电路原理图设计实例
mc34063升压电路图大全(十款模拟电路设计原理图详解)
mc34063升压电路图大全(十款模拟电路设计原理图详解)MC34063DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:能在3.0-40V的输入电压下工作短路电流限制低静态电流输出开关电流可达1.5A(无外接三极管)输出电压可调工作振荡频率从100HZ到100KHZMC34063电路原理:振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。
充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。
与门的C输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。
当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制通过检测连接在VCC和5脚之间电阻上的压降来完成功能。
当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作,这时通过CT管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
MC34063引脚图及原理框图MC34063引脚功能1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于。
50个典型电路实例详解
电路1简单电感量测量装置在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。
该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理电路原理如图1(a)所示。
图1简单电感测量装置电路图该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频值,测量精度极高。
率信号,可间接测量待测电感LXBB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。
测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L值。
X 电路谐振频率:f0=1/2π所以L X=1/4π2f02CLxC式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。
为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。
如图6—7(b)所示,该标准线圈电感量为0.44µH。
校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。
附表给出了实测取样对应关系。
附表振荡频率(MHz)98766253433834二、元器件选择集成电路IC可选择Motoroia公司的VCO(压控振荡器)芯片。
VR1选择多圈高精度电位器。
其它元器件按电路图所示选择即可。
三极管开关电路图原理及设计详解
三极管开关电路图原理及设计详解晶体管开关电路(工作在饱和态)在现代电路设计应用中屡见不鲜,经典的74LS,74ALS等集成电路内部都使用了晶体管开关电路,只是驱动能力一般而已。
TTL晶体管开关电路按驱动能力分为小信号开关电路和功率开关电路;按晶体管连接方式分为发射极接地(PNP晶体管发射极接电源)和射级跟随开关电路。
1. 发射极接地开关电路1.1 NPN型和PNP型基本开关原理图:上面的基本电路离实际设计电路还有些距离:由于晶体管基极电荷存储积累效应使晶体管从导通到断开有一个过渡过程(当晶体管断开时,由于R1的存在,减慢了基极电荷的释放,所以Ic不会马上变为零)。
也就是说发射极接地型开关电路存在关断时间,不能直接应用于中高频开关。
1.2 实用的NPN型和PNP型开关原理图1(添加加速电容):解释:当晶体管突然导通(IN信号突然发生跳变),C1瞬间短路,为三极管快速提供基极电流,这样加速了晶体管的导通。
当晶体管突然关断(IN信号突然发生跳变),C1也瞬间导通,为卸放基极电荷提供一条低阻通道,这样加速了晶体管的关断。
C通常取值几十到几百皮法。
电路中R2是为了保证没有IN输入高电平时三极管保持关断状态;R4是为了保证没有IN输入低电平时三极管保持关断状态。
R1和R3是基极电流限流用。
1.3 实用的NPN型开关原理图2(消特基二极管钳位):解释:由于消特基二极管Vf为0.2至0.4V比Vbe小,所以当晶体管导通后大部分的基极电流是从二极管然后通过三极管到地的,这样流到三极管基极的电流就很小,积累起来的电荷也少,当晶体管关断(IN信号突然发生跳变)时需要卸放的电荷少,关断自然就快。
1.4 实际电路设计在实际电路设计中需要考虑三极管Vceo,Vcbo等满足耐压,三极管满足集电极功耗;通过负载电流和hfe(取三极管最小hfe来计算)计算基极电阻(要为基极电流留0.5至1倍的余量)。
注意消特基二极管反向耐压。
三极管开关电路设计三极管除了可以当做交流信号放大器之外,也可以做为开关之用。
开关电源制作设计(电路原理图+PCB)
一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。
1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。
这样对开机时的浪涌电流起到有效的缓冲作用。
电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。
采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。
图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。
3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。
一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。
C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。
Protel 99se设计电路及PCB实例
Protel 99se设计电路及PCB实例这个实例的目的,是通过设计一个例子,让大家掌握Portel 99SE的基本设计流程,对于prot el 99SE的使用,在不久的将来,我们将详细的介绍基本的用法,现在这个例子,仅是让大家了解一下基本protel99se的基本过程在这里,我们将用Protel99se画一个简单的SCH,再导出网络表,然后,再能过protel99se画出PCB的整个过程。
一、原理图,这次,我们用Protel 99se画的例子,将是以下这个样子,对于本文中的图片,不太清晰的,在图片中右键然后另存为,这样就可以看得清楚了.这是一个移动广告灯的原理图,使用的元件如下表所列序号名称(数量) 参数(型号) 元件所在库封装名称Rl一R8 电阻器/8只RT-1/2-470欧Device.Lib/Res2 AxiALO 0.5Cl~C2 瓷介电容器/2只CC.63V.20P Device.Lib/Cap RAD0.1C3 电解电容器/1只CD一16V—lOftl/16Device.1ib/Cap RB.2/.4C4~C5 电解电容器/2只Cml6V-100lcF/16VDl~VD8发光二极管/8只 5 Device.1ib/LED RADO.1 J1 外接电源焊接孔* Device.1il)/CON AXIAlD.82>J2~J3 >8针插座* Device.1ⅣCON8 SIP8XL 晶体/1只12MHz Device.lib/CRYSTAL.RADO.2Nl 三端稳压/1只7805 Device.lib/CON3 T0—92BN2 单片机/1片8051 InteL/D—intel.1ih/'8051DIP40一、用Portel 99se/98原理图,这次,我们用Protel 99se画的例子,将是以下这个样子,对于本文中的图片,不太清晰的,在图片中右键然后另存为,这样就可以看得清楚了.(1)绘制原理图1)设置图纸大小—启动Protel 98一单击界面左边“EDA选项卡”中的【Sch】项(或者菜单栏中File—New—Sch图标)一获得默认B型工程图纸。
50个典型电路实例详解
电路1简单电感量测量装置在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。
该电路以谐振方法测量感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理a)所示。
(电路原理如图1图1简单电感测量装置电路图该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频值,测量精度极高。
率信号,可间接测量待测电感LX的BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。
测量被测电感L XB两点中,然后调节电位器VR1使电路谐振,在MC1648的3时,只需将L X接到图中A、值。
脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出LXπ所以L X=1/4π2f02Cf0=1/2电路谐振频率:LxCC是电位器VR1调定的变容二极管式中谐振频率f0即为MC1648的3脚输出频率值,的电容值,可见要计算L X的值还需先知道C值。
为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
)为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频在µH。
校准时,将RF线圈L0接7(b)所示,该标准线圈电感量为0.44电感线圈L0。
如图6—量图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。
附表给出了实测取样对应关系。
附表Hz)98766253433834振荡频率(二、元器件选择集成电路IC可选择Motoroia公司的VCO(压控振荡器)芯片。
VR1选择多圈高精度电位器。
其它元器件按电路图所示选择即可。
常用电动车控制器电路及原理大全
!!电动自行车控制器电路原理分析目前流行的电动自行车、电动摩托车大都使用直流电机,对直流电机调速的控制器有很多种类。
电动车控制器核心是脉宽调制(PWM)器,而一款完善的控制器,还应具有电瓶欠压保护、电机过流保护、刹车断电、电量显示等功能。
电动车控制器以功率大小可分为大功率、中功率、小功率三类。
电动自行车使用小功率的,货运三轮车和电摩托要使用中功率和大功率的。
从配合电机分,可分为有刷、无刷两大类。
关于无刷控制器,受目前的技术和成本制约,损坏率较高。
笔者认为,无刷控制器维修应以生产厂商为主。
而应用较多的有刷控制器,是完全可以用同类控制器进行直接代换或维修的。
本文分别介绍国内部分具有代表性的电动自行车控制器整机电路,并指出与其他产品的不同之处及其特点。
所列电路均是根据实物进行测绘所得,图中元件号为笔者所标。
通过介绍具体实例,达到举一反三的目的。
1.有刷控制器实例(1)山东某牌带电量显示有刷控制器电路方框图见图1。
1)电路原理电路原理图见图2所示,该控制器由稳压电源电路、PWM产生电路、电机驱动电路、蓄电池放电指示电路、电机过流及蓄电池过放电保护电路等组成。
稳压电源由V3(TL431),Q3等元件组成,从36V蓄电池经过串联稳压后得到+12V电压,给控制电路供电,调节VR6可校准+12V电源。
PWM电路以脉宽调制器TL494为核心组成。
R3、C4与内部电路产生振荡,频率大约为12kHz。
H是高变低型霍尔速度控制转把,由松开到旋紧时,其输出端可得到4V—1V的电压。
该电压加到TL494的②脚,与①脚电压进行比较,在⑧脚得到调宽脉冲。
②脚电压越低,⑧脚输出的调宽脉冲的低电平部分越宽,电机转速越高,电位器VR2用于零速调节,调节VR2使转把松开时电机停转再过一点。
电机驱动电路由Q1、Q2、Q4等元件组成。
电机MOTOR为永磁直流有刷电机。
TL494的⑧脚输出的调宽脉冲,经Q1反相放大驱动VDMOS管Q2。
TL494的⑧脚输出的调宽脉冲低电平部分越宽,则Q2导通时间越长,电机转速越高。
最简单的短路保护电路图汇总(六款模拟电路设计原理图详解)
最简单的短路保护电路图汇总(六款模拟电路设计原理图详解)最简单的短路保护电路图(一)简易交流电源短路保护电路交流电源电压正常时,继电器吸合,接通负载(Rfz)回路。
当负载发生短路故障时,KA两端电压迅速下降,KA释放,切断负载回路。
同时,发光二极管VL点亮,指示电路发生短路。
最简单的短路保护电路图(二)这是一个自锁的保护电路,短路时:Q3极被拉低,Q2导通,形成自锁,迫使Q3截止,Q3截至后面负载没有电压,这时有没有负载已经没有关系了,所以即使拿掉负载也不会有输出。
要想拿掉负载后恢复输出,可以在Q3得CE结上接一个电阻,取1K左右。
C2和C3很重要,在自锁后,重启电路就靠这两个电容,否则启动失败。
原理是上电时,电容两端电压不能突变,C2使得Q2基极在上电瞬间保持高电平,使得Q2不导通。
C3则使得上电瞬间Q3基极保持低电平,使得Q3导通Vout有电压。
这样R5位高电平,锁住导通。
最简单的短路保护电路图(三)缺相保护电路由于电网自身原因或电源输入接线不可靠,开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。
当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。
检测电网缺相通常采用电流互感器或电子缺相检测电路。
由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。
图5是一个简单的电子缺相保护电路。
三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。
当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。
比较器的基准可调,以便调节缺相动作阈值。
该缺相保护适用于三相四线制,而不适用于三相三线制。
电路稍加变动,亦可用高电平封锁PWM信号。
图5 三相四线制的缺相保护电路图6是一种用于三相三线制电源缺相保护电路,A、B、C缺任何一相,光耦器输出电平低于比较器的反相输入端的基准电压,比较器输出低电平,封锁PWM驱动信号,关闭电源。
六款简单的开关电源电路设计,内附原理图详解
六款简单的开关电源电路设计,内附原理图详解简单的开关电源电路图(一)简单实用的开关电源电路图调整C3和R5使振荡频率在30KHz-45KHz。
输出电压需要稳压。
输出电流可以达到500mA.有效功率8W、效率87%。
其他没有要求就可以正常工作。
简单的开关电源电路图(二)24V开关电源,是高频逆变开关电源中的一个种类。
通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!24V开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
24v开关电源电路图简单的开关电源电路图(三)单端正激式开关电源的典型电路如下图所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
简单的开关电源电路图(四)推挽式开关电源的典型电路如图六所示。
它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。
电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
555定时器电路原理图 基于555芯片的定时器电路设计
555定时器电路原理图基于555芯片的定时器电路设计这节要将的是关于555(芯片)组成的(定时器)电路,主要讲解6种,分别是延时定时器、长延时定时器、分段式定时器、抗干扰的定时器、可变间歇定时器和通、断时间分别可调的循环定时器。
前3种相对而言简单一些;后3种定时器,相对前面3种就相对复杂一些。
不过,只要认真探索,任何困难都能迎刃而解的。
一、延时定时器本电路是一个用555(集成电路)组成的单稳延时电路,可以实现延时关断。
延时定时器原理图原理介绍与一般的555单稳电路不同的是在第5脚接有一只(二极管)VD1,将该脚与(电源)电压+6V接通。
该脚是555的控制端,与内部2/3电源分压点相接,接入VD1后,则该点将被箝位在 5.3V (0.6-0.7=5.3V),其中0.7V是VD1的导通压降。
这样就使得(阈值电压)也相应提高到5.3V,从而使得C1的充电时间有较大延长,一般来说,可以在相同R、C时间常数下使定时时间增大数倍。
计时开始前,先按动一下S1,计时开始,定时时间到时,555第3脚输出低电平,继电器K线圈失电断开,实现被控负载延时关断的功能。
增大C1的容量可以获得更长的延时时间。
二、长延时定时器本电路是由2只555组成延时的定时器。
长延时定时器原理图原理介绍由U1和R1、R2、RP1、VD1、VD2、C1组成无稳态多谐(振荡器),U1的振荡方波通过VD3、R3,加至U2的第6、7脚。
U2和R4、C4、R3、C3等组成一单稳延时电路。
刚开始通电时,由于C4接在触发端第2脚与地之间,故第3脚呈现高电平,继电器K吸合,其常开触点K1-1闭合,维持给U1、U2的(供电),此时,与U2的第7脚相连的集成电路内的放电管截止,因而C3开始充电。
C3的充电呈阶跃式,即U1输出方波的正脉冲,即高电平期间对其充电,由于VD3的存在,C3上的电荷不能向U1反向放电。
当C3的充电电压超过+6V的2/3阈值电平时,U2复位,第3脚输出低电平,定时时间到,继电器K释放,K1-1断开,U1、U2也同时失电,电路完全停止工作。
DC-DC隔离电源设计电路原理图
紧凑型全桥DC-DC隔离电源设计电路原理图新型电力电子器件IGBT作为功率变换器的核心器件,其驱动和保护电路对变换器的可靠运行至关重要。
集成驱动是一个具有完整功能的独立驱动板,具有安装方便、驱动高效、保护可靠等优点,是目前大、中功率IGBT驱动和保护的最佳方式。
集成驱动一般包括板上DC-DC隔离电源、PWM信号隔离、功率放大、故障保护等4个功能电路,各功能电路之间互相配合,完成IGBT的驱动及保护。
输入电源为板上原边各功能电路提供电源,两路DC-DC隔离电源输出分别驱动上、下半桥开关管,同时为IGBT侧故障检测和保护电路提供电源,因此集成驱动板上电源是所有电路工作的前提和基础。
文中的半桥IGBT集成驱动板需要两组隔离的正负电压输出,作为IGBT的驱动及保护电路电源。
由IGBT的驱动特点可知,其负载特性类似于容性负载,要达到可靠、快速的开通或关断,就要求电源具有很好拉/灌电流能力,即良好的动态特性。
半桥IGBT由上、下两路开关管组成,型号相同,导通、关断的驱动电压、电流特性一致,作为双路隔离DC-DC电源的负载,其负载特性是稳定的。
因此可以设计两路隔离电源,按照所要驱动的最大负载设计,不需要进行反馈控制。
实际设计时必须依据选用的IGBT开关管参数和工作频率,核算驱动板电源功率是否满足,若不满足,则需重新选用开关管。
1IGBT半桥集成驱动板电源设计1.1IGBT半桥集成驱动板电源特点电力电子变换拓扑中,以半桥IGBT为基本单元进行的拓扑设计最为广泛,相应地对其有效驱动和可靠保护由半桥IGBT集成驱动板实现。
半桥IGBT集成驱动板自身必须具备两路DC-DC隔离电源,该电源要求占用PCB面积小、体积紧凑、可靠性高,并且两组电源副边完全隔离。
在大功率半桥IGBT集成驱动单元的项目中,针对驱动单元需要高效、可靠的隔离电源,设计了一种电源变压器原边控制拓扑,即两组隔离电源变压器原边共用一组全桥控制的思路,提高了电源功率密度和效率,节省了功率开关数量。
电子管6p15应用电路图(四款模拟电路设计原理图详解)
电子管6p15应用电路图(四款模拟电路设计原理图详解)描述电子管6p15应用电路图(一)6P15原本是用做电子管电视机的视频输出,但在电子管电视机还未普及时就被晶体管电视机取代,真可谓生不逢时,从此便少有人问津。
实际上6P15是只性能出类拔萃的宽带电压、功放两用管,能把几Hz~6.5MHz带宽的视频信号,做到线性良好的高保真放大,用于放大20KHz带宽的音频信号应当轻而易举。
6P15被冷落主要是与常用功放管“不合群”,如6P1,6P6P,6P14等管的标准工作电压,最佳负载阻抗都相同或接近,相互通用性很强。
但6P15标准板压300V,Ug2150V,负载阻抗10KΩ的参数却远离了这个范围。
因为大多数烧友都视绕制变压器为畏途,尤其是输出变压器,费时费力却未必能达到预期效果,这在很大程度上限制了6P15在烧友中的应用。
6P15的高跨导,使帘栅压对工作状态的稳定性影响极大。
一些初烧友认为6P15工作不稳易老化,主要原因是比照6P14等电路,忽略了高Ug2造成的。
6P15是只线性极佳的电子管,小编在查阅了大量资料的基础上,设计制作了两款6P15单端甲类小功放,音质远在6P1,.6P6P之上。
1、6P15在功率放大上的应用与改进多年来,一些资深烧友对如何用好6P15进行了不懈的探索。
现有可查资料中介绍的几款线路各有优点,但对初烧友来说还是有些复杂。
只有在保持其良好线性和状态稳定的前提下,将参数设计到6P14、6P1等通用管的范围内,才能使这只名管再现辉煌。
下面介绍这两款用6P15制作的胆功放。
图1是两款机器共同的电源电路。
在Ua230V,Ug2200V、Uk4V 时负载阻抗5kΩ,做到了与6P1系列通用。
6P15的la、Ig2相加约40mA,一般五、六灯收音机电源变压器输出60mA左右,因而用在此电路双声道上有些力不从心,盛夏室内听一小时就有烫手感,春秋时可工作两三个小时。
若作为卧室小音量播放或长时间欣赏,需配置不低于80mA的电源变压器。
可调稳压电源电路图大全(八款可调稳压电源电路设计原理图详解)
可调稳压电源电路图设计(一)简易可调稳压电源采用三端可调稳压集成电路LM317,使电压可调范围在1.5~25V,最大负载电流1.5A。
其电路如图所示。
电路工作原理:220V交流电经变压器T降压后,得到24V交流电;再经VD1~VD4组成的全桥整流、C1滤波,得到33V左右的直流电压。
该电压经集成电路LM317后获得稳压输出。
调节电位器RP,即可连续调节输出电压。
图中C2用以消除寄生振荡,C3的作用是抑制波纹,C4用以改善稳压电源的暂态响应。
VD5、VD6在当输出端电容漏电或调整端短路时起保护作用。
LED为稳压电源的工作指示灯,电阻R1是限流电阻。
输出端安装微型电压表PV,可以直观地指示输出电压值。
元器件的选择与制作:元器件无特殊要求,按图所示选用即可。
制作要点:①C2应尽量靠近LM317的输出端,以免自激,造成输出电压不稳定;②R2应靠近LM317的输出端和调整端,以避免大电流输出状态下,输出端至R2间的引线电压降造成基准电压变化;③稳压块LM317的调整端切勿悬空,接调整电位器RP时尤其要注意,以免滑动臂接触不良造成LM317调整端悬空;④不要任意加大C4的容量;⑤集成块LM317应加散热片,以确保其长时间稳定工作。
可调稳压电源电路图设计(二)大电流可调稳压电源电路此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。
工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。
调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。
元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。
FU1选用1A,FU2选用3A~5A。
VD1、VD2选用6A02。
继电器控制电路模块设计及原理图
继电器控制电路模块设计及原理图能直接带动继电器工作的CMOS集成块电路在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。
本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。
现将CD4066 CMOS集成块带动继电器的工作原理分析如下:CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。
当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。
本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。
并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。
低电压下继电器的吸合措施常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。
因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。
工作原理:如图所示。
V1为单结晶体管BT33C,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4和VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。
同时,电源经R1给电容C1充电。
数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。
实验七multisim数字电路原理图设计
电子线路设计软件课程设计报告实验内容:实验七multisim数字电路原理图设计一、实验目的1、认识并了解multisim的元器件库;2、学会使用multisim绘制电路原理图;3、学会使用multisim里面的各种仪器分析数字电路;二、Multisim10 的菜单栏1.File菜单该菜单主要用于管理所创建的电路文件,对电路文件进行打开、保存等操作,其中大多数命令和一般Windows应用软件基本相同,这里不赘述。
下面主要介绍Multisim 10.0的特有命令:●Open Samples:可打开安装路径下的自带实例;●New Project,Open Project,Save Project和Close Project:分别对一个工程文件进行创建、打开、保存和关闭操作。
一个完整的工程包括原理图、PCB文件、仿真文件、工程文件和报告文件;●Version Control:用于控制工程的版本。
用户可以用系统默认产生的文件名或自定义文件名作为备份文件的名称对当前工程进行备份,也可恢复以前版本的工程;●Print Options:包括两个子菜单,Print Circuit Setup子菜单为打印电路设置选项;Print Instruments子菜单为打印当前工作区内仪表波形图选项。
2.Edit菜单“编辑”菜单下的命令主要用于在绘制电路图的过程中,对电路和元件进行各种编辑操作。
一些常用操作,例如,复制,粘贴等和一般Windows应用程序基本相同,这里不再赘述。
下面介绍一些Multisim10.0特有的命令。
●Delete Multi-Page:从多页电路文件中删除指定页。
执行该项操作一定要小心,尽管使用撤销命令可恢复一次删除操作,但删除的信息无法找回;●Paste as Subcricuit:将剪贴板中已选的内容粘贴成电子电路形式;●Find:搜索当前工作区内的元件,选择该项后可弹出对话框,其中包括要寻找元件的名称、类型及寻找的范围等;●Graphic Annotation:图形注释选项,包括填充颜色、类型、画笔颜色、类型和箭头类型;●Order:安排已选图形的放置层次;●Assign to Layer:将已选的项目(例如,REC错误标志、静态指针、注释和文本/图形)安排到注释层;●Layer Setting:设置可显示的对话框;●Orientation:设置元件的旋转角度;●Title Black Position:设置已有的标题框的位置;●Edit Symbol/Title Block:对已选定的图形符号或工作区内的标题框进行编辑。
电子电路分析实例
一款简单的恒流源电路图如下图是一款简单的恒流源电路图,在该电路中:当±v,R b2、Rtii和Re被确定之后,c就被确定了,在一定范围内与负载电阻RL的大小无关,只要使管子的V伸工作在晶体管输出特性曲线的平坦部分,就可以保持Jc的不变。
(VT,Re反馈网络起到稳压)1kHz低频载波振荡电路所示的振荡电路设计在1 kHz载波振荡频率上,负载是影响尽量小的电压放大桥式振荡器,为了简化电路,使用两个2SB75晶体管,电源电压为12 V。
一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。
放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。
正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。
选频网络则只允许某个特定频率f 0 能通过,使振荡器产生单一频率的输出。
低频电压放大器低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。
( 1 )共发射极放大电路图 1 ( a )是共发射极放大电路。
C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。
1 、 3 端是输入, 2 、 3 端是输出。
3 端是公共点,通常是接地的,也称“地”端。
静态时的直流通路见图 1 ( b ),动态时交流通路见图 1 ( c )。
电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。
( 2 )分压式偏置共发射极放大电路图 2 比图 1 多用 3 个元件。
基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。
发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。
所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。
如果送回部分和原来的输入部分是相减的,就是负反馈。
双管正激拓扑的工作原理和设计举例
双管正激拓扑一.概述双管正激拓扑电路是一种在单端正激拓扑上衍生出来的一种拓扑电路。
经过实践证明,这种拓扑的电路具有电路简单,可靠性高,元器件较单端电路容易选取等特点。
是一种非常优秀的拓扑电路。
二.简介双管正激变换器拓扑结构由两个功率开关管和两个二极管构成,当两个开关管和同时关断时,磁通复位电路的两个二极管和同时导通,输入的电流母线电压Vin反向加在变压器的初级的励磁电感上,初级的励磁电感在Vin的作用下励磁电流从最大值线性的减小到0,从而完成变压器磁通的复位,并将储存在电感中的能量返回到输入端,没有功率损耗,从而提高电源的效率;此外,每个功率开关管理论的电压应力为直流母线电压,这样就可以选取相对较低耐压的功率MOSFET管,成本低,而且较低耐压的功率MOSFET的导通电阻小,可以进一步提高效率。
三.应用范围双管正激变换器广泛的应用于台式计算机的主电源,中等功率的通信电源及大功率通信电源、变频器等三相电路的辅助电源中。
四.基本工作原理和关键点的波形双管正激变换器的拓扑结构如图1所示,其中Cin为输入直流滤波电解电容,Q1和Q2为主功率开关管,D1、D2和C1、C2分别为Q1和Q2的内部寄生的反并联二极管和电容,D3、C3和D4、C4分别为变压器磁通复位二极管及其寄生的并联电容,不考虑Q2的漏极与散热片间的寄生电容,T为主变压器,DR和DF为输出整流及续流二极管,Lf和Co输出滤波电感和电容。
图1 双管正激变换器的拓朴结构首先,下面分几个工作模式来讨论其磁通复位的工作过程:(1)模式1:t0~t1在t0 时刻Q1 和Q2 关断,此时D3 也是关断的。
初级的励磁电感电流和漏感的电流不能突变,必须维持原方向流动,因此C1,Ch (散热片寄生电容)和C2充电,其电压从0 逐渐上升, C3 和 C4 放电,其电压由Vin 逐渐下降。
4231C C Lp C C i i i i i -==-in c C V u u =+31in C C V u u =+4223C C Lpu u dt di Lp -=333C C i dtdu C = 111C C i dtdu C = 222C C i dtdu C = 444C C i dt du C = 初始值:()001=C u ,()002=C u ,()in C V u =03,()in C V u =04,()00M Lp I i =由上面公式可得:423132C C C C u u C C ++=∆∆ (1) 在理想的模型下,21C C =,43C C =,4231C C C C +=+所以在t1时刻C3和C4的电压下降到0,同时 C1 和C1 的电压上升到Vin ,D3和D4 将导通,系统进入下一个过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
home
背景分析 教法设计 设计内容 学法设计 教学过程 教学反思
home
教材分析
学情分析
教学目标
重点难点
这两节课选自21世纪高职高专电 类系列规划教材《电路CAD教程》第 三章第八节,共两个课时。《电路 CAD教程》是一门实践性很强的专业 课,学习绘制电路原理图是学习印制 电路板板图设计的基础,根据课程要 求,学生只有熟练掌握电路原理图的 绘制,才能保证后续工作的顺利进行。 电路原理图的设计是否正确、结构是 否严谨将直接影响到产品的效果,因 此电路原理图的设计变得尤为重要。
home
任务一:设计内容
1、绘制如图(一)所示的输出电压可调的 直流稳压电源电路的原理图。 2、设计要求: (1)电路原理图名称以及图纸参数设置 要正确; (2)元件布局美观; (3)元件参数设置正确; (4)连线正确。
home
图(一) 输出电压可调的直流稳压电源电路
home
任务一:操作步骤
1、新建一个电路原理图文件 启动Protel 99 SE,新 建一个设计数据库文件, 重命名为“电源.ddb”;在 设计数据库管理器窗口中 执行“File”→“New”菜单命 令,新建一个电路原理图 文件,重命名为“电 源.sch”。
7、
连 接 线 路
执行 “Place”→“Wire”菜单 命令,即可放置各元 件之间的导线。若有 连通的“+”字相交线路, 执行“Place” →“Junction”菜单命令, 手动放置节点。
home
8、放置电源和接地符号
执行“Place” →“Power Port” 菜单命令,分别放置输入端口IN、 输出端口OUT以及接地符号。
home
图(二)甲乙类放大电路的原理图
home
设计理念 在课堂教学中,始终很好的调动学生的积极性。因为 我认为兴趣是最好的老师,让学生满怀激情地投入到活动 中,成为课堂的主人,课堂的效率才会更高。同时还注重 了专业课间的内在联系,以便更好的调动学生的学习兴趣。 评价方式 在教学活动中关注学生在元器件识别和绘图过程中表现 出来的能力.对于学生的回答及时给予恰当的评价和鼓励, 帮助学生认识自我,建立自信,发挥评价的教育功能。
5、设置元件的属性
在放置元件的过程中按下“Tab”键, 或者放置好元件后双击元件,可以编辑 元件的属性。按照所给出的电路图,修 改各元件封装(Footprint)、元件标 (Designator)、元件标称值(Part Type)这三项内容。其中元件封装名称 请参考课本《电路CAD教程》P223的 附录4——常用元件图形符号。
home
2、设置电路原理图图纸参数
进入电路原理图编辑器,执行“Design” →“Options”菜单命令,设置图纸大小为A4, 图纸方向为水平放置(Landscape)。
home
3、加载电路原理图元件库
在本例中,所需要用到的元件都属于各 类通用元(Miscellaneous Device.ddb)中 的元件。单击元件库列表区域下方的 Add/Remove”(添加或删除)按钮,在弹 出的对话框中指定正确的元件库所在路径, 然后选择所需的元件库,依次单击“Add” 和“OK”按钮,即可把元件库 添加到当前元件库列表区域。
home
教材分析
学情分析
教学目标
重点难点
教学重点 1、绘制电路原理图的基本操作方法; 2、元器件的放置、布局以及参数设置。 教学难点 1、元器件的放置、布局。 2、元件的参数设置。
home
教材分析
演示法
任务驱动法
教材处理
演示法
教师用投影仪演示操 作步骤,学生边观看边 跟着演练。
home
教材分析
home
教材分析
学情分析
教学目标
重点难点
知识与技能目标
通过使用Protel 99 SE软件绘制实例——输出电压可调的 直流稳压电路的原理图,明确绘制电路原理图的操作方法, 并能应用该方法正确绘制甲乙类放大电路理图。 过程与方法目标 通过经历任务练习、小组讨论的过程,学会在练习中发现 疑问,归纳总结知识。 情感态度与价值观目标 培养学生一丝不苟的工作态度,锻炼学生既独立又团结协 助的工作精神。
home
课后作业
请绘制课本P50 练习1的占空比可调的 多谐振荡e
home
4、放置元件
在元件库列表区域找出所需要的 元件:RES2(电阻)、POT2(电 位器)、ELECTRO2(电解电容)、 CAP(无极性电容)、DIODE(稳 压二极管)和VOLTREG(三端稳压 集成块),双击元件名称或单击 “Place”按钮,即可把元件分别放置 到电路原理图中。
home
home
9、重新编辑元件编号
由于之前的元件编号可能没有规律, 或者存在编号相同的可能,因此需要系统 给元件自动编号。执行“Tools” →“Annotate”菜单命令,选择重新编号的方 向,确认即可。完成图(一)所示的电路 原理图。
10、保存电路原理图
home
任务二:自主练习
完成了图(一) 的练习后,可以根据 图(一)的操作步骤, 绘制下图(二)甲乙 类放大电路的原理图。
home
教材分析
学情分析
教学目标
重点难点
中职学生的共性是一般学习兴趣不高,自主 学习能力比较差,学生来源不同,技能基础和个 性差异较大,于是,我们设计的任务要顾及到学 生的学习兴趣,注意实用性,要考虑到学生的技 能基础和个体差异,因此,在教学过程中,一方 面,安排的任务要符合学生的实际,还要注意任 务的层次性,由学生自主选择,另一方面,因实 际情况而灵活调整教学进度和深度。
home
6、元件布局
放置好各元件后,但它们在电路原理图 中的位置可能比较混乱,所以需要做合理 的排列。选中元件后,按住鼠标左键不放, 元件会跟着光标移动,也可以按住“Space” 键、“X”键和“Y”键分别对元件进行必要 的旋转。重新排列后,元件的位置要求与 图(一)中元件所在的位置一致。
home
归纳总结法
home
新 课 导 入
任 务 一
评 比 小 结
任 务 二
评 比 小 结
作 业 布 置
home
新课导入
电路原理图的设计是整个电路设计的 基础,它决定了后续工作的进展如何。电 路原理图的设计是否正确、结构是否严谨 将直接影响到产品的使用效果。因此,电 路原理图的设计工作变得尤为重要。在前 面学习的基础上,本节课将教大家绘制完 整的电路原理图。
演示法
任务驱动法
教材处理
任务 驱动法
布置任务,以小组比赛评 分的形式,激发学生的兴 趣,让学生在活动中了解 电路原理图的绘制流程。
home
分组讨论法
比较、归纳整理知识法
分组讨论法
根据所领取 的工作任务, 由每个同学先 单独完成,再 进行小组讨论 ,归纳出知识 点。
领取任务
根据工作任 务,通过比较, 找出不同知识点 间的内在联系。 通过归纳整理, 形成层次分明的 知识结构。