高中文科数学立体几何部分整理

合集下载

高中文科立体几何基础知识点

高中文科立体几何基础知识点

高中《立体几何》(文科数学知识要点)一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角) (二) 线面角(1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。

高三文科立体几何知识点、方法总结

高三文科立体几何知识点、方法总结

高三立体几何夹角问题。

(一)异面直线所成的角:(1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcba2cos 222-+=θ(计算结果可能是其补角) (二)线面角(1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,P A O ∠(图中θ)为直线l 与面α所成的角。

(2)范围:]90,0[︒︒当︒=0θ时,α⊂l 或α//l 当︒=90θ时,α⊥l (3)求法: 方法一:定义法。

步骤1:作出线面角,并证明。

步骤2:解三角形,求出线面角。

(三)二面角及其平面角(1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。

(2)范围:]180,0[︒︒ (3)求法: 方法一:定义法。

步骤1:作出二面角的平面角(三垂线定理),并证明。

步骤2:解三角形,求出二面角的平面角。

方法二:截面法。

步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。

步骤2:解三角形,求出二面角。

方法三:坐标法(计算结果可能与二面角互补)。

步骤一:计算121212c o s n n n n n n ⋅<⋅>=⋅步骤二:判断θ与12n n <⋅>的关系,可能相等或者互补。

θc ba一.距离问题。

1.点面距。

方法一:几何法。

步骤1:过点P作PO⊥α于O,线段PO即为所求。

步骤2:计算线段PO的长度。

(直接解三角形;等体积法和等面积法;换点法) 2.线面距、面面距均可转化为点面距。

3.异面直线之间的距离方法一:转化为线面距离。

m如图,m和n为两条异面直线,α⊂n且α//m,则异面直线m和n之间的距离可转化为直线m与平面α之间的距离。

高中立体几何知识点总结(通用5篇)精选全文完整版

高中立体几何知识点总结(通用5篇)精选全文完整版

可编辑修改精选全文完整版高中立体几何知识点总结(通用5篇)高中立体几何知识点总结(通用5篇)总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,为此要我们写一份总结。

你想知道总结怎么写吗?下面是小编为大家整理的高中立体几何知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高中立体几何知识点总结篇11、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中文科数学立体几何知识点(大题)

高中文科数学立体几何知识点(大题)

高考立体几何中直线、平面之间的位置关系知识点总结(文科)一.平行问题 (一) 线线平行:方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行⇒线线平行m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法三:2面面平行⇒线线平行m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法四:3线面垂直 ⇒线线平行若αα⊥⊥m l ,,则m l //。

(二) 线面平行:方法一:4线线平行⇒线面平行ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂方法二:5面面平行⇒线面平行 αββα////l l ⇒⎭⎬⎫⊂ (三) 面面平行:6方法一:线线平行⇒面面平行βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:7线面平行⇒面面平行βαβαα//,////⇒⎪⎭⎪⎬⎫=⊂A m l m l m l ,方法三:8线面垂直⇒面面平行 βαβα面面面面//⇒⎭⎬⎫⊥⊥l ll二.垂直问题:(一)线线垂直方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。

) 方法二:9线面垂直⇒线线垂直 m l m l ⊥⇒⎭⎬⎫⊂⊥αα (二)线面垂直:10方法一:线线垂直⇒线面垂直αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直⇒线面垂直αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,(面) 面面垂直:方法一:12线面垂直⇒面面垂直 βαβα⊥⇒⎭⎬⎫⊂⊥l l 三、夹角问题:异面直线所成的角:(一) 范围:]90,0(︒︒(二)求法:方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(计算结果可能是其补角)线面角:直线PA 与平面α所成角为θ,如下图求法:就是放到三角形中解三角形四、距离问题:点到面的距离求法1、直接求,2、等体积法(换顶点)1、一个几何体的三视图如图所示,则这个几何体的体积为( )A .B .C .D .2、设 a b ,是两条不同的直线, αβ,是两个不同的平面,则( ) A .若a α∥,b α∥,则a b ∥ B .若a α∥,αβ∥,则αβ∥C.若a b ∥,a α⊥,则b α⊥ D .若a α∥,αβ⊥,则a β⊥3、如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为 .4、某几何体的三视图如图所示,则该几何体的体积为( )A .5B .163C .7D .1735、某空间几何体的三视图如图所示,则该几何体的体积为A .73B .83π-C .83D .73π- 6、一个几何体的三视图如图所示,则这个几何体的直观图是7、某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为A.223B.43C.2D.48、某三棱锥的三视图如图所示,则该三棱锥的体积为(A)23(B)43(C)2(D)831、(2017新课标Ⅰ文数)(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.2、(2017新课标Ⅱ文)(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.3、(2017新课标Ⅲ文数)(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.4、(2017北京文)(本小题14分)如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.5、(2017山东文)(本小题满分12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E 平面ABCD.A O∥平面B1CD1;(Ⅰ)证明:1(Ⅱ)设M是OD的中点,证明:平面A1EM 平面B1CD1.6、(2017江苏)(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD 上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.。

(完整版)高中立体几何知识点总结

(完整版)高中立体几何知识点总结

高中立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)

立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。

本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。

一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。

2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。

3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。

二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。

2. 四棱锥:底面为四边形,侧面为三角形的五面体。

3. 五棱锥:底面为五边形,侧面为三角形的六面体。

4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。

5. 正方体:六个面都是正方形的多面体。

6. 正四面体:四个面都是正三角形的多面体。

7. 正六面体:六个面都是正方形的多面体。

三、平面图形与立体图形1. 投影:图形在投影面上的图象。

2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。

3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。

4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。

5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。

四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。

2. 垂直关系:两条直线在同一个平面上,且相交成直角。

五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。

2. 平面角:两个相交的平面所夹的角,范围为0到180度。

3. 相对角:两个相交直线上相对的两个角。

六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。

2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。

七、相交与相切1. 相交:两个或多个图形交叠在一起。

2. 相切:两个或多个图形只有一个点是共同的。

高考文科数学立体几何复习知识点

高考文科数学立体几何复习知识点

高考文科数学立体几何复习知识点高考文科数学立体几何复习知识点在我们的学习时代,相信大家一定都接触过知识点吧!知识点就是一些常考的内容,或者考试经常出题的地方。

哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的高考文科数学立体几何复习知识点,仅供参考,欢迎大家阅读。

高考文科数学立体几何复习知识点1:棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

高考文科数学立体几何复习知识点2:棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

高考文科数学立体几何复习知识点3:棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点高考文科数学立体几何复习知识点4:圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

高考文科数学立体几何复习知识点5:圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

高二年级文科立体几何知识点

高二年级文科立体几何知识点

立体几何知识点第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体、旋转体、简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台2、空间几何体的三视图(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 3、空间几何体的直观图:斜二测画法的基本步骤:必修216P 4、空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l r S +⋅⋅=π侧面⑷体积公式:h S V ⋅=柱体 h S V ⋅=31锥体 ()13V h S S =+下台体上⑸球的表面积和体积:23443S R V R ππ==球球第二章 点、直线、平面之间的位置关系 一、几个公理:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面若A ,B ,C 不共线,则A ,B ,C 确定平面α 推论1:过直线和直线外一点有且只有一个平面推论2:过两条相交直线有且只有一个平面推论3:过两条平行直线有且只有一个平面L θ∙l (注:扇形的弧长等于圆心角乘以半径.提醒圆心角为弧度角,例如60° π3弧度,45° π4弧度,90° π2弧度等等)1的长图中:扇形的半径长为l ,圆心角为θ,弧ABm公理2及其推论的作用:确定平面、判定多边形是否为平面图形的依据3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,P P l P l αβαβ∈∈⇒=∈ 且公理3作用:(1)判定两个平面是否相交的依据 (2)证明点共线、线共点等 4、公理4:也叫平行公理,平行于同一条直线的两条直线平行. 符号表示:,a b c b a c ⇒ 公理4作用:证明两直线平行5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,1212a a b b ''∠∠⇒∠∠ 且与方向相同=,1212180a a b b ''∠∠⇒∠+∠︒ 且与方向相反=作用:该定理也叫等角定理,可以用来证明空间中的两个角相等 二、空间两条直线的位置关系:相交直线:同一平面内,有且只有一个公共点 平行直线:同一平面内,没有公共点 异面直线: 不同在任何一个平面内,没有公共点 三、直线和平面的三种位置关系: 1.直线和平面平行符号表示: l2. 直线和平面相交符号表示:3. 直线在平面内符号表示:四、平面与平面的位置关系:1、平行:没有公共点 2、相交:有一条公共直线 五、平行关系: 1. 线线平行:证明两直线平行的常用方法:①三角形中位线定理:三角形中位线平行并等于底边的一半; ②平行四边形的性质:平行四边形两组对边分别平行;③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;a a ab b αβαβ⊂⇒=⎫⎪⎬⎪⎭④平行线的传递性:,a b c b a c ⇒⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;a ab b αβαγβγ=⇒=⎫⎪⎬⎪⎭⑥垂直于同一平面的两直线平行; a a b b αα⊥⎫⇒⎬⊥⎭2. 线面平行:方法一:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

高中立体几何知识点总结(最新最全)

高中立体几何知识点总结(最新最全)

高中立体几何知识点总结(最新最全)高中立体几何知识点总结一、空间几何体(一)空间几何体的类型1多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二)几种空间几何体的结构特征1、棱柱的结构特征1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等;1.3棱柱的面积和体积公式(是底周长,是高)S直棱柱表面=c·h+2S底V棱柱=S底·h2、棱锥的结构特征2.1棱锥的定义(1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

正四面体:对于棱长为正四面体的问题可将它补成一个边长为的正方体问题。

对棱间的距离为(正方体的边长)正四面体的高()正四面体的体积为()正四面体的中心到底面与顶点的距离之比为()3、棱台的结构特征3.1棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。

3.2正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形;(3)正棱台的对角面也是等腰梯形;(4)各侧棱的延长线交于一点。

4、圆柱的结构特征4.1圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

(完整)高中文科数学立体几何知识点总结(2),推荐文档

(完整)高中文科数学立体几何知识点总结(2),推荐文档

(2)求法:
P n
方法一:定义法。 步骤 1:平移,使它们相交,找到夹角。 α A θ O
方法二:用面面垂直实现。
β α
l m
m
l
l m,l
步骤 2:解三角形求出角。(常用到余弦定理)
余弦定理:
cos a 2 b2 c 2 2ab
a
c
θ b
2. 面面垂直:
方法一:用线面垂直实现。
3.若长方体的长宽高分别为 a、b、c,则体对角线长为
,表面积为
,体积为

(二) 正棱锥:底面是正多边形且顶点在底面的射影在底面中心。
(三) 正棱柱:底面是正多边形的直棱柱。
立体几何知识点整理(文科)
一. 直线和平面的三种位置关系: α
l
m
2. 线面平行:
方法一:用线线平行实现。
1. 线面平行
l
α
2. 线面相交
l A α
3. 线在面内
符号表示: 符号表示:
l α
符号表示:
二. 平行关系:
1. 线线平行:
l // m
m
l
//
l

β α
法二:用面面平行实现。
l
// l
则ab
a b
ab
cos a b
六.常见几何体的特征及运算
(一) 长方体
1. 长方体的对角线相等且互相平分。
2. 若长方体的一条对角线与相邻的三条棱所成的角分别为、、 ,则 cos2 +cos2 +cos2
α βγ
βγ α
若长方体的一条对角线与相邻的三个面所成的角分别为、、 ,则 cos2 +cos2 +cos2

高中文科数学立体几何知识点(大题)

高中文科数学立体几何知识点(大题)

高考立体几何中直线、平面之间的位置关系知识点总结(文科)一.平行问题 (一) 线线平行:方法一:常用初中方法(1中位线定理;2平行四边形定理; 3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行⇒线线平行m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法三:2面面平行⇒m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα 方法四:3线面垂直 ⇒线线平行 若αα⊥⊥m l,,则m l //。

方法五:用向量方法:若向量和向量共线且l 、m 不重合,则m l //。

(二) 线面平行: 方法一:4线线平行⇒线面平行ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ 方法二:5面面平行⇒αββα////l l ⇒⎭⎬⎫⊂ 方法三:法向量若n 为平面α的一个法向量,⊥且α⊄l ,则α//l 。

(三) 面面平行:6方法一:线线平行⇒面面平行 βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:7线面平行⇒面面平行βαβαα//,////⇒⎪⎭⎪⎬⎫=⊂A m l m l m l , 方法三:8线面垂直⇒面面平行βαβα面面面面//⇒⎭⎬⎫⊥⊥l l方法三:用向量实现。

平面βα、的法向量分别是n m、βα面面////⇒n m二.垂直问题:(一)线线垂直方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。

)方法二:9线面垂直⇒线线垂直m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法三:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭ml m ll m l ⊥⇒⊥、上的向量分别是、方法四:直线(二)线面垂直:10方法一:线线垂直⇒线面垂直 αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl , 方法二:11面面垂直⇒线面垂直lαββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m , ll //n n⊥⇒αα平面的法向量是方法三:平面(面) 面面垂直:方法一:12线面垂直⇒面面垂直βαβα⊥⇒⎭⎬⎫⊂⊥l lβαβα面面、的法向量分别是、方法二:平面⊥⇒⊥m n nm三、夹角问题:异面直线所成的角: (一) 范围:]90,0(︒︒ (二)求法:方法一:定义法。

(完整)高中文科数学立体几何部分整理.doc

(完整)高中文科数学立体几何部分整理.doc

(完整)高中文科数学立体几何部分整理.doc立体几何高中文科数学立体几何部分整理第一章空间几何体(一)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。

(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽” .( 2)正视图,侧视图,俯视图都是平面图形,而不是直观图。

3.直观图:3.1 直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3.2 斜二测法:step1:在已知图形中取互相垂直的轴 Ox 、 Oy ,(即取 xoy 90 );step2:画直观图时,把它画成对应的轴 o ' x ',o ' y' ,取 x ' o ' y' 45 (or 135 ) ,它们确定的平面表示水平平面;step3:在坐标系 x ' o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于 x 轴(或在 x 轴上)的线段保持长度不变,平行于y 轴(或在 y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的2倍 .4解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。

【例题点击】将正三棱柱截去三个角(如图1 所示 A ,B , C 分别是△GHI 三边的中点)得到几何体如图2,则该几何体按图2 所示方向的侧视图(或称左视图)为()HA G ABBB侧视BBBCCIEDEDEEEEA .B .C .D .立体几何解:在图 2 的右边放扇墙 (心中有墙 ), 可得答案 A(二)立体几何1.棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

高考数学立体几何知识点总结精选全文完整版

高考数学立体几何知识点总结精选全文完整版

可编辑修改精选全文完整版高考数学立体几何知识点总结(1)棱柱:定义:有两个面互相平行,别的各面都是四边形,且每相邻两个四边形的大众边都互相平行,由这些面所围成的几多体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各极点字母,如五棱柱或用对角线的端点字母,如五棱柱几多特性:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,别的各面都是有一个大众极点的三角形,由这些面所围成的几多体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各极点字母,如五棱锥几多特性:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比即是极点到截面隔断与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各极点字母,如五棱台几多特性:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的极点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,别的三边旋转所成的曲面所围成的几多体几多特性:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几多体几多特性:①底面是一个圆;②母线交于圆锥的极点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几多特性:①上下底面是两个圆;②侧面母线交于原圆锥的极点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几多体几多特性:①球的截面是圆;②球面上恣意一点到球心的隔断即是半径。

高三数学复习(文科)立体几何知识点、方法总结

高三数学复习(文科)立体几何知识点、方法总结

立体几何知识点整理(文科)一.直线和平面的三种位置关系:1. 线面平行符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,方法二:用面面垂直实现。

llαββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理)余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

文科立体几何高三知识点

文科立体几何高三知识点

文科立体几何高三知识点高三文科立体几何知识点立体几何是数学中的一个分支,它研究的对象是三维空间中的各种几何体及其性质。

在高中文科数学教学中,立体几何也是一个重要的知识点。

本文将详细介绍高三文科立体几何的相关知识点,包括体积、表面积、平行截面等内容。

一、体积体积是一个几何体所占据的三维空间的大小。

常见的几何体包括长方体、正方体、圆柱体、圆锥体和球体等。

这些几何体的体积计算公式如下:1. 长方体的体积计算公式为:V = lwh,其中l代表长度,w代表宽度,h代表高度。

2. 正方体的体积计算公式为:V = a^3,其中a代表边长。

3. 圆柱体的体积计算公式为:V = πr^2h,其中r代表底面半径,h代表高度。

4. 圆锥体的体积计算公式为:V = (1/3)πr^2h,其中r代表底面半径,h代表高度。

5. 球体的体积计算公式为:V = (4/3)πr^3,其中r代表半径。

二、表面积表面积是一个几何体外部面积的总和。

与体积类似,不同几何体的表面积计算公式也存在差异。

常见几何体的表面积计算公式如下:1. 长方体的表面积计算公式为:S = 2lw + 2lh + 2wh。

2. 正方体的表面积计算公式为:S = 6a^2,其中a代表边长。

3. 圆柱体的表面积计算公式为:S = 2πrh + 2πr^2,其中r代表底面半径,h代表高度。

4. 圆锥体的表面积计算公式为:S = πrl + πr^2,其中r代表底面半径,l代表斜高。

5. 球体的表面积计算公式为:S = 4πr^2,其中r代表半径。

三、平行截面平行截面是指一切平行于同一平面的柱体截面都相似。

根据平行截面的性质,我们可以得出以下结论:1. 柱体两个平行截面的面积比等于对应高度的比值的平方。

2. 柱体两个平行截面的体积比等于对应高度的比值的平方。

3. 柱体两个平行截面的表面积比等于对应高度的比值。

通过利用平行截面的性质,我们可以简化立体几何问题的计算。

结语:高三文科立体几何是数学学科中的一个重要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中文科数学立体几何部分整理第一章 空间几何体(一)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形; 正视图——光线从几何体的前面向后面正投影,得到的投影图; 侧视图——光线从几何体的左面向右面正投影,得到的投影图; 正视图——光线从几何体的上面向下面正投影,得到的投影图; 注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。

(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”.(2)正视图,侧视图,俯视图都是平面图形,而不是直观图。

3.直观图:3.1直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3.2斜二测法:step1:在已知图形中取互相垂直的轴Ox 、Oy ,(即取90xoy ∠=︒ );step2:画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y or ∠=︒︒,它们确定的平面表示水平平面;step3:在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”. (2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。

【例题点击】将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )E F DIA H GBC EF D AB C侧视 BEA .BEB . BEC .BED .解:在图2的右边放扇墙(心中有墙),可得答案A(二)立体几何 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4面积、体积公式:ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 侧面母线3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.2棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;②正棱锥各侧棱相等,各侧面是全等的等腰三角形;③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。

)(如上图:,,,SOB SOH SBH OBH 为直角三角形) 3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。

3.4面积、体积公式:S 正棱锥侧=12ch ',S 正棱锥全=12ch S '+底,V 棱锥=13S h ⋅底.(其中c 为底面周长,h '侧面斜高,h 棱锥的高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为3122a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=)B4.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 4.2正棱台的性质:①各侧棱相等,各侧面都是全等的等腰梯形; ②正棱台的两个底面以及平行于底面的截面是正多边形; ③ 如右图:四边形`,``O MNO O B BO 都是直角梯形④棱台经常补成棱锥研究.如右图:`SO M 与SO N ,S`O `B`与SO B相似,注意考虑相似比. 4.3棱台的表面积、体积公式:S S S 全上底下底=S ++侧,1S `)3V S h 棱台=(,(其中,`S S 是上,下底面面积,h 为棱台的高)5.圆锥5.1圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

5.2圆锥的性质:①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; ②轴截面是等腰三角形;如右图:SAB ③如右图:222l h r =+.5.3圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

5.4面积、体积公式:S 圆锥侧=rl π,S 圆锥全=()r r l π+,V 圆锥=213r h π(其中 r 为底面半径,h 为圆锥的高,l 为母线长)6.圆台6.1圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 6.2圆台的性质:B②圆台的轴截面是等腰梯形;③圆台经常补成圆锥来研究。

如右图: `SO A SOB 与相似,注意相似比的应用. 6.3圆台的侧面展开图是一个扇环; 6.4圆台的表面积、体积公式:S 圆台侧 = π·(R + r)·l (r 、R 为上下底面半径) S 圆台全 = π·r 2 + π·R 2 + π·(R + r)·lV 圆台 = 1/3 (π r 2 + π R 2 + π r R) h (h 为圆台的高)7.球7.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. 或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球;7.2球的性质:①球心与截面圆心的连线垂直于截面;②r =d 、球的半径为R 、截面的半径为r )7.3球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;球外切正方体,球直径等于正方体的边长。

7.4球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)例:(福建卷)已知正方体的八个顶点都在球面上,且球的体积为323π,则正方体的棱长为_________例题讲练1、右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的简单几何体,其表面及为:22411221312.S ππππ=⨯+⨯⨯+⨯⨯=,故选D 。

2、已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S 解:由已知可得该几何体是底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD 。

(1) ()1864643V =⨯⨯⨯= (2) 该四棱锥有两个侧面V AD. VBC 是全等的等腰三角形,且BC 边上的高为22184422h ⎛⎫=+= ⎪⎝⎭, 另两个侧面V AB. VCD 也是全等的等腰三角形,AB 边上的高为2226452h ⎛⎫=+= ⎪⎝⎭因此 112(64285)4024222S =⨯⨯+⨯⨯=+3、用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.38πB. 328πC. π28D. 332π解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是2,3482R ππ俯视图 正(主)视图 侧(左)视图 2 3 22第二章点、直线、平面之间的位置关系(一)平面的基本性质1.平面——无限延展,无边界1.1三个定理与三个推论公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

(用于证明直线在平面内) 公理2:不共线...的三点确定一个平面. (用于确定平面)推论1:直线与直线外的一点确定一个平面.推论2:两条相交直线确定一个平面.推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线).用途:常用于证明线在面内,证明点在线上.(二)空间图形的位置关系 1.空间直线的位置关系:⎧⎨⎩共面:a b=A,a//b 异面:a与b异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。

符号表述://,////a b b c a c ⇒1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

1.3异面直线:(1)定义:不同在任何一个平面内的两条直线——异面直线;(2)判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线是异面直线。

图形语言:aαAP 符号语言:PA a P A a A a ααα∉⎫⎪∈⎪⇒⎬⊂⎪⎪∉⎭与异面1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法. 如右图,在空间任取一点O ,过O 作'//,'//a a b b ,则','a b 所成的θ角为异面直线,a b 所成的角。

特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2.直线与平面的位置关系: //l l A l l αααα⊂⎧⎪=⎧⎨⊄⎨⎪⎩⎩3.平面与平面的位置关系:αβαβαβ⎧⎪⎧⎨⎨⎪⊥⎩⎩平行://斜交:=a 相交垂直:ba b'a'θαO(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.即//l l αα=∅⇒.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭(线线平行⇒线面平行)③ 性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭(线面平行⇒线线平行) ④////a a αββα⎫⇒⎬⊂⎭(面面平行⇒线面平行); ⑤//b a b a a ααα⊥⎫⎪⊥⇒⎬⎪⊄⎭(用于判断);2.线面斜交:l A α=①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

相关文档
最新文档