矩阵特征值 开题报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
研究方向研的究动创态及新本点文创新点:
创新点
通过总结概括一小部分特殊矩阵特征值的计算方法, 并且通过比较分析矩阵特征值在各方面的应用, 进一步的进行 归纳总结,概括出适合不同矩阵的更简洁易行的求解方法,是 矩阵计算在其他领域获得更广泛的应用。矩阵的形式千变 万化,其对应解法也是纷多繁杂。要想进一步完善,还需要 我们今后不断的探索。
3
目录
研究方向的动态及本文创新点: 主要研究内容及提纲: 研究的方法与手段:
应收集的资料及主要参考文献:
4
研究方向的动态及本文创新点:
• 研究动态:
本文主要研究矩阵计算中的三大基本问题之一——特征 值问题。而矩阵计算是科学和工程计算的核心 ,大部分 科学与工程问题都要归结为矩阵计算的问题,比如在数学 物理 、地球物理 、光学 、力学 、结构设计和优化等领域 就具有重要的应用,那么就是说特征值问题占有举足轻重 的地位,具有很好的科学发展前景。
: [7]钱吉林,高等代数题解精粹[M],中央民族大学出版社,
2002.8.
11
T欢h迎e专家e老n师d
批评指正!
12
6
目录
研究方向的动态及本文创新点: 主要研究内容及提纲: 研究的方法与手段:
应收集的资料及主要参考文献:
7
主要研究内容及提纲:
第一章 前言 第二章:
矩阵特征值的计算方法
2.1利用求特征多项式后的行列式变换来化简计算特征 2.2利用矩阵的初等变换来求解方阵的特征值 2.3利用矩阵的分解降阶求特征值 2.4 利用矩阵的初等行变换对矩阵的特征值与特征向量同步求解 2.5利用简便求矩阵特征多项式的递推法间接求特征值
计算矩阵特征值的几种方法
1
目录
选题的理论意义与实践意义:
研究方向的动态及本文创新点: 主要研究内容及提纲: 研究的方法与手段:
应收集的资料及主要参考文献:
2
目录
选题的理论意义Βιβλιοθήκη Baidu实践意义:
随着科学的发展,矩阵理论已被广泛地运用到应用数学、计算机科 学、经济学、工程学、系统科学等诸多方面,成为现代科技领域处 理大量有限维形式与数量关系的强有力的工具。对矩阵理论的现代 研究与系统工程、优化方法及稳定理论、群论、图论等有着密切的 相互关系。作为数学中的一个分支,包含了丰富的内容,成为一门 最有实用价值的数学理论。特征值问题是矩阵理论的一个主要研究 领域,对它的研究具有重要的理论意义和实践意义。许多科学和工 程问题如结构力学中的固有频率分析以及控制系统中的稳定性问题 ,最终都转化为特征值问题。因此理论与实践意义并存,掌握求解 好特征值问题具有很好的发展前景。
料 [3] 李世群,高等代数续论,内部资料,2010.
及 主
[4]刘亚亚,程国,一种改进的求方阵特征值的方法[J],商洛学院

报,2008.4.
参 [5]刘国琪,王保智,利用矩阵的初等行变换对矩阵的特征值与特
考 文
征向量同步求解[J],数学通报,1996.2.
献 [6]陈兴龙,矩阵特征多项式的一种求法[J],数学通报,1998.9.
第三章:
3.1已知特征值或特征向量,反求参数 3.2已知特征值或某部分特征值条件,求行列式 3.3已知矩阵,利用特征值求矩阵的幂方
8
目录
主要研究内容及提纲: 研究的方法与手段: 应收集的资料及主要参考文献:
9
研究方法:
观察法:通过在资料书本上了解矩阵特征值的相关知 识,进行仔细观、反复研究;
经验总结法:通过以前对矩阵特征值的相关知识的掌 握以及现在对它的进一步了解,从而进行总结;
文献资料法:通过图书馆,网络,中国知网搜集相关 信息,了解此课,进一步了解矩阵的特征值;
比较研究法:通过比较分析矩阵特征值计算在各方面 的应用,进一步的进行归纳总结,概括出适合不同矩阵的 更简洁易行的求解方法。
10
5

集 的
[1] 王萼芳,石生明,高等代数[M],高等教育出版社,2003.2.
资 [2] 李世群,矩阵的列相似问题[J], 吉首大学学报,1997.12.
相关文档
最新文档