九年级数学上册:21.1《一元二次方程》ppt课件
合集下载
人教版初中数学九年级上册 21.1 一元二次方程 初中九年级数学教学课件PPT 人教版
(2)一元二次方程地二次项、二次项系数、一次项、一次 项系数、常数项等都是针对一般形式而言的。
(3)指出一元二次方程各项系数时,不要漏掉前面的符 号
?
2.将下列方程化为一般形式,并分别指出它 们的二次项系数、一次项系数和常数项:
1)
2)(x-2)(x+3)=8
3)
例题例讲题解讲解
• [例3]方程(2a—4)x2 —2bx+a=0, 在什 么条件下此方程为一元二次方程?在什 么条件下此方程为一元一次方程?
一般式 相同点 不同点
一元一次方程
一元二次方程
ax=b (a≠0)
ax2+bx+c=0 (a≠0)
整式方程,只含有一个未知数
未知数最高次数是1 未知数最高次数是2
• [例2] 将下列方程化为一般形式, 并分别指出它们的二次项、一次项 和常数项及它们的系数:
3x(x 1) 5(x 2)
(1)一元二次方程地一般形式不是唯一地,但习 惯上都把二次项地系数化为正整数。
解:当a≠2时是一元二次方程;当a= 2,b≠0时是一元一次方程;
.选择题 1.方程(m-1)x2+mx+1=0为关于x的一元二次 方程则m的值为___ A 任何实数 B m≠0 C m≠1 D m≠0 且m≠1
2.关于x的方程中一定是一元二次方程的是 A ax2+bx+c=0 B mx2+x-m2=0 C (m+1)x2=(m+1)2 D (m2+1) x2-m2=0
一元二次方程解的概念
❖方程解的定义是怎样的呢?
能使方程左右两边相等的未知数的 值就叫方程的解。只含有一个未知 数的方程的解也叫做根
例4 已知关于x的一元二次方程 (m-1)x2+3x-5m+4=0有一根为2,
(3)指出一元二次方程各项系数时,不要漏掉前面的符 号
?
2.将下列方程化为一般形式,并分别指出它 们的二次项系数、一次项系数和常数项:
1)
2)(x-2)(x+3)=8
3)
例题例讲题解讲解
• [例3]方程(2a—4)x2 —2bx+a=0, 在什 么条件下此方程为一元二次方程?在什 么条件下此方程为一元一次方程?
一般式 相同点 不同点
一元一次方程
一元二次方程
ax=b (a≠0)
ax2+bx+c=0 (a≠0)
整式方程,只含有一个未知数
未知数最高次数是1 未知数最高次数是2
• [例2] 将下列方程化为一般形式, 并分别指出它们的二次项、一次项 和常数项及它们的系数:
3x(x 1) 5(x 2)
(1)一元二次方程地一般形式不是唯一地,但习 惯上都把二次项地系数化为正整数。
解:当a≠2时是一元二次方程;当a= 2,b≠0时是一元一次方程;
.选择题 1.方程(m-1)x2+mx+1=0为关于x的一元二次 方程则m的值为___ A 任何实数 B m≠0 C m≠1 D m≠0 且m≠1
2.关于x的方程中一定是一元二次方程的是 A ax2+bx+c=0 B mx2+x-m2=0 C (m+1)x2=(m+1)2 D (m2+1) x2-m2=0
一元二次方程解的概念
❖方程解的定义是怎样的呢?
能使方程左右两边相等的未知数的 值就叫方程的解。只含有一个未知 数的方程的解也叫做根
例4 已知关于x的一元二次方程 (m-1)x2+3x-5m+4=0有一根为2,
21.1.1一元二次方程第1节ppt(共36张)
第30页,共36页。
课内练习
1.下列(xiàliè)方程中是一元二次方程的为( C )
(A)、x2+3x= 2
x2
(B)、2(X-1)+3x=2
(C)、x2=2+3x
(D)、x2+x3-4=0
第31页,共36页。
把一元二次方程(x-√5 )(x+√5 )+(2x-1)2 =0 化为一般形式(xíngshì),正确的是(A )
③未知数的最高次数是2。
一元二次 方程是刻 画现实世 界的一种 数学模型
像这样的等号两边都是整式, 只含有一个未知数,并且 未知数的最高次数是2(二次)的方程叫做一元二次方程。
第5页,共36页。
例1:判断(pànduàn)下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
第36页,共36页。
第17页,共36页。
3 4x x 2 25 43x 2 x 1 8x 3
3 4xx 2 25
一般(yībān) 式:
二次项系数为4,一次项系数8,常数项-25.
4 3x 2x 1 8x 3
一般式: 3x2 7x 1 0.
二次项系数为3,一次项系数-7,常数项1.
第18页,共36页。
第16页,共36页。
例: 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式, 并写出其中(qízhōng)的二次项系数,一次项系数及常数项.
解:去括号,得
3x2-3x=5x+10.
移项,合并同类项,得一元二次方程的一般 形式:
3x2-8x-10=0.
其中二次项系数为3,一次项系数为-8,常数项为-10.
课内练习
1.下列(xiàliè)方程中是一元二次方程的为( C )
(A)、x2+3x= 2
x2
(B)、2(X-1)+3x=2
(C)、x2=2+3x
(D)、x2+x3-4=0
第31页,共36页。
把一元二次方程(x-√5 )(x+√5 )+(2x-1)2 =0 化为一般形式(xíngshì),正确的是(A )
③未知数的最高次数是2。
一元二次 方程是刻 画现实世 界的一种 数学模型
像这样的等号两边都是整式, 只含有一个未知数,并且 未知数的最高次数是2(二次)的方程叫做一元二次方程。
第5页,共36页。
例1:判断(pànduàn)下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
第36页,共36页。
第17页,共36页。
3 4x x 2 25 43x 2 x 1 8x 3
3 4xx 2 25
一般(yībān) 式:
二次项系数为4,一次项系数8,常数项-25.
4 3x 2x 1 8x 3
一般式: 3x2 7x 1 0.
二次项系数为3,一次项系数-7,常数项1.
第18页,共36页。
第16页,共36页。
例: 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式, 并写出其中(qízhōng)的二次项系数,一次项系数及常数项.
解:去括号,得
3x2-3x=5x+10.
移项,合并同类项,得一元二次方程的一般 形式:
3x2-8x-10=0.
其中二次项系数为3,一次项系数为-8,常数项为-10.
新人教版九年级数学上册全册ppt课件
10x - 4.9x2. 你能根据上述规律求出物体经过多少秒落回地面吗 (精确到 0.01 s)?
1.探究因式分解法
你认为该如何解决这个问题?你想用哪种方法解这 个方程?
10x - 4.9x2 = 0
配方法 降 公式法 次
?
x
1
=
0,x
2
=
100 49
1.探究因式分解法
问题3 观察方程 10x - 4.9x2 = 0,它有什么特点? 你能根据它的特点找到更简便的方法吗?
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9 (x + 3)2 = 5
x3 5
移项
两边加 9,左边 配成完全平方式 左边写成完全 平方形式
降次
x 3 5 ,或 x 3 5
解一次方程
x1 3 5, x2 3 5
2.推导求根公式
想一想:以上解法中,为什么在方程③两边加 9? 加其他数可以吗?如果不可以,说明理由.
• 学习重点: 一元二次方程的概念.
1.创设情境,导入新知
思考以下问题如何解决: 1.要设计一座高 2 m 的人体雕像,使它的上部 (腰以上)与下部(腰以下)的高度比,等于下部与全 部(全身)的高度比,求雕像的下部应设计为高多少米?
1.创设情境,导入新知
思考以下问题如何解决: 2.有一块矩形铁皮,长 100 cm,宽 50 cm,在它 的四角各切去一个同样的正方形,然后将四周突出部分 折起,就能制作一个无盖方盒,如果要制作的无盖方盒 的底面积为 3 600 cm2,那么铁皮各角应切去多大的正方 形?
1.复习配方法,引入公式法
问题2 能否用公式法解决一元二次方程的求根问 题呢?
1.探究因式分解法
你认为该如何解决这个问题?你想用哪种方法解这 个方程?
10x - 4.9x2 = 0
配方法 降 公式法 次
?
x
1
=
0,x
2
=
100 49
1.探究因式分解法
问题3 观察方程 10x - 4.9x2 = 0,它有什么特点? 你能根据它的特点找到更简便的方法吗?
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9 (x + 3)2 = 5
x3 5
移项
两边加 9,左边 配成完全平方式 左边写成完全 平方形式
降次
x 3 5 ,或 x 3 5
解一次方程
x1 3 5, x2 3 5
2.推导求根公式
想一想:以上解法中,为什么在方程③两边加 9? 加其他数可以吗?如果不可以,说明理由.
• 学习重点: 一元二次方程的概念.
1.创设情境,导入新知
思考以下问题如何解决: 1.要设计一座高 2 m 的人体雕像,使它的上部 (腰以上)与下部(腰以下)的高度比,等于下部与全 部(全身)的高度比,求雕像的下部应设计为高多少米?
1.创设情境,导入新知
思考以下问题如何解决: 2.有一块矩形铁皮,长 100 cm,宽 50 cm,在它 的四角各切去一个同样的正方形,然后将四周突出部分 折起,就能制作一个无盖方盒,如果要制作的无盖方盒 的底面积为 3 600 cm2,那么铁皮各角应切去多大的正方 形?
1.复习配方法,引入公式法
问题2 能否用公式法解决一元二次方程的求根问 题呢?
人教版数学九年级上册21.1一元二次方程的解及其图像经典课件(共34张PPT)
么条件下此方程为一元二次方程?在什么条 (4)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢?
解:把x=2代入原方程得:
件下此方程为一元一次方程? 1 二次函数y=ax2的
分析:因为方程是一元二次方程,故未知数x的最高次数∣m∣+1=2,
当a=2,b≠0时是一元一次方程;
解:移项:ax —2bx+a- 2x =0 问题1、绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和
5、二次函数y=ax2的图象有何性质?
2x x30 2 1 当 含a有<未0时知,抛数物的线等2y式=叫ax方2在程x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.
二次函数y=ax2的性质
(1)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点?
含有未知数的等式叫方程
3x 50 2 伸展;当x=0时,函数y
y
y x2
x O
(2)图象 与x轴有交点吗?如果有,交点坐标是什么?
(3)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的?
(4)当x<0时,随着x的值增大,y 的值如何变化? 当x>0呢?
y x2
当x<0 (在对称轴的 左侧)时,y随着x的增大而
减小.
当x>0 (在对称轴的 右侧)时, y随着x的增大而
注意:每年都是 在上一年的基础
上增长!
v 明年底:5(1+x)+5(1+x)x
v =5(1+x)(1+x)
v =5 (1+x)2
v 根据题意得方程:5(1+x)2=7.2
❖ 整理得: x2+10x-900=0
解:把x=2代入原方程得:
件下此方程为一元一次方程? 1 二次函数y=ax2的
分析:因为方程是一元二次方程,故未知数x的最高次数∣m∣+1=2,
当a=2,b≠0时是一元一次方程;
解:移项:ax —2bx+a- 2x =0 问题1、绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和
5、二次函数y=ax2的图象有何性质?
2x x30 2 1 当 含a有<未0时知,抛数物的线等2y式=叫ax方2在程x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.
二次函数y=ax2的性质
(1)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点?
含有未知数的等式叫方程
3x 50 2 伸展;当x=0时,函数y
y
y x2
x O
(2)图象 与x轴有交点吗?如果有,交点坐标是什么?
(3)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的?
(4)当x<0时,随着x的值增大,y 的值如何变化? 当x>0呢?
y x2
当x<0 (在对称轴的 左侧)时,y随着x的增大而
减小.
当x>0 (在对称轴的 右侧)时, y随着x的增大而
注意:每年都是 在上一年的基础
上增长!
v 明年底:5(1+x)+5(1+x)x
v =5(1+x)(1+x)
v =5 (1+x)2
v 根据题意得方程:5(1+x)2=7.2
❖ 整理得: x2+10x-900=0
人教版初中数学九年级上册精品教学课件 第21章 一元二次方程 21.1 一元二次方程
快乐预习感知
1
2
3
4
5
6
7
8
2.某公园里有一块正方形的空地,后来从这块空地上划出部分区域
栽种鲜花(如图).原空地一边减少了1 m,另一边减少了2 m,剩余空
地的面积为18 m2,求原正方形空地的边长.设原正方形空地的边长
为x m,则可列方程为(
)
A.(x+1)(x+2)=18
B.x2-3x+16=0
m2+m的值等于
.
关闭
6
答案
快乐预习感知
1
2
3
4
5
6
7
8
7.把下列方程化成一元二次方程的一般形式,并分别写出它们的二
次项系数、一次项系数和常数项.
(1)8x2-2x=1+2x;
(2)(y-1)(y-2)=1.
关闭
解 (1)一般形式:8x2-4x-1=0,二次项系数、一次项系数和常数项分别为
8,-4,-1.
6.在-4,-3,-2,-1,2,3中,属于方程x2+x-6=0的根的是 -3,2
.
互动课堂理解
1.一元二次方程的识别
【例1】 下列方程中,是关于x的一元二次方程的是(
2
A.3(x+1) =2(x+1)
B.
1 2
)
1
+ -2=0
C.ax2+bx+c=0
D.x2+2x=x2-1
解析:选项A中的方程,整理后符合一元二次方程的概念;选项B中
21.1 一元二次方程
快乐预习感知
1.等号两边都是整式,只含有 一个 未知数(一元),并且未知数的
人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
21.1一元二次方程 课件 2024—2025学年人教版数学九年级上册
数不为0排除使二次项系数为0的字母取值,从而确定字母取值.
一元二次方程的一般形式:ax2 + bx + c = 0 (a ≠ 0)
一般地,任何一个关于x 的一元二次方程,经过整理,都可以化为
ax2 + bx + c = 0的形式,我们把ax2 + bx + c = 0(a,b,c为常数,a≠0)称
=1
+
+
+
课堂练习
1、判断下列各式哪些是一元二次方程.
① + +
不是
②9 − =
是
③ =0
是
④
−
+=
⑤ − + =
⑥ 3 -5=43
⑦ ( + )( − ) =
不是
不是
是
不是
2. 把下列方程化成一般形式,并指出各项系数
请在下面方框内填入相应的方程
一元一次方程
3x - 4=5
二元一次方程
2x+ 5y=10
分式方程
2
1 15
4y 1
获取新知
问题1 有一块矩形铁皮,长 100 cm,宽 50 cm,在它的四角
各切去一个同样的正方形,然后将四周突出部分折起,就能制
作一个无盖方盒.如果要制作的无盖方盒的底面积为 3600 cm2,
方程
+ =
= +
一般形式
+ − =
− − =0
二次项系数
一次项系数
常数项
1
4
-12
3
-8
一元二次方程的一般形式:ax2 + bx + c = 0 (a ≠ 0)
一般地,任何一个关于x 的一元二次方程,经过整理,都可以化为
ax2 + bx + c = 0的形式,我们把ax2 + bx + c = 0(a,b,c为常数,a≠0)称
=1
+
+
+
课堂练习
1、判断下列各式哪些是一元二次方程.
① + +
不是
②9 − =
是
③ =0
是
④
−
+=
⑤ − + =
⑥ 3 -5=43
⑦ ( + )( − ) =
不是
不是
是
不是
2. 把下列方程化成一般形式,并指出各项系数
请在下面方框内填入相应的方程
一元一次方程
3x - 4=5
二元一次方程
2x+ 5y=10
分式方程
2
1 15
4y 1
获取新知
问题1 有一块矩形铁皮,长 100 cm,宽 50 cm,在它的四角
各切去一个同样的正方形,然后将四周突出部分折起,就能制
作一个无盖方盒.如果要制作的无盖方盒的底面积为 3600 cm2,
方程
+ =
= +
一般形式
+ − =
− − =0
二次项系数
一次项系数
常数项
1
4
-12
3
-8
人教版九年级上册 第二十一章 21.1 一元二次方程 课件(共25张PPT)
m_≠__±__1__时,它是一元二次方程;当m_=_1____时,它是 一元一次方程。
例题讲解
3、已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
解:设应邀请x 个队参赛,每个队要与其它(x-1)个队各赛1场,
由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以
1
列全方部程比赛12共x(2x
x(x
1)
1) 场. 28 整理,得
1 x2 2
1 2
x
28
化简,得 x2 x 56 ③ 由方程③可以得出参赛队数.
同学们认真看问题1、2、3,整理得方程:
x2 - 75x + 350=0
(1)
x2 +2x-4=0
(2)
x2 x 56
(3)
特征:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
2、新课讲授 (1)只含有一个未知数,并且未知数的最高次数 是2的整式方程叫做一元二次方程。
(2)一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
(3)条件:①当a≠0时,是一元二次方程。
②当a=0并且b≠0 时 ,是一元一次方程。
注意:其中c是常数项。一般方程的左边按x的降幂排列, 右边=0,当然也可以没有一次项、常数项。
一元二次方程的项和各项系数
二次项 系数
一次项 系数
例题讲解
3、已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
解:设应邀请x 个队参赛,每个队要与其它(x-1)个队各赛1场,
由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以
1
列全方部程比赛12共x(2x
x(x
1)
1) 场. 28 整理,得
1 x2 2
1 2
x
28
化简,得 x2 x 56 ③ 由方程③可以得出参赛队数.
同学们认真看问题1、2、3,整理得方程:
x2 - 75x + 350=0
(1)
x2 +2x-4=0
(2)
x2 x 56
(3)
特征:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
2、新课讲授 (1)只含有一个未知数,并且未知数的最高次数 是2的整式方程叫做一元二次方程。
(2)一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
(3)条件:①当a≠0时,是一元二次方程。
②当a=0并且b≠0 时 ,是一元一次方程。
注意:其中c是常数项。一般方程的左边按x的降幂排列, 右边=0,当然也可以没有一次项、常数项。
一元二次方程的项和各项系数
二次项 系数
一次项 系数
九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教学课件 (新版)新人教版.pptx
一次项系数
7
二、新课讲解
例1 将方程3x( x-1)=5( x +2)化成一元
二次方程的一般形式,并写出其中的二次 项系数、一次项系数和常数项.
解:去括号,得
3x2 3x 5x 10
移项,合并同类项,得一元二次方程的一般形式
3x2 8x 10 0
其中二次项系数是3,一次项系数是-8, 常数项是-10.
8
二、新课讲解
例2 下列哪些数是方程 x 2- x -6=0的根?
从中你能体会根的作用吗? -4,-3,-2,-1,0,1,2,3,4
解:将 x =-4带入方程的左边得14;同理可 得:x =-3时,左边得6;x=-2时,左边得0;x =-1时,左边得-4;x=0时,左边得-6;x =1 时,左边得-6;x =2时,左边得-4;x =3时, 左边得0;x =4时,左边得6.所以该方程的
6
二、新课讲解
一般地,任何一个关于x 的一元二次方程
都可以化为 ax2 bx c 0 的形式,我们把
ax2 bx c 0 (a,b,c为常数,a≠0)称为一
元二次方程的一般形式.
想一想
为什么要限制a≠0,b,c可以为零吗?
a x 2 + b x + c = 0 (a ≠ 0)
二次项系数
根为-2和3. 根的作用:可以使等号成立.
9
二、新课讲解
例3 你能根据所学过的知识解出下列方程的 解吗?
(1)x2-36=0 ; (2)4 x2-9=0.
解:(1)移项得:x2=36, 所以 x =6或-6.
(2)移项得:4 x 2=9, 两边同时除以4得:x2=9/4, 所以 x= 2 或- 2 .
特点: (1)等号两边都是整式; (2)整式的最高次数是2次 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,任何一个关于x的一元二次方程都可以 化为, ax2+bx+c=0的形式,我们把ax2+bx+c=0(a,b,c 为常数,a≠0)称为一元二次方程的一般形式.
为什么要限制a≠0,b,c可以 为零吗?
当a=0时
当a≠0,b=0时 当a≠0,c=0时 当a≠0,b=0,c=0时
bx+c=0
ax2+c=0 ax2+bx=0
整式方程,只含有一个未知数
未知数最高次数是1 未知数最高次数是2
例题讲解
• [例2] 将下列例方程题化讲为一解般形
式,并分别指出它们的二次项、 一次项和常数项及它们的系数:
3x(x 1) 5(x 2)
解 3 x2- 8 x-10=0
•二次项系数是3、一次项系数 是-8和常数项是-10
同步练习3
则盒底的长为 (100-2x)cm,宽
为 (50-2x)cm .
x
根据方盒的底面积为3600cm2,
得 (100 2x)(50 2x) 3600
3600
100㎝
50㎝
即
x2 75x 350 0
问题3
要组织一次排球邀请赛,参赛的每两队之间都 要比赛一场,根据场地和时间等条件,赛程计划安 排7天,每天安排4场比赛,比赛组织者应邀请多少 个队参加比赛?
解:当a≠2时是一元二次方程;当a =2,b≠0时是一元一次方程;
课堂小结
在今天这节课上,你有什么样的收获呢? 有什么感想?
1. 一元二次方程的定义 2.一元二次方程的一般形式
ax2+bx+c=0( a,b,c为常数,a≠0 ) 3.一元二次方程中的为二次项ax2,a为二次项系数; 一次项为bx,一次项系数为b;常数项为c。
x 1
?
• (4)x 2 4 (x 2)2
同步练习1
下列方程那些是一元二次方程?
1. 5x-2=x+1
2. 7x2+6=2x(3x+1)
3.
1 2Leabharlann x275 . 2x2=5y
4. 6x2=x 6. -x2=0
同步练习2
一元一次方程与一元二次方程有什么区别与联系?
ax=b (a≠0)
ax2+bx+c=0 (a≠0)
设雕像下部高xm,于是得方程
x2 2(2 x)
A
2-x
C
x
B
x2 2x 4 0
问题2
有一块矩形铁皮,长100㎝,宽50㎝,在它的
四角各切去一个正方形,然后将四周突出部分折 起,就能制作一个无盖方盒,如果要制作的方盒的 底面积为3600平方厘米,那么铁皮各角应切去多 大的正方形?
分析:
设切去的正方形的边长为xcm,
作业
这节课就到这里,下课!
分析: 全部比赛共 4×7=28场
设应邀请x个队参赛,每个队要与其他 (x-1)个队各
赛1场, 由于甲队对乙队的比赛和乙队对甲队的比赛
是同一场比赛,所以全部比赛共
1 2
x(x
1)
2场8 .
即
x2 x 56
x2 2x 4 0
x2 75x 350 0
x2 x 56
这三个方程都不是一元一次方程.那么这两个方 程与一元一次方程的区别在哪里?它们有什么共 同特点呢?
知识回顾
5x-15=0
这是一个什么样的方程?
只含有一个未知数(元),并且未知数的 次数是1的整式方程叫一元一次方程
问题1
要设计一座高2m的人体雕像,使它的上部(腰 以上)与下部(腰以下)的高度比,等于下部与全部 的高度比,求雕像的下部应设计为高多少米?
分析:
AC BC 即 BC2 2AC BC 2
ax2=0
一元二次方程的一般形式 ax2+bx+c=0中
二次项系数 a
ax2
二次项
一次项系数 b
bx
一次项
c
常数项
说明:要找到一元二次方程的系数和常数项,必须 先将方程化为一般形式。
例题讲解
• [例1]判断下列方程是否为一元二次方程? • (1)3x 2 5y 3
• (2)x 2 4
• (3)x 2 1 x2
特点: ①都是整式方程; ②只含一个未知数;
③未知数的最高次数是2.
归纳定义
一元二次方程的定义
等号的两边都是整式,只含有一个未知数(一元),并 且未知数的最高次数是2(二次)的方程,叫做一元二 次方程
①方程两边都是整式
一元二次方程 要素
②只含有一个未知数
③未知数的最高次数是2次
一元二次方程的一般形式
练习: 将下列方程化为一般形式, 并分 别指出它们的二次项系数、 一次项系数 和常数项:
1) (x 3)(3x 4) (x 2)2
2)(x-2)(x+3)=8
3) x2 4 (x 2)2
同步练习4
方程(2a—4)x2 —2bx+a=0, 在什么条件下 此方程为一元二次方程?在什么条件下 此方程为一元一次方程?