人教数学 一元二次方程的专项 培优练习题附答案
人教【数学】培优一元二次方程辅导专题训练含答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴cm;∴经过2s时P、Q两点之间的距离是;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP•CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.考点:一元二次方程的应用.2.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.3.解方程:(2x+1)2=2x+1. 【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0, ∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0, 则x=0或2x+1=0, 解得:x=0或x=﹣12.4.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因. 涵涵的作业解:x 2﹣7x+10=0 a=1 b=﹣7 c=10 ∵b 2﹣4ac=9>0∴2b b 4ac -±-732±∴x 1=5,x 2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2. 当腰为2,底为5时,等腰三角形的三条边为2,2,5. 探究应用:请解答以下问题:已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+m 2﹣14=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.5.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.6.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的41344m?个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到2【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.7.已知两条线段长分别是一元二次方程28120x x -+=的两根, (1)解方程求两条线段的长。
九年级上册:第21章《一元二次方程》期末培优测验试卷(含答案)
人教版初中九年级上册:第21章《一元二次方程》期末培优测验一.选择题(共10小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0D.ax2+bx+c=02.已知x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,则x1+x2的值是()A.6B.﹣6C.5D.﹣53.若关于x的方程x2+mx﹣6=0有一个根为2.则另一个根为()A.﹣2B.2C.4D.﹣34.已知关于x的一元二次方程x2+2x﹣(m﹣3)=0有实数根,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤25.组织一次篮球联赛,每两队之间都赛一场,计划安排15场比赛,应邀请()个球队参加比赛.A.5B.6C.7D.96.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛.设参赛球队的支数为x,则根据题意所列的方程是()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28×2D.x(x﹣1)=28×27.在宽为20m,长为32m的矩形田地修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小矩形田地,作为良种试验田,要使每小块试验田的面积为135m2,设道路的宽为x米,则可列方程为()A.(32﹣x)(20﹣x)=135B.4(32﹣x)(20﹣x)=135C.D.(32﹣x)(20﹣x)﹣x2=1358.关于方程85(x﹣2)2=95的两根,则下列叙述正确的是()A.一根小于1,另一根大于3B.一根小于﹣2,另一根大于2C.两根都小于0D.两根都大于29.为宣传“”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程()A.90%×(2+x)(1+x)=2×1B.90%×(2+2x)(1+2x)=2×1C.90%×(2﹣2x)(1﹣2x)=2×1D.(2+2x)(1+2x)=2×1×90% 10.若一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,则一次函数y=abx+a+b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共7小题)11.若关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,则a的值为.12.定义新运算:m,n是实数,m*n=m(2n﹣1),若m,n是方程2x2﹣x+k=0(k<0)的两根,则m*m﹣n*n=.13.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.14.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成发如图所示①②③的三块矩形区域,而且这三块矩形区域面积相等.已知矩形区域ABCD的面积为30m2,设BC的长度为xm,所列方程为.15.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为.16.一元二次方程(x+1)(x+3)=9的一般形式是,二次项系数为,常数项为17.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是.三.解答题(共7小题)18.解方程:(1)x2+4x﹣5=0.(2)x2﹣3x+1=0.19.已知关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根.(1)求m的取值范围;(2)试判断关于x的方程(m+5)x2﹣2(m+1)x+m=0的根的情况.20.某电脑销售商试销某一品牌电脑1月份的月销售额为400000,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.求1月份到3月份销售额的月平均增长率.21.列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若=﹣1,则m的值为多少?23.如图,矩形ABCD中,AB=6cm,BC=8cm,点P从点A沿边AB以1cm/s的速度向点B移动,同时点Q从点B沿边BC以2cm/s的速度向点C移动,当P、Q两点中有一个点到终点时,则另一个点也停止运动.当△DPQ的面积比△PBQ的面积大19.5cm2时,求点P运动的时间.24.已知关于x的方程x2﹣2mx+m2﹣4m﹣1=0(1)若这个方程有实数根,求m的取值范围;(2)若此方程有一个根是1,请求出m的值.参考答案一.选择题(共10小题)1.【解答】解:A,2x2﹣+1=0,不是整式方程,故不是一元二次方程;B,原方程变形为:3x﹣2=0,故不是一元二次方程;C,5x2﹣1=0是一元二次方程;D,ax2+bx+c=0,当a=0时,不是一元二次方程;故选:C.2.【解答】解:∵x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,∴x1+x2=6,故选:A.3.【解答】解:设方程的另一个根为α,根据根与系数的关系,2α=﹣6,∴α=﹣3.故选:D.4.【解答】解:根据题意得:△=22+4(m﹣3)=4+4m﹣12=4m﹣8≥0,解得:m≥2,故选:C.5.【解答】解:设应邀请x个球队参加比赛,根据题意得:x(x﹣1)=15,解得:x1=6,x2=﹣5(不合题意,舍去).故选:B.6.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,根据题意可得:=28,即:x(x﹣1)=28×2,故选:D.7.【解答】解:设道路的宽为x米,则每块小矩形田地的长为(32﹣x)m,宽为(20﹣x)m,根据题意得:(32﹣x)×(20﹣x)=135,即(32﹣x)(20﹣x)=135.故选:C.8.【解答】解:(x﹣2)2=,x﹣2=±,所以x1=2﹣,x2=2+,而1<<2,所以x1<1,x2>3.故选:A.9.【解答】解:设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据题意得:90%(2+2x)(1+2x)=2×1.故选:B.10.【解答】解:∵一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,∴a+b=4,ab=3,∴一次函数的解析式为y=3x+4.∵3>0,4>0,∴一次函数y=abx+a+b的图象经过第一、二、三象限.故选:D.二.填空题(共7小题)11.【解答】解:∵关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,∴|a|=2,a+2≠0,解得,a=2.故答案为:2.12.【解答】解:∵m,n是方程2x2﹣x+k=0(k<0)的两根,∴2m2﹣m+k=0,2n2﹣n+k=0,即2m2﹣m=﹣k,2n2﹣n=﹣k,则m*m﹣n*n=m(2m﹣1)﹣n(2n﹣1)=2m2﹣m﹣(2n2﹣n)=﹣k﹣(﹣k)=﹣k+k=0,故答案为:0.13.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.14.【解答】解:∵矩形区域ABCD的面积=AB•BC,∴3(﹣x+10)•x=30,整理得x2﹣40x+400=0.故答案是:x2﹣40x+400=0.15.【解答】解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,因为3+3=6,所以等腰三角形的两腰为6、6,底边长为3,所以三角形周长=6+6+3=15.故答案为:15.16.【解答】解:由(x+1)(x+3)=9,得x2+4x+3﹣9=0,即x2+4x﹣6=0.其中二次项系数是1,一次项系数是4,常数项是﹣6.故答案是:x2+4x﹣6=0;1;﹣6.17.【解答】解:∵1,﹣3是已知方程x2+2x﹣3=0的解,由于另一个方程(2x+3)2+2(2x+3)﹣3=0与已知方程的形式完全相同∴2x+3=1或2x+3=﹣3解得x1=﹣1,x2=﹣3.故答案为:x1=﹣1,x2=﹣3.三.解答题(共7小题)18.【解答】解:(1)因式分解得,(x﹣1)(x+5)=0,x﹣1=0,x+5=0,∴x1=1,x2=﹣5;(2)a=1,b=﹣3,c=1,∴△=b2﹣4ac=9﹣4=5>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.19.【解答】解:(1)∵关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根,∴△=[﹣2(m+2)]2﹣4×1×(m2+5)=16m﹣4<0,解得:m;(2)∵m<,∴m+5≠0,∴原方程是一元二次方程,△=[﹣2(m+1)]2﹣4(m+5)m=4﹣12m,∵m<,∴4﹣12m>0,∴原方程有两个不相等的实数根.20.【解答】解:设1月份到3月份销售额的月平均增长率为x,根据题意得:400000(1+x)2=576000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:1月份到3月份销售额的月平均增长率为20%.21.【解答】解:(1)设每个月增长的利润率为x,根据题意得:20×(1+x)2=22.05,解得:x1=0.05=5%,x2=﹣2.05(不合题意,舍去).答:每个月增长的利润率为5%.(2)22.05×(1+5%)=23.1525(万元).答:4月份该公司的纯利润为23.1525万元.22.【解答】解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,∵=﹣1,∴=﹣1,∴=﹣1,m2﹣2m﹣3=0(m﹣3)(m+1)=0m1=﹣1,m1=3,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为3.23.【解答】解:设当△DPQ的面积比△PBQ的面积大19.5cm2时,点P运动了x秒.根据题意得:×8×x+×2x(6﹣x)+×6(8﹣2x)+[×2x(6﹣x)+19.5]=6×8,化简得:2x2﹣10x+=0,解得:x1=,x2=.∵当x2=时,8﹣2x=﹣1<0,∴x2=舍去.答:当△DPQ的面积比△PBQ的面积大19.52时,点P经过了秒.24.【解答】解:(1)根据题意知△=(﹣2m)2﹣4(m2﹣4m﹣1)≥0,解得:m≥﹣;(2)将x=1代入方程得1﹣2m+m2﹣4m﹣1=0,整理,得:m2﹣6m=0,解得:m1=0,m2=6,∵m≥﹣,∴m=0和m=6均符合题意,故m=0或m=6.。
一元二次方程专题能力培优(含答案)
一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。
解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。
给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。
解方程3a+6=0,得到a=-2.因此,这是一元一次方程。
根据题意,方程x+bx+a=0的一个根是-a(a≠0)。
由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。
人教【数学】数学一元二次方程的专项培优练习题(含答案)
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.【解析】【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1, 则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,3.解方程:(3x+1)2=9x+3.【答案】x 1=﹣13,x 2=23. 【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x ﹣2=0,解得:x 1=﹣13,x 2=23. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.4.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.5.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。
人教中考数学 一元二次方程 培优练习(含答案)含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.【解析】【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,2.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-.【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.3.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x个人,根据题意得:x+1+(x+1)x=36,解得:x=5或x=﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.4.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若111αβ+=-,则m的值为多少?【答案】(1)14m≥;(2)m的值为3.【解析】【分析】(1)根据△≥0即可求解,(2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0,解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0 解得:m 1=﹣1,m 1=3,由(1)知m≥-34, ∴m 1=﹣1应舍去,∴m 的值为3.【点睛】 本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.5.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.【答案】(1)m <3;(2)m =2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m ﹣2)>0.∴m <3;(2)∵m <3 且 m 为正整数,∴m =1或2.当 m =1时,原方程为 x 2﹣2x ﹣1=0.它的根不是整数,不符合题意,舍去;当 m =2时,原方程为 x 2﹣2x =0.∴x(x ﹣2)=0.∴x 1=0,x 2=2.符合题意.综上所述,m =2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m 的值和m 的范围是解此题的关键.6.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.7.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过15﹣15h 就会进入台风影响区;(3)215小时.【解析】【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t)2+(400﹣30t)2=2002,整理得到:t2﹣30t+210=0,解得t15由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(1515h就会进入台风影响区;(3)由(1)可知受到台风影响的时间为15151515h.【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x的等式是解题关键.8.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x 2﹣4mx +4m 2﹣1=0的根,将x =5代入原方程可求出m 值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m )2﹣4(4m 2﹣1)=4>0,∴无论m 为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC 为等腰三角形,另外两条边是方程的根,∴5是方程x 2﹣4mx +4m 2﹣1=0的根.将x =5代入原方程,得:25﹣20m +4m 2﹣1=0,解得:m 1=2,m 2=3.当m =2时,原方程为x 2﹣8x +15=0,解得:x 1=3,x 2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.9.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴x=2b a-± ∴x1x 2.10.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)55t ±= 【解析】【分析】 (1)首先根据勾股定理计算AB 的长,再根据相似比例表示PE 的长度,再结合矩形的性质即可求得t 的值.(2)根据面积相等列出方程,求解即可.【详解】解:(1)在Rt ABC ∆中,90,8,6C AC BC ︒∠===,22228610AB AC BC ∴=+=+=102//,,1068PA PE AE t PE AE PE BC AB BC AC -∴==∴== 34(102),(102)55PE t AE t ∴=-=-,当PE CF =时,四边形PECF 是矩形, 3(102)5t t ∴-= 解得3011t = (2)由题意22424116825552t t =+=⨯⨯⨯ 整理得2t 550t -+=,解得55t ±= 552t ∴=,ABC ∆面积是PEF ∆的面积的5倍。
一元二次方程综合培优(难度大-含参考答案)
一元二次方程拓展提高题1、已知x25x20000,则x2 3xx 1 21的值是.22、已知a22004a10,则 2a 24007 a2004_________ .a 213、若ab1,且5a 22005a70 ,7b 22005b 5 0 ,则a_________ . b4、已知方程2x 22ax3a40没有实数根,则代数式a28a16 2 a_____.5、已知y 2 x6x ,则 y 的最大值为.6、已知a b c0, abc2, c0 ,则()A、 ab 0B、 a b 2C、 a b3D、 a b47、已知a b8 , ab c2160,则 a b c________ .8、已知m2m10 ,则m3 2 m22006________ .9、已知a b4, ab c 240 ,则 a b________ .10、若方程x 2px q0 的二根为 x1, x2,且 x1 1 , p q30,则 x2 ()A、小于 1B、等于 1C、大于 1 D 、不能确定是方程 x 213 1 的值为11、已知x0 的一个根,则3.412、若3x2x 1 ,则 9 x 412x 32x 27x2008()A、 2011B、 2010C、 2009 D 、 200813、方程3x23x2 2 的解为.14、已知x2x y 20 ,则x2y 22x的最大值是()26A、 14B、 15C、 16 D 、18、方程x 22 | x |2m恰有 3 个实根,则m()15A、 1B、 1.5C、2 D 、2.516、方程x23xx2379 的全体实数根之积为()3 xA、 60B、60C、 10D、 1017、关于x的一元二次方程2x 25x a 0x1: x2 2 : 3,则x2x1( a 为常数)的两根之比()A、 1B、 2C、1D、3 2218、已知是、方程 x2x10 的两个实根,则43_______ .19、若关于x的方程2ax2xax 1 只有一解,求a 的值。
人教数学 一元二次方程的专项 培优练习题及详细答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.2.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1x2=11=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x -1=±2.∴x 1=1+2,x 2=1-2. (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.3.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.4.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)是否存在实数k ,使得x 1·x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)当k≤14时,原方程有两个实数根(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立 【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决.试题解析:(1)∆= ()()2221420k k k +-+≥,解得14k ≤ (2)由2212120x x x x --≥得 2121230x x x x ()-+≥,由根与系数的关系可得:2121221,2x x k x x k k +=+=+代入得:22364410k k k k +---≥,化简得:()210k -≤,得1k =.由于k 的取值范围为14k ≤, 故不存在k 使2212120x x x x --≥.5.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =- 92m ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.6.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x 元(40≤x ≤60),每星期的销售量为y 箱. (1)求y 与x 之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y =-10x +780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x 元,则多销售的数量为60-x, (2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x 元(40≤x≤60),则y=180+10(60-x )=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w ,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10<0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.7.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).(1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值.【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x 1=3m,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,∴△=(m -3)2-4m ×(-3)=(m +3)2,∵(m +3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x =()()332m m m --±+ , ∴x 1=-3m,x 2=1, ∵m 为正整数,且方程的两个根均为整数,∴m =-1或-3.点睛: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.8.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.【详解】(1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。
人教版九年级上册第21章一元二次方程实际应用 专项培优练习(三)(解析版)
第21章一元二次方程实际应用同步专项培优练习基础题训练(一):限时30分钟1.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出8套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到了50000元,求m的值.2.某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).(1)求该店主包邮单价定为53元时每周获得的利润;(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时,每周获得的利润大?最大值是多少?3.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?4.某商店在2017年至2019年期间销售一种礼盒,2017年,该商店用3500元购进了这种礼盒并且全部售完;2019年这种礼盒的进价比2017年下降了11元/盒,该商店用2400元购进了与2017年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2017年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同问年增长率是多少?5.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.(1)求出发多少秒时PQ的长度等于5cm;(2)出发秒时,△BPQ中有一个角与∠A相等.基础题训练(二):限时30分钟6.成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?7.利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低3元,平均每天可多售出6件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?8.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.9.3月国际风筝节在婺源县举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高0.1元,销售量就会减少1个,请回答下列问题:(1)用函数解析式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.参考答案1.解:(1)设降价x 元,依题意,得:8000×0.9﹣x ﹣5000≥5000×20%,解得:x ≤1200.答:最多降价1200元,才能使利润率不低于20%.(2)依题意,得:[8000(1+m %)﹣40m ﹣5000]×8(1+m %)=50000,整理,得:m 2+275m ﹣16250=0,解得:m 1=50,m 2=﹣325(不合题意,舍去).答:m 的值为50元.2.解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元). 答:每周获得的利润为2210元;(2)由题意,y =(x ﹣35﹣5)[200﹣10(x ﹣50)]即y 与x 之间的函数关系式为:y =﹣10x 2+1100x ﹣28000;(3)∵y =﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250,∵﹣10<0,∴包邮单价定为55元时,每周获得的利润最大,最大值是2250元.3.解:(1)设口罩日产量的月平均增长率为x ,根据题意,得20000(1+x )2=24200解得x 1=﹣2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.4.解:(1)设2017年这种礼盒的进价是x 元/盒,则2019年这种礼盒的进价是(x ﹣11)元/盒,依题意,得:=, 解得:x =35,经检验,x =35是原方程的解,且符合题意.答:2017年这种礼盒的进价是35元/盒.(2)2017年及2019年购进这种礼盒的数量为3500÷35=100(盒).设该商店每年销售这种礼盒所获利润的年增长率为y,依题意,得:(60﹣35)×100(1+y)2=(60﹣35+11)×100,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店每年销售这种礼盒所获利润的年增长率为20%.5.解:(1)设出发t秒时PQ的长度等于5cm,PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm.(2)设出发x秒时,△BPQ中有一个角与∠A相等.∵AB=5cm,BC=7cm∴PB=(5﹣x)cm,BQ=2xcm当∠BPQ=∠A时,又∵∠B=∠B∴△ABC∽△PBQ∴=∴=解得:x=;当∠BQP=∠A时,又∵∠B=∠B∴△ABC∽△QBP∴=∴=解得:x=故答案为:或.6.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.7.解:(1)20+6÷3×6=32(件).故答案为:32.(2)设每件商品降价x元,则平均每天的销售数量为(20+)件,依题意,得:(40﹣x)(20+)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵40﹣x≥25,解得:x≤15,∴x=10.答:当每件商品降价10元时,该商店每天销售利润为1200元.8.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品捐款的数额为45元.9.解:(1)根据题意得:y =180﹣,整理得: y =300﹣10x (12≤x ≤30),(2)根据题意得:(x ﹣10)(300﹣10x )=840,整理得:x 2﹣40x +384=0,解得:x 1=16,x 2=24,为让利给顾客,售价应定16元,答:售价应定16元.10.解:(1)设甲种苹果的进价为a 元/千克,乙种苹果的进价为b 元/千克, 根据题意得:,解得:. 答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x )(100﹣10x )+(2+x )(140﹣10x )=960, 整理得:x 2﹣9x +14=0,解得:x 1=2,x 2=7,经检验,x 1=2,x 2=7均符合题意.答:x 的值为2或7.。
2021-2022人教版九年级上册 《一元二次方程》培优练习(解析版)
《一元二次方程》培优练习一.选择题1.下列方程中是一元二次方程的是()A.2x+1=0B.y2+x=1C.x2+1=0D.2.将方程3x2+1=6x化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A.3,﹣6,1B.3,6,1C.3,1,﹣6D.3,1,63.已知关于x的方程x2+kx﹣2=0的一个根是1,则它的另一个根是()A.﹣3B.3C.﹣2D.24.用配方法解方程x2﹣6x﹣4=0,下列配方正确的是()A.(x﹣3)2=13B.(x+3)2=13C.(x﹣6)2=4D.(x﹣3)2=55.若实数x,y满足(x2+y2+3)(x2+y2﹣3)=0,则x2+y2的值为()A.3或﹣3B.3C.﹣3D.16.关于x的一元二次方程(2﹣a)x2+x+a2﹣4=0的一个根为0,则a的值为()A.2B.0C.2或﹣2D.﹣27.一元二次方程﹣x2+6x﹣10=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.某地区举办的篮球比赛共有x支球队参加,每两队之间都只进行一场比赛,共进行了45场比赛,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=459.8月23号到校前,小希将收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,小希给()个同学发了短信.A.10B.11C.12D.1310.已知m是方程3x2﹣2x﹣2=0的一个实数根,则代数式的值()A.2B.C.D.二.填空题11.若(m+1)x|m|+1+6mx﹣2=0是关于x的一元二次方程,则m =.12.若关于x的一元二次方程x2+x﹣m=0有两个实数根,则m的取值范围是.13.关于x的一元二次方程ax2+bx+c=0满足a﹣b+c=0,则方程一定有一个根是x=.14.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为.15.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为.16.已知方程2x2+kx﹣2k+1=0的两个实数根的平方和为,则k 的值为.三.解答题17.用适当的方法解下列方程:(1)2x2+1=3x(2)x2+6x+4=018.已知关于x的方程(a﹣1)x2+2x+a+1=0.(1)若该方程有一根为0,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个实数根?求出此时a的值.19.一个矩形的长为a,宽为b(a>0,b>0),则矩形的面积为a•b.代数式xy(x>0,y>0)可以看作是边长为x和y的矩形的面积.我们可以由此解一元二次方程:x2+x﹣6=0(x>0).具体过程如下:①方程变形为x(x+1)=6;②画四个边长为x+1、x的矩形如图放置;③由面积关系求解方程.∵S ABCD=(x+x+1)2,又S ABCD=4x(x+1)+12.∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,∴(2x+1)2=25,∵x>0,∴x=2.参照上述方法求关于x的二次方程x2+mx﹣n=0的解(x>0,m >0,n>0).(要求:画出示意图,标注相关线段的长度,写出解题步骤)20.“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.21.某批发城在冬天到来之际进了一批保暖衣,男生的保暖衣每件价格60元,女生的保暖衣每件价格40元,第一批共购买100件.(1)第一批购买的保暖衣的总费用不超过5400元,求女生保暖衣最少购买多少件?(2)第二批购买保暖衣,购买男、女生保暖衣的件数比为3:2,价格保持第一批的价格不变;第三批购买男生保暖衣的价格在第一批购买的价格上每件减少了元,女生保暖衣的价格比第一批购买的价格上每件增加了元,男生保暖衣的数量比第二批增加了m%,女生保暖衣的数量比第二批减少了m%,第二批与第三批购买保暖衣的总费用相同,求m的值.参考答案一.选择题1.解:A、未知数的最高次数是1,不是一元二次方程,故本选项错误;B、含有两个未知数,不是一元二次方程,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、分母中含有未知数,不是一元二次方程,故本选项错误;故选:C.2.解:方程整理得:3x2﹣6x+1=0,二次项系数为3;一次项系数为﹣6,常数项为1,故选:A.3.解:设方程的另一个根为t,根据题意得1•t=﹣2,解得t=﹣2.故选:C.4.解:方程x2﹣6x﹣4=0变形得:x2﹣6x=4,配方得:x2﹣6x+9=13,即(x﹣3)2=13,故选:A.5.解:设t=x2+y2(t≥0),则原方程转化为(t+3)(t﹣3)=0,所以t+3=0或t﹣3=0.所以t=﹣3(舍去)或t=3,即x2+y2的值为3.故选:B.6.解:∵(2﹣a)x2+x+a2﹣4=0是关于x的一元二次方程,∴2﹣a≠0,即a≠2①由一个根是0,代入(2﹣a)x2+x+a2﹣4=0,可得a2﹣4=0,解之得a=±2;②由①②得a=﹣2.故选:D.7.解:∵△=62﹣4×(﹣1)×(﹣10)=36﹣40=﹣4<0,∴方程没有实数根.故选:D.8.解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选:A.9.解:设小希给x个同学发了短信,依题意,得:1+x+x2=157,解得:x1=﹣13,x2=12.故选:C.10.解:∵m是方程3x2﹣2x﹣2=0的一个实数根,∴3m2﹣2m=2,3m2﹣2=2m,∴3m﹣=2,∴原式==,故选:C.二.填空题(共6小题)11.解:由(m+1)x|m|+1+6mx﹣2=0是关于x的一元二次方程,得,解得m=1,故答案为:1.12.解:∵关于x的一元二次方程x2+x﹣m=0有两个实数根,∴△≥0,∴△=1﹣4(﹣m)≥0,即m≥﹣,故答案为:m≥﹣.13.解:将x=﹣1代入ax2+bx+c=0的左边得:a×(﹣1)2+b×(﹣1)+c=a﹣b+c,∵a﹣b+c=0,∴x=﹣1是方程ax2+bx+c=0的根.故答案为:﹣1.14.解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故答案为:36(1+x)2=48.15.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,所以等腰三角形的底为3,腰为6,这个等腰三角形的周长为3+6+6=15.故答案为15.16.解:∵方程2x2+kx﹣2k+1=0有两个实数根,∴△=k2﹣4×2(﹣2k+1)≥0,解得k≥6﹣8或k<﹣6﹣8.设方程2x2+kx﹣2k+1=0两个实数根为x1、x2.则x1+x2=﹣,x1•x2=﹣k+,∴x12+x22=(x1+x2)2﹣2x1x2=+2k﹣1=,即k2+8k﹣33=0,解得k1=3,k2=﹣11(不合题意,舍去).故答案是:3.三.解答题(共5小题)17.解:(1)∵2x2+1=3x,∴(2x﹣1)(x﹣1)=0,∴x=或x=1;(2)∵x2+6x+4=0,∴a=1,b=6,c=4,∴△=36﹣16=20,∴x==﹣318.解:(1)将x=0代入方程(a﹣1)x2+2x+a+1=0得a+1=0,解得:a=﹣1.将a=﹣1代入原方程得﹣2x2+2x=0,解得:x1=0,x2=1.∴a=﹣1,方程的另一根为1.(2)当a=1时,方程为2x+2=0,解得:x=﹣1;故a的值为﹣1.19.解:①方程变形为x(x+m)=n;②画四个边长为x+m、x的矩形如图放置;③由面积关系求解方程.∵S ABCD=(x+x+m)2,又S ABCD=4x(x+m)+m2.∴(x+x+m)2=4x(x+m)+m2,又x(x+m)=n,∴(2x+m)2=4n+m2,∵x>0,∴x=(﹣m)(m>0,n>0).20.解:(1)设该公司计划在线下销售量为x万件,则3000﹣x≥25%x天天向上独家原创解得:x≤2400∴该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣25m=0解得:m1=0(不合题意,舍去),m2=25∴m的值为25.21.解:(1)设女生保暖衣购买x件.40x+60(100﹣x)≤5400解之得x≥30答:女生保暖衣最少购30件;(2)设购买男、女生保暖衣的件数分别为3a、2a.根据题意,得设m%=t,则m=100t.3a×(1+t)×(60﹣20t)+2a×(1﹣t)×(40+30t)=3a×60+2a×406t2﹣5t=0解得:t1=0(舍去),∴m=100t=.答:m的值是.。
2019-2020学年人教版九年级数学上第21章一元二次方程培优测试(含答案)
第21章 一元二次方程培优测试1 .一元二次方程 X 2— 3x — 2= 0的两根为X 1, X 2,则下列结论正确的是 () A. x i =— 1, X 2=2 B. X 1 = 1 , X 2 =— 2 C. X 1+ X 2=3 D. X 1X 2 = 222. 关于y 的方程my (y — 1) = ny (y + 1) + 2化成一般形式后为 y — y —2= 0,则 m n 的值依次是( )A. 1,0B. 0,1C. — 1,0D. 0,— 1 3.关于X 的方程ax 2+ bx + c = 0,有下列说法:①若0,则方程必是一元二次方程;②若 a = 0,则方程必是一元一次方程,那么上述说法 ()A. ①②均正确B. ①②均错误C. ①正确,②错误D. ①错误,②正确4. 一元二次方程(x + 1)2— 2(x — 1)2= 7的根的情况是() A. 无实数根B. 有一正根一负根C. 有两个正根D. 有两个负根5 .若方程X 2 — 3x — 1 = 0的两根为X 1、 A. 3B. — 3C.D.2 a 、b ,定义 f(a ,b) = a + 5a — b ,如 f(2,3) 若f (x,2) = 4,则实数x 的值是() A. 1 或—6 B. — 1 或 6 C. — 5 或 1 D. 5 或 17 .关于X 的一元二次方程 X 2 — 2x + sin a = 0有两个相等的实数根,则锐角 a 等于()A. 15°…X1 + X2“,+ ,X 2,则x x^的值为(6.对于任意实数2=2 + 5X 2— 3,B. 30°C. 45D. 60°2& 已知3是关于x 的方程x - (m n 1)x + 2vm= 0的一个实数根,并且这个方 程的两个实数根恰好是等腰△ ABC 的两条边的边长,则△ ABC 的周长为( ) A. 7 B. 10 C. 11D. 10 或 11 若方程3x 2-4x — 4= 0的两个实数根分别为 X 1, X 2,则X 1 + X 2=()-4 3 4 —34 D. 310•关于x 的一元二次方程 x 2 + bx + 2= 0有两个不相等的实数根,写出一个 满足条件的实数 b 的值:b= ______________ .2211. ___________________________________ 若 x — 4x + 5 = (x — 2) + n ,贝U m = ______________________________________ .2 2 212. 已知x = 1是一元二次方程 x + ax + b = 0的一个根,则代数式a + b + 2ab 的值是 _____ .a b13 .将4个数a , b , c , d 排成2行、2列,两边各加一条竖直线记成 || ,c da b 定义| | = ad — bc ,上述记号就叫做 c d x = ____ .214. ______________________________________________________________ 已知关于x 的方程x + px + q = 0的两根为一3和一1,则卩= ,q = ________________ . 15. _________________________________________ 当x = — 1时,代数式8—2x 2—4x 有 _______________________________________ 值,其值为 ______ . 16 •某县体育局要组织一次篮球赛, 赛制为单循环形式(每两队之间都赛一场), 计划安排28场比赛,应邀请—支球队参加比赛.17. 一幅长20 cm 、宽12 cm 的图案,如图,其中有一横两竖的彩条,横、竖 彩条的宽度比为 3: 2.设竖彩条的宽度为 x cm ,图案中三条彩条所占面积为 y2cm.(1)求y 与x 之间的函数关系式;9. A . B .x +1 2阶行列式.若|1 — x 1 — xx + 1| = 8,则218. 某一个一元二次方程被墨水染成为:・x +■ x+ 6 = 0,小明、小亮回忆炉*7、一次项羅值小于- j(我记得方用的二$解为沪说:请根据上述对话,求出方程的另一个解.19. 在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了 4 800元.(1) 求每张门票原定的票价;(2) 根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率._ 220. 已知关于x的一元二次方程mx —(m+ 1)x +1 = 0(m#0).(1) 求证:此方程总有两个实数根;(2) 若m为整数,当此方程的两个实数根都是整数时,求m的值.21. 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x >40),请你分别用含有x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把化简后的结果填写答案1 . C2. A3. C4. C5. B6. A7. B8. D9. D 10. 3 11 . 1 12. 12. 1 13. 2 14. 4 315. 最大 10 16. 8 17.3解:(1)根据题意可知,横彩条的宽度为 qx cm , 3 3 2••• y = 20X —x + 2X 12 • x — 2X -x • x =- 3x + 54x ,2 2即y 与x 之间的函数关系式为 y =— 3x 2+ 54x ;2⑵ 根据题意,得:一3x 2 + 54x =:X 20X 12,52整理,得:x — 18x + 32 = 0,解得:X 1 = 2, X 2= 16(舍),则横彩条的宽度为3 cm ,竖彩条的宽度为 2 cm18. 解:设二次项系数为a,则一次项系数为a 2,•方程为ax 2 + a 2x + 6 = 0,2 2•••方程的一个根为 x = 3,则有9a + 3a + 6= 0,即卩a + 3a + 2= 0,配方得(a 3 2 1 + ^) = 4,解得a 1 =— 1, a 2 =— 2,又因为二次项系数小于一 1 ,• a =— 2. •••当a =— 2时,方程为—2x 2 + 4x + 6= 0,化简得:x 2— 2x — 3 = 0,配方得(x2—1) = 4,解得X 1 =— 1, X 2 = 3. ••方程的另一个解为一1.19.解得x = 400.经检验,x = 400是原方程的解, 则每张门票原定的票价 400元 ⑵设平均每次降价的百分率为 y.由题意得400(1 — y) 2= 324,解得y 1= 0.1 , y 2= 1.9(不合题意,舍去),则平均每次降价10% 20. (1) 证明:•••△= 2—4m = (m — 1)2>0,「.此方程总有两个实数根.m +1土; m — 1 21 ,,解:(1)设每张门票原定的票价为x 元,由题意得60004 800x — 80(2) 解:解原万程,得x = ■2m , • X1= 1, X2 = m当m为整数1或—1时,X2为整数,即此方程的两个实数根都是整数.故m的值为1或九年级数学单元测试-1.21 .解:根据题意,得- 该玩具的销售单价为210x+ 1300X —30 000 = 10 000,解得x i= 50, X2 = 80.即50元或80元.。
人教数学一元二次方程的专项培优练习题(含答案)含答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.2.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34; (2)当k =2时,原方程为x 2-5x +5=0,设方程的两个根为m ,n ,∴m +n =5,mn =5,∴==.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%.①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg );(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x 千克,则x{1﹣[60%+1.6%(90﹣x )]}=12,整理得:x 2﹣65x ﹣750=0,(x ﹣75)(x+10)=0,解得:x 1=75,x 2=﹣10(舍去),60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x . (1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k值.【详解】解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴△=(2k-1)2-4×1×k2=-4k+1>0,解得:k<14,即实数k的取值范围是k<14;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,∴k2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.7.已知关于x的方程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.8.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.9.解方程:(x2+x)2+(x2+x)=6.【答案】x1=﹣2,x2=1【解析】【分析】设x2+x=y,将原方程变形整理为y2+y﹣6=0,求得y的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.10.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【解析】【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.解得110x =,230x =.经检验,110x =,230x =都符合题意.当10x =时,5060x +=,50010400x -=;当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解。
【3套】人教版九年级数学上第21章一元二次方程单元培优试题(含答案)
人教版九年级数学上第21章一元二次方程单元培优试题(含答案)一.选择题1.一元二次方程(x -5)2=x -5的解是( )A .x =5B .x =6C .x =0D .x 1=5,x 2=62.已知3是关于x 的方程x 2-2a+1=0的一个解,则2a 的值是( ) (A)11 (B)12 (C)13 (D)143.若关于x 的一元二次方程(x+1)(x ﹣3)=m 有两个不相等的实数根,则m 的最小整数值为( )A .﹣4B .﹣3C .﹣2D .34.用配方法解方程0142=++x x ,配方后的方程是( )A . ()322=+xB . ()322=-xC. ()522=-xD . ()522=+x5.若|x 2-4x+4|与互为相反数,则x+y 的值为( ) (A)3 (B)4 (C)6 (D)96.已知关于x 的方程kx 2+(2k+1)x+(k ﹣1)=0有实数根,则k 的取值范围为( )A .k ≥﹣B .k >﹣C .k ≥﹣且k ≠0D .k <﹣7.将一块正方形铁皮的四角各剪去一个边长为3 cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm 3,则原铁皮的边长为( ) A .10 cm B .13 cmC .14 cmD .16 cm8.下面是某同学在一次测验中解答的填空题:①若x 2=a 2,则x=a;②方程2x(x-1)-x+1=0的解是x=1; ③已知三角形两边分别为2和9,第三边长是方程x 2-14x+48=0的根,则这个三角形的周长是17或19.其中答案完全正确的题目个数是( ) (A)0 (B)1 (C)2 (D)3二.填空题9.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率 .10.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为________________.11设m,n 分别为一元二次方程x 2+2x-2 020=0的两个实数根,则m 2+3m+n= . 12.已知实数s ,t 满足s+t 2=1,则代数式﹣s 2+t 2+5s ﹣1的最大值等于 .13.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有______名同学.14.如果(a 2+b 2+1)(a 2+b 2-1)=63,那么a 2+b 2的值为 . 三.解答题15.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率; (2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值. 16.已知a 是方程0120132=+-x x 的一个根,求代数式12013201222++-a a a 的值.17. 阅读下面的例题:解方程:x 2-|x|-2=0.18. 某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月成本不超过1万元的情况下,使得月销售利润达到8 000元,销售单价应定为多少?答案一.选择题 1. D 2. C. 3. B . 4. D 5. A. 6. A . 7. D 8. A.二.填空题 9. 20%.10. 2x 2-3x -5=0 11 2 018 12. 3. 13. 18 14. 8三.解答题 15. 解:(1)设每次下降的百分率为a ,根据题意,得: 50(1﹣a )2=32,解得:a=1.8(不合题意,舍去)或a=0.2. 答:每次下降的百分率为20%;(2)设一次下降的百分率为b ,根据题意,得: 50(1﹣b )﹣2.5≥40, 解得 b ≤0.15.答:一次下降的百分率的最大值为15%.16. ∵a 是方程x 2-2013x+1=0的一个根,∴a 2-2013a+1=0, ∴a 2=2013a-1,∴原式=2013a-1-2012a+1120132013+-a=a+ a 1-1= a a 12+-1=aa 112013+--1=2013-1=2012. 17.解:(1)当x ≥0时,原方程化为x 2-x-2=0,解得x 1=2,x 2=-1(不合题意,舍去).(2)当x<0时,原方程化为x 2+x-2=0,解得x 1=1(不合题意,舍去),x 2=-2, 所以原方程的根是x 1=2,x 2=-2.请参照例题解方程x2-|x-3|-3=0.解:(1)当x≥3时,原方程化为x2-(x-3)-3=0,即x2-x=0,解得x1=0(不合题意,舍去),x2=1(不合题意,舍去).(2)当x<3时,原方程化为x2+x-3-3=0,即x2+x-6=0,解得x1=-3,x2=2.所以原方程的根是x1=-3,x2=2.18.解:设每件需涨价x元,则销售价为(50+x)元.月销售利润为y元.则y=(50+x-40)×(500-10x),令y=8 000,解得x1=10,x2=30.当x1=10时,销售价为60元,月销售量为400千克,则成本价为40×400=16 000(元),超过了10 000元,不合题意,舍去;当x2=30时,销售价为80元,月销售量为200千克,则成本价为40×200=8 000(元),低于10 000元,符合题意.答:销售单价应定为80元.人教版九年级上册数学单元知识检测题:第二十一章一元二次方程(含答案)一、选择题1.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是( )A. 0B. 1C. ﹣1D. ±12.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠03.如果2是方程x2﹣c=0的一个根,那么c的值是()A. 4B. ﹣4C. 2D. -24.一元二次方程x2+6x-7=0的解为( )A. x1=1,x2=7B. x1=-1,x2=7C. x1=-1,x2=-7D. x1=1,x2=-75.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.用配方法解一元二次方程时,下列变形正确的是().A. B. C. D.7.一元二次方程的两根分别为和,则为()A. B. C. 2 D.8.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.9.已知、是一元二次方程的两个实数根,下列结论错误的是( )A. B. C. D.10.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3011.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=210二、填空题12.方程转化为一元二次方程的一般形式是________.13.若关于x的一元二次方程(m+2)x2+3x+m2-4=0的一个根为0,则m的值为=________.14.方程x2+2x=0的解为________.15.在的括号中添加一个关于的一次项,使方程有两个相等的实数根________16.如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.17.都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。
人教版九年级上册数学一元二次方程培优习题附答案学生版
人教版九年级上册数学一元二次方程培优习题附答案一、单选题1.对于任意的实数,代数式2−5+10的值是一个()A.正数B.负数C.非负数D.无法确定2.已知实数x,y满足26336−276=1且2≠2,则2+22−2的值为()A.54B.45C.12D.23.如果x2+2(1-2m)x+9=0(m≠0)的左边是一个关于x的完全平方公式,则m等于(). A.1B.-1C.-1或1D.-1或24.已知α,β是方程x2+2014x+1=0的两个根,则(1+2016α+α2)(1+2016β+β2)的值为()A.1B.2C.3D.4二、填空题5.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x=。
6.若关于的一元二次方程(−1)2−4+2−1=0的一根是0,则=. 7.已知(x﹣2016)2+(x﹣2018)2=80,则(x﹣2017)2=.三、解答题8.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
为了迎接“六一”儿童节和扩大销售,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,并且尽快减少库存,那么每件童装应降价多少元?9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请用一元二次方程的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,那么经过三轮感染后,被感染的电脑共有多少台?10.计算①3x2﹣3=2x(用配方法解)②4(x﹣1)2﹣9(3﹣2x)2=0.11.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?四、综合题12.已知:关于的一元二次方程B2−(4−3)+3−3=0(1)求证:无论取何值,方程都有实根;(2)若=−1是该方程的一个根,求的值;(3)若方程的两个实根均为正整数,求的值(为整数).13.已知关于x的一元二次方程2+3B+3−1=0有两个实数根1,2.(1)若1=22,求k的值.(2)若1<1,2>1,求k的取值范围.14.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.15.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2016年交易额为500亿元,2018年交易额为720亿元。
人教版九年级上册第21章《一元二次方程》培优练习题 含答案
人教版九年级上册第21章《一元二次方程》培优练习题一.选择题1.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是()A.0B.1C.﹣1D.±12.若关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个不相等的实数根,则k的取值范围是()A.B.且k≠1C.D.且k≠1 3.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5B.7C.6.5或7D.84.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>5.关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,则满足条件的m 的值的个数是()A.5个B.4个C.3个D.2个6.已知x是方程x2+2x﹣2=0的根,那么代数式(﹣x﹣2)÷的值是()A.﹣1B.+1C.﹣1或﹣﹣1D.﹣1或+17.有一块长28cm、宽20cm的长方形纸片,要在它的四角截去四个全等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm2,为了有效利用材料,则截去的小正方形的边长是()cm.A.3cm B.4cm C.5cm D.6cm8.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或39.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则+=()A.B.1C.D.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题11.若(a2+b2)2﹣3(a2+b2)﹣4=0,则代数式a2+b2的值为12.若关于x的方程x2﹣k|x|+4=0有四个不同的解,则k的取值范围是.13.关于x的方程(a﹣3)x2+x+10=0是一元二次方程,则a的取值范围是.14.已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+=.15.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,动点P从点A开始以每秒1个单位长度的速度沿边AC向点C运动,同时动点Q从点C开始,以每秒2个单位长度的速度沿C→B→A的折线在CB、BA边上向点A运动,当P点到达C点时,两点同时停止运动,连接PQ.在运动过程中(Q点在C、B、A三点除外),线段PQ将△ABC分成一个三角形和一个四边形,若四边形的面积为三角形面积的2倍,则运动的时间为秒.三.解答题16.解方程:(1)5x2﹣3x=x+1;(2)x(x﹣2)=3x﹣6.(3)3x(x﹣4)﹣2(x﹣4)=0.(4)3x2﹣5x﹣1=0.17.求证:不论k为何值时,关于x的一元二次方程x2+(k﹣2)x+(k﹣4)=0有两个不相等的实数根.18.今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在零售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.19.如图,在矩形ABCD中,边AB、BC的长(AB<BC)是方程x2﹣7x+12=0的两个根,点P从点A出发,以每秒1个单位的速度沿矩形ABCD边A→B→C→D→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上且AP=时,求t的值.20.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A开始沿射线AC 向点C以2cm/s的速度移动,与此同时,点Q从点C开始沿边CB向点B以1cm/s的速度移动.如果P、Q分别从A、C同时出发,运动的时间为ts,当点Q运动到点B时,两点停止运动.(1)当点P在线段AC上运动时,P、C两点之间的距离cm.(用含t的代数式表示)(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的.若存在,求t的值;若不存在,说明理由.21.在一元二次方程中,有著名的韦达定理:对于一元二次方程ax2+bx+c=0(a≠0),如果方程有两个实数根x1,x2,那么x1+x2=﹣,x1•x2=(说明:定理成立的条件△≥0).比如方程2x2﹣3x﹣1=0中,△=17,所以该方程有两个不等的实数解.记方程的两根为x1,x2,那么x1+x2=,x1•x2=﹣,请根据阅读材料解答下列各题:(1)已知方程x2﹣3x﹣2=0的两根为x1、x2,且x1>x2,求下列各式的值:①x12+x22;②;(2)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.①是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,请说明理由.②求使+﹣2的值为整数的实数k的整数值.参考答案一.选择题(共10小题)1.解:把y=0代入(m﹣1)y2+my+4m2﹣4=0得:4m2﹣4=0,即m2﹣1=0解得:m1=1,m2=﹣1当m=1时,关于y的方程由于二次项系数为0不再是一元二次方程,所以m=﹣1.故选:C.2.解:①当k﹣1=0,即k=1时,方程为﹣2x﹣2=0,此时方程有一个解,不符合题意;②当k≠1时,∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个不相等的实数根,∴(﹣2k)2﹣4×(k﹣1)×(k﹣3)>0,解得:k>且k≠1.故选:B.3.解:∵两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,∴△=[﹣(k+3)]2﹣4×k×6=0,解得k=3,∴一元二次方程为x2﹣6x+6=0,∴两腰之和为=4,∴△ABC的周长为4+3=7,故选:B.4.解:∵关于x的方程有实数根,∴△=b2﹣4ac=(﹣3)2+4=9k+4≥0,解得:k≥,又∵方程中含有∴k≥0,故选:A.5.解:m2x2﹣8mx+12=0,解法一:△=(﹣8m)2﹣4m2×12=16m2,∴x==,∴x1=,x2=,解法二:(mx﹣2)(mx﹣6)=0,∴x1=,x2=,∵关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,∴>0,>0,∴m=1或2或3或6,则满足条件的m的值的个数是4个,故选:B.6.解:x2+2x﹣2=0,∴x2+2x=2.解得x=±﹣1∴(﹣x﹣2)÷=×=×=﹣(x2+3x)=﹣(x2+2x+x)=﹣(2+x)当x=﹣1时,原式=﹣(2±﹣1)故选:C.7.解:设截去的小正方形的边长是xcm,由题意得(28﹣2x)(20﹣2x)=180,解得:x1=5,x2=19,∵20﹣2x>0,∴x<10.∴x2=19,不符合题意,应舍去.∴x=5.∴截去的小正方形的边长是5cm.故选:C.8.解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.9.解:根据题意得x1+x2=﹣1,x1•x2=﹣1,所以+===1.故选:B.10.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=0﹣4ac>0∴﹣4ac>0则方程ax2+bx+c=0的判别式△=b2﹣4ac>0∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0∴c(ac+b+1)=0若c=0,等式仍然成立但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.二.填空题(共5小题)11.解:设t=a2+b2,则原方程为t2﹣3t﹣4=0,解得t1=4,t2=﹣1,∵a2+b2≥0,∴t=4,∴a2+b2=4,故答案为:4.12.解:∵关于x的方程x2﹣k|x|+4=0有四个不同的解,∴△=b2﹣4ac=k2﹣16>0,即k2>16,解得k<﹣4或k>4,而k<﹣4时,x2﹣k|x|+4的值不可能等于0,所以k>4.故填空答案:k>4.13.解:∵方程(a﹣3)x2+x+10=0是一元二次方程,∴a﹣3≠0,即a≠3,又∵二次根式有意义,∴a+3≥0,即a≥﹣3,∴a≥﹣3且a≠3.故答案为:a≥﹣3且a≠3.14.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x2+=2x1x2+=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.15.解:在Rt△ABC中,∠A=90°,AB=6,AC=8,∴BC=10设运动的时间为t,则AP=t,点Q所走的路程为2t,1)当点Q在BC线段上运动时,0<t<5,如图所示,过点Q作QG⊥AC,交AC于点G,∴QG=×2t=∵S△ABC=6×8÷2=24若四边形的面积为三角形面积的2倍,则S△PQC=24×=8∴(8﹣t)×÷2=8化简得3t2﹣24t+40=0解得t1=4﹣,t2=4+(舍)2)当点Q在BA线段上运动时,5<t<8,如图所示,S△APQ=AP•AQ=t(10+6﹣2t)=8化简得:t2﹣8t+8=0解得t3=4﹣2(舍),t4=4+2.故答案为:4﹣或4+2.三.解答题(共5小题)16.解:(1)将方程整理为一般式为5x2﹣4x﹣1=0,则(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得x1=1,x2=﹣0.2;(2)∵x(x﹣2)=3x﹣6,∴x(x﹣2)﹣3(x﹣2)=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得x1=2,x2=3.(3)3x(x﹣4)﹣2(x﹣4)=0,(x﹣4)(3x﹣2)=0,x﹣4=0,3x﹣2=0,x1=4,x2=;(4)3x2﹣5x﹣1=0,b2﹣4ac=(﹣5)2﹣4×3×(﹣1)=37,x=,x1=,x2=.17.证明:△=(k﹣2)2﹣4(k﹣4)=k2﹣8k+20=(k﹣4)2+4,∵(k﹣4)2≥0,∴(k﹣4)2+4>0,∴不论k为何值时,关于x的一元二次方程x2+(k﹣2)x+(k﹣4)=0有两个不相等的实数根.18.解:(1)设打x折销售,才能保证每箱脐橙的利润率不低于10%,由题意得:≥10%,x≥8.8,答:最多打8.8折销售,才能保证每箱脐橙的利润率不低于10%;(2)由题意得:5000(1+m%)[50(1﹣3m%)+m﹣40]=49000,5(1+)(50﹣m+m﹣40)=49,m2﹣5m﹣6=0,m1=6,m2=﹣1(舍).19.解:(1)∵x2﹣7x+12=0,则(x﹣3)(x﹣4)=0,∴x1=3,x2=4.∵AB<BC,∴AB=3,BC=4;(2)如图,在Rt△ABP中,∵AP=,AB=3,∴BP===1.∴t==4.答:t的值是4秒.20.解:(1)∵△ABC中,∠C=90°,AB=10cm,BC=8cm,∴Rt△ABC中,AC=6cm,又∵点P从点A开始沿射线AC向点C以2cm/s的速度移动,∴AP=2t,∴当点P在线段AC上运动时,P、C两点之间的距离(6﹣2t)cm;故答案为:(6﹣2t);(2)△ABC的面积为S△ABC=×6×8=24,①当0<t<3时,PC=6﹣2t,QC=t,∴S△PCQ=PC×QC=t(6﹣2t),∴t(6﹣2t)=4,即t2﹣3t+4=0,∵△=b2﹣4ac=﹣7<0,∴该一元二次方程无实数根,∴该范围下不存在;②当3<t≤8时,PC=2t﹣6,QC=t,∴S△PCQ=PC×QC=t(2t﹣6),∴t(2t﹣6)=4,即t2﹣3t﹣4=0,解得t=4或﹣1(舍去),综上所述,存在,当t=4时,△PQC的面积是△ABC面积的.21.解:(1)∵x2﹣3x﹣2=0,△=(﹣3)2﹣4×(﹣2)=17>0∴x1+x2=3,x1•x2=﹣2①x+x=(x1+x2)2﹣2x1•x2=32﹣2×(﹣2)=9+4=13②=(2)∵方程有两个实数根,∴△=(﹣4k)2﹣4•4k(k+1)>0∴k<0,x1+x2=1,x1•x2=①∵(2x1﹣x2)(x1﹣2x2)=2x12﹣5x1x2+2x22=2(x12+2x1x2+x22)﹣9x1x2=2(x1+x2)2﹣9x1x2∴2﹣9=解得:k=,与k<0矛盾∴不存在k的值,使(2x1﹣x2)(x1﹣2x2)=﹣成立.②+﹣2===∵+﹣2=的值为整数∴k+1=±1或±2或±4又∵k<0∴k=﹣2或﹣3或﹣5。
第21章《一元二次方程》人教版九年级数学上册课时练培优篇(含答案)
课时练:第21章《一元二次方程》(培优篇)满分:120分时间:120分钟班级:______姓名:_______得分:______一.选择题(每题4分,共48分)1.下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0 2.利用配方法将x2﹣2x+3=0化为a(x﹣h)2+k=0 (a≠0)的形式为()A.(x﹣1)2﹣2=0 B.(x﹣1)2+2=0 C.(x+1)2+2=0 D.(x+1)2﹣2=0 3.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1 B.0,1 C.1,2 D.1,2,34.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n 的值是()A.﹣10 B.10 C.﹣6 D.25.如图,某小区规划在一个长30m、宽20m的长方形土地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm2,那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为()A.(30﹣x)(20﹣x)=78 B.(30﹣2x)(20﹣2x)=78C.(30﹣2x)(20﹣x)=6×78 D.(30﹣2x)(20﹣2x)=6×786.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.若x2+2x+k=0有一根为2,则k=﹣8C.方程x(2x﹣1)=2x﹣1的解为x=1D.若分式的值为零,则x=1,27.若x1,x2是方程2x2+3x+1=0的两个根,则x1+x2的值是()A.﹣3 B.C.D.8.某学校准备修建一个面积为20m2的矩形花圃,它的长比宽多10m.设花圃的宽为xm,则可列方程为()A.x(x﹣10)=20 B.2x+2(x﹣10)=20C.x(x+10)=20 D.2x+2(x+10)=209.已知一元二次方程ax2+bx+c=0(a≠0)的一根是另一个根的,则a、b、c的关系正确的是()A.5ac=4b2B.25b2=25ac C.4b2=25ac D.4b2=﹣25ac 10.一个小组新年互送贺卡,若全组共送贺卡42张,则这个小组有()人.A.6 B.7 C.8 D.911.关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣412.生命一号公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500+2500(1+x)+2500(1+x)2=9100C.2500(1+x%)2=9100D.2500(1+x)+2500(1+x)2=9100二.填空题(每题4分,共24分)13.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=.14.一块矩形菜地的面积是120m2,如果它的长减少2m,那么菜地就变成正方形,则原菜地的长是m.15.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.16.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.17.乒乓球锦标赛上,男子单打实行单循环比赛(即每两个运动员都相互交手一次),共进行66场比赛,则参加比赛的运动员共人.18.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=8cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AB向终点B移动;点Q以2cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连结PQ,若经x秒后P,Q两点之间的距离为4,那么x的值为.三.解答题(共48分)19.解方程(1)2(x﹣3)=3x(x﹣3);(2)x2﹣3x+2=0.20.已知关于x的方程kx2﹣x﹣=0(k≠0).(1)求证:方程总有两个不相等的实数根;(2)若方程的两个根都为整数,求整数k的值,并求出方程的根.21.为响应县政府建设“美丽邵东”的号召,某校开展“美化校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍,结果一共用20天完成了该项绿化工作.(1)该项绿化工作原计划每天完成多少m2?(2)在绿化工作中一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?22.已知关于x的方程x2﹣(m+3)x+=0(1)若方程有实根,求实数m的取值范围.(2)若方程两实根分别为x1、x2且满足x12+x22=|x1x2|+,求实数m的值.23.现代互联网技术的广泛应用,催生了快递行业的高速发展.某快递公司,今年三月份与五月份完成投递的快递总件数分别为4万件和4.84万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.4万件,那么该公司现有10名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?24.如图,在△ABC中,∠C=90°,BC=6cm,AC=8cm,点P从B点开始沿BC边向C 点以1cm/s的速度移动,点Q从C点开始沿CA边向A点以2cm/s的速度移动.(1)如果P、Q分别从B、C两点同时出发,经过3秒钟,BP=cm,CP=cm,CQ=cm,△CPQ的面积等于cm2(2)如果P、Q分别从B、C两点同时出发,经过t秒钟,△CPQ的面积等于8cm2,求t的值.25.某商店销售甲、乙两种商品,现有如下信息:请结合以上信息,解答下列问题:(1)求甲、乙两种商品的进货单价;(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)参考答案一.选择题1.解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.2.解:方程x2﹣2x+3=0,移项得:x2﹣2x=﹣3,配方得:x2﹣2x+1=﹣2,即(x﹣1)2+2=0,故选:B.3.解:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,则k的非负整数值为1或0.∵k≠0,∴k=1.故选:A.4.解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选:A.5.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,故选:C.6.解:A、若x2=4,则x=±2,所以A选项错误;B、若x2+2x+k=0有一根为2,则4+4+k=0,解得k=﹣8,所以B选项正确;C、方程x(2x﹣1)=2x﹣1,则(2x﹣1)(x﹣1)=0,则方程的解为x1=1,x2=,所以C选项错误;D、根据题意得x2﹣3x+2=0且x﹣1≠0,则x=2,所以D选项错误.故选:B.7.解:根据题意得x1+x2=﹣.故选:D.8.解:∵花圃的长比宽多10米,花圃的宽为x米,∴长为(x+10)米,∵花圃的面积为20,∴可列方程为x(x+10)=20.故选:C.9.解:设方程的一个根为t,则另一个根为4t,根据题意得t+4t=﹣,t•4t=,则t=﹣,4t2=,所以4•(﹣)2=,所以4b2=25ac.故选:C.10.解:设这小组有x人.由题意得:x(x﹣1)=42,解得x1=7,x2=﹣6(不合题意,舍去).即这个小组有7人.故选:B.11.解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴,∴则m2()===﹣4.故选:D.12.解:设该公司5、6两月的营业额的月平均增长率为x,依题意,得:2500+2500(1+x)+2500(1+x)2=9100.故选:B.二.填空题(共6小题)13.解:根据题意得△=12﹣4m=0,解得m=.故答案为.14.解:∵长减少2m,菜地就变成正方形,∴设原菜地的长为x米,则宽为(x﹣2)米,根据题意得:x(x﹣2)=120,解得:x=12或x=﹣10(舍去),故答案为:12.15.解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:116.解:由题意得:(80﹣2x)(60﹣2x)=1500 整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.17.解:设有运动员x人,根据题意得:x(x﹣1)=66,解得:x=12或x=﹣11(舍去)故答案为:12.18.解:∵∠B=90°,AC=10cm,BC=8cm,∴AB=6cm.∴BQ=2x,PB=6﹣x.∵P,Q两点之间的距离为4,∴BQ2+PB2=PQ2,∴(2x)2+(6﹣x)2=(4)2,整理得,5x2﹣12x+4=0,解得x1=2,x2=.故答案为:2或.三.解答题(共7小题)19.解:(1)移项得:2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,x﹣3=0,2﹣3x=0,x1=3,x2=;(2)x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.20.解:(1)由题知:△=(﹣1)2﹣4×k×(﹣)=1+8=9>0.∴方程总有两个不相等的实数根.(2)解:由求根公式得:x=,∴x1=,x2=,又∵方程的两个根都为整数,且k也为整数,∴k的值为1或﹣1,当k=1时,两根为x1=2,x2=﹣1;当k=﹣1时,两根为x1=﹣2,x2=1.21.解:(1)设该项绿化工作原计划每天完成xm2,则提高工作量后每天完成1.2xm2,根据题意,得+=20,解得x=22.(2)设矩形宽为ym,则长为(2y﹣3)m,根据题意,得y(2y﹣3)=170,解得y=10或y=﹣8.5 (不合题意,舍去).2y﹣3=17.答:这块矩形场地的长为17m,宽为10m.22.解:(1)由关于x的方程x2﹣(m+3)x+=0,得△=b2﹣4ac=[﹣(m+3)]2﹣4×1×≥0,解得m≥﹣;(2)由根于系数的关系,得x1+x2=m+3,x1x2=>0,x12+x22=|x1x2|+,(x1+x2)2=3x1x2+,(m+3)2=+,解得m1=﹣26(不符合题意,舍),m2=2.23.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得4(1+x)2=4.84解得:x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)∵今年6月份的快递投递任务是4.84×(1+10%)=5.324(万件),∴10名快递投递业务员能完成的快递投递任务是:0.4×10=4<5.324,∴该公司现有的10名快递投递业务员不能完成今年6月份的快递投递任务:∵平均每人每月最多可投递0.4万件,∴需要增加业务员(5.324﹣4)÷0.4=3.31≈4(人),即该公司现有的10名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加4名业务员.24.解:(1)由题意,可得经过3秒钟,BP=3cm,CQ=6cm,所以CP=BC﹣BP=3cm,△CPQ的面积=•CP•CQ=×3×6=9(cm2).故答案为3,3,6,9;晨鸟教育(2)由题意,得×(6﹣t)×2t=8,解得t1=2,t2=4,答:经过2或4秒后,△CPQ的面积等于8cm2.25.解:(1)设甲商品进货单价x元,乙商品进货单价y元.依题意,得解得:.答:甲商品进货单价为1元,乙商品进货单价为2元.(2)依题意,得(2﹣m﹣1)•(500+1000m)+(3﹣2)×1300=1800 (1﹣m)•(500+1000m)=500即2m2﹣m=0∴m1=0.5,m2=0∵m>0∴m=0不合舍去,即m=0.5答:当m=0.5时,商店获取的总利润为1800元.。
人教中考数学培优(含解析)之一元二次方程含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥(2)4 【解析】试题分析: 根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论. 根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值.试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+, 因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得 ()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.3.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1x 2=11=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32. ∴x -1=. ∴x 1=1x 2=1(2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.4.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围. 【答案】(1)m=517-;(2)0<T≤4且T≠2. 【解析】【分析】由方程方程由两个不相等的实数根求得﹣1≤m <1,根据根与系数的关系可得x 1+x 2=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)把x 12+x 22=6化为(x 1+x 2)2﹣2x 1x 2=6,代入解方程求得m 的值,根据﹣1≤m <1对方程的解进行取舍;(2)把T 化简为2﹣2m ,结合﹣1≤m <1且m≠0即可求T 得取值范围.【详解】∵方程由两个不相等的实数根,所以△=[2(m ﹣2)]2﹣4(m 2﹣3m+3)=﹣4m+4>0,所以m <1,又∵m 是不小于﹣1的实数,∴﹣1≤m <1∴x 1+x 2=﹣2(m ﹣2)=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)∵x 12+x 22=6,∴(x 1+x 2)2﹣2x 1x 2=6,即(4﹣2m )2﹣2(m 2﹣3m+3)=6整理,得m 2﹣5m+2=0解得m=; ∵﹣1≤m <1所以m=. (2)T=+=====2﹣2m.∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.6.已知关于x的方程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x ﹣2)=0.∴x 1=0,x 2=2.符合题意.综上所述,m =2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m 的值和m 的范围是解此题的关键.7.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可. 试题解析:(x +1)(x -1)=22x x 2-22x-1=0∵a=1,b=-22,c=-1∴△=b 2-4ac=8+4=12>0∴x=24b b c a -±-=2±3 ∴x 1=2+3,x 2=2-3.10.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件: (1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m 件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m 的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m ),列出方程求解即可. 试题解析:(1)设销售单价至少为x 元,根据题意列方程得,150(x ﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m )=5670, 150+m ﹣150×m%﹣m%×m=162, m ﹣m 2=12, 60m ﹣3m 2=192,m 2﹣20m+64=0,m 1=4,m 2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.。
人教版2020九年级数学上册第二十一章一元二次方程自主学习培优提升训练题(附答案详解)
人教版2020九年级数学上册第二十一章一元二次方程自主学习培优提升训练题(附答案详解)1.将关于x 的方程x 2﹣4x ﹣2=0进行配方,正确的是( ) A .(x ﹣2)2=2 B .(x+2)2=2 C .(x+2)2=6 D .(x ﹣2)2=62.一元二次方程22(1)3x x --=+化成一般形式20ax bx c ++=后,若2a =,则b ,c的值是( ) A .b=3 c=5B .b=-3c=5C .b=-3c=-5D .b=3 c=-53.某花圃用花盆培育某种花卉,经过试验现,每盆花的盈利与每盆株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元,要使每盆的盈利为10元,设每盆增加x 株花苗,则( ) A .()()330.510x x +-= B .()()330.510x x -+= C .()()330.510x x --=D .()()330.510x x ++=4.有两个关于x 的一元二次方程:M :20ax bx c ++= N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B .如果方程M 有两根符号异号,那么方程N 的两根符号也异号;C .如果5是方程M 的一个根,那么15是方程N 的一个根;D .如果方程M 和方程N 有一个相同的根,那么这个根必定是1x = 5.下列方程中一定是一元二次方程的是( ) A .ax 2-bx =0 B .2x 2+-2=0C .(x -2)(3x+1)=0D .3x 2-2x =3(x +1)(x -2)6.已知关于x 的一元二次方程x 2-4x+k=0有一个根是5,则该方程的另一个根是( ) A .-1B .0C .1D .-57.方程22x x =的根是( ) A .2x =B .x=0C .10x =,22x =D .10x =,22x =-8.如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3,x 2=1,那么这个一元二次方程是( ) A .x 2+3x+4=0B .x 2﹣4x+3=0C .x 2+4x ﹣3=0D .x 2+3x ﹣4=09.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A .()1x x 1452-= B .()1x x 1452+= C .()x x 145-= D .()x x 145+=10.原价为a 元的某商品经过两次降价后,现售价b 元,如果每次降价的百分比都为x ,则下列各式正确的是( )A .(12)a x b -=B .2(1)a x b -= C .(12)b x a += D .2(1)b x a += 11.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( ) A .40%B .20%C .25%D .15%12.一元二次方程()2123x x -=+的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根13.已知关于x 的一元二次方程x 2﹣2x +k ﹣1=0有两个不相等的实数根,则实数k 的取值范围是____.14.已知(a-1)x 2-5x+3=0是一个关于x 的一元二次方程,则不等式3a+6>0的解集_______. 15.方程3x 2﹣x =0的解为_____. 16.若()222136x y +-=,则22x y +=________.17.方程(x ﹣2)(x+1)=x+1的解是_____.18.已知一元二次方程032=++px x 的一个根为3-,则另一个根为_______. 19.已知关于x 的方程2x 2+ax+a ﹣2=0.当该方程的一个根为1时,则a 的值为_____,该方程的另一根为_____.20.若x=a 是方程x 2 +x−1=0的一个实数根,则代数式3a 2+3a−5的值是______. 21.已知一元二次方程的一个根是﹣3,则这个方程可以是________(填上你认为正确的一个方程即可)22.某款手机连续两次降价,售价由原来的1100元降到了891元.设平均每次降价 的百分率为x ,则可列出方程_________________________________. 23.已知方程x 2+kx ﹣6=0有一个根是2,则k =_____,另一个根为_____. 24.实数x ,y ,z 满足5x y z ++=,3xy yz zx ++=,则z 的最大值是______. 25.一个直角三角形的两条直角边的和是14cm ,面积是24cm .求两条直角边的长.26.选取二次三项式2(0)ax bx c a ++≠中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(2)(224)x x x x -+=-+-或2242(2)(422)x x x x -+=+-+;③选取一次项和常数项配方:22242(22)x x x x -+=--. 根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.27.“中秋节”是我国的传统佳节,中秋赏月吃月饼.某蛋糕店销售“杏花楼”和“元祖”两个品牌的月饼,每个“杏花楼”月饼的售价是15元,每个“元祖”月饼的售价是12元.(1)8月份,两个品牌的月饼一共销售180个,且总销售额不低于2460,则卖出“杏花楼”月饼至少多少个?(2)9月份,月饼大量上市,受此影响,“杏花楼”月饼的售价降低了a %(a %<30%),销售量在八月份的最低销售量的基础上增加了5a 个,“元祖”月饼的售价降低320a 元,销售量在八份的最高销售量的基础上增加了52a %,结果9月份的总销售额比8月最低销售额增加了1020元,求a 的值.28.小明想测量学校旗杆的高度,他采用如下的方法:先降旗杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米,你能帮它计算一下旗杆的高度.29.a 、b 、c 都是实数,满足()22280a a b c c -+++=,ax 2+bx +c =0,求代数式x 2+2x +1的值.30.已知关于x 的一元二次方程x 2+(2m -1)x +m 2=0有两个实数根x 1和x 2.(1)求实数m 的取值范围; (2)当12x x =时,求m 的值. 31.(1)已知一组数据8,3,m,2的众数是3,求出这组数据的平均数; (2)解方程:2430x x ++=. 32.用适当的方法解方程: x 2-12x -9964=033.若两个一次函数的图象与x 轴交于同一点,则称这两个函数为一对“x 牵手函数”,这个交点为“x 牵手点”.(1)一次函数y =x ﹣1与x 轴的交点坐标为 ;一次函数y =ax +2与一次函数y =x ﹣1为一对“x 牵手函数”,则a = ;(2)已知一对“x 牵手函数”:y =ax +1与y =bx ﹣1,其中a ,b 为一元二次方程x 2﹣kx +k ﹣4=0的两根,求它们的“x 牵手点”. 34.解方程:()21230x x +-=()2 224x x +=-.35.用适当的方法解下列方程 (1)x 2﹣3x +2=0. (2)(x ﹣2)2﹣3=0. 36.先化简,再求值:2221164816xx x x x x ⎛⎫-÷ ⎪--++⎝⎭,其中x 是方程2680x x -+=的一个根.参考答案1.D 【解析】x 2﹣4x ﹣2=0,移项,得x 2﹣4x =2,配方,得x 2﹣4x +22=2+22,即(x -2)2=6. 故选D. 2.D 【解析】试题分析:要确定二次项系数和常数项,首先要把方程化成一般形式. ∵一元二次方程22(1)3x x --=+化成一般形式为-2x 2+3x-5=0, ∴二次项系数和常数项分别为3、-5. 故选D .考点:一元二次方程的一般形式. 3.A 【解析】 【分析】根据每盆每增加1株,平均单株盈利就减少0.5元,可得增加x 株花苗时,平均单株盈利为()30.5-x ,再用株数乘以单株盈利等于10元,建立方程即可. 【详解】由题意得增加x 株花苗时,平均单株盈利为()30.5-x , 每盆的盈利为10元,则()()330.5=10+-x x 故选:A . 【点睛】本题考查了一元二次方程的应用,求出单株盈利的表达式是解题的关键. 4.D 【解析】分析:利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C 与D.详解:A 、如果方程M 有两个相等的实数根,那么△=b²-4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B 、如果方程M 的两根符号相同,那么方程N 的两根符号也相同,那么△=b²-4ac ≥0.0ca>,所以a 与c 符号相同,0ac>,所以方程N 的两根符号也相同,结论正确,不符合题意; C 、如果5是方程M 的一个根,那么25a+5b+c=0,两边同时除以25,得110255c b a ++=,所以15是方程N 的一个根,结论正确,不符合题意; D 、如果方程M 和方程N 有一个相同的根,那么,,由a≠c,得x²=1,x=±1,结论错误,符合题意;故选D.点睛:本题考查了一元二次方程根的情况与判别式△的关系: △>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义. 5.C 【解析】试题分析:一元二次方程是指只含有一个未知数,且未知数最高次数为2次的整式方程.A 、方程中a 有可能为零;B 、中含有分式;C 、正确;D 、经化简整理后未知数的最高次数为1次.考点:一元二次方程的定义 6.A 【解析】 【分析】利用根与系数的关系求出m 的值,确定出另一根即可. 【详解】解:∵关于x 的一元二次方程x 2-4x+k =0的一个根x=5,设另一根为a , ∴x+a=4,即5+a=4 解得:a=-1 故选:A . 【点睛】此题考查了根与系数的关系,弄清一元二次方程根与系数的关系是解本题的关键.7.C 【解析】方程变形得:x 2−2x=0, 分解因式得:x(x−2)=0, 可得:x=0或x−2=0, 解得:x 1=0,x 2=2. 故选C. 8.C 【解析】试题分析:根据根与系数的关系,直接代入计算即可.解:∵关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3,x 2=1, ∴3+1=﹣p ,3×1=q , ∴p=﹣4,q=3, 故选B .考点:根与系数的关系. 9.A 【解析】 【详解】∵有x 支球队参加篮球比赛,每两队之间都比赛一场, ∴共比赛场数为12x (x ﹣1), ∴共比赛了45场, ∴12x (x ﹣1)=45, 故选A . 10.B . 【解析】试题分析:设平均每次降价的百分数为x%,依题意,得两次降价后的售价为2(1)a x b -=,故选B .考点:由实际问题抽象出一元二次方程. 11.B 【解析】不妨把原价看做单位“1”,设应降价, 则提价25%后为1+25%,再降价后价格为.欲恢复原价,则可列方程为,解得,故选B .12.A 【解析】 【分析】先将一元二次方程化成一般式后,再求根的判别式,即可确定根的情况. 【详解】解:原方程可化为:2420x x --=,1,4,2a b c ∴==-=-()2441(2)240∴∆=--⨯⨯-=> ∴方程有两个不相等的实数根.故选A . 【点睛】本题运用了根的判别式的知识点,当>0∆时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.把方程转化为一般式是解决问题的关键. 13.k <2. 【解析】 【分析】利用判别式的意义得到△=(-2)2-4(k-1)>0,然后解不等式即可. 【详解】根据题意得△=(﹣2)2﹣4(k ﹣1)>0, 解得k <2. 故答案为:k <2.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.a>-2且a≠1【解析】【分析】(a−1)x2−5x+3=0是一个关于x的一元二次方程,所以(a−1)x2是二次项a−1≠0,解得a≠1;解得不等式3a+6>0,则a>−2,从而得到其解集是a>−2且a≠1.【详解】∵(a−1)x2−5x+3=0是一个关于x的一元二次方程,∴(a−1)x2是二次项a−1≠0,∴a≠1,∵不等式3a+6>0,∴a>−2,∴不等式3a+6>0的解集是a>−2且a≠1.【点睛】要确定二次项系数和常数项,首先要把方程化成一般形式.确定a≠1,结合不等式3a+6>0求出a的解集.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx 叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.15.x1=0,x2=1 3【解析】【分析】提公因式x,可分解因式,解方程即可.【详解】解:3x2﹣x=0,x(3x﹣1)=0,x1=0,x2=13,故答案为:x 1=0,x 2=13. 【点睛】本题考查了解一元二次方程-因式分解法,属于基础题,掌握提公因式法是关键. 16.7 【解析】 【分析】移项后用分解因式法解方程即可求出结果. 【详解】解:∵()222136x y +-=,∴()2221360x y +--=,∴2222(1+6)(16)0x y x y +-+--=, 即2222(+5)(7)0x y x y ++-=,∴22+50x y +=或2270x y +-=,∴22=5x y +-(不合题意,舍去),22=7x y +.故答案为:7. 【点睛】本题考查了一元二次方程的解法,熟练掌握平方差分解因式的方法是求解的关键,本题的易错点是容易忽略22xy +的非负性,从而求出22x y +的两个值.17.x 1=﹣1,x 2=3【解析】(x ﹣2)(x+1)﹣(x+1)=0, (x+1)(x ﹣2﹣1)=0, x+1=0或x ﹣2﹣1=0, 所以x 1=﹣1,x 2=3. 故答案为:x 1=﹣1,x 2=3. 18.x=-1 【解析】试题分析:设方程的另一个根为x ,因为方程032=++px x 的一个根为3-,所以由根与系数的关系可得:x .(-3)=3,所以x=-1.考点:根与系数的关系19.0,﹣1【解析】【分析】本题可以代入一个根,即可得出得到第出a,再次代入即可得到另一个根.【详解】当1代入,得a=0,得到方程2x2﹣2=0,得出答案为-1.【点睛】本题考查了元二次方程的解法,熟悉掌握概念是解决本题的关键.20.−2.【解析】【分析】把x=a代入已知方程可以求得a2+a=1,然后将其整体代入所求的代数式进行求值.【详解】依题意得a2+a−1=0,所以a2+a=1,故3a2+3a−5=3(a2+a)−5=3×1−5=−2,故答案是:−2.【点睛】此题考查一元二次方程的解,解题关键在于把x=a代入已知方程.21.x2+3x=0【解析】【分析】方程一个解为−3,假设另一个解为0,则方程可为x(x+3)=0,然后把方程化为一般式即可.【详解】解:一元二次方程的一个根是−3,则这个方程可以是x(x+3)=0,即x2+3x=0.故答案为x2+3x=0.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.22.1100(1-x)2=891.【解析】试题分析:根据平均降低率的公式:原来的售价×(1-x)2=现在的售价,故应列为1100(1-x)2=891.考点:一元二次方程的平均变化率问题.23.1 -3【解析】【分析】代入x=2可求出k值,再利用根与系数的关系即可求出方程的另一根.【详解】解:将x=2代入原方程,得:22+2k﹣6=0,∴k=1.设方程的另一个根为x1,根据题意得:2x1=﹣6,∴x1=﹣3.故答案为:1;﹣3.【点睛】本题考查了一元二次方程的解以及根与系数的关系,代入x=2求出k值是解题的关键.24.13 3【解析】【分析】把x,y看成是一元二次方程的两个实数根,根据根与系数的关系列出一元二次方程,然后由判别式得到z的取值范围,求出z的最大值.【详解】解:∵x+y=5−z,xy=3−z(x+y)=3−z(5−z)=z2−5z+3,∴x、y是关于t的一元二次方程t2−(5−z)t+z2−5z+3=0的两实根.∵△=(5−z)2−4(z2−5z+3)≥0,即3z2−10z−13≤0,(3z−13)(z+1)≤0.∴−1≤z≤133, 当 x =y =13时,z =133. 故z 的最大值为 133. 故答案为:133. 【点睛】本题考查的是一元二次方程根与系数的关系,根据根与系数的关系列出一元二次方程,然后由判别式求出z 的取值范围,确定z 的最大值.25.这两条直角边为6cm ,8cm .【解析】【分析】设其中一条直角边长为未知数,表示出另一直角边长,根据面积为24列式求值即可.【详解】解:设其中一条直角边长为xcm ,则另一直角边长为(14﹣x )cm ,得:12x (14﹣x )=24,解得x 1=6,x 2=8. 当x 1=6时,14﹣x=8;当x 2=8时,14﹣x=6;答:两条直角边的长分别为6cm ,8cm .26.(1)详见解析;(2)1;(3)不能围成三角形,理由详见解析.【解析】【分析】(1)根据配方的概念,分别对一次项和常数项进行配方;(2)根据22330x y xy y ++-+=求出x 、y 的值,代入求解即可;(3)将原式进行转换,得出a 、b 、c 之间的等量关系,从而进行判断.【详解】(1)22284816164(4)12x x x x x -+=-+-+=--或2284(2)4x x x x -+=--.(2)22330x y xy y ++-+=,223(2)024y x y ⎛⎫∴++-= ⎪⎝⎭. 1x ∴=-,2y =.2(1)1y x ∴=-=.(3)不能,理由如下:原式变形:(222222141414494612)0a b c a b c ab ac bc ++-+++++=.()()()222222449691240a ab b a ac c b bc c ∴-++-++-+=.即222(2)(3)(32)0a b a c b c -+-+-=. 2b a ∴=,3c a =,32b c =.3a b a c ∴+==.∴a 、b 、c 三条线段不能围成三角形.【点睛】本题考查了整式的运算,根据题意理解新概念并掌握整式的运算,求解出未知数或者他们之间的等量关系是解题的关键.27.(1)卖出“杏花楼”月饼至少100个;(2)a 的值为20.【解析】【分析】(1)设卖出“杏花楼”月饼x 个,则卖出“元祖”月饼(180﹣x )个,根据总价=单价×数量结合总销售额不低于2460,即可得出关于x 的一元一次不等式,解之取其中最小值即可得出结论;(2)根据总价=单价×数量,即可得出关于a 的一元二次方程,解之取其较小值即可得出结论.【详解】(1)设卖出“杏花楼”月饼x 个,则卖出“元祖”月饼(180﹣x )个,依题意,得:15x +12(180﹣x )≥2460,解得:x ≥100.答:卖出“杏花楼”月饼至少100个.(2)依题意,得:15(1﹣a %)×(100+5a )+(12﹣320a )×(180﹣100)(1+52a %)=2460+1020,整理,得:1.05a 2﹣72a +1020=0,解得:a 1=20,a 2=3407(不合题意,舍去). 答:a 的值为20.【点睛】此题考查解决实际问题,根据题中的条件列不等式或是一元二次方程解答,正确理解题意是解题的关键.28.12【解析】【分析】设旗杆高度为x 米,根据勾股定理解答即可.【详解】设旗杆高为x 米,则绳长为(x +1)m ,根据勾股定理有(x +1)2=x 2+52,解得x =12.故答案是12.【点睛】本题考查了勾股定理以及一元二次方程的应用,解题的关键是运用勾股定理列出等量关系式.29.5【解析】【分析】利用非负数的性质求出a ,b ,c 的值,代入已知等式求出x 2+2x 的值,原式变形后代入计算即可求出值.【详解】根据题意得,220080a a b c c -=++=+=,,,解得a =2,b =4,c =−8,∴222480ax bx c x x ++=+-=,即2240x x +-=,解得224x x +=,∴22141 5.x x ++=+=【点睛】考查非负数的性质,以及代数式求值,注意整体代入法在解题中的应用.30.(1)14m ≤;(2)14【解析】试题分析:()1方程有两个实数根,0.∆≥即可求出实数m 的取值范围. ()212x x =,分两种情况讨论.试题解析:()1关于x 的一元二次方程()22210x m x m +-+=有两个实数根x 1和x 2.()222140.m m ∆=--≥ 解得:1.4m ≤ ()212x x =,可以分两种情况进行讨论.当12x x =时,()222140.m m ∆=--=解得:1.4m =当12x x =-时,120.x x +=12(21)0.b x x m a +=-=--=解得:1.2m = 而1.4m ≤不合题意,舍去. 12x x ∴=时,1.4m = 31.(1)4;(2)121,3x x =-=-.【解析】【分析】(1)根据众数的定义求出m,即可求出平均数;(2)根据因式分解求解即可.【详解】(1)解:∵一组数据8,3,m ,2的众数为3,∴3m =, ∴这组数据的平均数:833244+++=. (2)2430x x ++=.(x+3)(x+1)=0121,3x x =-=-.【点睛】本题考查的是平均数和解二次方程,熟练掌握众数和因式分解是解题的关键.32.x 1=106,x 2=-94【解析】【分析】把-9964分解成-106×94,用因式分解法求解即可. 【详解】∵x 2-12x -9964=0,∴(x-106)(x+94)=0,∴x 1=106,x 2=-94.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.33.(1)(1,0),a =﹣2;(2)“x 牵手点”为(12-,0)或(12,0). 【解析】【分析】(1)根据x 轴上点的坐标特征可求一次函数y=x-1与x 轴的交点坐标;把一次函数y=x-1与x 轴的交点坐标代入一次函数y=ax+2可求a 的值;(2)根据“x 牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x 2-4=0,解得x 1=2,x 2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x 牵手点”.【详解】解:(1)当y =0时,即x ﹣1=0,所以x =1,即一次函数y =x ﹣1与x 轴的交点坐标为(1,0),由于一次函数y =ax+2与一次函数y =x ﹣1为一对“x 牵手函数”,所以0=a+2,解得a =﹣2;(2)∵y =ax+1与y =bx ﹣1为一对“x 牵手函数” ∴11a b-=, ∴a+b =0.∵a ,b 为x 2﹣kx+k ﹣4=0的两根∴a+b =k =0,∴x 2﹣4=0,∴x 1=2,x 2=﹣2.①若a =2,b =﹣2则y =2x+1与y =﹣2x ﹣1的“x 牵手点”为1,02⎛⎫- ⎪⎝⎭; ②若a =﹣2,b =2则y =﹣2x+1与y =2x ﹣1的“x 牵手点”为(12,0 ) ∴综上所述,“x 牵手点”为1,02⎛⎫-⎪⎝⎭或(12,0) 【点睛】 本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.34.(1)13x =-,21x = (2)1 3x =,22x =- 【解析】【分析】运用因式分解法解一元二次方程.【详解】解:()21230x x +-=, ()()310x x +-=,30x +=或10x -=,所以13x =-,21x =.()2224x x +=-.260x x --=,()()320x x -+=,30x -=或20x +=,所以13x =,22x =-.【点睛】本题考核知识点:解一元二次方程. 解题关键点:掌握因式分解法.35.(1)x 1=1,x 2=2;(2)x 1,x 2【解析】【分析】(1)把方程左边进行因式分解得到(x ﹣2)(x ﹣1)=0,然后解两个一元一次方程即可; (2)把3移到等号的左边,然后直接开平方即可.【详解】(1)∵x 2﹣3x +2=0,∴(x ﹣2)(x ﹣1)=0,∴x ﹣1=0或x ﹣2=0,∴x 1=1,x 2=2;(2)∵(x ﹣2)2﹣3=0,∴(x ﹣2)2=3,∴x ﹣2=∴x 1,x 2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.36.4x x+;3 【解析】【分析】先计算异分母分式的减法,再计算分式除法,约分化简后解方程得到x 的值代入计算.【详解】原式224(4)(4)(4)(4)(4)x x x x x x x x ⎡⎤++=-⋅⎢⎥+-+-⎣⎦ 24(4)(4)(4)x x x x x-+=⋅+- 4x x+= 2680x x -+=,解得2x =或4.4x ≠,2x ∴=. ∴原式2432+==. 【点睛】此题考查分式的化简求值、解一元二次方程,正确计算分式的混合运算是解题的关键.。
2021年人教版数学九年级上册《二次函数与一元二次方程》培优练习卷(含答案)
人教版数学九上《二次函数与一元二次方程》培优练习卷一、选择题1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣.结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有( )A.3个 B.4个 C.5个 D.6个2.如图是二次函数y=ax2+bx+c的图象.对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小.其中正确的是( )A.①②③ B.①②④ C.②③④ D.③④⑤3.如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有()①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.A.1B.2C.3D.44.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1B.2C.3D.45.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(0.5,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am-b). 其中所有正确的结论是()A.①②③B.①③④C.①②③⑤D.①③⑤6.如图,二次函数y=ax2+bx+c(a≠0)的图象过(﹣2,0),则下列结论:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0.其中正确结论的个数是( )A.5B.4C.3D.27.如图所示为二次函数y=x 2+bx 的图象,对称轴为直线x=1.若关于x 的一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是( ).A.t ≥-1B.-1≤t <3C.-1≤t <8D.3<t <88.若二次函数y=ax 2-2ax+c 的图象经过点(-1,0),则方程ax 2-2ax+c=0的解为( ).A.x 1=-3,x 2=-1B.x 1=1,x 2=3C.x 1=-1,x 2=3D.x 1=-3,x 2=19.以x 为自变量的二次函数y=x 2-2(b -2)x +b 2-1的图象不经过第三象限,则实数b 的取值范围是( )A.b ≥54B.b ≥1或b ≤-1C.b ≥2D.1≤b ≤2 10.若函数y=(m-1)x 2-6x+1.5m 的图象与x 轴有且只有一个交点,则m 的值为( )A.-2或3B.-2或-3C.1或-2或3D.1或-2或-311.“如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n(m <n)是关于x 的方程1﹣(x ﹣a)(x ﹣b)=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( )A.m <a <b <nB.a <m <n <bC.a <m <b <nD.m <a <n <b12.已知抛物线y=﹣x 2+x+6与x 轴交于点A ,点B ,与y 轴交于点C.若D 为AB 的中点, 则CD 的长为( )A. B. C. D. 二、填空题13.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示.下列结论:①b >0;②a ﹣b+c=0;③一元二次方程ax 2+bx+c+1=0(a ≠0)有两个不相等的实数根;④当x <﹣1或x >3时,y >0.上述结论中正确的是 .(填上所有正确结论的序号)14.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣1,且过点(0.5,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0.其中所有正确的结论是(填写序号)15.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(-1,0).有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上.16.已知抛物线y=x2-k的顶点为点P,与x轴交于点A,B,且△ABP是正三角形,则k值是.17.如图,抛物线y=ax2-x-1.5与x轴正半轴交于点A(3,0).以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF,则点E的坐标是.18.若m,n(m<n)是关于x的方程(x-a)(x-b)+2=0的两根,且a<b,则a,b,m,n的大小关系是(用“<”连接).三、解答题19.已知关于x的二次函数y=x2-(2k-1)x+k2+1的图象与x轴有2个交点.(1)求k的取值范围;(2)若图象与x轴交点的横坐标为x1,x2,且它们的倒数之和是-1.5,求k的值.20.已知函数y=mx2-6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.21.如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.22.已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).(1) 求该二次函数的解析式并写出其对称轴;(2) 已知点P(2 , -2),连结OP , 在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).解:23.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(m2+1)=0有实数根.24.已知关于x的一元二次方程x2-(m+1)x+错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.己知函数222(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114xx +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式. 【答案】(1)当m =0时,该函数的零点为6和6-.(2)见解析,(3)AM 的解析式为112y x =--. 【解析】【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有,由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.2.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017. (2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2)3)83【解析】【分析】(1)求解该一元二次方程即可;(2)先确定等腰三角形的边,然后求面积即可;(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.【详解】解:(1)由题意得()()260x x --=,即:2x =或6x =,∴两条线段长为2和6;(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,∴此等腰三角形面积为122⨯⨯= (3)设分为x 及6x -两段()22226x x +=- ∴83x =, ∴2823x S ∆==, ∴面积为83. 【点睛】本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.4.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.【答案】(1)m <3;(2)m =2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.7.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.8.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过1515就会进入台风影响区;(3)15【解析】【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t )2+(400﹣30t )2=2002,整理得到:t 2﹣30t +210=0,解得t =15±15, 由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(15﹣15)h 就会进入台风影响区; (3)由(1)可知受到台风影响的时间为:15+15﹣(15﹣15)=215 h .【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x 的等式是解题关键.9.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)552t ±=。