后代,该市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量均比4月份有所下降,宁宁将5月份各户居民的节水节水量(m3)1 1.5 2.5 3户数(户)50 80 100 70量统计整理制成如下的统计表和统计图:(1)300户居民5月份节水量的众数、中位数分别是多少?(2)扇形统计图中α的度数为;(3)该小区300户居民5月份平均每户节约用水多少立方米?二.选择恰当的统计量刻画数据的集中趋势运用平均数,中位数,众数多角度看一个人的成绩,培养学生的自信,激发学生的学习积极性与主动性,例7八年级(1)班三位同学最近的五次数学测验成绩(单位:分)分别是:小华62 94 95 98 98小明62 62 98 99 100小丽40 62 85 99 99他们都认为自己的数学成绩比其他两位同学好,他们比较的依据分别是什么?你认为谁的数学成绩最好呢?【分析】首先将三人的平均数,中位数,众数计算出来,然后再进行比较,做出决定.从平均数看小华的平均分是89.4,高于其他两人,比其他两人的成绩好.所以小华比较的依据是平均数.从中位数看,小明的中位数是98 高于其他两人,比其他两人的成绩好,所以小明比较的依据是中位数.从众数看,小丽的众数是99,比其他两人的成绩好,所以小丽比较的依据是众数.我认为小华的成绩较好,因为小华的平均分是第一名,中位数排第二,众数只比第一名少一分,也就是说小华的每一项的分数都处于较高的水平.例8 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.例9.下面是某校八年级(2)班两组女生的体重(单位:kg):第1组35 36 38 40 42 42 75第2组35 36 38 40 42 42 45(1)分别求这两组数据的平均数、众数、中位数,并解释它们的实际意义(结果取整数);(2)比较这两组数据的平均数、众数、中位数,谈谈你对它们的认识.例10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.分别计算这些运动员成绩的平均数、中位数、众数(结果保留小数点后两位).例11.为了提高农民收入,村干部带领村民自愿投资办起了一个养鸡场,办场时买来的1000只小鸡,经过一段时间精心饲养,可以出售了,下表是这些鸡出售时的质量的统计数据.(1)出售时这些鸡的平均质量是多少(结果保留小数点后一位)?(2)质量在哪个值得鸡最多?(3)中间的质量是多少?例14.下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告让交警知道这个时段路口来往车辆的车速情况.例15.下表是某班学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 人数 1 2 5 4 3 5 1 1 5 9 6 分析上表中的数据,你能得出哪些结论?例16.甲乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等,比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分10分).依据统计数据绘制了如下尚不完整的统计表和统计图:甲校成绩统计表分数(分)7 8 9 10人数(人)11 0 8(1)在上面扇形统计图中“7分”所在扇形的圆心角的度数是.(2)请你将条形统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数,并从平均分和中位数的角度分析哪个学校的成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?例17.某公司10名销售员去年的销售情况如下表:销售额(万元) 3 4 5 6 7 8 10销售员人数(人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高销售额,准备采用超额有奖的措施,请根据(1)中的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元.例18.学校举行知识竞赛,每班参加比赛人数都为25人,比赛成绩分为A,B,C,D,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的(1)班和(2)班的成绩整理,并绘制成如图所示的统计图.请你根据以上提供的信息解答下列问题:(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为;(2)请你将表格补充完整:班级平均数(分)中位数(分)众数(分)(1)班87.6分90分(2)班87.6分100分(3)请从优秀选手(B级以及B级以上级别)人数的角度来比较(1)班和(2)班的成绩,哪个班成绩更好?。
平均数众数中位数测试题及答案-用卷
平均数众数中位数1题号一二三四总分得分一、选择题(本大题共13小题,共39.0分)1.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是()A. 96.7分B. 97.1分C. 88.3分D. 265分2.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A. 5、6、5B. 5、5、6C. 6、5、6D. 5、6、63.关于一组数据:1,5,6,3,5,下列说法错误的是()A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.24.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是()A. a+bm+n B. 12(am+bn) C. am+bnm+nD. 12(am+bn)5.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响()A. 平均分B. 众数C. 中位数D. 极差6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为()A. 70分,70分B. 80分,80分C. 70分,80分D. 80分,70分7.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A. 5,5,6B. 9,5,5C. 5,5,5D. 2,6,58.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A. 1.65、1.70B. 1.65、1.75C. 1.70、1.75D. 1.70、1.709.我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A. ,B. ,C. ,D. ,10.某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是()A. 众数是3B. 中位数是0C. 平均数是3D. 方差是2.811.数据2、5、6、0、6、1、8的中位数和众数分别是()A. 0和6B. 0和8C. 5和6D. 5和812.一组数据:1,2,4,2,2,5,这组数据的众数是()A. 1B. 2C. 4D. 513.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册二、填空题(本大题共6小题,共18.0分)14.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.15.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是_______分.16.三个数-1,a,3的平均数是2,则a的值是______ .17.某校男子足球队队员的年龄分布如图所示,根据图中信息可知,这些队员年龄的中位数是______ 岁.18.一组数3,4,7,4,3,4,5,6,5的众数是______.19.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、计算题(本大题共1小题,共6.0分)20.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生______人,并将条形图补充完整;(2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?四、解答题(本大题共1小题,共8.0分)21.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案和解析1.【答案】C【解析】解:根据题意得:89×3+93×4+83×4≈88.3,3+4+4故选C.将李明的各项成绩分别乘以其权,再除以权的和,求出加权平均数即可.本题考查了加权平均数,本题易出现的错误是求89,93,83这三个数的平均数,对平均数的理解不正确.2.【答案】D【解析】【分析】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,=6;则中位数是6+62=6.平均数是:4×2+5×6+6×5+7×4+8×320故选D.3.【答案】C【解析】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是5,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;[(1-4)2+(5-4)2+(6-4)2+(3-4)2+(5-4)2]=3.2,故本D、这组数据的方差是:15选项正确;故选:C.分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4.【答案】C【解析】【分析】本题主要考查加权平均数,掌握得出射击环数的总数和加权平均数的定义是解题的关键.求出该班所有学生射击的总环数,再根据平均数的定义计算可得.【解答】解:根据题意知m人射击的总环数为am,n人射击的总环数为bn,则该班打中a环和b环学生的平均环数是am+bn,m+n故选:C.5.【答案】C【解析】【分析】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选C.6.【答案】C【解析】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【答案】C【解析】[分析]此题主要考查了众数、中位数和平均数,关键是掌握三种数的概念.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=1(x1+x2+…+x n)就叫做这n个数的算术平均数进行分析和计算可得答案.n[解答]解:众数是5,中位数:5,=5,平均数:5+2+6+9+5+36故选C.8.【答案】C【解析】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 9.【答案】D【解析】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30; 故选:D .根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大. 10.【答案】B【解析】【解答】解:将数据重新排列为0,3,3,4,5, 则这组数的众数为3,中位数为3,平均数为0+3+3+4+55=3,方差为15×[(0-3)2+2×(3-3)2+(4-3)2+(5-3)2]=2.8,故选:B .【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式. 11.【答案】C【解析】【分析】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决. 【解答】解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8, 位于中间位置的数为5, 故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5, 故选C . 12.【答案】B【解析】解:一组数据:1,2,4,2,2,5,这组数据的众数是2, 故选:B .根据众数定义可得答案.此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数. 13.【答案】B【解析】解:A 、众数是1册,结论错误,故A 不符合题意; B 、中位数是2册,结论正确,故B 符合题意; C 、极差=3-0=3册,结论错误,故C 不符合题意; D 、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D 不符合题意. 故选:B .根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键. 14.【答案】5【解析】解:∵一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,∴16(2+5+x +y +2x +11)=12(x +y )=7,解得y =9,x =5,∴这组数据的众数是5. 故答案为5.根据平均数与中位数的定义可以先求出x ,y 的值,进而就可以确定这组数据的众数. 本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数. 15.【答案】93.6【解析】【分析】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案. 【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分) 故小明的体育成绩是93.6分. 故答案为93.6. 16.【答案】4【解析】【分析】本题主要考查了平均数的计算方法:掌握数据和÷数据的个数=平均数是本题的关键.根据平均数的计算公式列出算式,再进行计算即可得出答案. 【解答】解:∵-1,a ,3的平均数是2,∴(-1+a +3)÷3=2, 解得:a =4; 则a 的值是4; 故答案为4.17.【答案】15【解析】【分析】本题主要考查中位数有关知识,根据中位数的定义即可得. 【解答】解:由图可知共有2+6+8+3+2+1=22人, 则中位数为第11、12人年龄的平均数,即15+152=15(岁),故答案为15.18.【答案】4【解析】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.根据众数的定义求解可得.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.19.【答案】135【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.【答案】(1)50 ,补全条形统计图图形如下:(2)10;13.1×600=132(人)(3)捐款20元及以上(含20元)的学生有:7+450【解析】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形见答案;(2)由条形图可知,捐款10元人数最多,故众数是10;=13.1,故平均数为13.1;这组数据的平均数为:5×9+10×16+15×14+20×7+25×450(3)见答案.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100-27.5-25-7.5-10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=30;故答案为40人,30.(2)见答案.。
平均数、中位数、众数 小学数学 练习题
一、选择题1. 3个连续自然数的平均数就是中间的那个数。
( )2. 四年级5个班去植树,第一天植了145棵,第二天植了178棵,第三天植了157棵,平均每班植树多少棵()。
A.(145+178+157)÷4 B.(145+178+157)÷3C.(145+178+157)÷53. 有五位同学测量身高,其中最高的是155厘米,最矮的是134厘米,他们的平均身高可能是()厘米。
A.155 B.130 C.1424. 小强掷垒球,三次的成绩分别是29米、30米、28米,小强掷垒球的平均成绩是()。
A.28米B.29米C.30米5. 学校篮球队队员的平均身高是160厘米,开学新加入了一名166厘米高的队员。
那么现在球队的平均身高和原来的平均身高比()。
A.降低了B.提高了C.没有变化二、填空题6. 甲、乙、丙三个数的比是4∶7∶9,这三个数的平均数是60,这三个数分别是( )、( )、( )。
7. 在一次科技知识竞赛中,两组学生的成绩统计如下表:50分60分70分80分90分100分甲组(人) 2 5 10 13 14 6乙组(人) 4 4 16 2 12 12甲组的中位数是,乙组的众数是.8. 有三个笔筒,平均每个笔筒里有9支笔,第一个笔筒里有6支笔,第二个笔筒里有10支笔,第三个笔筒里有( )支笔。
9. 丫丫在使用计算器计算234个数的平均数时,不小心把求出的平均数与原来的234个数混在一起,现在这235个数的总和是19740。
原来234个数的平均数是( )。
10. 下面是某服装厂2019年上半年生产西服情况统计图。
(1)根据统计图中的数据完成下表。
月份一月二月三月四月五月六月数量/万套__ __ __ __ __ __(2)产量最高的是( )月,产量最低的是( )月。
(3)( )月到( )月和( )月到( )月产量呈上升趋势;( )月到( )月和( )月到( )月产量呈下降趋势。
统计初步认识练习题
统计初步认识练习题
题目 1:给定以下一组数据:{1, 2, 3, 4, 5},请计算该数据集的平均数、中位数和众数,并解释它们的含义。
答案 1:该数据集的平均数为 3,中位数为 3,众数为无。
平均数是数据总和除以数据个数的结果,代表了数据的平均水平。
中位
数是将数据按大小排列后位于中间位置的数,代表了数据的中间水平。
众数是数据集中出现次数最多的数,代表了数据集的主要取值。
题目 2:下表是某城市在一周内每天的气温数据,请根据该数
据计算出这一周内的最高气温、最低气温以及气温的变化范围。
答案 2:这一周内的最高气温是 27 摄氏度,最低气温是 21 摄
氏度,气温的变化范围是 6 摄氏度。
题目 3:某班级的学生参加了一次数学测验,并获得了以下分数:{80, 85, 90, 95, 80, 75, 85, 90, 95, 90},请计算该班级的平均分数、中位数和众数,并解释它们的含义。
答案 3:该班级的平均分数是 87.5,中位数是 87.5,众数是 90。
平均分数是学生分数的平均水平,中位数是学生分数的中间水平,
众数是学生分数中出现次数最多的分数。
题目 4:某公司的员工月薪数据如下:{3000, 4000, 5000, 4000, 6000, 5000, 6000, 7000},请计算该公司员工的平均月薪、中位数和
众数,并解释它们的含义。
答案 4:该公司员工的平均月薪是 5000,中位数是 5000,众数是 4000 和 6000。
平均月薪是员工月薪的平均水平,中位数是员工
月薪的中间水平,众数是员工月薪中出现次数最多的薪水。
《平均数、中位数、众数及方差的有关计算》测试题及答案
《平均数、中位数、众数及方差的有关计算》测试题2015.12.28一、选择题1.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有一个数据被遮盖).被遮盖的数据是( )A.1 ℃B.2 ℃C.3 ℃D.4 ℃2.在一次体育测试中,小芳所在小组8人的成绩分别是46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A.47B.48C.48.5D.493.为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是1,2,3,3,3,4,5,6.则这组数据的众数是( )A.2.5B.3C.3.375D.54.若要对一射击运动员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知道他这5次训练成绩的( )A.中位数B.平均数C.众数D.方差5.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐6.某校篮球队在一次定点投篮训练中进球情况如图,那么这个队的队员平均进球个数是__________.7.有一组数据:2,3,5,5,x,它的平均数是10,则这组数据的众数是__________.8.数据-2,-1,0,3,5的方差是__________.9.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__________(填“平均数”或“中位数”).10.为测试两种电子表的走时误差,做了如下统计:则这两种电子表走时稳定的是__________.11.一次数学测验中,以60分为标准,超过的部分用正数表示,不够的部分用负数表示,其中5名学生的成绩(单位:分)如下:+36,0,+12,-18,+20.(1)这5名学生中,最高分是多少?最低分是多少?(2)这5名学生的平均分是多少?12.今有两人进行射击比赛,成绩(命中环数)(单位:环)如下:甲:10,8,7,7,8;乙:9,8,7,7,9.哪个人的成绩稳定?13.某校举办八年级学生数学素养大赛.比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分(单位:分)情况.(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?14.甲、乙两名同学进入初四后某科6次考试成绩如图所示:(1)请根据上图填写下表:平均数方差中位数众数甲75 75乙33.3(2)请你从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?15.某次数学竞赛,初一(6)班10名参赛同学的成绩(单位:分)分别为85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的方差.16.为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率(2)小明对同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是_________(填“甲”或“乙”)组的学生;(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.参考答案9.中位数10.甲1.C2.C3.B4.D5.A6.67.58.34511.(1)因为在记录结果中,+36最大,-18最小,所以这5名学生中,最高分为96分,最低分为42分;(2)因为(36+0+12-18+20)÷5=10,所以他们的平均成绩为60+10=70(分).12.x 甲=15×(10+8+7+7+8)=8,x 乙=15×(9+8+7+7+9)=8.s 2甲=15×[(10-8)2+2×(8-8)2+2×(8-7)2]=1.2,s 2乙=15×[2×(9-8)2+(8-8)2+2×(8-7)2]=0.8.因为x 甲=x 乙且s 2甲>s 2乙, 所以乙的成绩稳定.13.(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分). (2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y.由题意,得20608070,20809080.x y x y ++=++=⎧⎨⎩解得0.3,0.4.x y ==⎧⎨⎩ 所以甲的总分为:20+89×0.3+86×0.4=81.1>80. 即甲能获一等奖. 14.(1)125;75;75;72.5;70.(2)①甲、乙两名同学成绩的平均数均为75分,但是甲的方差为125,乙的方差仅仅33.3,所以乙的成绩相对比甲稳定得多;②从折线图中甲、乙两名同学的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.15.因为这10名同学成绩的唯一众数为85分, 所以x 、y 中至少有一个数为85.假设x为85,又因为平均成绩为90分,×(85+88+95+124+85+y+85+72+88+109)=90.所以110可得另一个数为69.所以这10名同学的成绩的方差为:×s2=110[(85-90)2+(88-90)2+(95-90)2+(124-90)2+(85-90)2+(69-90)2+(85-90)2+(72-90)2+(88 -90)2+(109-90)2]=239.16.(1)6;7.1.(2)甲.(3)乙组的平均分、中位数都高于甲组,方差小于甲组,且成绩集中在中上游.。
平均数众数中位数测试题及答案-用卷
平均数众数中位数1题号一二三四总分得分一、选择题(本大题共13小题,共39.0分)1.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是()A. 96.7分B. 97.1分C. 88.3分D. 265分2.日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A. 5、6、5B. 5、5、6C. 6、5、6D. 5、6、63.关于一组数据:1,5,6,3,5,下列说法错误的是()A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.24.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是()A. a+bm+nB. 12(am+bn)C. am+bnm+nD. 12(am+bn)5.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响()A. 平均分B. 众数C. 中位数D. 极差6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3A. 70分,70分B. 80分,80分C. 70分,80分D. 80分,70分7.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A. 5,5,6B. 9,5,5C. 5,5,5D. 2,6,58.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A. 1.65、1.70B. 1.65、1.75C. 1.70、1.75D. 1.70、1.709.我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A. ,B. ,C. ,D. ,10.某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是()A. 众数是3B. 中位数是0C. 平均数是3D. 方差是2.811.数据2、5、6、0、6、1、8的中位数和众数分别是()A. 0和6B. 0和8C. 5和6D. 5和812.一组数据:1,2,4,2,2,5,这组数据的众数是()A. 1B. 2C. 4D. 513.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册二、填空题(本大题共6小题,共18.0分)14.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.15.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是_______分.16.三个数-1,a,3的平均数是2,则a的值是______ .17.某校男子足球队队员的年龄分布如图所示,根据图中信息可知,这些队员年龄的中位数是______ 岁.18.一组数3,4,7,4,3,4,5,6,5的众数是______.19.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、计算题(本大题共1小题,共6.0分)20.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生______人,并将条形图补充完整;(2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?四、解答题(本大题共1小题,共8.0分)21.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案和解析1.【答案】C【解析】解:根据题意得:89×3+93×4+83×43+4+4≈88.3,故选C.将李明的各项成绩分别乘以其权,再除以权的和,求出加权平均数即可.本题考查了加权平均数,本题易出现的错误是求89,93,83这三个数的平均数,对平均数的理解不正确.2.【答案】D【解析】【分析】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是6+62=6;平均数是:4×2+5×6+6×5+7×4+8×320=6.故选D.3.【答案】C【解析】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是5,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D、这组数据的方差是:15[(1-4)2+(5-4)2+(6-4)2+(3-4)2+(5-4)2]=3.2,故本选项正确;故选:C.分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4.【答案】C【解析】【分析】本题主要考查加权平均数,掌握得出射击环数的总数和加权平均数的定义是解题的关键.求出该班所有学生射击的总环数,再根据平均数的定义计算可得.【解答】解:根据题意知m人射击的总环数为am,n人射击的总环数为bn,则该班打中a环和b环学生的平均环数是am+bnm+n,故选:C.5.【答案】C【解析】【分析】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选C.6.【答案】C【解析】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【答案】C【解析】[分析]此题主要考查了众数、中位数和平均数,关键是掌握三种数的概念.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=1n(x1+x2+…+x n)就叫做这n个数的算术平均数进行分析和计算可得答案.[解答]解:众数是5,中位数:5,平均数:5+2+6+9+5+36=5,故选C.8.【答案】C【解析】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.【答案】D【解析】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选:D.根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大.10.【答案】B【解析】【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为0+3+3+4+55=3,方差为15×[(0-3)2+2×(3-3)2+(4-3)2+(5-3)2]=2.8,故选:B.【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.11.【答案】C【解析】【分析】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.12.【答案】B【解析】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.根据众数定义可得答案.此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.13.【答案】B【解析】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.14.【答案】5【解析】解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴16(2+5+x+y+2x+11)=12(x+y)=7,解得y=9,x=5,∴这组数据的众数是5.故答案为5.根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数.本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.15.【答案】93.6【解析】【分析】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分)故小明的体育成绩是93.6分.故答案为93.6.16.【答案】4【解析】【分析】本题主要考查了平均数的计算方法:掌握数据和÷数据的个数=平均数是本题的关键.根据平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:∵-1,a,3的平均数是2,∴(-1+a+3)÷3=2,解得:a=4;则a的值是4;故答案为4.17.【答案】15【解析】【分析】本题主要考查中位数有关知识,根据中位数的定义即可得.【解答】解:由图可知共有2+6+8+3+2+1=22人,则中位数为第11、12人年龄的平均数,即15+152=15(岁),故答案为15.18.【答案】4【解析】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.根据众数的定义求解可得.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.19.【答案】135【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.【答案】(1)50 ,补全条形统计图图形如下:(2)10;13.1(3)捐款20元及以上(含20元)的学生有:7+450×600=132(人)【解析】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形见答案;(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:5×9+10×16+15×14+20×7+25×450=13.1,故平均数为13.1;(3)见答案.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100-27.5-25-7.5-10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=30;故答案为40人,30.(2)见答案.。
众数,中位数,平均数题目
众数,中位数,平均数题目1.一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2 C.0 D.1【分析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.解:这组数据中2出现次数最多,有3次,所以众数为2,【答案】B.【点评】本题主要考查众数,解题的关键是掌握众数是指一组数据中出现次数最多的数据.2.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50.则这组数据的众数是()A.36?? B.45?? C.48?? D.50【分析】根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,【答案】D【点评】此题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.3.某车间20名工人每天加工零件数如表所示:每天加工零件数 4 5 6 7 8人数 3 6 5 4 2这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,5【分析】根据众数、中位数的定义分别进行解答即可.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,【答案】B【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.在音乐比赛中,常采用一“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差【分析】去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.【答案】B【点评】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.5.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都不对【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.解:15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.【答案】B【点评】此题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.6.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)0 1 2 3 4人数(人) 2 2 3 1 1 A.3,2.5 B.1,2 C.3,3 D.2,2【答案】D7.某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A.样本容量是20 B.该企业员工捐款金额的平均数是180元C.样本中位数是200元D.该企业员工最大捐款金额是500元【答案】C8.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.5【答案】A【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9;9.下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.解:众数为85,极差:85﹣75=10,【答案】A【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.解:甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,【点评】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.11.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;【答案】A【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.12.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是()A.5,5,B.5,5,10 C.6,5.5,D.5,5,【分析】根据平均数,可得x的值,根据众数的定义、中位数的定义、方差的定义,可得答案.解:由5,7,x,3,4,6.已知他们平均每人捐5本,得x=5.众数是5,中位数是5,方差=,【答案】D13.某中学在备考2018 河南中考体育的过程中抽取该校九年级20 名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50 人数 2 3 2 4 5 2 1 1 则下列叙述正确的是()A.这些运动员成绩的众数是5 B.这些运动员成绩的中位数是2.30 C.这些运动员的平均成绩是2.25 D.这些运动员成绩的方差是0.072 5 【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.解:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;【答案】B【点评】此题考查方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.14.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.9 7.9 8.0方差 3.29 0.49 1.8根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,【答案】D15.若数据x1,x2,…,x n的众数为a,方差为b,则数据x1+2,x2+2,…,x n+2的众数,方差分别是()A.a,b B.a,b+2 C.a+2,b D.a+2,b+2【分析】根据数据x1,x2,…,x n的众数为a,方差为b,可知数据x1+2,x2+2,…,x n+2与原来数据相比都增加2,则众数相应的加2,平均数都加2,则方差不变.解:∵数据x1,x2,…,x n的众数为a,方差为b,∴数据x1+2,x2+2,…,x n+2的众数为a+2,这组数据的方差是b,【答案】C【点评】本题考查方差和众数,解答本题的关键是明确题意,利用众数和方差的定义解答.16.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是()A.甲B.乙C.丙D.无法判断【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.解:根据统计图波动情况来看,此次射击成绩最稳定的是乙,波动比较小,比较稳定.【答案】B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.【答案】6.9%18.春节期间,某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.【答案】23.4万【解析】从图中看出,五天的游客数量从小到大依次为21.9, 22.4, 23.4, 24.9, 25.4,则中位数应为23.4万。
小学五年级数学下册《众数、中位数和平均数》的练习
众数与平均数、中位数的比较
定义:众数是一组数据中出现次数最多的数。
特点:众数不受极端值影响,但可能不唯一。
与平均数的比较:平均数是一组数据的总和除以数据的个数,受极端值影响较大。
与中位数的比较:中位数是将一组数据从小到大排列后,位于中间位置的数。中位数不受极端 值和数据个数的影响。
Part Two
答案:平均数
进阶练习题答案
答案:正确 答案:正确 答案:正确 答案:错误
综合练习题答案
练习题1:答案 为B,因为这组 数据中出现次数 最多的数是20, 所以众数是20。
练习题2:答案 为C,因为这组 数据按从小到大 排列后,位于中 间位置的数是25, 所以中位数是25。
练习题3:答案 为A,因为这组 数据的平均数是 (20+25+30+ 35+40)/5=27, 所以平均数是27。
众数的计算方法
定义:一组数据中出现次数最多的数 计算方法:将数据按照大小顺序排列,出现次数最多的数即为众数 注意事项:如果数据中出现次数最多的数有多个,则众数不止一个 举例:如数据1、2、3、4、4、4、5、6的众数是4和6
众数的应用场景
市场营销:了解消费者的喜好,制定销售策略 数据分析:在大量数据中找出最频繁出现的数值,用于预测趋势 人力资源:评估员工绩效,找出表现最佳和最差的部分员工 金融投资:分析股票、基金等金融产品的价格波动,找出潜在的投资机会
● 题目:一组数据1、2、3、4、5的中位数是( )。 解析:中位数是第3个数和第4个数的平均数,即(3+4)/2=3.5。 ● 解析:中位数是第3个数和第4个数的平均数,即(3+4)/2=3.5。
Part Five
练习题答案
20.2.2平均数、中位数和众数的选用同步练习含答案
20.2.2 平均数、中位数和众数的选用基础训练1.关于一组数据的平均数、中位数、众数,下列说法中正确的是( )A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的数D.以上说法都不对2.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( ) A.平均数 B.中位数C.众数D.以上都不对3.学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:建议学校商店进货数量最多的品牌是( )A.甲品牌B.乙品牌C.丙品牌D.丁品牌4.种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( )A.13.5,20B.15,5C.13.5,14D.13,145.某同学进行社会调查,随机抽查了某个地区的20户家庭的年收入情况,并绘制了如图所示的统计图.(1)先完成下表,再回答问题:年收入(万元) 0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7户数这20户家庭的年平均收入为______万元;(2)这20户家庭的年收入的中位数、众数分别是多少?(3)在平均数、众数两数中,哪个更能反映这个地区家庭的年收入水平?为什么?培优提升1.八年级(1)班有学生46人,已知该班学生的平均身高为1.58米.明明的身高为1.59米,但明明说他的身高在全班是中等偏下的,班上有25个同学比他高,20个同学比他矮,下列说法不正确的是( )A.不可能,因为他的身高已经超过平均身高了B.可能,因为他的身高可能低于中位数C.可能,因为平均数会受极端值的影响D.可能,因为某个同学可能特别矮2.下列说法错误的是( )A.如果一组数据的众数是5,那么这组数据出现次数最多的数是5B.一组数据的平均数一定大于其中每一个数据C.一组数据的平均数、众数、中位数有可能相同D.一组数据的中位数有且只有一个3.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师说:“我班的学生考得还不错,有一半的学生的成绩在79分以上,一半的学生的成绩不到79分.”王老师说:“我班大部分学生的成绩都在80分到85分之间.”通过上面两位老师的对话,你认为林、王两位老师所说的话分别针对( )A.平均数、众数B.众数、中位数C.中位数、平均数D.中位数、众数4.某校有21名同学参加某比赛,预赛成绩各不相同,要取前11名同学参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )A.最高分B.中位数C.平均数D.最低分5.某商场一天内出售某品牌运动鞋13双,其中各种尺码的鞋的销售量如下表:请你给该商场提出一条合理的进货建议: .6.我们知道平均数、中位数和众数都是数据的代表,它们从不同侧面反映了数据的“平均水平”.有一次,小王、小李和小张三位同学进行射击比赛,每人打10发子弹,命中环数如下:小王:9 7 6 9 9 10 8 8 7 10小李:7 10 9 8 9 10 6 8 9 10小张:8 8 9 10 7 8 10 10 10 10统计结果表明,三人的“平均水平”都是9环.每人运用了平均数、中位数和众数中的一种表示“平均水平”,则小王运用了_______;小李运用了;小张运用了.7.为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,从中随机抽取了15名学生家庭的年收入情况,数据如下表:(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.8.甲、乙、丙三个家电厂家在广告中都声称自己的某种电子产品在正常情况下的使用寿命是8年,质量检测部门对这三个厂家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是顾客,你会选购哪个厂家的产品?为什么?参考答案【基础训练】1.【答案】C解:A.如数据0,1,1,4,这四个数的平均数是1.5,不是这组数中的数,错误;B.如数据1,2,3,4的中位数是2.5,不是这组数中的数,错误;C.众数是一组数据中出现次数最多的数,它一定是数据中的数,正确.故选C.2.【答案】C3.【答案】D4.【答案】C5.解:(1)填表如下:1.6(2)中位数是1.2万元,众数是1.3万元.(3)众数更能反映这个地区家庭的年收入水平.因为在平均数,众数两数中,平均数受到极端值的影响较大,所以众数更能反映这个地区家庭的年收入水平.【培优提升】1.【答案】A解:A.班上有25个同学比明明高,即身高在平均身高以下的同学占少数,若比明明高的同学的身高比平均身高高的幅度不大,比明明低的同学的身高比平均身高低的幅度大,则明明的说法是可能的.故本选项错误;B.本选项正确;C.本选项正确;D.本选项正确.故选A.2.【答案】B解:根据众数的概念知A正确;一组数据的平均数、众数、中位数有可能相同,如数据2,3,5,5,10,C正确;一组数据的中位数有且只有一个,故D正确;平均数是所有数据的和与数据个数的比值,不会大于其中每一个数据,故B错误.故选B.3.【答案】D解:“有一半的学生的成绩在79分以上,一半的学生的成绩不到79分”针对的是中位数,“大部分学生的成绩都在80分到85分之间”针对的是众数.故选D.4.【答案】B5.【答案】多进尺码为25 cm的运动鞋解:由表得:众数为25 cm,即25 cm的鞋卖得最好,故多进25 cm的运动鞋.6.【答案】众数;中位数;平均数解:小王命中环数的平均数为(9+7+6+9+9+10+8+8+7+10)÷10=8.3(环),中位数为8.5环,众数为9环;小李命中环数的平均数为(7+10+9+8+9+10+6+8+9+10)÷10=8.6(环),中位数为9环,众数为9环和10环;小张命中环数的平均数为(8+8+9+10+7+8+10+10+10+10)÷10=9(环),中位数为9.5环,众数为10环.∵三人的“平均水平”都是9环,∴小王运用了众数;小李运用了中位数;小张运用了平均数.7.解:(1)平均数为=4.3(万元).这15名学生家庭年收入的中位数为3万元,众数为3万元.(2)用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数和众数3万元是大部分家庭可以达到的水平,因此用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.8.解:(1)第一组数据:平均数为×(4+5+5+5+5+7+9+12+13+15)=8,众数为5,中位数为6;第二组数据:平均数为×(6+6+8+8+8+9+10+12+14+15)=9.6,众数为8,中位数为8.5;第三组数据:平均数为×(4+4+4+6+7+9+13+15+16+16)=9.4,众数为4,中位数为8.(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数.(3)选购乙厂的产品,理由:在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此选购乙厂的产品.。
初二数学平均数,众数,中位数的区别及相关练习题(含答案)
平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n 中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
(完整版)平均数、众数、中位数练习题
平均数、众数、中位数练习题一、选择题1.)A.平均数B.中位数C.众数D.方差2.如果鞋店要购进100...的是().A.20双B.30双C.50双D.80双A.2200元 1800元 1600元B.2000元 1600元 1800元C.2200元 1600元 1800元D.1600元 1800元 1900元4.某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.众数C.中位数D.方差5.跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的()A.平均数B.众数C.中位数D.方差6.在一次数学单元考试中,某小组7名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70.则这组数据的中位数是A.90B.85C.80D.707.A.平均数B.众数C.中位数D.方差8. 某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资.今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增大D.平均数和中位数都增大9.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数 B.中位数 C.平均数 D.极差二、填空题10. 东海县素有“水晶之乡”的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链75条,其价格和销售数量如下表:下次进货时,你建议该商店应多进价格为元的水晶项链.11. 某市广播电视局欲招聘播音员一名,对A 、B 两名候选人进行了两项素质测试.两人的两项测试成绩如右表所示:根据实际需要,广播电视局将面试、综合知识测试的得分按3∶2的比例计算两人的总成绩,那么 (填A 或B )将被录用.12. 四次测试小丽每分钟做仰卧起坐的次数分别为:50、45、48、47,这组数据的中位数为_________.13. 甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、9、11、7, 则这组数据的:①众数为_____________;②中位数为____________;③平均数为__________. 14.李红同学为了在中考体育加试中取得好成绩,每天自己在家里练习做一分钟仰卧起坐,妈妈统计了她一个星期做的次数:30、28、24、30、25、30、22.则李红同学一个星期做仰卧起坐的次数的中位数和众数分别是_________________. 三、应用题15.某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是 .(3分) (2)该班学生考试成绩的中位数是 .(4分)(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3分)16.某校高中一年级组建篮球队,对甲、乙两名备选同学 进行定位投篮测试,每次投10个球,共投10次. 甲、乙两名同学测试情况如图所示: (1)根据图中所提供的信息填写下表: (2)如果你是高一学生会文体委员,会选择哪名同学进入篮球队?请说明理由.投篮次数17.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示: 甲队:乙队:(1平均数 中位数 众数 方差 甲队游客年龄 15 15 乙队游客年龄15471.4(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计量是_____________________________; ②平均数能较好地反映乙队游客的年龄特征吗?为什么?18. 某中学初三(1)班、(2)班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:(1)根据上图信息填写下表:(2)根据两班成绩的平均数和中位数,分析哪班成绩较好? (3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.19. 如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题: (1)田径队共有多少人?(2)该队队员年龄的众数和中位数分别是多少? (3)该队队员的平均年龄是多少?年龄 13 14 15 16 17 13 人数 2 1 4 1 2 2 年龄 3 4 5 6 54 57人数 1 2 2 3 1 1平均数 中位数 众数 初三(1)班 85 85 初三(2)班 85 8020. 在烟台市举办的“读好书、讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多.除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐图书的中位数和众数分别是多少?四、猜想、探究题21.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩甲乙丙教学能力85 73 73科研能力70 71 65组织能力64 72 84(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.1、有一棵奇妙的树,原来只有1个树枝,第一年长出1个树枝,第二年每个树枝分别长出1个新枝,第三年每个树枝又都分别长出1个新枝,照这样计算,第五年这棵树一共有几个树枝?2、阿米巴原虫(一种寄生虫)是用简单分裂的方式(一分为二)繁殖的,每分裂一次要用3分钟。
数学平均数中位数众数试题
数学平均数中位数众数试题1.(2011•苏州模拟)六(3)班第六小组在一次数学质量调研中的测试成绩如下.(单位:分)68 73 66 72 99 75 100(1)第六小组本次数学质量调研成绩的平均数和中位数分别是多少?(2)代表第六小组成绩的一般情况,平均数和中位数哪个更合适?【答案】79,73;中位数【解析】(1)先求出这组数据的和,进而根据“总数÷人数=平均数”解答;把数据按从小到大的顺序排列,因为是奇数个,中位数即中间的那个数;(2)根据中位数和平均数的特点进行解答.解:(1)(68+73+66+72+99+75+100)÷7,=553÷7,=79;把数据按从小到大的顺序排列为:66,68,72,73,75,99,100;中位数为:73;(2)因为此组数据中个别数据大小差距较大,根据中位数不受极端数字的影响,所以用中位数代表第六小组成绩的一般情况更合适;答:(1)第六小组本次数学质量调研成绩的平均数是79,中位数是73;(2)用中位数代表第六小组成绩的一般情况更合适.点评:此题应根据总数、数量和平均数之间的关系及中位数是意义进行解答.2.(2012•宝应县模拟)下面是六年级(3)班10个女生1分钟跳绳成绩记录单这组数据的平均数是下,中位数是下,用代表这适.【答案】98,103,平均数【解析】(1)把10位同学的跳绳的成绩加起来再除以10即可;(2)把10位同学的跳绳的成绩按从小到大(或从大到小)的顺序排列,处于中间的两个数的平均数就是该组数据的中位数,(3)看看平均数和中位数这两个数,哪个数最能反映10个学生的跳绳的成绩,就选哪个数.解:(1)(106+99+104+120+107+112+33+102+97+100)÷10,=980÷10,=98(下);(2)10个学生的成绩按从小到大的排列顺序为:33、97、99、100、102、104、106、107、112、120;中位数为:(102+104)÷2,=206÷2,=103(下);(3)因为平均数更能反映10个学生的跳绳的成绩,所以用平均数代表这10位同学跳绳的情况比较合适,故答案为:98,103,平均数.点评:此题主要考查了平均数的计算方法及求中位数的方法.3.(2008•江都市)运动员在短跑场地训练50米短跑.下面是五年级两个班的12名队员50米短跑平时训练的平时成绩(单位:秒)一班:8.8 8.2 8.4 8.5 8.6 8.4 8.3 8.1 8.3 8.5 8.6 8.7二班:8.5 8.3 8.4 8.5 8.3 8.4 8.3 8.4 8.5 8.4 8.4 8.4(1)这两组数据的平均数、中位数和众数各是多少?(2)你认为分别用哪个数据代表一班和二班的成绩比较合适?如果这两个班进行50米往返接力比赛,你认为哪个班获奖的可能性大?为什么?【答案】一班:8.45,8.45,8.6、8.5、8.4、8.3;二班:8.4,8.4,8.4;一班用中位数,二班用平均数,二班获胜可能性大,因为整体水平比较高【解析】(1)先分别求出两组数的和,然后根据“总数÷数量=平均数”分别进行解答即可;(2)把两组数按从小到大的顺序排列,因为数的个数是偶数个,即中间两个数的平均数,进行解答即可;众数即出现次数最多的数字,进而得出结论;(3)根据数据的特点进行分析,解答即可.解:(1)一班平均数:(8.8+8.2+8.4+8.5+8.6+8.4+8.3+8.1+8.3+8.5+8.6+8.7)÷12,=101.4÷12,=8.45(秒);排列为:8.1、8.2、8.3、8.3、8.4、8.4、8.5、8.5、8.6、8.6、8.7、8.8;中位数为(8.4+8.5)÷2,=16.9÷2,=8.45;众数为:8.6、8.5、8.4、8.3;二班:(8.5+8.3+8.4+8.5+8.3+8.4+8.3+8.4+8.5+8.4+8.4+8.4)÷12,=100.8÷12,=8.4(秒);排列为:8.3、8.3、8.3、8.4、8.4、8.4、8.4、8.4、8.4、8.5、8.5、8.5;中位数为:(8.4+8.4)÷2=8.4;众数为:8.4;(2)一班用中位数,二班用平均数,代表一班和二班的成绩比较合适.二班获胜可能性大,因为整体水平比较高.点评:解答此题的关键是:(1)根据平均数的计算方法进行解答即可;(2)根据中位数和众数的含义进行解答即可.4.一组数据中的某个数变化时,对平均数有影响,对中位数一定没有影响..(判断对错)【答案】×【解析】求平均数只要求出数据之和再除以总个数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.利用平均数、中位数的定义进行判断.解:一组数据中的一个数大小发生了变化,它的平均数一定发生变化,中位数也可能发生改变,也可能不发生改变.故答案为:×.点评:本题属于基础题,要熟练掌握平均数、中位数的概念.5.在公园里有①、②两群游客正在做团体游戏,两群游客的年龄如下(单位:岁)①群:13,13,14,15,15,15,15,16,17②群:3,4,4,5,5,6,6,6,54,57,(1)①群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好的反映①群游客年龄特征的是数.(2)②群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好的反映②群游客年龄特征的是数.【答案】14.8,15,15,中位;15,5.5,6,众【解析】根据平均数、中位数和众数的定义及其意义回答即可.解:(1)甲群游客的平均年龄是:(13+13+14+15+15+15+15+16+17)÷9≈14.8(岁),中位数是15岁,众数是15岁,其中能较好反映甲群游客年龄特征的是:中位数;(2)乙群游客的平均年龄是:(3+4+4+5+5+6+6+6+54+57)÷10=15(岁),中位数是:(5+6)÷2=5.5(岁),众数是6岁,因为,平均数受到极端值的影响很大,所以,其中能较好反映乙群游客年龄特征的是:众数,故答案依次为:14.8,15,15,中位;15,5.5,6,众.点评:本题考查统计知识中的中位数、平均数和众数的定义及其运用,即将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数.6.一组数据中,出现次数最多的那个数是众数,最中间的那个数就是中位数..【答案】错误【解析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.由此解答.解:一组数据中,出现次数最多的那个数是众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,可知当数据个数为奇数个中位数就是最中间那个,可知当数据个数为偶数个中位数就是最中间两个数的平均数,所以最中间的那个数就是中位数,这种说法是错误的.故答案为:错误.点评:本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.下图是五名学生一分钟跳绳成绩统计表:)这组数据的平均数是.(2)这组数据的中位数是.(3)用代表这五名学生跳绳的一般水平更合适.【答案】93,78,中位数【解析】(1)根据“总成绩÷人数=平均成绩”进行计算即可;(2)中位数是将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数;(3)根据本组数据的个别数据偏大,用中位数来描述该组数据的集中趋势就比较合;解:(1)(152+70+78+89+76)÷5,=465÷5,=93;(2)152,89,78,76,70;中位数为78;(3)根据本组数据的个别数据偏大,用中位数来描述该组数据的集中趋势就比较合;故答案为:93,78,中位数.点评:解答此题应结合题意,根据平均数、中位数的异同进行解答即可.8.一组数据8、9、10、11、12、15、15、15、15、16、19、23;这组数据的平均数是,中位数是,众数是.【答案】14,15,15【解析】(1)把给出的这12个数据加起来再除以数据个数12,就是此组数据的平均数;(2)把给出的此组数据按从小到大(或从大到小)的顺序排列,因为数据是12个,是偶数,所以中间两个数据的平均数就是此组数据的中位数;(3)在此组数据中出现次数最多的那个数,就是此组数据的众数.解:(1)(8+9+10+11+12+15+15+15+15+16+19+23)÷12,=168÷12,=14;答:这组数据的平均数是14.(2)将数据按从小到大的顺序排列为:8、9、10、11、12、15、15、15、15、16、19、23,中位数:(15+15)÷2=15;答:这组数据的中位数是15.(3)因为此组数据中出现次数最多的数是15,所以15是此组数据的众数;答:这组数据的众数是15.故答案为:14,15,15.点评:此题主要考查了平均数、中位数与众数的意义与求解方法.9.平均数、中位数和是三种反映一组数据集中趋势的统计量.【答案】众数【解析】(1).平均数:平均数的计算中要用到每一个数据,因而它反映的是一组数据的总体水平.(2)中位数:中位数是一组数据的中间量,代表了中等水平.(3).众数代表的是一组数据的多数水平,众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况.解:除了“平均数,中位数”反映一组数据集中趋势外,“众数”也能代表一组数据集中趋势,因为,众数代表的是一组数据的多数水平,众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况.故答案为:众数.点评:本题考查了众数与中位数平均数在一组数据中的作用.它们都是反映一组数据集中趋势的统计量.10.刘叔叔是一位鞋厂经理,他随机调查了9个人的鞋子尺码,由小到大是:22、23、23、23.5、23.5、23.5、23.5、24、24.5.对这组数据的分析中,他最感兴趣的是这组数据的.【答案】众数【解析】一组数据中出现次数最多的一个数是这组数据的众数,刘叔叔最感兴趣的是哪个号码出现的次数最多,即这组数据的众数.解:刘叔叔最感兴趣的是哪个号码出现的次数最多,即这组数据的众数.故答案为:众数.点评:此题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.。
初二平均数中位数众数方差练习题
初二平均数中位数众数方差练习题1. 某班级有10个学生,他们的身高分别是:150cm, 152cm, 148cm, 155cm, 160cm, 145cm, 155cm, 150cm, 157cm, 153cm。
请计算该班级学生的平均身高、中位数、众数和方差。
解答:平均身高:(150 + 152 + 148 + 155 + 160 + 145 + 155 + 150 + 157 + 153) ÷ 10 = 153.5cm中位数:首先将身高从小到大排序:145cm, 148cm, 150cm, 150cm, 152cm, 153cm, 155cm, 155cm, 157cm, 160cm中位数为中间的数值,也就是150cm。
众数:众数是指出现次数最多的数值。
在这个例子中,150cm和155cm各出现了两次,其他的数值只出现了一次,因此众数有两个,即150cm 和155cm。
方差:方差是用来衡量数据的离散程度,是每个数据值与平均值的差的平方的平均值。
计算方差的方法如下:1) 计算各个数据值与平均值的差的平方:(150 - 153.5)^2 = 9.02(152 - 153.5)^2 = 2.25(148 - 153.5)^2 = 29.02(155 - 153.5)^2 = 2.25(160 - 153.5)^2 = 42.02(145 - 153.5)^2 = 71.02(155 - 153.5)^2 = 2.25(150 - 153.5)^2 = 9.02(157 - 153.5)^2 = 12.02(153 - 153.5)^2 = 0.252) 计算差的平方的平均值:(9.02 + 2.25 + 29.02 + 2.25 + 42.02 + 71.02 + 2.25 + 9.02 + 12.02 + 0.25) ÷ 10 ≈ 21.12因此,该班级学生身高的方差约为21.12。
平均数众数中位数方差极差标准差典型题
平均数众数中位数方差极差标准差典型题基础计算平均数基本计算公式:)......(121n x x x nx +++=, 平均数的简化计算公式:a x x +'=,加权平均数公式:,...2211nf x f x f x x k k +++=(其中f 1+f 2+…+f k =n); 方差计算公式:[]222212)(...)()(1x x x x x x n s n -++-+-=; 标准差的计算公式:[]22221)...()()(1x x x x x x n s n -+-+-=.1.一射击运动员一次射击练习的成绩是(单位:环):7,10,9,9,10,这位运动员这次射击成绩的平均数是 环.2.某生数学科课堂表现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按30%、30%、40%的比例计入总评成绩,则该生数学科总评成绩是_______分.3.在“庆祝建党90周年的红歌传唱活动”比赛中,七位评委给某参赛队打的分数为:92、86、88、87、92、94、86,则去掉一个最高分和一个最低分后,所剩五个分数的平均数和中位数是( )A .89,92B .87,88C .89,88D .88,924.在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,下图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款____元.5.某校初三·一班6名女生的体重(单位:kg )为:35 36 38 40 42 42则这组数据的中位数等于( ).A .38B .39C .40D .426.数据1,2,4,4,3的众数是( )A 1B 2C 3D 47.已知一组数据:4,—1,5,9,7,6,7,则这组数据的极差是( )A 、10B 、9C 、8D 、78.计算一组数据:8,9,10,11,12的方差为( )A .1B .2C .3D .49.一组数据-8,-4,5,6,7,•7,•8,•9•的•标准差是______.10.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是 ( )A.众数是80 B.中位数是75 C.平均数是80 D.极差是1511.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( )A. 9,10,11B.10,11,9C.9,11,10D.10,9,1112.某地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位:℃),则这组数据的中位数和众数分别是( )A .36,37B .37,36C .36.5,37D .37,36.513.超市购进一批大米,大米的标准包装为每袋30kg ,售货员任选6袋进行了称重检验,超过标准重量的记作“+”, 不足标准重量的记作“-”,他记录的结果是0.5+,0.5-,0,0.5-,0.5-,1+,那么这6袋大米重量..的平均数和极差分别是10%20%50元20元10元10%5元60%A .0,1.5B .29.5,1C . 30,1.5D .30.5,014.2011年春我市发生了严重干旱,市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是A.众数是6B.极差是2C.平均数是6D.方差是415.某中学数学兴趣小组12名成员的年龄情况如下:则这个小组成员年龄的平均数和中位数分别是( )A .15,16B .13,15C .13,14D .14,1416.小华五次跳远的成绩如下(单位:m ):3.9,4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是( )A .极差是0.4B .众数是3.9C .中位数是3.98D .平均数是3.9817.十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有( ) A . B . C . D .18.某校A 、B 两队10名参加篮球比赛的队员的身高(单位:cm )如下表所示:设两队队员身高的平均数分别为B A x x ,,身高的方差分别为S A 2,S B 2,则正确的选项是( )A 、 22,B A B A S S x x >= B 、22,B A B A S S x x <<C 、 22,B A B A S S x x >>D 、22,B A B A S S x x <=稍难计算1.数据2,3,m ,5,9,n 的平均数是3,则m ,n 的平均数是_____.2.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,•其中甲同学考了89分,则除甲以外的5名同学的平均分为______分.3.若数据,,,…,的众数、中位数、平均数分别是、、,则,,,…,的众数= ,中位数= ,平均数= 。
平均数、众数、中位数的异同及应用 小学数学 练习题
一、选择题1. 要表示同学们最喜欢的体育活动,应该选取()。
A.平均数B.中位数C.众数2. 六(1)班期末考试成绩统计完后,能反映出这个班的学习情况,一般看这组数据的()A.中位数B.平均数C.众数3. 10名工人在某天生产同一种零件,生产的件数分别是:15件,17件,14件,10件,15件,19件,17件,16件,14件,13件,平均每人生产()件。
A.14 B.15 C.164. 李老师把发放《小学生交通安全常识》宣传册的任务平均分给甲、乙、丙三名学生.上午甲发了168册,乙发了125册,丙发了127册,这时三人剩下的总册数与每人分到的册数相等.乙剩下()册没发完.A.210 B.140 C.85 D.155. 小利以往英语单词的测试都在75〜90分之间,此次得了 100分,下面说法正确的是().A.中位数减小了B.平均数增加了C.众数增加了二、填空题6. 有五个数,它们的和是87。
前3个数的平均数是18,后三个数的平均数是16,那么第三个数是( )。
7. 一组同学的身高如下.(单位:厘米)140 145 145 148 145 147 149 145 149 147,这组同学的平均身高是( )厘米;这组数据的中位数是( ),众数是( ).8. 豆豆在期末考试中,语、数、英三科总成绩是276分,则三科成绩的平均分是( )分。
9. 反映一组数据的一般水平通常有三种统计量,它们是平均数、( )和( )数.10. 强强期末考试语文、数学、英语三科的总成绩是272分,语文、数学的平均成绩是88分,英语成绩是( )分。
三、解答题11. 学校买来9包图书,每包30本,将这批图书平均分给6个班,每个班可以分得图书多少本?12. 在贺兰县教育体育局举行的全县中、小学生“美文诵读”比赛中,9位评委给贺兰一小的打分如下:9.6 9.4 9.6 9.6 9.9 9.7 9.3 9.6 9.5(1)这组数据的平均数(得数保留两位小数)、中位数和众数各是多少?(2)如果按照“去掉一个最高分,去掉一个最低分,再计算平均分”的评分方法来计算,平均分是多少?13. 下面是五年级几个班的植树情况.班别一二三四五六植树棵数14 17 19 15 34 15(1)分别求出这组数据的平均数和中位数.(2)观察这组数据,有什么发现,你觉得用平均数还是中位数代表这组数据的一般情况更合适?14. 某厂4月份前13天烧煤220吨,后17天烧煤605吨。
湘教版数学七年级下册_《平均数、中位数、众数》拓展训练
《平均数、中位数、众数》拓展训练一、选择题1.如图为某班35名学生投篮成绩的条型统计图,其中上面部分数据破损导致数据不完全.已知此班学生投篮成绩的中位数是5,则根据图,无法确定下列哪一选项中的数值()A.4球以下的人数B.5球以下的人数C.6球以下的人数D.7球以下的人数2.小亮和小莹进行飞镖比赛,两人各投了10次,成绩如图所示,则小亮和小莹成绩的中位数分别是()A.7和7B.7和8C.7和7.5D.6和73.下表为某校八年级72位女生在规定时间内的立定投篮数统计,56789101112131415投进的个数人数37610118137142若投篮投进个数的中位数为a,众数为b,则a+b的值为()A.20B.21C.22D.234.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,55.已知一组数据x1,x2,x3的平均数为7,则x1+3,x2+2,x3+4的平均数为()A.7B.8C.9D.106.一组数据3,5,6,7,9,9的中位数和众数分别是()A.6和9B.5.5和9C.6.5和9D.7和97.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2B.3C.4D.88.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2B.3C.4D.59.五个整数从小到大排列,中位数是4,如果这组数据唯一的众数是6,则这五个整数的和的最大值可能是()A.17B.19C.21D.2210.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,6二、填空题11.在数据1,2,4,5中加入一个正整数x,使得到的新一组数据的平均数与中位数相等,则x=.12.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.13.某教师招聘考试分笔试和面试两项,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.王亮笔试成绩为90分,面试成绩为95分,那么王亮的总成绩是分.14.为响应“书香校园”建设号召,在全校形成良好的人文阅读风尚,我县某中学随机抽取了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是小时,平均每人阅读时间是小时.15.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为.三、解答题16.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?17.在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:语文数学英语科学甲959580150乙1059090139丙10010085139(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?18.质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15;乙公司:6,6,8,8,8,9,10,12,14,15;丙公司:4,4,4,6,7,9,13,15,16,16;请回答下列问题(1)填空:公司数值统计量平均数(单位:年)众数(单位:年)中位数(单位:年)甲公司5乙公司9.68.5丙公司9.44(2)如果你是顾客,你将选购哪家公司销售的产品?为什么?19.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:45013060504035周销售量(件)人数113532(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理?为什么?如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.20.甲、乙、并三位同学参加数学综合素质测试.各项成绩如下(单位:分)数与代数图形与几何统计与概率综合与实践同学成绩甲90938990乙94929486丙92919088(1)甲、乙、丙三位同学成绩的中位数分别为;(2)如果数与代数、图形与几何、统计与概率、综合与实践的成绩按3:3:2:2计算,分别计算甲、乙、丙三位同学的数学综合素质测试成绩,从成绩看,应推荐谁参加更高级别的比赛?《平均数、中位数、众数》拓展训练参考答案与试题解析一、选择题1.如图为某班35名学生投篮成绩的条型统计图,其中上面部分数据破损导致数据不完全.已知此班学生投篮成绩的中位数是5,则根据图,无法确定下列哪一选项中的数值()A.4球以下的人数B.5球以下的人数C.6球以下的人数D.7球以下的人数【分析】根据题意和函数图象中的数据可以求得各个选项中对应的人数,从而可以解答啊本题.【解答】解:由题意和图象可得,4球以下的人数为:2+3+5=10,故选项A不符合题意,5球以下的人数为:1+2+3+7=17,故选项B不符合题意,6球以下的人数无法确定,故选项C符合题意,7球以下的人数为:35﹣1=34,故选项D不符合题意,故选:C.【点评】本题考查中位数和条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.小亮和小莹进行飞镖比赛,两人各投了10次,成绩如图所示,则小亮和小莹成绩的中位数分别是()A.7和7B.7和8C.7和7.5D.6和7【分析】直接利用折线统计图将数据按大小排列,进而利用中位数的定义分析得出答案.【解答】解:小亮的成绩从小到大排列为:5,6,6,7,7,7,7,8,8,9;故中位数为:(7+7)÷2=7;小莹的成绩从小到大排列为:2,4,6,7,7,8,8,9,9,10,故中位数为:(7+8)÷2=7.5;故选:C.【点评】此题主要考查了中位数,正确获取各数据是解题关键.3.下表为某校八年级72位女生在规定时间内的立定投篮数统计,56789101112131415投进的个数人数37610118137142若投篮投进个数的中位数为a,众数为b,则a+b的值为()A.20B.21C.22D.23【分析】根据中位数与众数的求法,分别求出投中个数的中位数与众数再相加即可解答.【解答】解:第36 与37人投中的个数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故选:A.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.已知一组数据x1,x2,x3的平均数为7,则x1+3,x2+2,x3+4的平均数为()A.7B.8C.9D.10【分析】先根据原数据的平均数为7知x1+x2+x3=21,再根据平均数计算公式得(x1+3+x2+2+x3+4)÷3,代入计算可得.【解答】解:∵数据x1,x2,x3的平均数为7,∴x1+x2+x3=21,则x1+3,x2+2,x3+4的平均数为:(x1+3+x2+2+x3+4)÷3=(21+3+2+4)÷3=10.故选:D.【点评】本题考查的是算术平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.6.一组数据3,5,6,7,9,9的中位数和众数分别是()A.6和9B.5.5和9C.6.5和9D.7和9【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,据此可得答案.【解答】解:将数据从小到大排列为3、5、6、7、9、9,则这组数据的中位数为(6+7)÷2=6.5、众数为9.故选:C.【点评】本题考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2B.3C.4D.8【分析】先根据平均数为5得出a+b=10,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.【解答】解:∵数据3,a,4,b,8的平均数是5,∴3+a+4+b+8=25,即a+b=10,又众数是3,∴a、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选:C.【点评】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.8.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2B.3C.4D.5【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【解答】解:∵这组数据有唯一的众数4,∴x=4,将数据从小到大排列为:1,2,3,3,4,4,4,则中位数为:3.故选:B.【点评】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.9.五个整数从小到大排列,中位数是4,如果这组数据唯一的众数是6,则这五个整数的和的最大值可能是()A.17B.19C.21D.22【分析】根据中位数和众数的定义分析可得答案.【解答】解:因为五个整数从小到大排列后,其中位数是4,这组数据的唯一众数是6.所以这5个数据分别是x,y,4,6,6,且x<y<4,当这5个数的和最大时,整数x,y取最大值,此时x=2,y=3,所以这组数据可能的最大的和是2+3+4+6+6=21.故选:C.【点评】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,6【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.二、填空题11.在数据1,2,4,5中加入一个正整数x,使得到的新一组数据的平均数与中位数相等,则x=8.【分析】根据算术平均数得出其平均数为=,由中位数的定义知中位数可能为2、4、x,分别求解可得.【解答】解:根据题意知新数据的平均数为=,若中位数为2,则=2,解得x=﹣2(舍);若中位数为4,则=4,解得x=8;若中位数为x,则=x,解得:x=3;故答案为:3或8.【点评】本题主要考查中位数和算术平均数,解题的关键是根据中位数的定义分类求解.12.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是100分.【分析】先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C 的成绩.【解答】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为100分,因此a=b=c=d=e=100,即C得100分.故答案为:100.【点评】本题利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.13.某教师招聘考试分笔试和面试两项,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.王亮笔试成绩为90分,面试成绩为95分,那么王亮的总成绩是92分.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:王亮的总成绩是90×60%+95×40%=92(分),故答案为:92.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.为响应“书香校园”建设号召,在全校形成良好的人文阅读风尚,我县某中学随机抽取了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是1小时,平均每人阅读时间是 1.1小时.【分析】由统计图可知总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.根据加权平均数的计算方法可得答案.【解答】解:由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.在本次调查中,被调查学生阅读时间的平均数是:×(0.5×8+1×19+1.5×10+2×3)=1.1(小时),故答案为:1、1.1.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.也考查了条形统计图.15.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为19.【分析】由原数据的平均数得出x1+x2+x3+x4=24,再根据平均数的计算公式可得.【解答】解:依题意,得=(x1+x2+x3+x4)=6,∴x1+x2+x3+x4=24,∴3x1+1,3x2+1,3x3+1,3x4+1的平均数为=[(3x1+1)+(3x2+1)+(3x3+1)+(3x4+1)]=×(3×24+1×4)=19,故答案为:19.【点评】此题考查平均数的意义,掌握平均数的计算方法是解决问题的关键.三、解答题16.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?【分析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.【解答】解:(1)甲组的平均成绩为=83(分)、乙组的平均成绩为=84(分),所以乙组第一名、甲组第二名;(2)甲组的平均成绩为=83.8(分),乙组的平均成绩为=83.5(分),所以甲组成绩最高.【点评】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.17.在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:语文数学英语科学甲959580150乙1059090139丙10010085139(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?【分析】(1)把各科分数相加,再除以4即可;(2)按比例计算出平均分,再判断即可.【解答】解:(1)==105(分);==106(分);==106(分);答:乙、丙将被表扬;(2)==108.5(分);==107.7(分);==108.7(分);答:甲、丙将被表扬.【点评】此题考查算术平均数和加权平均数的计算,解题的关键是掌握加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.18.质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15;乙公司:6,6,8,8,8,9,10,12,14,15;丙公司:4,4,4,6,7,9,13,15,16,16;请回答下列问题(1)填空:公司数值统计量平均数(单位:年)众数(单位:年)中位数(单位:年)甲公司856乙公司9.688.5丙公司9.448(2)如果你是顾客,你将选购哪家公司销售的产品?为什么?【分析】(1)根据平均数、中位数和众数的定义求解可得;(2)从平均数、众数和中位数的意义即可得.【解答】解:(1)==8,中位数为=6,乙公司的众数为8、丙公司的中位数为=8,补全表格如下:公司数值统计量平均数(单位:年)众数(单位:年)中位数(单位:年)甲公司856乙公司9.688.5丙公司9.448(2)选择乙公司,因为从平均数、中位数和众数三项指标看,都比其他两家公司要好,所以乙公司产品的质量更高.【点评】本题是平均数、众数、中位数在实际生活中的应用,选取以哪个数据为主要结合它们的定义来考虑.19.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:45013060504035周销售量(件)人数113532(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理?为什么?如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.【分析】(1)根据加权平均数的定义、中位数的定义和众数的定义求解;(2)由于前面两人的周销售量与其他人相差太大,它们对平均数影响较大,这样用众数中位数50作为周销售定额比较合理.【解答】解:(1)这15位学生周销售量的平均数=(450×1+130×1+60×3+50×5+40×3+35×2)÷15=80,中位数为50,众数为50;(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.【点评】此题考查了学生对中位数,众数,平均数的掌握情况.它们都是反映数据集中趋势的指标.20.甲、乙、并三位同学参加数学综合素质测试.各项成绩如下(单位:分)数与代数图形与几何统计与概率综合与实践同学成绩甲90938990乙94929486丙92919088(1)甲、乙、丙三位同学成绩的中位数分别为90分、93分、90.5分;(2)如果数与代数、图形与几何、统计与概率、综合与实践的成绩按3:3:2:2计算,分别计算甲、乙、丙三位同学的数学综合素质测试成绩,从成绩看,应推荐谁参加更高级别的比赛?【分析】(1)根据中位数的定义分别计算可得;(2)根据加权平均数的定义列式计算可得.【解答】解:(1)由表可知,甲的中位数为=90分,乙的中位数为=93分,丙的中位数为=90.5分,故答案为:90分、93分、90.5分;(2)甲的平均成绩为=90.7分,乙的平均成绩为=91.8分,丙的平均成绩为=90.5分,所以,从成绩看,应推荐乙参加更高级别的比赛.【点评】本题主要考查中位数、加权平均数,解题的关键是熟练掌握中位数和加权平均数的定义.。
平均数、众数与中位数经典练习题
【题型2】不同数据中平均数、众数与中位数的计算1.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10B.10,12.5C.11,12.5D.11,102.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5B.5,4C.4,4D.5,53.在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是()A.94,94B.95,95C.94,95D.95,944.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是()A.12,13B.12,14C.13,14D.13,165.学校为了丰富学生课余生活开展了一次“爱我云南,唱我云南”的歌咏比赛,共18名同学入围,他们的决赛成绩如下表,则入围同学决赛成绩的中位数和众数分别是()A.9.70和9.60B.9.60和9.60C.9.60和9.70D.9.65和9.606.为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果中,平均数和中位数分别为()A.42,43.5B.42,42C.31,42D.36,54这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,48.种植能手李大叔种植了一批新品种黄瓜,为考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图的条形图,抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是 .9.某公司80名职工的月工资如下:月工资18000 12000 8000 6000 4000 2500 2000 1500 1200人数 1 2 3 4 10 20 22 12 6则该公司职工月工资数据中的众数是.【题型3】平均数、众数与中位数的综合应用1.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,回答下列问题:每周做家务的时间(小时)0 1 1.5 2 2.5 3 3.5 4人数(人) 2 2 6 8 12 13 4 3(1)该班学生每周做家务劳动的平均时间应是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.2.某校为了了解全校400名学生参加课外锻炼的情况,随机对40•名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 5235 62 36 15 51 45 40 4240 32 43 36 34 53 38 4039 32 45 40 50 45 40 5026 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.(2)在这个问题中,总体是_________,样本是________.由统计分析得,•这组数据的平均数是39.35(分),众数是__________,中位数是________.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,•你认为用平均数、众数、中位数中的哪一个比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?3.为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.体育成绩统计表(1)写出样本容量、m的值及抽取部分学生体育成绩的中位数.(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.4.在“爱♥瑞丽”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)求这50名同学捐款的众数和中位数;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.5.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)求这100个样本数据的平均数、众数和中位数;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?6.某公司33名职工的月工资(单位:元)如下:职务董事长副董事董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(1)求该公司职工月工资的平均数、中位数和众数;(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.7.学校校园艺术节参加演出的10个班各派1名代表担任评委,1班和2班的成绩如下: 评委班级 1 2 3 4 5 6 7 8 9 10 1班得分 8 7 7 4 8 7 8 8 8 8 2班得分 78810778777(1)若根据平均数作为评选标准,两个班谁将获胜?你认为公平吗?为什么?(2)采用怎样的方法,对参赛的班级更为公平?如果采用你提供的方法,两个班谁将获胜?8.某同学为了完成统计作业,对全校的耗电情况进行调查.他抽查了10天中全校每天的耗电量,数据如下(单位:度):(1)写出上表中数据的众数和平均数; (2)估计该校一个月(30天)的耗电量;(3)若当地每度电的定价是0.5元,写出该校应付的电费y(元)与天数x(取正整数)之间的函数关系式.9.学校组织的“喜迎十九大”的知识竞赛中,每班参加比赛的人数相同,成绩分为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图,解答下列问题: (1)此次竞赛中,2班成绩在C 级以上(包括C 级)的人数为 . (2)请你将表格补充完整: 平均数/分 中位数/分 众数/分 1班87.690度数 90 93 102 113 114 120 天数112312(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较1班和2班的成绩.②从平均数和众数的角度来比较1班和2班的成绩.③从B级以上(包括B级)的人数的角度来比较1班和2班的成绩.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数、众数、中位数练习题
一、选择题
1.
经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()
A.平均数B.中位数C.众数D.方差
2.
如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适
...的是().
(A)20双(B)30双(C)50双(D)80双
A.2200元1800元1600元B.2000元1600元1800元
C.2200元1600元1800元D.1600元1800元1900元
`
4.
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.众数C.中位数D.方差
5.跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的()
A.平均数B.众数C.中位数D.方差
6.在一次数学单元考试中,某小组7名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70.则这组数据的中位数是
<
7.
8. 某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资.今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的
平均数和中位数与去年相比将会()
A.平均数和中位数不变
B.平均数增加,中位数不变
C.平均数不变,中位数增大
D.平均数和中位数都增大
9.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()
A.众数B.中位数C.平均数D.极差
二、填空题
10. 东海县素有“水晶之乡”的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链75条,其价格和销售数量如下表:
下次进货时,你建议该商店应多进价格为元的水晶项链.
>
11. 某市广播电视局欲招聘播音员一名,
对A、B两名候选人进行了两项素质测试.两人的两项测试成绩如右表所Array示:根据实际需要,广播电视局将面试、综合知识测试的得分按3∶2的
比例计算两人的总成绩,那么(填A或B)将被录用.
12. 四次测试小丽每分钟做仰卧起坐的次数分别为:50、45、48、47,这组
数据的中位数为_________.
13. 甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、9、
11、7, 则这组数据的:①众数为_____________;②中位数为____________;③平均数为__________.
14.李红同学为了在中考体育加试中取得好成绩,每天自己在家里练习做一分钟仰卧起坐,妈妈统计了她一个星期做的次数:30、28、24、30、25、30、22.则李红同学一个星期做仰卧起坐的次数的中位数和众数分别是_________________.
三、应用题
15.
请根据表中提供的信息解答下列问题:
(1)该班学生考试成绩的众数是.(3分)
(2)该班学生考试成绩的中位数是.(4分)
(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平试说明理由.(3分)
)
16.某校高中一年级组建篮球队,对甲、乙两名备选同学 进行定位投篮测试,每次投10个球,共投10次. ·
甲、乙两名同学测试情况如图所示:
(1)根据图中所提供的信息填写下表: (2)如果你是高一学生会文体委员, 会选择哪名同学进入篮球队请说明理由.
~
17.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示: 甲队: 乙队:
(1)根据上述数据完成下表: 平均数 中位数 : 众数 方差
甲队游客年龄 15 15
乙队游客年龄
15
-
(2)根据前面的统计分析,回答下列问题:
①能代表甲队游客一般年龄的统计量是_____________________________; ②平均数能较好地反映乙队游客的年龄特征吗为什么
18. 某中学初三(1)班、(2)班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示: ¥
平均数 众数
;
方差
甲
乙
年龄 13 14 15 16 ~
17
人数 2 1 4 7 2 年龄
^
3
4 5 6 54 57 人数
1 2 2 @
3
1 1 平均数 中位数 众数
投篮次数 10
9
8 7 6 ! 5
4 一二三四五六七八九十
0 乙—— 甲……
(1)根据上图信息填写下表:
(2)根据两班成绩的平均数和中位数,分析哪班成绩较好
(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些请说明理由.
~
19. 如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题: (1)田径队共有多少人
(2)该队队员年龄的众数和中位数分别是多少 (3)该队队员的平均年龄是多少
)
20. 在烟台市举办的“读好书、讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多.除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:
请你根据以上统计图中的信息,解答下列问题: ~
(1)该班有学生多少人 (2)补全条形统计图;
(3)七(1)班全体同学所捐图书的中位数和众数分别是多少 初三(1)班
85 85 初三(2)班
% 85 80
四、猜想、探究题
21.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:
(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;
(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.
&
1、有一棵奇妙的树,原来只有1个树枝,第一年长出1个树枝,第二年每个树枝分别长出1个新枝,第三年每个树枝又都分别长出1个新枝,照这样计算,第五年这棵树一共有几个树枝
2、阿米巴原虫(一种寄生虫)是用简单分裂的方式(一分为二)繁殖的,每分裂一次要用3分钟。
请问一个阿米巴原虫18分钟后变成了几个阿米巴原虫
3、某公司一位老板的零件制造的时候出错,需要叫789个工人回来重做,如果老板打给一个工人要1分钟,最少要多少分钟才能通知完
4、一个乐器团共有14人,寒假期间有一个紧急的演出,林老师需要尽快通知每一个人。
用打电话的方式,每分钟通知一个人,请帮老师设计一个能够快速通知没一个人的打电话方案。