西安交通大学附属中学分校数学分式填空选择同步单元检测(Word版 含答案)
西安交通大学附属中学航天学校数学分式填空选择单元测试卷附答案
西安交通大学附属中学航天学校数学分式填空选择单元测试卷附答案一、八年级数学分式填空题(难)1.已知x 2﹣4x ﹣5=0,则分式265xx x --的值是_____.【答案】2 【解析】试题分析:根据分式的特点,可变形为22665453xx xx x x x =----+,然后整体代入可得623xx=. 故答案为2.2.已知:x 满足方程11200620061x x =--,则代数式2004200620052007x x -+的值是_____. 【答案】20052007- 【解析】因为11200620061x x =--,则200420062005200520062006001120072007x x x x x x x --=⇒=⇒=⇒=---+ . 故答案:20052007-.3.若x+1x,则x-1x=____________. 【答案】±2 【解析】 【分析】先对等式x+1x21()8x x +=,整理得到2216x x+=,再用完全平方公式求出21()x x-的值,再开平方求出1x x-的值. 【详解】解:∵x+1x,∴21()8x x+= ∴22128x x ++= ∴2216x x += ∴22211()2624x x xx -=+-=-= ∴12x x-=± 故答案是: ±2.【点睛】本题考查了互为倒数的两个数的和与差的完全平方公式的应用,利用当两数互为倒数时积为1这个特征去解题是关键.4.若关于x 的分式方程25x -=1-5m x -有增根,则m 的值为________【答案】-2 【解析】2155mx x =--- 方程两侧同时乘以最简公分母(x -5),得 ()25x m =--, 整理,得 7x m =+,即7m x =-. 令最简公分母x -5=0,得 x =5,∵x =5应该是整式方程7x m =+的解, ∴m =5-7=-2. 故本题应填写:-2. 点睛:本题考查了分式方程增根的相关知识. 一方面,增根使原分式方程去分母时所使用的最简公分母为零. 另一方面,增根还应该是原分式方程所转化成的整式方程的解. 因此,在解决这类问题时,可以通过令最简公分母为零得到增根的候选值,再利用原分式方程所转化成的整式方程检验这些候选值是否为该整式方程的解,从而确定增根. 在本题中,参数m 的值正是利用x =5满足整式方程这一结论求得的.5.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 【答案】5a <且3a ≠ 【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案. 【详解】去分母得:122a x -+=-, 解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意, 故5a <且3a ≠. 故答案为:5a <且3a ≠. 【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.6.化简:(1221121x xx x x ++÷=--+)_____.【答案】11x x -+. 【解析】 【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果. 【详解】(1+1x 1-)÷22x x x 2x 1+-+ =22x x 2x 1x 1x x -+⨯-+ =()2x x 1x 1x x 1-⨯-+ =x 1x 1-+, 故答案为x 1x 1-+. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.7.若分式的值为零,则x 的值为________.【答案】1 【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1. 考点:分式的值为零的条件.8.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元. 【答案】28 【解析】设这种电子产品的标价为x 元, 由题意得:0.9x −21=21×20%, 解得:x=28,所以这种电子产品的标价为28元. 故答案为28.9.若a 2+5ab ﹣b 2=0,则的值为__.【答案】5 【解析】试题分析:先根据题意得出b 2﹣a 2=5ab ,再由分式的减法法则把原式进行化简﹣===5.故答案为:5.点睛:本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.10.(内蒙古包头市2018届九年级中考全真模拟试卷一数学试题)化简2x 4x 1-+÷(1−3x 1+)的结果为_________. 【答案】2 【解析】原式2x 4x 13x 1x 1x 1-+⎛⎫=÷- ⎪+++⎝⎭ ()2x 22x 4x 2x 1 2.x 1x 1x 1x 2---+=÷=⋅=+++- 故答案为2.二、八年级数学分式解答题压轴题(难)11.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中ab ).现在有两种施工改造方案:方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少 【解析】 【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论. 【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠, ∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s sa b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22st a b=+,∴22()22()a b a b S S S ab a b ab a b +--=++, ∵ab ,00a b >>,,∴()20a b ->,∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少. 【点睛】本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.12.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成 【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a ba b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元. 答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.13.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x 小时,乙单独完成需要y 小时,丙单独完成需要z 小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a 倍,乙单独完成的时间是甲丙合作完成时间的b 倍,丙单独完成的时间是甲乙合作完成时间的c 倍,求111111a b c +++++的值.【答案】(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)1 【解析】分析:(1)先求出乙丙合作完成时间,再用甲单独完成的时间除以乙丙合作完成时间即可求解;(2)根据“甲单独作完成的天数为乙丙合作完成天数的a 倍”,可得x =11ayz+,运用比例的基本性质、等式的性质及分式的基本性质可得11a +=yz xy yz xz++;同理,根据“乙单独作完成的天数为甲、丙合作完成天数的b 倍”,可得11b +=xz xy yz xz++;根据“丙单独作完成的天数为甲、乙合作完成天数的c 倍”,可得11c +=xy xy yz xz ++,将它们分别代入所求代数式,即可得出结果. 详解:(1)x ÷[1÷(1y +1z)] =x ÷[1÷y zyz+] =x ÷yzy z+ =xy xz yz+.答:甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)由题意得x =11ayz +①,y =11bx z+②,z =11cx y +③.由①得a =x y +x z ,∴a +1=x y +x z +1,∴11a +=11x x y z ++=yz xy yz xz ++;同理,由②得11b +=xz xy yz xz++; 由③得11c +=xy xy yz xz++; ∴111111a b c +++++=yz xy yz xz +++xz xy yz xz +++xy xy yz xz ++=xy yz xz xy yz xz ++++=1. 点睛:本题主要考查分式方程在工程问题中的应用及代数式求值.工程问题的基本关系式为:工作总量=工作效率×工作时间.注意两人合作的工作效率等于两人单独作的工作效率之和.本题难点在于将列出的方程变形,用含有x 、y 、z 的代数式分别表示11a +、11b +、11c +的值.14.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【答案】(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,根据题意,得611161 x x2x⎛⎫++=⎪⎝⎭,解得x=30经检验,x=30是原方程的根,则2x=2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有11y13060⎛⎫+=⎪⎝⎭,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.15.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗;(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;若不存在,请说明理由.【答案】(1))不能买到;(2)存在,a 的值为3或9. 【解析】 【分析】 【详解】解:(1))设每本软面笔记本x 元,则每本硬面笔记本(x+1.2)元,由题意,得12211.2x x =+, 解得:x=1.6.此时12211.6 1.2 1.6=+=7.5(不符合题意), 所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m 元(1≤m≤12的整数),则每本硬面笔记本(m+a )元,由题意,得1221m m a=+, 解得:a=34m , ∵a 为正整数, ∴m=4,8,12. ∴a=3,6,9.当86m a =⎧⎨=⎩时,12211.5m m a ==+(不符合题意) ∴a 的值为3或9.。
西安交通大学第二附属中学南校区数学分式填空选择综合测试卷(word含答案)
西安交通大学第二附属中学南校区数学分式填空选择综合测试卷(word 含答案)一、八年级数学分式填空题(难)1.如果关于x 的分式方程1a x +-3=11x x -+有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <-2,那么符合条件的所有整数a 的积是_________. 【答案】9【解析】()243412a x x x x ⎧-≥--⎪⎨+<+⎪⎩①②, 由①得:x≤2a+4,由②得:x<-2,由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3,分式方程去分母得:a-3x-3=1-x , x=42a -, 由分式方程1a x +-3=11x x -+有负分数解,则有a-4<0,所以a<4, 所以-3≤a<4, 把a=-3代入整式方程得:-3x-6=1-x ,即x=-72,符合题意; 把a=-2代入整式方程得:-3x-5=1-x ,即x=-3,不合题意; 把a=-1代入整式方程得:-3x-4=1-x ,即x=-52,符合题意; 把a=0代入整式方程得:-3x-3=1-x ,即x=-2,不合题意;把a=1代入整式方程得:-3x-2=1-x ,即x=-32,符合题意; 把a=2代入整式方程得:-3x-1=1-x ,即x=-1,不合题意;把a=3代入整式方程得:-3x=1-x ,即x=-12,符合题意, ∴符合条件的整数a 取值为-3,-1,1,3,之积为9,故选D 【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.2.对于x >0,规定()1x f x x =+,例如122112(2),12132312f f ⎛⎫==== ⎪+⎝⎭+,那么12019f ⎛⎫ ⎪⎝⎭1120182017f f ⎛⎫⎛⎫++⋯ ⎪ ⎪⎝⎭⎝⎭1(1)(2)(2019)2f f f f ⎛⎫++++⋯+ ⎪⎝⎭=_________ 【答案】201812 【解析】【分析】根据f (x )求出f (1x ),进而得到f (x )+f (1x )=1,原式结合后,计算即可求出值. 【详解】解:∵x >0,规定()1x f x x =+, ∴111111x f x x x⎛⎫== ⎪+⎝⎭+,即1111()1,(1)1112x x f x f f x x x x +⎛⎫+=+=== ⎪+++⎝⎭, 则原式=1111(2019)(2018)(2)(1)20182019201822f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++⋯+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,故答案为:201812. 【点睛】此题考查了分式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.3.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 【答案】34【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.4.阅读下面计算1111...133557911++++⨯⨯⨯⨯的过程,然后填空 解:111113213⎛⎫=- ⎪⨯⎝⎭ ,111135235⎛⎫=- ⎪⨯⎝⎭,...,11119112911⎛⎫=- ⎪⨯⎝⎭ ∴1111 (133557911)++++⨯⨯⨯⨯ 111111111111...2132352572911⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111...2133557911⎛⎫=-+-+-++- ⎪⎝⎭ 1112111⎛⎫=- ⎪⎝⎭ 511= 以上方法为裂项求和法,请参考以上做法完成:(1)112446+=⨯⨯_______. (2)当1116...13355713x ++++=⨯⨯⨯时,最后一项x =_____. 【答案】(1)16;(2)1143. 【解析】【分析】(1)根据题中方法计算即可;(2)设()()12121x n n =-+,根据题中方法,解方程即可.【详解】 解:(1)由题可知:111124224⎛⎫=- ⎪⨯⎝⎭, 111146246⎛⎫=- ⎪⨯⎝⎭ ∴112446+⨯⨯ 111111224246⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ 1111122446⎛⎫=-+- ⎪⎝⎭ 111226⎛⎫=- ⎪⎝⎭ 16= (2)设()()12121x n n =-+ ∵1116 (13355713)x ++++=⨯⨯⨯ ∴()()11116...133557212113n n ++++=⨯⨯⨯-+()()1111111111116 (2132352572212113)n n ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-= ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭ ()()1111111116 (2133557212113)n n ⎛⎫-+-+-++-= ⎪-+⎝⎭ ()1116212113n ⎛⎫-= ⎪+⎝⎭ 解得:6n =,经检验6n =是原方程的解.∴()()11261261143x ==⨯-⨯+ 【点睛】此题考查的是阅读材料和解分式方程,根据材料给出的方法解决类似计算和用换元法列方程并解方程是解决此题的关键.5.阅读材料:方程1111123x x x x -=-+--的解为x=1,方程1111134x x x x -=----的解为x=2,方程11111245x x x x-=-----的解为3,x=,根据你发现的方程的规律,写出解是x=n的对应方程为____________________.【答案】11112112 x n x n x n x n-=--+-+----【解析】【分析】观察方程左边第二项的分母分别是x,x-1,x-2,可知解是x=n的对应方程左边第二项的分母是x-(n-1),其它分母的情况对照与此分母的关系可分别写出.【详解】解:解是x=n的对应方程为11112112 x n x n x n x n-=--+-+----.【点睛】本题考查根据分式方程解的规律来写分式方程,观察所给的材料信息时,要注意从特殊形式到一般形式的规律与特征.6.已知11x y=3,则代数式21422x xy yx xy y----的值为___.【答案】4【解析】【分析】由11x y-=3,得y xxy-=3即y-x=3xy,然后代入代数式,进行消元,即可得到结论.【详解】解:由11x y-=3,得y xxy-=3即y-x=3xy,x-y=-3xy,则21422x xy yx xy y----=2()142x y xyx y xy----=61432xy xyxy xy----=4故答案为:4【点睛】本题主要考查代数式的求解,利用消元法是解决本题的关键.7.已知x m=6,x n=3,则x2m﹣n的值为_____.【答案】12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键.8.已知实数a ,b ,c 满足a +b =ab =c ,有下列结论:①若c≠0,则=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a ,b ,c 中只有两个数相等,则a +b +c =8.其中正确的是____.(把所有正确结论的序号都选上)【答案】①③④【解析】试题分析:在a+b=ab 的两边同时除以ab (ab=c≠0)即可得,所以①正确;把a=3代入得3+b=3b=c ,可得b=,c=,所以b+c=6,故②错误;把 a=b=c 代入得,所以可得c=0,故③正确;当a=b 时,由a+b=ab 可得a=b=2,再代入可得c=4,所以a+b+c=8;当a=c 时,由c=a+b 可得b=0,再代入可得a=b=c=0,这与a 、b 、c 中只有两个数相等相矛盾,故a=c 这种情况不存在;当b=c 时,情况同a=c ,故b=c 这种情况也不存在,所以④正确.所以本题正确的是①③④.考点:分式的基本性质;分类讨论.9.(内蒙古包头市2018届九年级中考全真模拟试卷一数学试题)化简2x 4x 1-+÷(1−3x 1+)的结果为_________. 【答案】2【解析】原式2x 4x 13x 1x 1x 1-+⎛⎫=÷- ⎪+++⎝⎭ ()2x 22x 4x 2x 1 2.x 1x 1x 1x 2---+=÷=⋅=+++- 故答案为2.10.方程的解是_____________.【答案】x =2【解析】试题分析:此题是分式方程的解法问题,先把方程两边同乘以x-3,化为整式方程为2-x=(x-3)+1,再解这个整式方程求得x=2,然后把x=2代入x-3≠0,检验出x=2是原分式方程的解即可.故答案为:x=2.点睛:解分式方程的步骤为:1、确定最简公分母;2、方程两边同乘以最简公分母,化为整式方程;3、解整式方程;4、代入检验,确定是否为分式方程的解.二、八年级数学分式解答题压轴题(难)11.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x -,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立,∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式.(1)请仿照上面的方法,选择其中一种方法将分式2731x xx---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x使分式225112x xx+-+的值为整数,求出满足条件的所有整数x的值.【答案】(1)961xx---;(2)x=-1或-3或11或-15.【解析】【分析】(1)先变形2731x xx---=26691x x xx--+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x的值.【详解】解:(1)2731x xx---=26691x x xx--+--=(1)6(1)91x x xx-----=961 xx---;(2)225112x xx+-+=2242132x x xx+++-+=2(2)(2)132x x xx+++-+=13212xx+-+,∵x是整数,225112x xx+-+也是整数,∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.12.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n元/千克,且m≠n,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
西安交通大学附属中学数学分式填空选择专题练习(解析版)
西安交通大学附属中学数学分式填空选择专题练习(解析版)一、八年级数学分式填空题(难)1.已知x 2﹣4x ﹣5=0,则分式265x x x --的值是_____. 【答案】2【解析】 试题分析:根据分式的特点,可变形为22665453xx x x x x x =----+,然后整体代入可得623x x=. 故答案为2.2.若关于x 的分式方程321x m x -=-的解是正数,则m 的取值范围为_______. 【答案】m >2且m ≠3【解析】 解关于x 的方程321x m x -=-得:2x m =-, ∵原方程的解是正数, ∴20210m m ->⎧⎨--≠⎩,解得:2m >且3m ≠. 故答案为:2m >且3m ≠.点睛:关于x 的方程321x m x -=-的解是正数,则字母“m ”的取值需同时满足两个条件:(1)2x m =-不能是增根,即210m --≠;(2)20x m =->.3.若关于x 的分式方程333x a x x +--=2a 无解,则a 的值为_____. 【答案】1或12 【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12; 当1-2a≠0时,x=312a a--=3时,分式方程无解,则a=1,故关于x 的分式方程333x a x x +-+=2a 无解,则a 的值为:1或12. 故答案为1或12. 点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.4.化简:224a a -﹣12a -=_____. 【答案】12a + 【解析】【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【详解】原式=()()()()222222a a a a a a +-+-+-=()()222a a a -+- =12a +, 故答案为:12a +. 【点睛】本题考查了分式的加减法,熟练掌握分式加减法的运算法则是解本题的关键.5.如果x+1x =3,则24233x x x ++的值等于_____ 【答案】122【解析】【分析】 由x +1x =3得x 2+2+21x =9,即x 2+21x =7,整体代入原式=221331x x ++=221131x x ++(),计算可得结论.【详解】解:∵x +1x =3,∴(x +1x )2=9,即x 2+2+21x =9,则x 2+21x=7. ∵x ≠0,∴原式=221331x x ++=221131x x++() =1371⨯+ =122. 故答案为122. 【点睛】本题主要考查分式的值,解题的关键是熟练掌握整体代入思想的运用及利用分式的基本性质对分式变形.6.当x =1时,分式x b x a -+无意义;当x =2时,分式23x b x a -+的值为0,则a +b =_____. 【答案】3【解析】【分析】先根据分式无意义的条件可求出a 的值,再根据分式值为0的条件可求出b 的值,最后将求出的a,b 代入计算即可.【详解】因为当1x =时,分式x b x a -+无意义, 所以10a +=,解得: 1a =-,因为当2x =时,分式23x b x a -+的值为零, 所以4020b a -=⎧⎨+≠⎩, 解得: 4b =,所以143,a b +=-+=故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.7.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.【答案】m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.8.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.【答案】28【解析】设这种电子产品的标价为x 元,由题意得:0.9x −21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.9.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,若设甲商品的单价为x 元,则购买240元甲商品的数量比购买300元乙商品的数量多____件. 【答案】90x【解析】设甲商品的单价为x 元,乙商品的单价为2x 元,根据购买240元甲商品的数量比购买300元乙商品的数量多2403004803009022x x x x --==. 故答案为:90x.10.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程方程为________. 【答案】1209020x x =+ 【解析】【分析】设小江每小时分拣x 个物件,分别表示出小李和小江分拣所用的时间,最后再根据“小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同”体现的等量关系即可列出方程.【详解】解:设小江每小时分拣x 个物件,根据题意得:1209020x x =+. 故答案为1209020x x=+. 【点睛】本题考查了分式方程的应用,明确题意、确定等量关系是解答本题的关键.二、八年级数学分式解答题压轴题(难)11.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.12.一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a b c ++,abc ,22a b +,含有两个字母a ,b 的对称式的基本对称式是+a b 和ab ,像22a b +,(2)(2)a b ++等对称式都可以用+a b 和ab 表示,例如:222()2a b a b ab +=+-.请根据以上材料解决下列问题:(1)式子①22a b ,②22a b -,③11a b +中,属于对称式的是__________(填序号).(2)已知2()()x a x b x mx n ++=++.①若m =-n =,求对称式b a a b+的值. ②若4n =-,直接写出对称式442211a b a b+++的最小值.【答案】(1)①③.(2)①2.②172【解析】试题分析:(1)由对称式的定义对三个式子一一进行判断可得属于对称式的是①、③;(2)①将等号左边的式子展开, 由等号两边一次项系数和常数项对应相等可得a +b =m ,ab =n ,已知m 、n 的值,所以a +b 、ab 的值即求得,因为b a +a b =22a b ab +=()22a b ab ab +-,所以将a +b 、ab 的值整体代入化简后的式子计算出结果即可;②421a a ++421b b+= a 2+21a +b 2+21b =(a +b )2-2ab ()2222a b ab a b+-+=m 2+8+2816m +=21716m +172,因为1716m 2≥0,所以1716m 2+172≥172,所以421a a ++421b b+的最小值是172. 试题解析:(1)∵a 2b 2=b 2a 2,∴a 2b 2是对称式,∵a 2-b 2≠b 2-a 2,∴a 2-b 2不是对称式, ∵1a +1b =1b +1a ,∴1a +1b是对称式, ∴①、③是对称式; (2)①∵(x +a )(x +b )=x 2+(a +b )x +ab =x 2+mx +n ,∴a +b =m ,ab =n ,∵m =-n, ∴b a +a b =22a b ab +=()22a b ab ab +-22--2; ②421a a ++421b b +, =a 2+21a +b 2+21b, =(a +b )2-2ab +()2222a b ab a b +-, =m 2+8+2816m +, =21716m +172, ∵1716m 2≥0, ∴1716m 2+172≥172, ∴421a a ++421b b+的最小值是172. 点睛:本题关键在于理解对称式的定义,并利用分式的性质将分式变形求解.13.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成;(B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工.为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由.【答案】为了节省工程款,同时又能如期完工,应选C 方案.【解析】试题分析:设完成工程规定工期为x 天,根据等量关系:甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工,列方程,求解即可得到甲、乙工程队单独完成所需的天数,然后求出每种方案所需的工程款,比较即可得出结论.试题解析:解:设完成工程规定工期为x 天,依题意得: 1133()144x xx x -++=++ 解得:x =12. 经检验,x =12符合原方程和题意,∴x +4=16.∴甲工程队单独完成需12天,乙工程队单独完成需16天.∵B 方案不能按时完成,∴要舍弃.A 方案的工程款为12×1=12(万元),C 方案的工程款为3×1+12×0.6=10.2(万元), ∴应选C 方案.答:为了节省工程款,同时又能如期完工,应选C 方案.14.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)【答案】(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.15.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆.【解析】【分析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.【详解】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得 8000080000(110%)200x x -=-, 解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得y=a+(60﹣a ),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a ,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y最大=30000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点睛】本题考查分式方程的应用;一元一次不等式的应用.。
西安交通大学附属中学分校小升初数学期末试卷检测(Word版 含答案) (2)
西安交通大学附属中学分校小升初数学期末试卷检测(Word版含答案)一、选择题1.小明用八个完全相同的小正方体,拼成一个棱长是20厘米的大正方体。
这个大正方体的表面积和原来的八个正方体的表面积之和相比减少了()平方厘米。
A.120 B.600 C.800 D.24002.一堆煤有12吨,第一次运走14吨,第二次运走总数的18,两次共运走多少吨?正确的算式是()。
A.1148+B.111()248⨯+C.111428+⨯D.111()248⨯-3.一个三角形三个内角度数的比是2∶3∶5,这个三角形是()三角形。
A.锐角B.直角C.钝角D.无法确定4.小敏把一根绳子剪成两段,第一段长79米,第二段占全长59,比较两段绳子的长短,结果是( )。
A.第一段长B.第二段长C.一样长D.无法确定5.下图是一个正方体的表面展开图,原正方体中与“国”字所在的面相对的面上标的字是()。
A.建B.设C.美D.中6.铁路提速后,从甲地到乙地时间由16小时缩短到10小时,下列说法错误的是()。
A.速度比原来提高60% B.时间比原来减少37.5%C.现在速度是原来的62.5% D.现在与原来速度比是8∶57.下列说法正确的有()。
①一条射线长5厘米。
②假分数的倒数不一定是真分数。
③圆柱有无数条高,圆锥只有一条高。
④5的倍数一定是合数。
A.①③B.②④C.②③D.②③④8.一种手机原来的售价是820元,降价10%后,再提价10%.现在的价格和原来相比( ).A.没变B.提高了C.降低了D.无法确定9.下面说法中,正确的有()。
①把一个长方形按3:1的比放大,放大前后的面积比是9∶1;②一个圆的半径增加10%,则它的面积增加21%;③浓度为10%的糖水中,加入10克糖和100克水,浓度降低了;④圆柱的侧面展开得到一个正方形,则它的高是底面直径的3.14倍。
A.①②B.①②③C.②③④D.②③二、填空题10.地球海洋总面积是三亿六千二百万平方千米,这个数写作(_____)平方千米,改写成用“万”做单位的数是(____)平方千米,省略亿位后面的尾数约是(____)平方千米. 11.()()()()125%12:8÷====(填小数)。
西安交通大学附属中学分校数学一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.2.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.3.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.4.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。
西安交通大学附属中学分校2024—2025学年上学期八年级数学期中考试卷
2024~2025学年第一学期期中考试初二年级数学试题注意事项:本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共3页,总分120分.考试时间100分钟.一、选择题(共10小题.每小题3分,共30分.每题只有一个符合要求的选项)1.下列各数中,是无理数的是()A.227B.C.3.14D.2.若点()1,3M x x -+在x 轴上,则点M 的坐标为()A.()4,0- B.()4,0 C.()0,4 D.()0,4-3.下列运算正确的是()A.6=± B.0.09= C.7= D.3=4.ABC V 的三条边分别为a b c 、、,下列条件不能判断ABC V 是直角三角形的是()A.222a b c += B.A B C =+∠∠∠C.::3:4:5A B C ∠∠∠= D.7a =,24b =,25c =5.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为()A.64B.16C.8D.46.如图,数轴上点A 所表示的实数是()A. B.1- C.1 D.1-7.已知一次函数3y x n =+的图象如图所示,则方程30x n +=的解可能是()A. 1.3x =B.35x =C.25x =-D.1x =-8.在同一平面直角坐标系中,函数y kx =和()0y x k k =-≠的图象可能是()A. B.C. D.9.如图,在一个长AB 为8cm ,宽AD 为6cm 的长方形木板上,放着一根长方体木块,木块较长的棱和木板的宽AD 平行且棱长大于AD ,木块从正面看是边长为2cm 的正方形,一只蚂蚁从点A 出发到达BC 边中点M 需要走的最短路程为()cm .A.10B.317C.205 D.510.直线112y k x =+与22y k x b =+相交于点()2,0,且两直线与y 轴围成的三角形面积为6,点()1,P m 是三角形内部(包括边上)的一点,则m 的最大值与最小值之差为()A.3B.32C.3或32D.3或6二、填空题(共6小题.每小题3分,共18分.)11.6在数轴上的对应点可能是________点.12.已知在平面直角坐标系中,点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标为______.13.已知正比例函数()251m y m x -=-的图象经过第一、三象限,则m 的值为________.14.若点()11,A y -和点()22,B y 在一次函数3y x b =-+的图象上,则1y ______2y (用“>”、“<”或“=”连接).15.已知ABC V 中,15AB =,AC =,且BC 边上的高12AD =,则BC 的长为________.16.如图,点C 是直线36y x =+在第二象限上的一个点,点C 关于x 轴对称的点为D ,关于y 轴对称的点为E ,连接DE ,则线段DE 的最小值为________.三.解答题(共9小题,共72分.)17.计算:(1(2))()2221+-+18.如图,在平面直角坐标系中(1)图中点B 的坐标是________;(2)点B 关于y 轴对称的点D 的坐标是________;(3)已知点A 的坐标()3,0-,若点B 关于原点对称的点是C ,请在方格纸中画出ABC V ,ABC V 的面积是________.19.函数()12y k x k =-++是正比例函数.(1)求k 的值;(2)当=3y -时,求x 的值.20.已知,如图在△ABC 中,BC =6,AC =8,DE ⊥AB ,DE =7,△ABE 的面积为35,求△ACB 的面积.21.若x ,y 310y ++=,求()22120x y +的平方根.22.某校开展红色主题研学活动,开启红色文化之旅.在延安一博物馆门口离地面一定高度的墙上D 处,装有一个由传感器控制的门铃,人只要移动到距离该门口2.4m 时,门铃就会自动发出“延安欢迎您”的语音.如图,一个身高1.6m 的学生刚走到B 处(学生头顶在A 处),门铃恰好自动响起,此时测得门铃到地面的距离DC 和门铃到该生头顶的距离DA 相等(AB BC ⊥,DC BC ⊥).请你计算门铃到地面的距离DC 为多少米?23.如图,有一张长宽比为3:2的长方形纸片ABCD ,面积为296cm .(1)分别求长方形纸片的长和宽;(2)小丽想沿这张长方形纸片边的方向裁剪一块长宽比为6:5的新长方形,使其面积为290cm ,请问她能裁出符合要求的长方形吗?试说明理由.24.用充电器给某手机充电时,其屏幕画面显示目前电量为40%(如图1).经测试,在用快速充电器和普通充电器对该手机充电时,其电量y (单位:%)与充电时间x (单位:h )的函数图像分别为图2中的线段AC ,AB .根据以上信息,回答下列问题.(1)求线段AB 对应的函数解析式.(2)先用普通充电器充电h a a h ,电量达到70%后,感觉充电较慢,再改为快速充电器充电,电量充满时充电总时长为h b b h .通过计算求出a ,b 所对应的值,并在图2中画出电量y 与充电时间x 的函数图像.25.【思维启迪】(1)如图1,AD 是ABC V 的中线,延长AD 到点E .使DE AD =,连接BE ,则AC 与BE 的数量关系为________,位置关系为________.【思维应用】(2)如图2,在ABC V 中,90ACB ∠=︒,点D 为ABC V 内一点,连接AD ,DC ,延长DC 到点E ,使CE CD =,连接BE ,若AD BE ⊥,请用等式表示AB ,AD ,BE 之间的数量关系,并说明理由;【思维探索】(3)如图3,在ABC V 中,90ACB ∠= ,AC BC =,点D 为AB 中点,点E 在射线DB 上(点E 不与点B ,点D 重合),连接CE ,过点B 作BF CE ⊥,垂足为点F ,连接FD .若CB 2BF =,请直接写出FD 的长.2024~2025学年第一学期期中考试初二年级数学试题注意事项:本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共3页,总分120分.考试时间100分钟.一、选择题(共10小题.每小题3分,共30分.每题只有一个符合要求的选项)1.下列各数中,是无理数的是()A.227B.C.3.14D.【答案】D 【解析】【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,③虽有规律但却是无限不循环的小数,如0.1010010001⋯(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1),据此求解即可.3==,在2273.14是无理数,故选:D .2.若点()1,3M x x -+在x 轴上,则点M 的坐标为()A.()4,0- B.()4,0 C.()0,4 D.()0,4-【答案】A 【解析】【分析】本题考查平面直角坐标系中,坐标轴上点的特征,根据知识点切入解题是关键.点()1,3M x x -+在x 轴上,则纵坐标为零,列式计算,得到x 的值,从而代入横坐标得到点M 的坐标.【详解】解:∵()1,3M x x -+在x 轴上∴30x +=∴3x =-∴1314x -=--=-∴点M 的坐标为(4,0)-故选:A3.下列运算正确的是()A.6=± B.0.09= C.7= D.3=【答案】C 【解析】【分析】本题考查算术平方根.利用算术平方根的定义逐项判断即可.66=≠±,则选项A 不符合题意;0.90.09=≠,则选项B 不符合题意;7=,则选项C 符合题意;3≠,则选项D 不符合题意;故选:C .4.ABC V 的三条边分别为a b c 、、,下列条件不能判断ABC V 是直角三角形的是()A.222a b c += B.A B C =+∠∠∠C.::3:4:5A B C ∠∠∠= D.7a =,24b =,25c =【答案】C 【解析】【分析】本题主要考查勾股定理的逆定理、三角形内角和定理等知识.勾股定理的逆定理:如果三角形的三边长a b c 、、满足222a b c +=,那么这个三角形就是直角三角形.根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A 、∵222a b c +=,∴此三角形是直角三角形,故本选项不符合题意;B 、∵180A B C ∠+∠+∠=︒,A B C =+∠∠∠,∴90A ∠=︒,∴此三角形是直角三角形,故本选项不符合题意;C 、设3A x ∠=,4B x ∠=,5C x ∠=,∵180A B C ∠+∠+∠=︒,∴345180x x x ++=︒,解得15x =︒,∴=315=45A ∠⨯︒︒,=415=60B ∠⨯︒︒,51575C ∠=⨯︒=︒,∴此三角形不是直角三角形,故本选项符合题意;D 、∵7a =,24b =,25c =,∴222625a b c =+=,∴此三角形是直角三角形,故本选项不符合题意.故选:C .5.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为()A.64B.16C.8D.4【答案】C 【解析】【分析】本题考查了勾股定理的应用,解题的关键是熟练掌握勾股定理,直角三角形中,两直角边的平方和等于斜边的平方.根据面积求得两个较大正方形的边长,再根据勾股定理,求解即可.【详解】解:两个较大正方形的面积分别为225、28915=17=,由勾股定理可得:字母A 8=,故选:C .6.如图,数轴上点A 所表示的实数是()A.B.1- C.1 D.1-【答案】C 【解析】=,从而可得A 表示的数.【详解】解:由勾股定理可得:正方形的对角线为:=∴A 1-;故选C .【点睛】本题考查的是勾股定理的应用,实数与数轴,熟练的确定数轴上表示的数是解本题的关键.7.已知一次函数3y x n =+的图象如图所示,则方程30x n +=的解可能是()A. 1.3x =B.35x =C.25x =-D.1x =-【答案】C 【解析】【分析】本题主要考查了一次函数与一元一次方程的关系.观察图形得:当0y =时,10x -<<,即可求解.【详解】解:观察图形得:当0y =时,10x -<<,观察四个选项,方程30x n +=的解可能是25x =-.故选:C .8.在同一平面直角坐标系中,函数y kx =和()0y x k k =-≠的图象可能是()A. B.C. D.【答案】A 【解析】【分析】本题考查了正比例函数和一次函数的图象分布.根据“一次函数y kx b =+(0k ≠):当0k >时,图象经过第一、三象限;当0k <时,图象经过第二、四象限”即可判断.【详解】解:对于直线y x k =-,∵10>,∴直线y x k =-经过第一、三象限,可以排除选项BD ;当0k >时,0k -<,∴直线y kx =经过第一、三象限,直线y x k =-与y 轴的交点在原点下方,选项A 符合题意;当0k <时,0k ->,∴直线y kx =经过第二、四象限,直线y x k =-与y 轴的交点在原点上方,选项C 不符合题意;故选:A .9.如图,在一个长AB 为8cm ,宽AD 为6cm 的长方形木板上,放着一根长方体木块,木块较长的棱和木板的宽AD 平行且棱长大于AD ,木块从正面看是边长为2cm 的正方形,一只蚂蚁从点A 出发到达BC 边中点M 需要走的最短路程为()cm .A.10B.C.D.【答案】B 【解析】【分析】本题主要考查了勾股定理与最短路径问题,将木块展开,然后根据两点之间线段最短利用勾股定理解答即可.【详解】解:如图,将木块展开,由题意,得:展开后长方形的长为82212cm ++=,113cm 22BM BC AD ===,则:蚂蚁从点A 出发到达BC 边中点M =;故选B .10.直线112y k x =+与22y k x b =+相交于点()2,0,且两直线与y 轴围成的三角形面积为6,点()1,P m 是三角形内部(包括边上)的一点,则m 的最大值与最小值之差为()A.3B.32C.3或32D.3或6【答案】A【解析】【分析】本题考查了待定系数法求函数解析式,直线与坐标轴的交点坐标,熟练掌握求交点的坐标是解题的关键.分别求出直线12y x =-+,直线248y x =-+或224y x =-与直线1x =的交点,从而确定m 的最大值与最小值,计算其差即可.【详解】解:直线112y k x =+过点2,0,则1022k =+,解得11k =-,∴12y x =-+,令0x =,则12y =,∴直线112y k x =+与y 轴的交点为()0,2A ,令0x =,则2y b =,∴直线22y k x b =+与y 轴的交点为()0,B b ,由题意得12262ABC S b =-⨯= ,解得8b =或4b =-,∵直线22y k x b =+过点2,0,∴24k =-或22k =,∴直线248y x =-+或224y x =-,若直线12y x =-+和直线248y x =-+时,当1x =时,1121y =-+=,2484y =-+=,∴m 的最大值为4,最小值为1,∴m 的最大值与最小值之差为413-=;若直线12y x =-+和直线224y x =-时,当1x =时,1121y =-+=,2242y =-=-,∴m 的最大值为1,最小值为2-,∴m 的最大值与最小值之差为()123--=;综上,m 的最大值与最小值之差为3,故选:A .二、填空题(共6小题.每小题3分,共18分.)11.6在数轴上的对应点可能是________点.【答案】C【解析】【分析】本题考查了无理数的估算,实数在数轴上点的表示.估算出263<<,即可求解.【详解】解:∵469<<,∴263<<,由数轴得:对应点可能是C 点,故答案为:C .12.已知在平面直角坐标系中,点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标为______.【答案】(-4,3)【解析】【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解: 点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为4,∴点P 的横坐标为4-,纵坐标为3,∴点P 的坐标为(4,3)-.故答案为(4,3)-.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.13.已知正比例函数()251m y m x-=-的图象经过第一、三象限,则m 的值为________.【答案】2【解析】【分析】本题主要考查正比例函数的定义和性质,由正比例函数的性质求得m 的值是解题的关键,注意利用图象的位置进行取舍.由正比例函数的定义可求得m 的值,再由图象的位置进行取舍,可求得m 的值.【详解】解: 函数()251m y m x -=-是正比例函数,251m ∴-=,解得2m =±,图象经过第一、三象限,10m ∴->,1m ∴>,2m ∴=.故答案为:2.14.若点()11,A y -和点()22,By 在一次函数3y x b =-+的图象上,则1y ______2y (用“>”、“<”或“=”连接).【答案】>【解析】【分析】本题考查了一次函数的增减性,根据30k =-<,一次函数的函数值y 随x 的增大而减小解答.【详解】∵30k =-<∴函数值y 随x 的增大而减小,∵12-<∴12y y >故答案为:>.15.已知ABC V 中,15AB =,AC =,且BC 边上的高12AD =,则BC 的长为________.【答案】3或15【解析】【分析】本题考查勾股定理,分AD 在三角形的内部和外部,两种情况进行讨论求解即可.【详解】解:当AD 在ABC V 的内部时,如图:∵15AB =,12AD =,AD BC⊥∴9BD ,∵AC =,12AD =,∴6CD ==,故15BC BD DC =+=;当AD 在ABC V 的外部时,如图:同理可得:9,6BD CD ==,故3BC BD CD =-=.故答案为:3或15.16.如图,点C 是直线36y x =+在第二象限上的一个点,点C 关于x 轴对称的点为D ,关于y 轴对称的点为E ,连接DE ,则线段DE 的最小值为________.【答案】31053105【解析】【分析】本题考查一次函数的图象和性质,轴对称的性质,勾股定理等知识.设DC 交x 轴于点P ,CE 交y 轴于点Q ,求出()0,6M ,()2,0N -,勾股定理求出210MN =,然后证明出()AAS POD QEO ≌,得到OD OE =,得到当OC 最小时,DE 最小,当OC MN ⊥时,OC 最小,然后利用等面积法求解即可.【详解】解:设DC 交x 轴于点P ,CE 交y 轴于点Q ,直线36y x =+交x 轴于N ,交y 轴于M ,连接OC ,直线36y x =+,∴当0x =时,6y =;当0y =时,2x =-;()0,6M ∴,()2,0N -,∴2210MN OM ON =+根据对称可得,PC PD =,∵CQ PO ∥,PC OQ ∥,∴四边形CPOQ 是平行四边形,∠=∠DOP E ,90POQ ∠=︒ ,∴平行四边形CPOQ 是矩形,PC OQ ∴=,PD OQ ∴=,又DPO OQE ∠=∠ ,()AAS POD QEO ∴ ≌,OD OE ∴=,90DCE ∠=︒ ,2DE OC ∴=.∴当OC 最小时,DE 最小,当OC MN ⊥时,OC 最小, 162MON S OM ON ∆=⋅=,∴2123521100MON S OC MN ==△,DE ∴的最小值为3105.故答案为:3105.三.解答题(共9小题,共72分.)17.计算:(1(2))()2221+-+【答案】(1)533-(2)14-【解析】【分析】本题考查二次根式的混合运算,熟练掌握混合运算的法则,正确的计算,是解题的关键:(1)先进行乘除运算,利用二次根式的性质进行化简,再合并同类二次根式即可;(2)先进行平方差公式和完全平方公式的计算,再合并同类二次根式即可.【小问1详解】解:原式3353333=+=-=-;【小问2详解】原式5412114=-+-+=-.18.如图,在平面直角坐标系中(1)图中点B 的坐标是________;(2)点B 关于y 轴对称的点D 的坐标是________;(3)已知点A 的坐标()3,0-,若点B 关于原点对称的点是C ,请在方格纸中画出ABC V ,ABC V 的面积是________.【答案】(1)()4,5-(2)()4,5(3)15【解析】【分析】本题考查了坐标与图形,熟练掌握轴对称,中心对称是解题的关键.(1)直接在坐标系中读出坐标即可;(2)关于y 轴对称点特征:横坐标互为相反数,纵坐标不变;依此作答即可;(3)先求出点C 的坐标,然后画出ABC V ,最后根据割补法求出三角形的面积即可.【小问1详解】解:根据图示可知,点B 的坐标为()4,5-;【小问2详解】解:由(1)知,()4,5B -,∴点B 关于y 轴对称的点C 的坐标是()4,5;【小问3详解】解:∵点B 关于原点对称的点是C ,∴点C 的坐标为()45-,,ABC V 如图所示:∵点B 与点C 关于原点对称,∴BC 过原点O ,∴()113553101522ABC S ⎡⎤=⨯⨯--=⨯⨯=⎣⎦ .19.函数()12y k x k =-++是正比例函数.(1)求k 的值;(2)当=3y -时,求x 的值.【答案】(1)2k =-;(2)1x =.【解析】【分析】(1)根据正比函数的一般式(0)y kx k =≠进行求解即可;(2)将=3y -代入函数表达式即可求出x 的值.【详解】(1)因为该函数是正比例函数,所以20k +=.解得2k =-;(2)当2k =-时,该函数关系式为:3y x =-,当=3y -时,33x -=-,解得1x =.【点睛】本题主要考查了正比例函数解析式的确定以及自变量的求解,熟练掌握正比例函数的一般式是解决本题的关键.20.已知,如图在△ABC 中,BC =6,AC =8,DE ⊥AB ,DE =7,△ABE 的面积为35,求△ACB 的面积.【答案】24【解析】【分析】根据三角形面积求出AB ,推出AC 、BC 的平方和等于AB 的平方,求出∠C =90°,根据三角形面积公式求出即可.【详解】∵DE =7,△ABE 的面积为35,∴12×AB×7=35,∴AB =10,∵BC =6,AC =8,∴AC 2+BC 2=AB 2,∴∠C =90°,∴S △ABC =12×6×8=24.【点睛】本题考查了三角形的面积,勾股定理的逆定理的应用,解此题的关键是求出△ABC 是直角三角形.21.若x ,y 310y ++=,求()22120x y +的平方根.【答案】14±【解析】【分析】本题考查非负性,求一个数的平方根,根据非负性求出,x y 的值,再根据平方根的定义,进行求解即可.310y ++=,∴3210,10x y -=+=,∴1,12x y ==-,∴()22111112020416x y ⎛⎫+=⨯+= ⎪⎝⎭,∴()22120x y +的平方根为14=±22.某校开展红色主题研学活动,开启红色文化之旅.在延安一博物馆门口离地面一定高度的墙上D 处,装有一个由传感器控制的门铃,人只要移动到距离该门口2.4m 时,门铃就会自动发出“延安欢迎您”的语音.如图,一个身高1.6m 的学生刚走到B 处(学生头顶在A 处),门铃恰好自动响起,此时测得门铃到地面的距离DC 和门铃到该生头顶的距离DA 相等(AB BC ⊥,DC BC ⊥).请你计算门铃到地面的距离DC 为多少米?【答案】门铃到地面的距离DC 为2.6m .【解析】【分析】本题考查了勾股定理的应用.过点A 作AE CD ⊥于点E ,则 1.6m CE AB ==, 2.4m AE BC ==,设门铃距离地面m x ,则m AD CD x ==,()1.6m DE x =-,在Rt AED △中,由勾股定理得出方程,解方程即可.【详解】解:由题意知,AD CD =, 2.4m BC =, 1.6m AB =,90ABC DCB ∠=∠=︒,过点A 作AE CD ⊥于点E ,如图,则 1.6m CE AB ==, 2.4m AE BC ==,设门铃距离地面m x ,则m AD CD x ==,()1.6m DE x =-,在Rt AED △中,由勾股定理得222AE DE AD +=,即()2222.4 1.6x x +-=,解得: 2.6x =.答:门铃到地面的距离DC 为2.6m .23.如图,有一张长宽比为3:2的长方形纸片ABCD ,面积为296cm .(1)分别求长方形纸片的长和宽;(2)小丽想沿这张长方形纸片边的方向裁剪一块长宽比为6:5的新长方形,使其面积为290cm ,请问她能裁出符合要求的长方形吗?试说明理由.【答案】(1)长方形纸片的长和宽分别是12cm ,8cm ;(2)她不能裁出符合要求的长方形.见解析【解析】【分析】本题考查了算术平方根的应用.(1)设长方形的长为3cm x ,宽为2cm x ,再利用长方形的面积公式,列出方程,即可求出结论;(2)设长方形纸片的长为6cm a ,则宽为5cm a ,根据新纸片的面积,即可得出关于a 的方程,利用平方根得出a 的值,然后计算出长宽,即可得出结果.【小问1详解】解:设长方形的长为3cm x ,宽为2cm x ,根据题意得:3296x x ⋅=,解得:4x =(负值舍去),∴312x =,28x =.答:长方形纸片的长和宽分别是12cm ,8cm ;【小问2详解】解:不能,理由如下:设长方形纸片的长为6cm a ,则宽为5cm a ,根据题意得:6590a a ⋅=,解得:a =,∴612a =<,58a =>,∴她不能裁出符合要求的长方形.24.用充电器给某手机充电时,其屏幕画面显示目前电量为40%(如图1).经测试,在用快速充电器和普通充电器对该手机充电时,其电量y (单位:%)与充电时间x (单位:h )的函数图像分别为图2中的线段AC ,AB .根据以上信息,回答下列问题.(1)求线段AB 对应的函数解析式.(2)先用普通充电器充电h a a h ,电量达到70%后,感觉充电较慢,再改为快速充电器充电,电量充满时充电总时长为h b b h .通过计算求出a ,b 所对应的值,并在图2中画出电量y 与充电时间x 的函数图像.【答案】(1)线段AB 对应的函数解析式为1040y x =+(2)a 的值为3,b 的值为4,图像见详解【解析】【分析】(1)利用待定系数法求解即可;(2)将70y =代入1040y x =+求出a 的值,根据图像可得知快速充每小时充电30%,由此可求得用快速充电器充电还需1小时,即可得b 的值.本题主要考查了用待定系数法求一次函数的表达式,以及利用一次函数解决实际问题.能够理解题意,并能从图像中获取信息是解题的关键.【小问1详解】解:设线段AB 对应的函数解析式为y kx b =+.将()0,40,()6,100代入,得401006b k b =⎧⎨=+⎩,解得1040k b =⎧⎨=⎩,∴线段AB 对应的函数解析式为1040y x =+.【小问2详解】解:将70y =代入1040y x =+,得701040x =+,解得3x =,即a 的值为3,即普通充电器充电时间为3小时.由图知快速充电器2小时充电60%,因此每小时充电30%,因此用快速充电器还需30301%%÷=小时,∴314b =+=.函数图像(图中粗实线)如下:25.【思维启迪】(1)如图1,AD 是ABC V 的中线,延长AD 到点E .使DE AD =,连接BE ,则AC 与BE 的数量关系为________,位置关系为________.【思维应用】(2)如图2,在ABC V 中,90ACB ∠=︒,点D 为ABC V 内一点,连接AD ,DC ,延长DC 到点E ,使CE CD =,连接BE ,若AD BE ⊥,请用等式表示AB ,AD ,BE 之间的数量关系,并说明理由;【思维探索】(3)如图3,在ABC V 中,90ACB ∠= ,AC BC =,点D 为AB 中点,点E 在射线DB 上(点E 不与点B ,点D 重合),连接CE ,过点B 作BF CE ⊥,垂足为点F ,连接FD .若29CB 2BF =,请直接写出FD 的长.【答案】(1)相等,平行;(2)222AD BE AB +=;(3)FD 322或722【解析】【分析】(1)直接利用SAS 即可求证全等,继而得到,AC BD A B =∠=∠,故AC BD ∥;(2)①延长BC 至点F ,使得CF BC =,连接DF AF ,,则AC 是BF 的垂直平分线,得到AF AB =,可证明FCD BCE △≌△,则BE FD =,DF BE ∥,在Rt ADF 中,由勾股定理得:222AD DF AF +=,则等量代换出222AD BE AB +=;(3)当点E 在线段DB 上时,延长FD 至点H ,使得DH DF =,连接AH 并延长交CF 于点G ,同上可得:,ADH BDF AH BF △≌△∥,可证明CAG BCF ≌,则2AG CF CG BF AH ====,,故HG FG =,在Rt BFC △中,由勾股定理求得5CF =,那么523HG FG ==-=,Rt HGF △中,由勾股定理求得HF=,则12DF HF ==;当点E 在DB 延长线上时,构造上述辅助线,同理可求12DF HF ==.【详解】解:(1)由题意得BD CD AD DE ==,,∵ADC EDB ∠=∠,∴()SAS ADC EDB ≌,∴AC BE CAD E =∠=∠,,∴AC BE ∥,故答案为:相等,平行;(2)延长BC 至点F ,使得CF BC =,连接DF AF ,,∵90ACB ∠=︒,即AC BF ⊥,∴AC 是BF 的垂直平分线,∴AF AB =,∵CE DC =,FCD BCE ∠=∠,∴FCD BCE △≌△,∴BE FD =,12∠=∠,∴DF BE ∥,∵AD BE ⊥,∴AD FD ⊥,∴在Rt ADF 中,由勾股定理得:222AD DF AF +=,∴222AD BE AB +=;(3)当点E 在线段DB 上时,延长FD 至点H ,使得DH DF =,连接AH 并延长交CF 于点G ,同上可得:ADH BDF AH BF ,△≌△∥,∵BF CE ⊥,∴AG CE ⊥,∵90ACB ∠=︒,∴90CAG ACG ACG BCF ∠+∠=∠+∠=︒,∴CAG BCF ∠∠=,∵90AGC CFB ∠=∠=︒,CA CB =,∴CAG BCF ≌,∴2AG CF CG BF AH ====,,∴HG FG =,在Rt BFC △中,由勾股定理求得()22222925CF CB BF =--,∴523HG FG ==-=,∴Rt HGF △中,由勾股定理求得32HF=,∴13222DF HF ==;当点E 在DB 延长线上时,构造上述辅助线,同上可得:ADH BDF AH BF ,△≌△∥,∵BF CE ⊥,∴AG CE ⊥,∵90ACB ∠=︒,∴90CAG ACG ACG BCF ∠+∠=∠+∠=︒,∴CAG BCF ∠∠=,∵90AGC CFB ∠=∠=︒,CA CB =,∴CAG BCF ≌,∴2AG CF CG BF AH ====,,∴HG FG =,在Rt BFC △中,由勾股定理求得5CF =,∴527HG FG ==+=,∴Rt HGF △中,由勾股定理求得HF =,∴12DF HF ==,综上所述,FD 【点睛】本题考查了全等三角形的判定与性质,勾股定理,平行线的判定与性质,线段垂直平分线的性质,熟练掌握知识点,正确构造全等三角形是解决本题的关键.。
西安交通大学附属中学八年级数学上册第五单元《分式》检测题(含答案解析)
一、选择题1.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度 2.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-13.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N 4.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 5.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12- 6.若x 2y 5=,则x y y +的值为( ) A .25 B .72C .57D .75 7.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15- 8.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++9.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .110.下列计算正确的是( )A .1112a a a+= B .2211()()a b b a +--=0 C .m n a -﹣m n a +=0 D .11a b b a+--=0 11.下列各式中正确的是( )A .263333()22=x x y yB .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 12.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1二、填空题13.计算:22x x xy x y x-⋅=-____________________. 14.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.15.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____. 16.若32a b =,则22a b a+=____. 17.223(3)a b -=______,22()a b ---=______.18.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 19.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.20.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题21.解方程:(1)x 21x 1x -=- (2)3142x x -=-+ 22.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a = 23.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.24.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 25.解答下面两题:(1)解方程:35322x x x-+=-- (2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭ 26.解分式方程:63122x x x -=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 2.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 3.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 4.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案.【详解】 解:分式方程122x a x -=-, 去分母,得:2(x-a )=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5x x a ≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个,故选:C .【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.5.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 6.D解析:D【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】 解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.7.C解析:C【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解.【详解】 解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a =, 解得,15a =, 经检验,15a =是原方程的解, 故选C【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.8.C解析:C【分析】直接进行同分母的加减运算即可.【详解】 解:23211x x x x +-++=2321x x x +-+=31x +,【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.9.D解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】 解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.10.D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误; C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b ---=0,故正确. 故选D .【点睛】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 11.D解析:D【分析】根据分式的乘法法则计算依次判断即可.【详解】A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键. 12.C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题13.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.14.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k-+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 16.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.17.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.【详解】()632266627327a a b a b b --==; 422422()a a b a b b ----==.【点睛】本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.18.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.19.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)2x =;(2)1x =-.【分析】(1)等式两边同时乘()1x x -去分母,再按照整式方程的解法求解即可;(2)等式两边同时乘()+2x 去分母,再按照整式方程的解法求解即可.【详解】(1)解:等式两边同时乘()1x x -得:()()221=1x x x x ---, 去括号得:222+2=x x x x --,移项并合并同类项得:=2x --,解得:2x =,经检验2x =是原分式方程的根;(2)解:等式两边同时乘()+2x 得:()3142x x -=-+,去括号得:3148x x -=--,移项并合并同类项得:77x =-,解得:1x =-,经检验1x =-是原分式方程的根.【点睛】本题考查分式方程的解法,化分式方程为整式方程是关键.22.1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a aa a+-+-⎛⎫⨯⎪+⎝⎭=(1)(1)(1)a a aa a+-⨯+1a=-,当1a=时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 23.(1)完成这项工程的规定时间是20天;(2)选择方案三,理由见解析.【分析】(1)设完成这项工程的规定时间为x天,则甲工程队需x天完成这项工程,乙工程队需(x+5)天完成这项工程,根据由甲、乙两队合作做4天,剩下的工程由乙队单独做,即可得出关于x的分式方程,解之并检验后即可得出结论.(2)根据总费用=每天需付费用×工作天数,分别求出方案一、三需付的工程款,比较后即可得出结论.【详解】(1)设完成这项工程的规定时间为x天,由题意得1144155xx x x-⎛⎫++=⎪++⎝⎭.解得:20x.经检验,20x是原方程的解,且符合题意.答:完成这项工程的规定时间是20天.(2)选择方案三,理由如下:方案一:所需工程款为20 2.142⨯=(万元);方案二:超过了规定时间,不符合题意;方案三:所需工程款为4 2.120 1.538.4⨯+⨯=(万元).∵42>38.4,∴选择方案三.【点睛】本题考查了分式方程的应用,解题的关键是:(1)由甲、乙两队合作做4天,剩下的工程由乙队单独做,列出关于x的分式方程;(2)根据数量关系列式计算.24.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.2x元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x 元,则第二次水果进价为每千克1.2x 元. 依题意列方程得,2000249620 1.2x x+= 解得,4x =经检验,4x =是方程的根,且符合题意. ∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元) 第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元) 25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(1)1x =-是该方程的解;(2)(1)x x +.【分析】(1)去分母将分式方程化为整式方程,解整式方程,最后验证根即可;(2)先计算括号内的,再将除法化为乘法分别因式分解后,约分即可.【详解】解:(1)去分母得:353(2)x x --=-,去括号得3536x x --=-,移项后合并得:1x =-,经检验,1x =-是该方程的解;(2)原式=22321121x x x x x x x x ⎛⎫+--÷ ⎪++++⎝⎭ =2232121x x x x x x x +--÷+++ =2222112x x x x x x -+++- =2(2)(1)12x x x x x -++- =(1)x x +.【点睛】本题考查解分式方程和分式的混合运算.(1)中注意分式方程一定要验根;(2)注意运算顺序,其次除法化为乘法后才能约分.26.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。
西安交通大学第二附属中学南校区数学三角形填空选择综合测试卷(word含答案)
西安交通大学第二附属中学南校区数学三角形填空选择综合测试卷(word 含答案) 一、八年级数学三角形填空题(难)1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.【答案】1.5或5或9【解析】【分析】分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.2.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.3.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.【答案】15【解析】【分析】作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度【详解】作EH AB ⊥∵AE 平分∠BACBAE CAE ∴∠=∠EC EH ∴=∵P 为CE 中点4EC EH ==∴∵D 为AC 中点,P 为CE 中点=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,15x BEF S =-△∴15+x+y BCD BDA S S ==△△∴y=15+x+y-y=15+x BFA BDA S S =-△△∴15x+15+x=30BEA BEF BFA S S S =+=-△△△∴1=302BEA S AB EH ⨯=△∵ =15AB ∴【点睛】本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP的面积来表示△BEA的面积4.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.【答案】32【解析】【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【详解】过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=12∠CEB=32°.故答案为:32.【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.5.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB 为Rt△,AD ,BE ,分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于一点F . ∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE ,分别是∠CAB 和∠ABC 的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°. 故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.6.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.7.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】÷=,连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.8.如果一个n边形的内角和是1440°,那么n=__.【答案】10【解析】∵n边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.9.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD=____°.【答案】19°.【解析】【分析】根据三角形内角和定理求得∠BAC,再由AE平分∠BAC,可求得∠EAC,最后由∠ADC=90°,∠C=78°,可求得∠DAC,即∠EAD可求.【详解】解:∵∠B=40°,∠C=78°∴∠BAC=180°-∠B-∠C=62°∵AE平分∠BAC,∴∠EAC=1312BAC∠=,∵AD是BC边上的高∴∠ADC=90°∴∠DAC=90°-78°=12°∴∠EAD=∠EAC-∠DAC=19°故答案为:19°.【点睛】本题考查三角形内角和定理;三角形角平分线性质.10.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.二、八年级数学三角形选择题(难)11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接O在AO上取一点F,使得OF=12AF若S△ABC =12,则四边形OCDF的面积为()A.2 B.83C.3 D.103【答案】B 【解析】【分析】重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心, ∴13AOC S =ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S +DOF S =83.故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.13.适合下列条件的△ABC 中, 直角三角形的个数为①111345a b c ,,;===②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c =⑦::12:13:15A B C ∠∠∠=⑹5a b c === A .2个B .3个C .4个D .5个 【答案】C【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:222111+345≠()()(),故①不能构成直角三角形;当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;由三角形的三边关系,2+2=4可知⑤不能构成三角形;令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;根据三角形的内角和可知⑦不等构成直角三角形;由a 2=5,b 2=20,c 2=25,可知a 2+b 2=c 2,故⑧能够成直角三角形.故选:C.点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.14.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.B.C.D.不能确定【答案】B【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333 22=S△ABC=1111••••2222BC AH AB PD BC PE AC PF ==+∴1111 3?3?3?3? 2222AH PD PE PF ⨯=⨯+⨯+⨯∴PD+PE+PF=AH=33即点P到三角形三边距离之和为33 2.故选B.15.在下列图形中,正确画出△ABC的AC边上的高的图形是()A.B.C.D.【答案】C【解析】【分析】△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段.根据定义正确的只有C.故选:C.【点睛】本题考查了三角形的高线的定义,理解定义是关键.16.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【答案】B【解析】【分析】由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.【点睛】本题考查多边形内角与外角,熟记公式是关键.17.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x 的值为4.三角形的周长为1+4+4=9.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.18.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D+∠4+∠F ,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B .【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.19.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是( )A .13B .6C .5D .4【答案】B【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x.根据三角形的三边关系定理“两边之和大于第三边,两边之差小于第三边”,得:-<<+,94x94<<.解得5x13故选:B.【点睛】.一定要注意构成三角形的条件:两边之和>第三边,两本题考查了三角形的三边关系定理边之差<第三边.20.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.5【答案】B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.。
西安交大阳光中学数学分式填空选择单元达标训练题(Word版 含答案)
西安交大阳光中学数学分式填空选择单元达标训练题(Word 版 含答案)一、八年级数学分式填空题(难)1.对于x >0,规定()1xf x x =+,例如122112(2),12132312f f ⎛⎫==== ⎪+⎝⎭+,那么12019f ⎛⎫ ⎪⎝⎭1120182017f f ⎛⎫⎛⎫++⋯ ⎪ ⎪⎝⎭⎝⎭1(1)(2)(2019)2f f f f ⎛⎫++++⋯+ ⎪⎝⎭=_________ 【答案】201812【解析】 【分析】 根据f (x )求出f (1x ),进而得到f (x )+f (1x)=1,原式结合后,计算即可求出值. 【详解】解:∵x >0,规定()1xf x x =+, ∴111111x f x x x⎛⎫== ⎪+⎝⎭+,即1111()1,(1)1112x x f x f f x x x x +⎛⎫+=+=== ⎪+++⎝⎭,则原式=1111(2019)(2018)(2)(1)20182019201822f f f f ff f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++⋯+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,故答案为:201812.【点睛】此题考查了分式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.2.若关于x 的不等式组64031222x a x x++>⎧⎪⎨-+⎪⎩有4个整数解,且关于y 的分式方程211a y y ---=1的解为正数,则满足条件所有整数a 的值之和为_____ 【答案】2 【解析】先解不等式组确定a 的取值范围,再解分式方程,解为正数从而确定a 的取值范围,即可得所有满足条件的整数a 的和. 【详解】原不等式组的解集为46a --<x ≤3,有4个整数解,所以﹣1406a--≤<,解得:-4<a ≤2.原分式方程的解为y =a +3,因为原分式方程的解为正数,所以y >0,即a +3>0,解得:a >﹣3.∵y =a +3≠1,∴a ≠-2,所以-3<a ≤2且a ≠-2. 所以满足条件所有整数a 的值为-1,0,1,2. 和为-1+0+1+2=2. 故答案为:2. 【点睛】本题考查了不等式组的整数解、分式方程,解答本题的关键是根据不等式组的整数解确定a 的取值范围.3.如果在解关于x 的方程212212x x kx x x x x ++-=+-+-时产生了增根,那么k 的值为_____________. 【答案】5-或12-. 【解析】 【分析】分式方程的增根是分式方程在去分母时产生的,分式方程的增根是使公分母等于0的x 值,所以先将分式方程去分母得整式方程,根据分式方程的增根适合整式方程,将增根代入整式方程可得关于k 的方程,根据解方程,可得答案. 【详解】 解:原方程变形为122(1)1(2)x kx x x x x x ++-+=-+-, 方程去分母后得:(1)(1)(2)2x x x x kx -+-+=+, 整理得:(2)3k x +=-,分以下两种情况: 令1x =,23k +=-,5k ∴=-; 令2x =-,2(2)3k -+=-,12k ∴=-, 综上所述,k 的值为5-或12-. 故答案为:5-或12-.本题考查了分式方程的增根,利用分式方程的增根得出关于k 的方程是解题关键.4.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 【答案】34【解析】 【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可. 【详解】 解:∵113-=a b, ∴3b a ab -= , ∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab ba babab ab故答案为:34【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.5.将1111100m n =⎧⎪⎨=⎪⎩,222199m n =⎧⎪⎨=⎪⎩,333198m n =⎧⎪⎨=⎪⎩, (1001001001)1m n =⎧⎪⎨=⎪⎩,依次代入1111y m n =+++得到1y ,2y ,3y …100y ,那么123100y y y y ++++=__________.【答案】100. 【解析】 【分析】用m 表示n ,然后化简11n +,再分别表示123100y y y y 、、、、,再求和即可. 【详解】 解:分析可知n=1101m-,∴n+1=1101m -+1=102101mm--,∴1n 1+=101m 102m --=1-1102m-, ∴1y =12+1-1101,2y =13+1-1100,3y =14+1-199,…,100y =1101+1-12, ∴1231001y y y y 2++++=+13+14+…+1101-(1111101100992+++⋯+)+100=100 故答案是:100. 【点睛】本题考查了分式的规律性问题,逐个计算找到规律是解题关键,体现了由特殊到一般的数学思想.6.若11a b+=3,则22a b a ab b +-+的值为_____. 【答案】35【解析】 【分析】由113a b +=,可得3a b ab +=,即b+a=3ab ,整体代入22a b a ab b +-+即可求解. 【详解】∵113a b +=, ∴3a bab+=,即b+a=3ab ∴22a b a ab b +-+=3ab 6ab ab -=3ab 5ab =35.【点睛】本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.7.化简3m m ++269m -÷23m -的结果是___________________. 【答案】1 【解析】 【分析】先进行分式的除法运算,然后再进行分式的加法运算即可得. 【详解】m m 3++26m 9-÷2m 3-=()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为:1. 【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.8.使分式的值为0,这时x=_____.【答案】1 【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法9.已知x m =6,x n =3,则x 2m ﹣n 的值为_____. 【答案】12 【解析】 【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可. 【详解】∵63m n x x ==,, ∴222()6312m nm n xx x -=÷=÷=.故答案为12. 【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mna a =,并能逆用这两个法则”是解答本题的关键.10.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程方程为________.【答案】1209020x x=+【解析】【分析】设小江每小时分拣x个物件,分别表示出小李和小江分拣所用的时间,最后再根据“小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同”体现的等量关系即可列出方程.【详解】解:设小江每小时分拣x个物件,根据题意得:1209020x x=+.故答案为1209020x x=+.【点睛】本题考查了分式方程的应用,明确题意、确定等量关系是解答本题的关键.二、八年级数学分式解答题压轴题(难)11.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台【解析】【分析】(1)可设甲种空调每台进价是x万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可;(2)设购买甲种空调n台,则购买乙种空调(50﹣n)台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n的范围,即可确定出购买方案;(3)找到(2)中3种购进方案符合条件的即为所求.【详解】解:(1)设甲种空调每台进价是x万元,则乙种空调每台进价是(x+0.3)万元,依题意有20x =400.3x ×2, 解得x =0.1,x+0.3=0.1+0.3=0.4.答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有0.10.4(50)1031sn n n +-⎧⎨⎩, 解得31≤n≤3313, ∵n 为整数,∴n 取31,32,33,∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台; (3)①购买甲种空调31台,购买乙种空调19台,(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3000﹣120+5400﹣560﹣2520 =7720﹣2520 =5200(元), 不符合题意,舍去;②购买甲种空调32台,购买乙种空调18台,(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3100﹣120+5100﹣560﹣2520 =7520﹣2520 =5000(元), 符合题意;③购买甲种空调33台,购买乙种空调17台,(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3200﹣120+4800﹣560﹣2520 =7320﹣2520 =4800(元), 不符合题意,舍去.综上所述,购买甲种空调32台,购买乙种空调18台. 【点睛】此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.12.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x -,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式.例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式.方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立, ∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式.方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式.(1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值.【答案】(1)961x x ---;(2)x=-1或-3或11或-15. 【解析】 【分析】(1)先变形2731x x x ---=26691x x x x --+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x的值.【详解】解:(1)2731x xx---=26691x x xx--+--=(1)6(1)91x x xx-----=961 xx---;(2)225112x xx+-+=2242132x x xx+++-+=2(2)(2)132x x xx+++-+=13212xx+-+,∵x是整数,225112x xx+-+也是整数,∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.13.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)【答案】(1)甲的平均攀登速度是12米/分钟;(2)360hh+倍.【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.【详解】(1)设乙的速度为x米/分钟,900900151.2x x+=,解得,x=10,经检验,x=10是原分式方程的解, ∴1.2x=12,即甲的平均攀登速度是12米/分钟; (2)设丙的平均攀登速度是y 米/分,12h+0.5×60=h y ,化简,得 y=12360hh +,∴甲的平均攀登速度是丙的:1236012360h h h h ++=倍,即甲的平均攀登速度是丙的360h h+倍.14.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
陕西省西安交通大附属中学2024年数学九年级第一学期开学综合测试模拟试题【含答案】
陕西省西安交通大附属中学2024年数学九年级第一学期开学综合测试模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列说法中正确的是()A .在ABC ∆中,222AB BC AC +=.B .在Rt ABC ∆中,222AB BC AC +=.C .在Rt ABC ∆中,90C ∠=︒,222AB BC AC +=.D .AB 、BC 、AC 是ABC ∆的三边,若222AB BC AC +=,则ABC ∆是直角三角形.2、(4分)关于函数y=﹣2x+1,下列结论正确的是()A .图象必经过(﹣2,1)B .y 随x 的增大而增大C .图象经过第一、二、三象限D .当x >12时,y <03、(4分)如图,在ABC 中,点P 在边AB 上,则在下列四个条件中::ACP B ∠∠=①;APC ACB ∠∠=②;2AC AP AB =⋅③;AB CP AP CB ⋅=⋅④,能满足APC 与ACB 相似的条件是()A .①②④B .①③④C .②③④D .①②③4、(4分)已知关于x 的方程x 2﹣4x+c+1=0有两个相等的实数根,则常数c 的值为()A .﹣1B .0C .1D .35、(4分)若代数式()22x -有意义,则实数x 的取值范围是()A .x >1B .x≠2C .x≥1且x ≠2D .x≥﹣1且x ≠26、(4分)计算1=()A .5B .7C .-5D .-77、(4分)已知反比例函数6y x =,当3y <时,自变量x 的取值范围是()A .2x >B .0x <C .02x <<D .0x <或2x >8、(4分)若点P (3,2m-1)在第四象限,则m 的取值范围是()A .12m >B .12m <C .12m - D .12m 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,点A、B 的坐标分别为(1,3)、(n ,3).若直线y =2x 与线段AB 有公共点,则n 的取值范围是____________.10、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________11、(4分)计算=_____.12、(4分)如图,已知ABC △中,6AB AC BC ===,点M 为AB 的中点,在线段AC 上取点N ,使AMN 与ABC △相似,则MN 的长为______________.13、(4分)如图,在矩形ABCD 中,AE BD ⊥于点E ,对角线AC 、BD 相交于点O ,且:1:3BE ED =,6AB =,则AE =__________.三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:22(1)x y x y x y -÷--,其中x 2-,y =11(2-.15、(8分)如图,点E ,F 是平行四边形ABCD 对角线BD 上的点,且BF =DE.求证:AE =CF.16、(8分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m =,n =,表示区域C 的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?17、(10分)如图,AE ∥BF ,AC 平分∠BAE ,交BF 于点C ,BD 平分∠ABC ,交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形;(2)若AB=5,AC=6,求AE ,BF 之间的距离.18、(10分)如图,在Rt ABC 中,90ACB ∠=︒, BD 平分ABC ∠交AC 于点D , DE AC ⊥于点E ,过点C 作//CF DE 交BD 于点F ,连接EF .(1)求证:四边形CDEF 是菱形;(2)若12AB cm =,6BC cm =,求菱形CDEF 的周长.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动______.20、(4分)一次函数y=-23x-1的图象不经过第_____象限.21、(4分)不等式组240120x x +≥⎧⎨->⎩的整数解是__________.22、(4分)已知关于x 的方程x 2-2ax +1=0有两个相等的实数根,则a =____.23、(4分)如图,菱形ABCD 的对角线相交于点O ,若5,4AB OA ==,则菱形ABCD的面积=____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系xOy 中,直线13y x b =-+与x 轴交于点A ,与双曲线6y x =-在第二象限内交于点B (-3,a ).⑴求a 和b 的值;⑵过点B 作直线l 平行x 轴交y 轴于点C ,连结AC,求△ABC 的面积.25、(10分)某年5月,我国南方某省A 、B 两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C 、D 获知A 、B 两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C 市有救灾物资240吨,D 市有救灾物资260吨,现将这些救灾物资全部调往A 、B 两市.已知从C 市运往A 、B 两市的费用分别为每吨20元和25元,从D 市运往往A 、B 两市的费用别为每吨15元和30元,设从D 市运往B 市的救灾物资为x 吨.(1)请填写下表A (吨)B (吨)合计(吨)C 240D x 260总计(吨)200300500(2)设C 、D 两市的总运费为w 元,求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)经过抢修,从D 市到B 市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线运费不变.若C 、D 两市的总运费的最小值不小于10320元,求m 的取值范围.26、(12分)成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用(1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;(2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】根据勾股定理以及勾股定理的逆定理逐项分析即可.【详解】A.因为不一定是直角三角形,故不正确;B.没说明哪个角是直角,故不正确;C.在Rt ABC ∆中,90C ∠=︒,则222=AB BC AC +,故不正确;D.符合勾股定理的逆定理,故正确.故选D.本题考查了勾股定理,以及勾股定理逆定理,熟练掌握定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2、D 【解析】根据一次函数的性质,依次分析选项可得答案.解:根据一次函数的性质,依次分析可得,A 、x=-2时,y=-2×-2+1=5,故图象必经过(-2,5),故错误,B 、k <0,则y 随x 的增大而减小,故错误,C 、k=-2<0,b=1>0,则图象经过第一、二、四象限,故错误,D 、当x >12时,y <0,正确;故选D .点评:本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系3、D【解析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当ACP B ∠∠=,A A ∠∠=,所以APC ∽ACB ,故条件①能判定相似,符合题意;当APC ACB ∠∠=,A A ∠∠=,所以APC ∽ACB ,故条件②能判定相似,符合题意;当2AC AP AB =⋅,即AC :AB AP =:AC ,因为A A ∠=∠所以APC ∽ACB ,故条件③能判定相似,符合题意;当AB CP AP CB ⋅=⋅,即PC :BC AP =:AB ,而PAC CAB ∠∠=,所以条件④不能判断APC 和ACB 相似,不符合题意;①②③能判定相似,故选D .本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.4、D 【解析】分析:由于方程x 2﹣4x +c +1=0有两个相等的实数根,所以∆=b 2﹣4ac =0,可得关于c 的一元一次方程,然后解方程求出c 的值.详解:由题意得,(-4)2-4(c +1)=0,c =3.故选D.点睛:本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.5、D【解析】试题解析:由题意得,10x +≥且()220x -≠,解得1x ≥-且2x ≠.故选D .6、A 【解析】先利用二次根式的性质进行化简,然后再进行减法运算即可.【详解】1-=6-1=5,故选A.()()00a a a a a ⎧≥⎪==⎨-<⎪⎩是解题的关键.7、D 【解析】根据函数解析式中的系数推知函数图象经过第一、三象限,结合函数图象求得当3y <时自变量x 的取值范围.【详解】解:反比例函数6y x =的大致图象如图所示,∴当3y <时自变量x 的取值范围是2x >或0x <.故选:D .考查了反比例函数的性质,解题时,要注意自变量x 的取值范围有两部分组成.8、B【解析】根据点P在第四象限得出其纵坐标小于0,即2m-1<0,解之可得.【详解】解:∵点P(3,2m-1)在第四象限,∴2m-1<0,2m<1,12m<故选:B.本题主要考查点的坐标和解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题(本大题共5个小题,每小题4分,共20分)9、32 n≥【解析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴32 n≥.故答案为:32 n≥.本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n 的一元一次不等式是解题的关键.10、0.3【解析】根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.【详解】解:∵第1、2、3、4组的频数分别是2、8、10、15,∴50-2-8-10-15=15∴15÷50=0.3故答案为0.3.此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.11、2【解析】根据二次根式乘法法则进行计算.【详解】2==.故答案是:2.考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算.12、3或32【解析】根据题意AMN 与ABC 相似,可分为两种情况,△AMN∽△ABC 或者△AMN∽△ACB,两种情况分别列出比例式求解即可【详解】∵M 为AB 中点,∴AM=当△AMN∽△ABC,有AM AN MN AB AC BC ==,即162MN =,解得MN=3当△AMN∽△ACB,有AM AN MN AC AB BC ==,即6MN =,解得MN=32故填3或32本题主要考查相似三角形的性质,解题关键在于要对题目进行分情况讨论13、【解析】由矩形的性质可得AO=CO=BO=DO ,可证△ABE ≌△AOE ,可得AO=AB=BO=DO ,由勾股定理可求AE 的长.【详解】在矩形ABCD 中,AO=CO=BO=DO ∵:1:3BE ED =,BO DO =,∴BE=EO ∵AE ⊥BD ∴AE 垂直平分BO .∴AB=AO ∴AB=AO=BO ∴ABO ∆为等边三角形.∴∠BAO=60°∵AE ⊥BD ∴∠BAE=30°∴132BE AB ==,∴AE ==故答案为:本题考查了矩形的性质,等边三角形的判定和性质,熟练运用矩形的性质是本题的关键.三、解答题(本大题共5个小题,共48分)14、x +y 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题.试题解析:原式=()()x x y x y x y x y y -++-⋅-=()()y x y x y x y y +-⋅-=x +y ,当x 2-,y =11()2-=2﹣2+215、证明见解析.【解析】试题分析:根据平行四边形的性质可得AD ∥BC ,AD=BC ,根据平行线的性质可得∠EDA=∠FBC ,再加上条件ED=BF 可利用SAS 判定△AED ≌△CFB ,进而可得AE=CF .试题解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠EDA=∠FBC ,在△AED 和△CFB 中,∵AD=BC ,∠ADE=∠CBF ,BF=DE ,∴△AED ≌△CFB (SAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定与性质.16、(1)学生总数100人,跳绳40人,条形统计图见解析;(2)144°;(3)200人.【解析】(1)用B 组频数除以其所占的百分比即可求得样本容量;(2)用A 组人数除以总人数即可求得m 值,用D 组人数除以总人数即可求得n 值;(3)用总人数乘以D 类所占的百分比即可求得全校喜欢篮球的人数;【详解】解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100﹣30﹣20﹣10=40人,条形统计图为:(2)∵A 组有30人,D 组有10人,共有100人,∴A 组所占的百分比为:30%,D 组所占的百分比为10%,∴m =30,n =10;表示区域C 的圆心角为40100×360°=144°;(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.17、(1)证明见解析;(2)245.【解析】试题分析:(1)根据平行线的性质得出∠ADB=∠DBC ,∠DAC=∠BCA ,根据角平分线定义得出∠DAC=∠BAC ,∠ABD=∠DBC ,求出∠BAC=∠ACB ,∠ABD=∠ADB ,根据等腰三角形的判定得出AB=BC=AD ,根据平行四边形的判定得出四边形ABCD 是平行四边形,即可得出答案;(2)先求出BD 的长,求出菱形的面积,即可求出答案.试题解析:(1)∵AE ∥BF ,∴∠ADB=∠DBC ,∠DAC=∠BCA ,∵AC 、BD 分别是∠BAD 、∠ABC 的平分线,∴∠DAC=∠BAC ,∠ABD=∠DBC ,∴∠BAC=∠ACB ,∠ABD=∠ADB ,∴AB=BC ,AB=AD ∴AD=BC ,∵AD ∥BC ,∴四边形ABCD 是平行四边形,∵AD=AB ,∴四边形ABCD 是菱形;(2)过A 作AM ⊥BC 于M ,则AM 的长是AE ,BF 之间的距离,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=OC=12AC=12×6=3,∵AB=5,∴在Rt △AOB 中,由勾股定理得:BO=4,∴BD=2BO=8,∴菱形ABCD 的面积为12×AC×BD=12×6×8=24,∵四边形ABCD 是菱形,∴BC=AB=5,∴5×AM=24,∴AM=245,即AE ,BF 之间的距离是245.考点:1.菱形的判定和性质,2.平行四边形的判定,3.平行线的性质,4.等腰三角形的判定18、(1)见解析;(2)【解析】(1)由角平分线的性质可得∠ABD=∠CBD ,再由垂直的定义得出∠EDB=∠CDB ,然后由CF ∥DE ,得出∠EDB=∠CFD ,最后利用菱形的判定解答即可;(2)利用勾股定理及菱形的性质求解即可.【详解】解:(1)证明:解:(1)证明:∵BD 平分∠ABC ,∴∠ABD=∠CBD,∵∠ACB=90°,DE ⊥AB,∴DE=CD,∠CBD+∠CDB=90°,∠EBD+∠EDB=90°,∴∠EDB=∠CDB,∵CF ∥DE,∴∠EDB=∠CFD,∴∠CDB=∠CFD,∴CD=CF,∴DE=CF,∴DE=EF=FC=DC ∴四边形CDEF 是菱形.(2)在RT △ADE 中,12AB cm =,6BC cm =,∴∠==,在RT △ADE 中,∵∠A=30°,∴AD=2DE,∵四边形CDEF 是菱形,∴DE=DC,∴AD=2DC,∴∴DC=2,∴四边形CDEF 的周长为:本题考查了角平分线的性质,勾股定理及菱形的判定与性质,解题的关键是掌握这些性质和判定.一、填空题(本大题共5个小题,每小题4分,共20分)19、1m 【解析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,4OA ==,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键.20、一.【解析】先根据一次函数y=-23x-1中k=-23,b=-1判断出函数图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=-23x-1中k=-23<0,b=-1<0,∴此函数的图象经过二、三、四象限,不经过第一象限.故答案为:一.本题考查一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.21、2-,1-,1【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.【详解】解:240 120xx+≥⎧⎨->⎩①②;由①得:2x≥-;由②得:12 x<;不等式组的解集为:1 22x-≤<;所以不等式组的整数解为2-,1-,1,故答案为:2-,1-,1.本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22、1±【解析】根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,∴△=(-2a)2-4×1×1=0,解得:a=±1.故答案为:±1.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.23、3.【解析】先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.【详解】因为四边形ABCD 是菱形,所以AC ⊥BD .在Rt △AOB 中,利用勾股定理求得BO=1.∴BD=6,AC=2.∴菱形ABCD 面积为12×AC×BD=3.故答案为:3.本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.二、解答题(本大题共3个小题,共30分)24、(1)a=2,b=1(2)3【解析】试题分析:(1)因为直线与双曲线交于点B,将B 点坐标分别代入直线与双曲线的解析式,即可解得a 与b 的值.(2)先利用直线BC 平行于x 轴确定C 点坐标为()02,,然后根据三角形面积公式计算三角形面积即可.试题解析:(1)由两图象相交于点B ,得136b a a +=⎧⎨-=-⎩113y x =-+解得:a=2,b=1(2)∵点B (-3,2),直线l ∥x 轴,∴C 点坐标为()02,,BC =3,∴S △ABC =13232⨯⨯=.25、(1)x ﹣60、300﹣x 、260﹣x ;(2)w=10x+10200(60≤x≤260);(3)m 的取值范围是0<m≤1.【解析】分析:(1)根据题意可以将表格中的空缺数据补充完整;(2)根据题意可以求得w 与x 的函数关系式,并写出x 的取值范围;(3)根据题意,利用分类讨论的数学思想可以解答本题.详解:(1)∵D市运往B市x吨,∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,故答案为:x﹣60、300﹣x、260﹣x;(2)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(3)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤1,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤124 13,∵12413<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤1.点睛:本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.26、(1)如果超市在进价的基础上提高5%作为售价,则亏本1元;(2)该水果的售价至少为2.1元/千克.【解析】(1)根据利润=销售收入-成本,即可求出结论;(2)根据利润=销售收入-成本结合该水果的利润率不得低于11%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】答:如果超市在进价的基础上提高5%作为售价,则亏本1元.(2)设该水果的售价为x元/千克,根据题意得:200×(1﹣5%)x﹣200×2≥200×2×11%,解得:x≥2.1.答:该水果的售价至少为2.1元/千克.本题考查了一元一次不等式的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据各数量间的关系,正确列出一元一次不等式.。
西安交通大学附属中学分校数学三角形填空选择同步单元检测(Word版 含答案)
∴BDE BAC
∴①正确;
②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,
∴∠DBE=∠DBC+∠EBC= ∠ABC+ ∠MBC= ×180°=90°,
∴EB⊥DB,
故②正确,
③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,
【答案】1.5或5或9
【解析】
【分析】
分为两种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.
【详解】
如图1,当点P在AC上.∵△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.
∵△APE的面积等于6,∴S△APE= AP•CE= AP×4=6.∵AP=3,∴t=1.5.
.
【答案】
【解析】
【分析】
利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A1= ∠A,再依此类推得,∠A2= ∠A,……,∠A8= ∠A,即可求解.
【详解】
解:根据三角形的外角得:
∠ACD=∠A+∠ABC.
又∵∠ABC与∠ACD的平分线交于点A1,
∴
∴∠A1= ∠A
依此类推得,∠A2= ∠A,……,∠A8= ∠A= =
∵多边形外角和是360度,正多边形的一个外角是45°,
∴360°÷45°=8
即该正多边形的边数是8.
【点睛】
本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).
5.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.
西安交通大学附属中学分校八年级数学上册第五单元《分式》测试(包含答案解析)
一、选择题1.如果分式2121x x -+的值为0,则x 的值是( ) A .1B .0C .1-D .±1 2.下列运算正确的是( ) A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠ 3.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m = 4.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 5.下列变形不正确的是( )A .1122x x x x +-=---B .b a a b c c--+=- C .a b a b m m -+-=- D .22112323x x x x--=--- 6.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠-7.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<- C .x 2> D .x 2<8.若分式293x x -+的值为0,则x 的值为( ) A .4B .4-C .3或-3D .3 9.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003x x +-= C .0.50.01100203x x +-= D .50513x x +-= 10.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++11.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 12.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1二、填空题13.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.14.计算2216816a a a -++÷428a a -+=__________. 15.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.16.若关于x 的方程1322m x x x -+=--的解是正数,则m =____________. 17.若13x x +=,则231x x x ++的值是_______. 18.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 19.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________. 20.要使分式2x x 1+有意义,那么x 应满足的条件是________ . 三、解答题21.计算:(1)2031(2021)|13|(2)4; (2)2222()()ab a ab b a b a ab b . 22.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.23.先化简231124a a a +⎛⎫+÷ ⎪--⎝⎭,然后请你从2,2,1--和0中选取一个合适的值代入a ,求此时原式的值.24.(提示:我们知道,如果0a b ->,那么a b >.)已知0m n >>.如果将分式n m 的分子、分母都加上同一个不为0的数后,所得分式的值比n m是增大了还是减小了?请按照以下要求尝试做探究. (1)当所加的这个数为1时,请通过计算说明;(2)当所加的这个数为2时,直接说出结果;(3)当所加的这个数为0a >时,直接说出结果.25.解方程:312(2)x x x x -=-- 26.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121x x -+值为0, ∴2x+1≠0,210x -=,解得:x=±1.故选:D .【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键. 2.D解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a -=,故B 选项不符合题意;C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.3.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.4.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 5.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.解:A 、1122x x x x +--=---,故A 不正确; B 、b a a bc c --+=-,故B 正确; C 、a b a b m m-+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.6.D解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.7.C解析:C【分析】 根据题意列得2x 131x x 1+<---,求解即可得到答案. 【详解】 ∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-, ∴x 2-<-,解得x 2>.∴x2>符合题意.故选:C.【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.8.D解析:D【分析】先根据分式的值为0可得290x,再利用平方根解方程可得3x=±,然后根据分式的分母不能为0即可得.【详解】由题意得:293xx-=+,则290x,即29x=,由平方根解方程得:3x=±,分式的分母不能为0,30x∴+≠,解得3x≠-,则x的值为3,故选:D.【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.D解析:D【分析】根据分式的基本性质求解.【详解】解:将0.50.0110.20.03x x+-=的分母化为整数,可得50513xx+-=.故选:D.【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键.10.C解析:C【分析】直接进行同分母的加减运算即可.解:23211x xx x+-++=2321x xx+-+=31x+,故选C.【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.11.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A.22b ba a=不一定正确;B.22+++a ba ba b=不正确;C. 2422x y x yx x--=分子分母同时除以2,变形正确;D.22m nnm-=-不正确;故选:C.【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.12.C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x xx---=0∴222=010x xx⎧--⎨-≠⎩,解得x=2.故答案为C.【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题13.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2.【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.15.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠ 解析:m <5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】 解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x -+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.17.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算 解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算.【详解】233111x x x x x=++++, 当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.18.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.19.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】 设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件, 依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.20.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x ≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x +≠,解得:1x ≠-,故答案为:1x ≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.三、解答题21.(1)7;(2)32a .【分析】(1)根据绝对值、零指数幂、负整数指数幂、立方的运算分别进行计算,然后根据实数的运算法则求得计算结果;(2)先根据多项式乘以多项式的法则进行计算,再合并同类项即可.【详解】解:(1)2031(2021)|13|(2)416128=+--7=(2)2222()()a b a ab b a b a ab b322223a a b ab a b ab b =-++-++322223a a b ab a b ab b ++---3333a b a b =++-32a =.【点睛】考查了整式的混合运算以及负整数指数幂、零指数幂、立方、绝对值运算等知识,熟练运用这些法则是解题关键.22.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】 解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.23.2a +,2【分析】把括号内通分,并把除法转化为乘法,约分化简后从所给数中选一个使分式有意义的数代入计算即可.【详解】 解:原式=2234221a a a a a --⎛⎫+⨯ ⎪--+⎝⎭ =()()22121a a a a a +-+⨯-+ =2a +,∵a 取2,-2,-1时分式无意义,∴a 只能取0,∴原式=0+2=2.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24.(1)所得分式的值比原来增大了,计算说明见解析;(2)增大;(3)增大.【分析】(1)先求出11n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (2)先求出22n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (3)先求出n a n m a m+-+,通分化简,然后根据0m n ->,0m >,0a >判断即可. 【详解】解:(1)由题意得: 11n n m m+-+, (1)(1)(1)(1)m n n m m m m m ++=-++, (1)mn m mn n m m +--=+,(1)m n m m -=+, ∵0m n >>,∴0m n ->,0m >,10m +>, ∴0(1)m n m m ->+, ∴101n n m m+->+, 11n n m m+∴>+,即所得分式的值比原来增大了; (2)22n n m m+-+ (2)(2)(2)(2)m n n m m m m m ++=-++ 22(2)mn m mn n m m +--=+ ()2(2)m n m m -=+同理可得()20(2)m n m m ->+, ∴22n n m m+>+,即所得分式的值比原来增大了; (3)n a n m a m +-+ ()()()()m n a n m a m m a m m a ++=-++ ()mn ma mn na m m a +--=+ ()(2)a m n m m -=+∵0m n ->,0m >,0a >,∴()0(2)a m n m m ->+ ∴n a n m a m+>+,即所得分式的值比原来增大了. 【点睛】本题考查分式的运算,解题的关键是掌握分式运算的法则.25.32x =【分析】 按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x -,得()223x x x --=. 解得32x =, 检验:当32x =时,()20x x -≠. ∴原分式方程的解为32x =. 【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.26.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】 解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++ 21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.。
陕西省西安交通大学附属中学2024~2025学年八年级上学期9月月考数学试题[含答案]
9.请写出下列各数: - 2 , 7
6
,0,
π 2
,
3
8
,1.3g
g
5
,
60%
中的无理数
.
10.已知 a+b<0,ab>0,则点 P(a,b)在第 象限.
11.若 x , y 为实数,且 x = y - 3 + 3 - y - 2 ,则 yx 的值为 .
12.已知点 P 在 x 轴上,且点 P 到 y 轴的距离等于 6,则点 P 的坐标是 . 13.如图,在VABC 中, ÐA = 45° ,点 D,E,F 在VABC 的边上, BD = DE = 2 , FD = CD = 4 ,则 VDEF 的面积是 .
C.16cm
D. 20cm
8.如图,在直角坐标系中,已知点 A-3, 0 , B 0, 4 ,对△OAB 连续作旋转变换,依次得
到 V1 , V2 , V3 ,△4 ,…,△26 的直角顶点的坐标为( )
A. 96, 0
B. 100, 0
C. 103.2, 2.4
D. 105.2, 2.4
二、填空题(本题共 6 道小题,每题 3 分,共 18 分)
6
,0,
π 2
,
3
8
,1.
g
3
g
5
,
60%
中的无理数的:
π 6,2,
π 故答案为 6 ,
2
10.三
【分析】根据有理数的乘法、有理数的加法,可得 a、b 的符号,根据第三象限内点的横坐
标小于零,纵坐标小于零,可得答案.
【详解】因为 a+b<0,ab>0,
所以 a<0,b<0,
所以点 P(a,b)在第三象限,
西安交通大学附属中学分校数学分式解答题同步单元检测(Word版 含答案)
即甲的平均攀登速度是丙的 倍.
3.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.
解:解方程 ﹣ = ﹣ ,先左右两边分别通分可得: ,
化简可得: ,
整理可得:2x=15﹣8,
解得:x= ,
这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),
这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)];
解方程 ﹣ = ﹣ ,先左右两边分别为通分可得:
,
化简可得: ,
解得:x= ,
这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),
4.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m元/千克和n元/千克,且m≠n,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
(1)甲、乙两次购买饲料的平均单价各是多少?(用字母m、n表示)
(2)谁的购买方式比较合算?
一、八年级数学分式解答题压轴题(难)
1.已知:方程 ﹣ = ﹣ 的解是x= ,方程 ﹣ = ﹣ 的解是x= ,试猜想:
(1)方程 + = + 的解;
(2)方程 ﹣ = ﹣ 的解(a、b、c、d表示不同的数).
【答案】(1)x=4;(2)x= .
【解析】
通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.
这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];
陕西省西安交大附中2023-2024学年七年级下学期第一次月考数学试题(解析版)
2023-2024学年陕西省创新港西安交大附中七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,共30分.每小题只有一项是符合题目要求的)1. 新型冠状病毒属于属的新型冠状病毒,有包膜,颗粒呈圆形或者椭圆形,常为多形性,一个病毒的直径约为,用科学记数法可表示为( )A. B. C. D. 【答案】C【解析】【分析】绝对值小于1的数用科学记数法表示,一般形式为,这里n 为正整数,,n 为原数左边起第一个不为零的数字前面的0的个数决定,按照此方法即可把用科学记数法表示出来.【详解】解:.故选:C .【点睛】本题考查了用科学记数法表示较小的数,一般形式为,这里n 为正整数,,正确确定a 与n 是解题的关键.2. 一粒石子落入湖面,形成一个如圆周样的涟漪,在圆周长与半径的关系式中,变量是( )A. ,B. ,C. ,D. ,【答案】A【解析】【分析】根据变量是变化的量,进行判断即可.【详解】解:∵,∴随着的变化而变化,是固定不变的量,∴变量是和;故选A.β0.00000014m 60.1410m-⨯61.410m -⨯71.410m -⨯81.410m-⨯10n a -⨯1||10a ≤<0.00000014m 70.00000014m=1.410m -⨯10n a -⨯1||10a ≤<C r 2C r π=C rC ππr C 2π2C r π=C r 2πC r【点睛】本题考查变量与常量.解题的关键是掌握变量是变化的量,是解题的关键.3. 一条公路两次转弯后又回到原来的方向(即),如图所示,如果第一次转弯时,那么应等于( )A. 140°B. 40°C. 100°D. 180°【答案】A【解析】【分析】根据平行线的性质得出,代入求出即可.【详解】,(两直线平行,内错角相等),,,故选A .【点睛】本题考查了平行线的性质的应用,根据平行线的性质(两直线平行,内错角相等)得出是解题的关键.4. 下列计算正确的是( )A. B. C.D. 【答案】D【解析】【分析】本题主要考查了积的乘方,单项式除以单项式,幂的乘方,同底数幂除法.根据积的乘方,单项式除以单项式,幂的乘方,同底数幂相除法则,逐项判断,即可求解.【详解】解:,故A 选项错误,不符合题意;,故B 选项错误,不符合题意;,故C选项错误,不符合题意;AB CD 140B ∠=︒C ∠B C ∠=∠∥ AB CD B C ∴∠=∠140B ∠=︒ 140C ∴∠=︒B C ∠=∠()2224a a -=-322a b a b a ÷=()527b b =257m m m ⋅=()2224a a -=322a b a b ab ÷=()5210b b =,故D 选项正确,符合题意;故选:D .5. 下列各式中,能用平方差公式进行计算的是( )A. (﹣x ﹣y )(x +y )B. (2x +y )(y ﹣2x )C. (2x +y )(x ﹣2y )D. (﹣x +y )(x ﹣y )【答案】B【解析】【分析】左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,据此判断出能用平方差公式进行计算的是哪个即可.【详解】(﹣x ﹣y )(x +y )=﹣(x +y )2,不能用平方差公式进行计算;(2x +y )(y ﹣2x )=﹣(2x +y )(2x ﹣y ),能用平方差公式进行计算;(2x +y )(x ﹣2y )不能用平方差公式进行计算;(﹣x +y )(x ﹣y )=﹣(x ﹣y )2,不能用平方差公式进行计算.故选:B .【点睛】此题考查平方差公式,熟记平方差公式的特点正确判断出公式中的两个平方项的底数是解题的关键.6. 游学期间,两名老师带领名学生到展览馆参观,已知教师参观门票每张40元,学生参观门票每张20元,设参观门票总费用为元,则与的函数关系为( )A. B. C. D. 【答案】A【解析】【分析】本题考查一次函数的实际应用.根据总费用为学生的费用加上老师的费用即可.【详解】解:根据题意,得.故选:A .7. 如图,现有正方形卡片类、类和长方形卡片类各若干张,如果要拼一个长为,宽为的大长方形,那么需要类卡片的张数是( )257m m m ⋅=x y y x 2080y x =+80y x =2040y x =+4040y x =+204022080y x x =+⨯=+A B C 32a b +3a b +CA. B. C. D. 【答案】A【解析】【分析】计算出长为,宽为的大长方形的面积,再分别得出、、卡片的面积,即可看出应当需要各类卡片多少张.【详解】解:长为,宽为的大长方形的面积为:卡片的面积为:;卡片的面积为:;卡片的面积为:;因此可知,拼成一个长为,宽为的大长方形,需要块卡片,块卡片和块卡片.故选:.【点睛】本题考查了多项式乘法,正确掌握多项式乘多项式运算法则是解题关键.8. 如图,已知AB //CD ,M 为平行线之间一点,连接AM ,CM ,N 为AB 上方一点,连接AN ,CN ,E 为NA 延长线上一点,若AM ,CM 分别平分∠BAE ,∠DCN ,则∠M 与∠N 的数量关系为( )A. ∠M ﹣∠N =90°B. 2∠M ﹣∠N =180°C. ∠M +∠N =180°D. ∠M +2∠N =180°【答案】B【解析】【分析】过点M 作MO //AB ,过点N 作NP //AB ,则MO //AB //CD //NP ,根据平行线的性质可得∠AMC =∠1+∠2,∠CNE =2∠2﹣∠3,∠3=180°﹣2∠1,即可得出结论.【详解】解:过点M 作MO //AB ,过点N 作NP //AB,11963()32a b +()3a b +A B C ()32a b +()3a b +()()222232332963611a b a b a ab ab b a b ab+⨯+=+++=++A 2a a a ⨯=B 2b b b ⨯=C a b ab ⨯=()32a b +()3a b +3A 6B 11C A∵AB //CD ,∴MO //AB //CD //NP ,∴∠AMO =∠1,∠OMC =∠MCD ,∵AM ,CM 分别平分∠BAE ,∠DCN ,∴∠BAE =2∠1,∠NCD =2∠2,∠2=∠MCD ,∴∠AMC =∠MCD +∠1=∠1+∠2,∵CD //NP ,∴∠PNC =∠NCD =2∠2,∴∠CNE =2∠2﹣∠3,∵NP //AB ,∴∠3=∠NAB =180°﹣2∠1,∴∠CNE =2∠2﹣(180°﹣2∠1)=2(∠1+∠2)﹣180°=2∠AMC ﹣180°,∴2∠AMC ﹣∠CNE =180°,故选:B .【点睛】本题考查了平行线的性质与判定,角平分线的定义,正确的添加辅助线是解题的关键.9. 如图,下列不能判定的条件是( )A. B. C. D. 【答案】B【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、因为,所以,故本选项不符合题意;B 、因为,所以,故本选项符合题意;C 、因为,所以,故本选项不符合题意;AB CD ∥180B BCD ∠+∠=︒12∠=∠34∠∠=5B ∠=∠A 180B BCD ∠+∠=︒//AB CD 12∠=∠//AD BC 34∠∠=//AB CDD 、因为,所以,故本选项不符合题意.故选B .【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.平行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.10. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列说法正确的是( )A. 乙用16分钟追上甲B. 乙追上甲后,再走1500米才到达终点C. 甲乙两人之间的最远距离是300米D. 甲到终点时,乙已经在终点处休息了6分钟【答案】D【解析】【分析】本题主要考查函数的图象,能从函数的图象中获取相关信息解决问题是解答的关键.根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:米/分,乙追上甲用的时间为:(分钟),故A 选项错误;设乙速度为x 米/分,由题意得:,解得:.∴乙速度为80米/分.∴乙走完全程的时间为(分),乙追上甲后,又走(分),即再走米才到达终点,故B 选项错误;乙到达终点时,甲离终点距离是:米,(分),即甲到终点时,乙已经终点处休息了6分钟,故D 选项正确;由图可知,乙到达终点时,甲乙两人之间的距离最远,最远距离是360米,故C 选项错误;故选:D .二.填空题(每小题3分,共5小题,共计15分)的在5B ∠=∠//AB CD 240460÷=16412-=166012x ⨯=80x =24003080=181230=-80181440⨯=2400(430)60360-⨯=+360606÷=11. 已知,,则的值为__________.【答案】##【解析】【分析】根据同底数幂的除法公式的逆用和幂的乘方公式的逆用,即可求解.【详解】解:∵,,∴.故答案为:.【点睛】此题主要考查同底数幂的除法公式和幂的乘方公式,解题的关键是熟知公式的逆用.12. 已知与互余,且,则的补角的度数为____________度.【答案】125【解析】【分析】本题考查余角和补角的概念.根据题意先求出,再求其补角即可.【详解】解:与互余,且的补角的度数为.故答案为:125.13. 如果是一个完全平方式,则__________.【答案】-1或3【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵=,∴2(m-1)x=±2×x ×2,解得m=-1或m=3.故答案为-1或3【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14 如图,把一张长方形纸条沿折叠,若,则_________°..3m a =2n a =2m n a -340.753m a =2n a =()22223324n m n m n m a a a a a -=÷=÷=÷=341∠2∠135∠=︒2∠2∠ 1∠2∠135∠=︒2903555∴∠=︒-︒=︒∴2∠18055125︒-︒=︒22(1)4x m x +-+m =22(1)4x m x +-+222(1)2x m x +-+ABCD EF 162∠=︒AEG ∠=【答案】【解析】【分析】此题要求的度数,可先求得其邻补角的度数,根据平行线的性质“两直线平行,内错角相等”以及折叠的性质就可求解的度数.【详解】解:四边形是长方形,,,(两直线平行,内错角相等)由折叠得:,,,故答案为:.【点睛】本题考查了平行线的性质、折叠的性质,正确观察图形,熟练掌握平行线的性质“两直线平行,内错角相等”是解题的关键.15. 如图,在中,O 是三条角平分线的交点,过点O 作交于点D ,交于点E ,若,,则的周长为____________.【答案】10【解析】【分析】此题考查了等腰三角形的判定、平行线的性质、角平分线的定义等知识,先证明,同理可得,利用等量代换进行求解即可.【详解】解:∵,56AEG ∠DEG ∠AEG ∠ ABCD AD BC ∴∥162DEF ∴∠=∠=︒62GEF DEF ∠=∠=︒6262124DEG ∴∠=︒+︒=︒18012456AEG ∠=︒-︒=︒56ABC DE BC ∥AB AC 6AB =4AC =ADE V BD OD =OE EC =DE BC ∥∴,又∵是的角平分线,∴,∴,∴,同理:,∴的周长.故答案为:10.三、解答题(本大题共8小题,共55分,解答应写出文字说明,证明过程或演算步骤.)16. 如图,是一个“因变量随着自变量变化而变化”的示意图,下面表格中输入x…﹣202…输出y …2m 18…(1)直接写出: , , ;(2)当输入x 的值为时,求输出y 的值;(3)当输出y 的值为12时,求输入x 的值.【答案】(1),,(2)4(3)【解析】【分析】(1)根据,把,代入可得b 的值;根据,把,代入可得k 的值;根据,把,代入可得m 的值;(2)根据,代入可得y 的值;DOB OBC ∠=∠BO ABC ∠DBO OBC ∠=∠DBO DOB ∠=∠BD OD =OE EC =ADE V 10AD OD OE AE AD BD AE EC AB AC =+++=+++=+=k =b =m =1﹣9664321x =-<2x =-2y =2y x b =+21x =>2x =18y =y kx =01x =<0x =y m =26y x =+11x =-<26y x =+(3)分或两种情况,把分别代入和,求得x 的值,再根据x 的取值范围判断可得结果.【小问1详解】解:把,代入得,解得,把,代入得,解得,把,代入得,解得.故答案为:9;6;6【小问2详解】当时,有【小问3详解】当,时,解得,舍去;当时,时,解得,∴当输出的y 值为12时,输入的x 值为.【点睛】本题考查了根据自变量的取值范围求相应的函数值,能够分情况考虑问题是解题的关键.17. 计算:(1);(2)利用乘法公式简便运算:.【答案】(1)12(2)【解析】【分析】本题主要考查了完全平方公式,平方差公式,积乘方的逆运算,零指数幂和负整数指数幂:(1)先计算零指数幂,负整数指数幂,再根据积的乘方的逆运算计算法则把变形为,据此计算求解即可;的1x <1x ≥12y =26y x =+9y x =2x =-2y =3y x b =+24b =-+6b =2x =18y =y kx =182k =9k =0x =y m =24y x =+06m =+6m =11x =-<2(1)64y =⨯-+=12y =4x <31x =>12y =5x ≥443x =>43()()220240202310.254433π-⎛⎫-+⨯--- ⎪⎝⎭2995149-⨯7302()202420230.254⨯-()()202340.254-⨯⨯-(2)把原式变形为,再利用乘法公式求解即可.【小问1详解】解:;【小问2详解】解:18. 如图,点E 为边上一点,过点E 作直线,使.【答案】见解析【解析】【分析】此题主要考查了基本作图,作已知直线的平行线,以B 为圆心,任意长为半径画弧,以E 为圆心,交于点R 、Q ,以E 为圆心,为半径画弧,以长为半径画弧,两弧交于点O ,连接所在直线即为所求.【详解】作法:过点E 作,则直线就是所求作的直线,()()()21001501501-+--()()220240202310.254433π-⎛⎫-+⨯--- ⎪⎝⎭()()2023202390.5441=+⨯-⨯--()()2023940.2541=+-⨯⨯--()()20239141=+-⨯--()()9141=+-⨯--941=+-12=2995149-⨯()()()21001501501=--+-10000200125001=-+-+7302=ABC ∠BC MN ∥MN AB AB BC 、BQ QR OE MEC B ∠=∠MN①以B 为圆心,任意长为半径画弧,交于点R 、Q ,以E 为圆心,为半径画弧,交于点F ,②以F 为圆心,以长为半径画弧,两弧交于点O ,过点O 、E 作直线.此时.19. 先化简再求值:,其中.【答案】,3【解析】【分析】本题考查了整式的混合运算,熟练掌握运算法则是解答本题的关键.先把所给代数式化简,再把代入计算即可.【详解】,当时,原式.20. 如图,,的平分线交于点F ,交的延长线于点E ,,求证:.AB BC 、BQ BC QR MN ∥MN AB 22(3)(3)(3)62a b b a a b b b ⎡⎤+-+--÷⎣⎦1,23a b =-=-32a b -1,23a b =-=-22(3)(3)(3)62a b b a a b b b⎡⎤+-+--÷⎣⎦2222296(9)62a ab b a b b b⎡⎤=++---÷⎣⎦2222296962a ab b a b b b⎡⎤=++-+-÷⎣⎦()2642ab b b =-÷32a b =-1,23a b =-=-()132233⎛⎫=⨯--⨯-= ⎪⎝⎭AD BC ∥BAD ∠CD BC 180B BCD ∠+∠=︒CFE E ∠=∠请将下面的证明过程及理由补充完整:证明:∵(已知),∴,(____________)∵平分,∴____________.(角平分线的定义)∴.(____________)∵(____________),∴______.(____________)∴.(____________)∴.(____________)【答案】两直线平行,内错角相等;;等量代换;已知;;同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换.【解析】【分析】平行线的判定与性质、角平分线的定义,再结合题目给出的证明思路解答即可.【详解】证明:∵(已知),∴,(两直线平行,内错角相等)∵平分,∴.(角平分线的定义)∴.(等量代换)∵(已知),∴.(同旁内角互补,两直线平行)∴.(两直线平行,同位角相等)∴.(等量代换).故答案:两直线平行,内错角相等;;等量代换;已知;;同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换.【点睛】本题主要考查了平行线的判定与性质,角平分线的定义等知识,灵活运用平行线的判定与性质是为AD BC ∥2E ∠=∠AE BAD ∠1E ∠=∠180B BCD ∠+∠=︒1CFE ∠=∠CFE E ∠=∠12∠=∠AB DC AD BC ∥2E ∠=∠AE BAD ∠12∠=∠1E ∠=∠180B BCD ∠+∠=︒AB DC 1CFE ∠=∠CFE E ∠=∠12∠=∠AB DC解答本题的关键.21. 如图,在中,,于D .(1)求证:;(2)若平分分别交、于E 、F ,求证:.【答案】(1)过程见详解;(2)过程见详解.【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.(1)由于与都是的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出,再根据角平分线的定义得出,然后由对顶角相等的性质,等量代换即可证明.【小问1详解】证明:,于D ,,,;【小问2详解】证明:在中,,同理在中,.又平分,,,又,.22. [挑战题]数学活动课上,老师准备了如图①所示的长为,宽为的长方形纸片沿着长方形纸片内部的虚线剪开得到4个面积相等的小长方形,其中阴影部分为一个小正方形.ACB △90ACB ∠=︒CD AB ⊥ACD B ∠=∠AF CAB ∠CD BC CEF CFE ∠=∠ACD ∠B ∠BCD ∠9090CFA CAF AED DAE ∠=︒-∠∠=︒-∠,CAF DAE ∠=∠CEF CFE ∠=∠90ACB ∠= ゜CD AB ⊥90ACD BCD ∴∠+∠=︒90B BCD ∠+∠=︒ACD B ∴∠=∠Rt AFC △90CFA CAF ∠=︒-∠Rt AED △90AED DAE ∠=︒-∠AF CAB ∠CAF DAE ∴∠=∠AED CFE ∴∠=∠CEF AED ∠=∠ CEF CFE ∴∠=∠2a 2b(1)请你观察图形,写出之间的等量关系;(2)如图③,为两个大小不同的正方形,面积分别是和,已知面积之和为36,连接点A ,F 与边,若,求.【答案】(1);(2)16.【解析】【分析】本题考查了完全平方公式的几何意义.解决问题的关键是观察几何图形之间的面积关系,找到等量关系.(1)根据大正方形面积-4个小长方形面积=阴影部分正方形的面积写出等式即可;(2)利用可求解.【小问1详解】解:小正方形的边长为,因此面积为,∵大正方形的面积为,小长方形的面积为,∴之间的等量关系为;【小问2详解】设大正方形的边长为m 、小正方形的边长n ,则,由得,,即,∴.()()224a b a b ab -+,,1S 2S AC 10AB =ACF S △22()()4a b a b ab -=+-()222=2m n m n mn +++()a b -()2a b -()2a b +ab ()()224a b a b ab -+,,22()()4a b a b ab -=+-221036m n m n ++==,()222=2m n m n mn +++210362mn +=32mn =1162ACF S mn ==23. 已知:,一块三角板中,,将三角板如图所示放置,使顶点落在边上,经过点作直线交边于点,且点在点的左侧.(1)如图,若,则______;(2)若的平分线交边于点,①如图,当,且时,试说明:;②如图,当保持不变时,试求出与之间的数量关系.【答案】(1)45(2)①见解析;②.【解析】【分析】本题考查了平行线的性质与判定、角平分线的定义,解题关键是熟练运用平行线的性质与判定,确定角之间的关系.(1)过点E 作,求出,利用平行线的性质得出即可;(2)①根据,可得,再根据角平分线性质得出,利用内错角相等证明平行即可;②根据平行线的性质得出,再根据角平分线的性质和平行线的性质得出,即可求出与α之间的数量关系.【小问1详解】解:如图,过点E 作,()090AOB αα∠=︒<<︒CDE 903060CED CDE DCE ∠=︒∠=︒∠=︒,,CDE C OB D MN OB ∥OA M M D 45CE OA NDE ∠=︒∥,α=︒MDC ∠DF OB F DF OA ∥60α=︒CE OA ∥CE OA ∥OFD ∠α12150OFD α∠=︒-EF MN ∥45FEC ∠=︒45AOB ECB ︒∠=∠=DF OA ∥MN OB ∥60MDF ∠=︒60CDF ∠=︒60MDC DCB α∠=∠=︒+1302∠=∠=︒+DFC MDF a OFD ∠EF MN ∥∴,∵,∴,∵,∴,∴,∵,∴,则,故答案为:45;【小问2详解】解:①∵,∴,∵,∴,∵平分,∴,在直角三角形中,,∴,∴,∵,∴;②∵当保持不变时,总有,在直角三角形中, ,∴,∵,∴,且,45DEF NDE ︒∠=∠=90CED ∠=︒45FEC ∠=︒MN OB ∥EF OB ∥45BCE FCE ︒∠=∠=AO CE ∥45AOB ECB ︒∠=∠=45α=︒DF OA ∥60DFC AOB α∠=∠==︒MN OB ∥MDF DFC ∠=∠DF MDC ∠60CDF MDF ∠==︒DCE 60DCE ∠=︒CDF DCE ∠=∠CE DF ∥DF OA ∥CE OA ∥CE OA ∥ECB α∠=DCE 60DCE ∠=︒60DCB α∠=︒+MN OB ∥60MDC DCB α∠=∠=︒+DFC MDF ∠=∠∵平分,∴,∴.DF MDC ∠1302DFC MDF α∠=∠=︒+111801803015022OFD DFC αα⎛⎫∠=︒-∠=︒-︒+=︒- ⎪⎝⎭。
陕西省西安交通大学附属中学分校2023-2024学年七年级下学期月考数学试题
陕西省西安交通大学附属中学分校2023-2024学年七年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一滴水的质量约是0.000051千克,这个数据用科学记数法表示为( ) A .45110-⨯千克 B .55110-⨯千克 C .45.110-⨯千克 D .55.110-⨯千克 2.如图,将直尺与含30︒角的三角尺叠放在一起,162∠=︒,则2∠的大小是( )A .56︒B .58︒C .60︒D .62︒ 3.下列运算正确的是( )A .2510a a a ⋅=B .22(2)4a a -=-C .623a a a ÷=D .()428a a -= 4.如图,下列条件中能判定AD BC ∥的是( )A .34∠∠=B .5D ∠=∠C .180D BAD ∠+∠=︒ D .5B ∠=∠ 5.若427x =,23y =,则22x y -的值为( )A .24B .81C .9D .75 6.一个长方形的面积为232x x +,它的一条边长为x ,则它的周长为( ) A .84x + B .82x + C .42x + D .64x +7.如图,直线AB ,CD 相交于点O ,OE OF ⊥,OF 平分BOD ∠,:1:4BOF BOC ∠∠=,则∠BOE 的度数为( )A .45︒B .55︒C .60︒D .65︒8.如图,四边形ABCD 、AEFG 均为长方形,点E 、G 分别在AB 、AD 上,2cm BE DG ==,长方形的AEFG 周长为18cm ,则图中阴影部分的面积为( )2cmA .18B .20C .22D .24二、填空题9.为了测量一座古塔外墙底部的底角∠AOB 的度数,李潇同学设计了如下测量方案:作AO ,BO 的延长线OD ,OC ,量出∠COD 的度数,从而得到∠AOB 的度数.这个测量方案的依据是.10.如图,将长方形ABCD 沿EF 翻折,使得点D 落在AB 边上的点G 处,点C 落在点H 处,若132∠=︒,则2∠=.11.如果24x mx ++是一个完全平方式,那么m =;12.如图,已知ABC V 的面积是6,5AB =,点D 在线段AB 上运动,线段CD 的最小值是.13.已知:()212x y +=,()24x y -=,则223x xy y ++的值为.14.如图,点M ,P ,Q ,N 在同一直线上,现将PM 绕点P 以每秒3︒的速度顺时针旋转,同时QN 绕点Q 以每秒2︒的速度逆时针旋转,PM 旋转一周后PM 与QN 同时停止转动,设旋转时间为t 秒,当PM QN ∥时,t 的值为.三、解答题15.计算:(1)()0120223211232-⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭. (2)()()232622a a a a a -÷+⋅-. 16.先化简,再求值:()()()()2233362a b b a a b b b ⎡⎤+-+--÷-⎣⎦,其中13a =-,2b =-. 17.如图,点P 是长方形ABCD 边BC 上的点,在长方形内部求作线段PQ ,使得PQ ∥BE ,交AD 于点Q .(要求:尺规作图,不写作法,保留作图痕迹)18.如图,直线AB 、CD 相交于O ,OE OC ⊥,OF 是AOE ∠的角平分线,34COF ∠=︒,求BOD ∠的度数.19.已知3m n +=,2mn =.(1)当2a =时,求()nm n m a a a ⋅-的值; (2)求2()(4)(4)m n m n -+--的值.20.如图,点A 、B 、C 、D 在一条直线上,CE 与BF 交于点G ,EC AD ⊥,FD AD ⊥,E F ∠=∠.试说明:1A ∠=∠.21.我们知道20a ≥,所以代数式2a 的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用()2222a ab b a b ±+=+来求一些多项式的最小值. 例如,求263x x ++的最小值问题.解:∵()2226369636x x x x x ++=++-=+-,又∵()230x +≥,∴()2366x +-≥-,∴263x x ++的最小值为6-.请应用上述思想方法,解决下列问题:(1)探究:()2245________________x x x -+=+;(2)求224x x +的最小值.(3)比较代数式:21x -与612x -的大小.22.如图1,AB CD P ,点E 、F 分别在直线AB 、CD 上,点O 在直线AB 、CD 之间,EOF α∠=.(1)若105α=︒,求BEO DFO ∠+∠的值________;(2)如图2,直线MN 交BEO CFO ∠∠,的角平分线分别于点M 、N ,求EM N F N M ∠-∠的值(用含α的代数式表示);(3)如图3,EG 在AEO ∠内,AEG n OEG ∠=∠,FK 在DFO ∠内,DFK n OFK ∠=∠.直线MN 交FK EG ,分别于点M 、N ,若140α=︒,30FMN ENM ∠-∠=︒,则n 的值是________.(直接写出)。
西安交通大学附属中学航天学校八年级数学上册第五单元《分式》测试卷(包含答案解析)
一、选择题1.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度2.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .143.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等 4.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 5.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0 C .-3 D .-46.若方程21224k x x -=--有增根,则k =( ) A .4- B .14- C .4 D .147.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式8.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 9.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .110.若分式2132x x x --+的值为0,则x 的值为( ) A .1- B .0 C .1D .±1 11.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<< 12.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2-二、填空题13.已知实数a 、b 满足32a b =,则a b a b +-_________. 14.若关于x 的方程1322m x x x-+=--的解是正数,则m =____________. 15.分式2222,39a b b c ac 的最简公分母是______. 16.223(3)a b -=______,22()a b ---=______.17.关于x 的方程53244x mx x x ++=--无解,则m =________.18.计算:11|1|3-⎛⎫-= ⎪⎝⎭______. 19.计算:262393x x x x -÷=+--______. 20.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题21.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________;(2)若()4,2a =,(),83b =,求(),b a 的值.22.小红到离家2100米的学校参加艺术节联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)23.解答下列各题:(1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 24.先化简,再求值:2213242x x x x x x -+÷--+,其中x 与2,4构成等腰三角形的三边. 25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.26.鄂州市2020年被评为“全国文明城市”.创文期间,甲、乙两个工程队共同参与某段道路改造工程.如果甲工程队单独施工,恰好如期完成;如果甲、乙两工程队先共同施工10天,剩下的任务由乙工程队单独施工,也恰好能如期完成;如果乙工程队单独施工,就要超过15天才能完成.(1)求甲、乙两工程队单独完成此项工程各需多少天?(2)若甲工程队单独施工a 天,再由甲、乙两工程队合作______天(用含有a 的代数式表示)可完成此项工程.(3)现在要求甲、乙两个工程队都必须参加这项工程.如果甲工程队每天的施工费用为2万元,乙工程队每天的施工费用为1.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,能使施工费用不超过61.5万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 2.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y--+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 3.C解析:C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.4.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.5.A解析:A【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34x x -+ 的值为0; 故选:A .【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可. 6.B解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可. 7.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.8.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.9.D解析:D【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】1131112311n n n n n n n x x x x x x x x +-+++++--++==, 故选:D【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.10.A解析:A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1,故选:A .【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.11.D解析:D【分析】 根据负整数指数幂的运算法则可得110x x-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果.【详解】解:∵1x 0-<<,∴20x 1<<,0x 1=,11x0x-=<, ∴120x x x -<<.故选:D .【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解. 12.A解析:A【分析】根据分式的减法可以解答本题.【详解】解:()()214a 241a 2a 4a 2a 2a 2+--==--+-+, 故选:A .【点睛】本题考查异分母分式的减法运算,解答本题的关键是明确公分母.二、填空题13.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 14.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠ 解析:m <5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x-+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.15.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】 分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.()632266627327a a b a b b --==; 422422()a a b a b b----==. 【点睛】 本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.17.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】解:方程两边都乘以(x-4)得, 5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=-当30m -=时,即m=3,方程无解;当30m -≠时,53x m =-, ∵分式方程无解,∴x-4=0,∴x=4, ∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.18.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a 与b 的值,然后求解【详解】解:(1)∵328=∴()2,8=3 ∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键. 22.(1)70米/分;(2)能,见解析【分析】(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分.由小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程求出其解即可; (2)根据(1)求出的结论计算小红往返的时间之和与45分钟作比较就可以得出结论.【详解】(1)解:设小红步行的平均速度是x 米/分,则骑自行车的平均速度是3x 米/分. 根据题意,得21002100203x x-=, 方程两边同乘最简公分母3x ,得6300210060x -=,解得70x =.检验:把70x =代入最简公分母3x ,得33700x =⨯≠,因此,70x =是原方程的根.答:小红步行的平均速度是70米/分.(2)由(1),得70x =,3210x =,所以小红骑自行车的速度是210米/分,于是,小红回家取道具共花时间:2100210030104070210+=+=(分), 由于4045<,因此,小红能在联欢会开始前赶到学校.【点睛】本题是一道行程问题的应用题,考查了列分式方程解实际问题,分式方程的解法,解答时小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程是关键. 23.(1)5x -;(2)19b ;(3)23x =【分析】(1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷=19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2, 解得:23x =, 经检验23x =是分式方程的解. 【点睛】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键. 24.13x -,1. 【分析】 先计算分式的除法,再计算分式的加法,然后利用三角形的三边关系定理、等腰三角形的定义可得x 的值,最后代入求值即可得.【详解】2213242x x x x x x -+÷--+, ()()()122223x x x x x x x +=+⋅--+-, ()()()()312323x x x x x -=+----, ()()3123x x x -+=--, 13x =-, ∵x 与2,4构成等腰三角形的三边,∴4x =或2x =(此时224+=不满足三角形的三边关系定理,舍去), 则原式111343x ===--. 【点睛】 本题考查了分式的化简求值、三角形的三边关系定理、等腰三角形的定义,熟练掌握分式的运算法则是解题关键.25.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭=23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.26.(1)甲工程队单独施工需30天完成,乙工程队单独施工需45天完成;(2)3185a -;(3)15天 【分析】 (1)根据“甲乙两工程队合干10天的工程量+乙工程队单独做的工作量=总工作量1”列方程求解即可;(2)算出剩下的工作量除以甲乙的工作效率之和即可;(3)根据关系式:甲需要的工作费+乙需要的工作费≤61.5列出不等式求解即可.【详解】(1)设甲工程队单独施工需x 天完成,则乙工程队需(15)x +天完成,依题意得:10115x x x +=+ 去分母得:221015015x x x x ++=+∴30x =经检验,30x =是原方程的解.∴1545x +=答:甲工程队单独施工需30天完成,乙工程队单独施工需45天完成.(2)11 (1)()303045a-÷+=3 185a-故答案为:3 185a-(3)设甲工程队先单独施工m天,依题意得:32 3.51861.55mm⎛⎫+-≤⎪⎝⎭解不等式得:15m≥∴甲工程队至少要先单独施工15天.【点睛】本题主要考查了分式方程的应用:工程问题,找到合适的等量关系是解决问题的关键,注意应用前面得到的结论求解.。
西安交通大学附属中学分校数学全等三角形同步单元检测(Word版 含答案)
西安交通大学附属中学分校数学全等三角形同步单元检测(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.3.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.4.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角 ∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒ 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.5.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBCBE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE≌△DBC(SAS),∴AE=DC,故①正确;∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∵AEB DCB EB CBMBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形,故⑤正确;∵△BMN为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD,∴MN//AB,故②正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.6.等腰三角形顶角为30°,腰长是4cm,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm2).故答案是:4.7.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.8.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.9.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.【答案】8cm.【解析】【详解】解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm.【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC,根据三角形的周长公式计算即可.【详解】解:∵DE是AC的垂直平分线,∴AC=2AE=8,DA=DC,∵△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC的周长=AB+BC+AC=15+8=23cm,故答案是:23cm.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由等边三角形的性质可得BD=DC,AB=AC,∠B=∠C=60°,利用SAS可证明△ABD≌△ACD,从而可判断①正确;利用ASA可证明△ADE≌△ADF,从而可判断③正确;在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD,从而可判断②正确;同理可得2BE=2CF=BD,继而可得4BE=4CF=AB,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC中,AD是BC边上的高,∴BD=DC,AB=AC,∠B=∠C=60°,在△ABD与△ACD中90AD ADADB ADCDB DC=⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD≌△ACD,故①正确;在△ADE与△ADF中60EAD FADAD ADEDA FDA∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ADE≌△ADF,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确,故选D.【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.12.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.8【答案】D【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.13.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A .511a 32⨯() B .511a 23⨯() C .611a 32⨯() D .611a 23⨯() 【答案】A【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出EF=ZN=13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI 的边长的13;求出第五个等边三角形的边长,乘以13即可得出第六个正六边形的边长. 连接AD 、DF 、DB .∵六边形ABCDEF 是正六边形, ∴∠ABC=∠BAF=∠AFE ,AB=AF ,∠E=∠C=120°,EF=DE=BC=CD ,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt △ABD 和RtAFD 中AF=AB {AD=AD∴Rt △ABD ≌Rt △AFD (HL ),∴∠BAD=∠FAD=12×120°=60°, ∴∠FAD+∠AFE=60°+120°=180°,∴AD ∥EF ,∵G 、I 分别为AF 、DE 中点,∴GI ∥EF ∥AD ,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是13a,即等边三角形QKM的边长的13,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=13a,∵GF=12AF=12×13a=16a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=12GF=112a,同理IN=112a,∴GI=112a+13a+112a=12a,即第二个等边三角形的边长是12a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是13×12a;同理第第三个等边三角形的边长是12×12a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是13×12×12a;同理第四个等边三角形的边长是12×12×12a,第四个正六边形的边长是13×12×12×12a;第五个等边三角形的边长是12×12×12×12a,第五个正六边形的边长是1 3×12×12×12×12a;第六个等边三角形的边长是12×12×12×12×12a,第六个正六边形的边长是1 3×12×12×12×12×12a,即第六个正六边形的边长是13×512()a,故选A.14.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10°C.15°D.18°【答案】C【解析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.15.在坐标平面上有一个轴对称图形,其中A(3,﹣52)和B(3,﹣112)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A .(﹣2,1)B .(﹣2,﹣32)C .(﹣32,﹣9)D .(﹣2,﹣1)【答案】A【解析】【分析】 先利用点A 和点B 的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C 关于直线y=-4的对称点即可.【详解】解:∵A (3,﹣52)和B (3,﹣112)是图形上的一对对称点, ∴点A 与点B 关于直线y =﹣4对称, ∴点C (﹣2,﹣9)关于直线y =﹣4的对称点的坐标为(﹣2,1).故选:A .【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m 对称,则两点的纵坐标相同,横坐标和为2m ;关于直线y=n 对称,则两点的横坐标相同,纵坐标和为2n .16.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .(674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A2019的横坐标为12⨯1346=673.点A2019的纵坐标为673-13463⨯=673﹣6733.故点A2019的坐标为:()673,6736733-.故选:A.【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A2019所在三角形是解答本题的关键.17.在一个33⨯的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.18.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC 【答案】B【解析】试题解析: A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意. C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确. D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.19.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC,∴OPC∆是等边三角形,故③正确;在AB上找到Q点使得AQ=OA,则AOQ∆为等边三角形,则120BQO PAO∠=∠=︒,在BQO∆和PAO∆中,BQO PAOQBO APOOB OP∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS∆∆≌(),∴PA BQ=,∵AB BQ AQ=+,∴AB AO AP=+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO∆∆≌是解题的关键.20.如图,点D,E是等边三角形ABC的边BC,AC上的点,且CD=AE,AD交BE于点P,BQ⊥AD于点Q,已知PE=2,PQ=6,则AD等于( )A.10 B.12 C.14 D.16【答案】C【解析】【分析】由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°.在Rt△BPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,AD=BE,∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14.故选C.【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD=60°是解答本题的关键.。
西安交通大学附属中学分校数学整式的乘法与因式分解同步单元检测(Word版 含答案)
西安交通大学附属中学分校数学整式的乘法与因式分解同步单元检测(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知226a b ab +=,且a>b>0,则a b a b+-的值为( )A B C .2 D .±2 【答案】A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( )A .1B .﹣52C .±1D .±52【答案】C【解析】 分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,故选C .点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.4.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.5.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.6.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8.7.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.8.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A .3-,4-B .3-,4C .3,4-D .3,4【答案】A【解析】【分析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可. 【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可, A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.9.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=- 【答案】C【解析】【分析】根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案.【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若a-b=1,则222a b b --的值为____________.【答案】1【解析】【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:222a b b --=(a+b )(a-b )-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.12.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.13.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.14.多项式x 2+2mx+64是完全平方式,则m = ________ .【答案】±8【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8. 故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.15.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.16.计算:532862a a a -÷=()___________.【答案】343a a -【解析】根据整式的除法—多项式除以单项式,可知:532862a a a -÷=()8a 5÷2a 2-6a 3÷2a 2=343a a -.故答案为:343a a -.17.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【解析】【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为a(2x+y)(2x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.已知2x+3y-5=0,则9x•27y的值为______.【答案】243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.20.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x2+2x=3代入即可得答案.【详解】原式=x2+2x+1-(x2-4)+x2=x2+2x+1-x2+4+x2=x2+2x+5.∵x2+2x=3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安交通大学附属中学分校数学分式填空选择同步单元检测(Word版 含答案)一、八年级数学分式填空题(难)1.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++÷+有意义,则x 的取值范围是x ≠﹣2且x ≠0.其中正确的是________ 【答案】①③ 【解析】 【分析】根据分式有意义的条件对各式进行逐一分析即可. 【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21aa +都有意义; ②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误;③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确;④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++÷+有意义,则x 的取值范围是即20010x x x x⎧⎪+≠⎪≠⎨⎪+⎪≠⎩,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③. 【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.2.已知==x y n 为正整数),则当=n ______时,22101012902018x y xy +-+=.【答案】3 【解析】 【分析】根据分式的分母有理化把x 、y 化简,利用完全平方公式把原式变形,计算即可. 【详解】解:()21(1)21211+-==+-=+-+++n nx n n n n n n n,()21(1)21211++==++=++++-n ny n n n n n n n ,1=xy , 2222221010129020181010129020181010+-+=+-+=+x y xy x y x y 2222194019421942=+=++=+x y x xy y2()196+=x y ,14+=x y则()()2121212114+-+++++=n n n n n n , 解得,3n =, 故答案为3. 【点睛】考查的是分式的化简求值、完全平方公式,掌握分式的分母有理化的一般步骤是解题的关键.3.若关于x 的分式方程1x ax -+=a 无解,则a 的值为____. 【答案】1或-1 【解析】根据方程无解,可让x+1=0,求出x=-1,然后再化为整式方程可得到x-a=a (x+1),把x=-1代入即可求得-1-a=(-1+1)×a ,解答a=-1;当a=1时,代入可知方程无解. 故答案为1或-1.4.有一个计算程序,每次运算都是把一个数先乘以 2,再除以它与 1 的和,多次重复进行这种运算的过程如下∶则2y =___ (用含字母 x 的代数式表示); 第 n 次的运算结果记为n y ,则n y = __(用含字母 x 和 n 的代数式表示).【答案】431x x + 2(21)1n n xx -+ 【解析】解:将y1=21xx+代入得:y2=221211xxxx⨯+++=431xx+;将y2=431xx+代入得:y3=42314131xxxx⨯+++=871xx+,依此类推,第n次运算的结果y n=2(21)1nnxx-+.故答案为:431xx+,2(21)1nnxx-+.点睛:此题考查了分式的混合运算,找出题中的规律是解本题的关键.5.若方程81877--=--xx x有增根,则增根是____________.【答案】7【解析】∵分式方程81877xx x--=--有增根,∴x-7=0,∴原方程增根为x=7,因此,本题正确答案是7.6.当m=____________时,解分式方程533x mx x-=--会出现增根.【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.化简:224a a -﹣12a -=_____. 【答案】12a + 【解析】【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【详解】原式=()()()()222222a a a a a a +-+-+- =()()222a a a -+-=12a +, 故答案为:12a +. 【点睛】本题考查了分式的加减法,熟练掌握分式加减法的运算法则是解本题的关键.8.使分式的值为0,这时x=_____.【答案】1 【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法9.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3 【解析】 【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值. 【详解】去分母得3x-(x-2)=m+3, 当增根为x=2时,6=m+3 ∴m=3. 故答案为3. 【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.若关于x 的方程233x m x x =+--无解.则m =________. 【答案】3 【解析】 【分析】先去分母得到整式方程x=2(x-3)+m ,整理得x+m=6,由于关于x 的方程233x mx x =+--无解,则x-3=0,即x=3,然后把x=3代入x+m=6即可求出m 的值. 【详解】去分母得x=2(x−3)+m , 整理得x+m=6, ∵关于x 的方程233x mx x =+--无解. ∴x−3=0,即x=3, ∴3+m=6, ∴m=3. 故答案为:3. 【点睛】此题考查分式方程的解,解题关键在于利用方程无解进行解答.二、八年级数学分式解答题压轴题(难)11.阅读下面材料并解答问题材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++, 则323223x x x x ax x a b --++=--+++ ∵对任意x 上述等式均成立, ∴2a =且3a b +=,∴2a =,1b =∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值.【答案】(1)3+101x -;(2)8 【解析】 【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式.【详解】解:(1)371x x +-=33101x x -+- =()31101x x -+-=3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++, 则4268x x --+()()221x x a b =-+++ 422x ax x a b =--+++42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立, ∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩∴422681x x x --+-+ ()()2221711x x x -+++=-+()()222217111x x x x -++=+-+-+22171x x =++-+.∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8.【点睛】本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.12.一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a b c ++,abc ,22a b +,含有两个字母a ,b 的对称式的基本对称式是+a b 和ab ,像22a b +,(2)(2)a b ++等对称式都可以用+a b 和ab 表示,例如:222()2a b a b ab +=+-. 请根据以上材料解决下列问题: (1)式子①22a b ,②22a b -,③11a b+中,属于对称式的是__________(填序号).(2)已知2()()x a x b x mx n ++=++.①若m =-n =,求对称式b aa b+的值.②若4n =-,直接写出对称式442211a b a b+++的最小值.【答案】(1)①③.(2)①2.②172【解析】试题分析:(1)由对称式的定义对三个式子一一进行判断可得属于对称式的是①、③;(2)①将等号左边的式子展开, 由等号两边一次项系数和常数项对应相等可得a +b =m ,ab =n ,已知m 、n 的值,所以a +b 、ab 的值即求得,因为b a +a b =22a b ab +=()22a b ab ab+-,所以将a +b 、ab 的值整体代入化简后的式子计算出结果即可;②421a a ++421b b+= a 2+21a +b 2+21b =(a +b )2-2ab ()2222a b ab a b +-+=m 2+8+2816m +=21716m +172,因为1716m 2≥0,所以1716m 2+172≥172,所以421a a ++421b b+的最小值是172. 试题解析:(1)∵a 2b 2=b 2a 2,∴a 2b 2是对称式, ∵a 2-b 2≠b 2-a 2,∴a 2-b 2不是对称式, ∵1a +1b =1b +1a ,∴1a +1b是对称式, ∴①、③是对称式;(2)①∵(x +a )(x +b )=x 2+(a +b )x +ab =x 2+mx +n ,∴a +b =m ,ab =n , ∵m =-n, ∴b a +a b =22a b ab +=()22a b ab ab +-22--2; ②421a a ++421b b +, =a 2+21a +b 2+21b, =(a +b )2-2ab +()2222a b aba b+-,=m 2+8+2816m +,=21716m +172, ∵1716m 2≥0, ∴1716m 2+172≥172, ∴421a a ++421b b+的最小值是172. 点睛:本题关键在于理解对称式的定义,并利用分式的性质将分式变形求解.13.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金;(2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.【答案】(1)211()(1)b b a b n n n n =-⨯=- ,23111()(1)(1)b b a b n n n n n=-⨯-=-; (2)11(1)k k ba nn-=- ;(3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少. 【解析】 【试题分析】(1)根据第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,得:22311111()(1),()(1)(1).b b b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a nn-=- ; (3)11(1)k k b a nn -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【试题解析】(1)根据题意得:22311111()(1),()(1)(1).b b b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a nn-=- (3)11(1)k k b a nn -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.14.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶? 【答案】(1)楼梯有54级(2) 198级 【解析】【试题分析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分, 根据时间相等列方程,有:2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ①两式相除,得327418s s -=-,解方程得54s =即可. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求.这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级). 【试题解析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分,依题意有2727,21818.s x y s x y -⎧=⎪⎪⎨-⎪=⎪⎩① 把方程组①中的两式相除,得327418s s -=-,解得54s =. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=.无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求. 这时,男孩第一次追上女孩所走过的级数是:13272541986⨯+⨯=(级).15.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【答案】在不耽误工期的前提下,选第三种施工方案最节省工程款.【解析】【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x 天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定日期为x 天.由题意得66611212x x x x -++=++, ∴6112x x x +=+, ∴2267212x x x x ++=+,∴12x =;经检验:x=12是原方程的根.方案(1):2.4×12=28.8(万元);方案(2)比规定日期多用12天,显然不符合要求;方案(3):2.4×6+1×12=26.4(万元).∵28.8>26.4,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.。