从函数图像和求函数值域方面认识数形结合思想

合集下载

一次函数求k取值范围数形结合

一次函数求k取值范围数形结合

一次函数求k取值范围数形结合1.引言1.1 概述概述部分的内容可以从以下几个方面进行描述:1.引入一次函数的概念:一次函数是数学中常见的基本函数之一,也被称为线性函数。

它的表达式通常形式为y = kx + b,其中k和b为常数。

2.介绍一次函数的性质:一次函数具有直线的特点,斜率k决定了其斜度和方向,而常数b则决定了直线与y轴的截距。

一次函数的图像呈现出直线的形态,具有平移、伸缩和翻转等特性。

3.说明数形结合的意义:数形结合是将数学与几何图形相结合的一种学习方法。

通过观察直线的图像与函数表达式之间的关系,我们可以更直观地理解和掌握一次函数的性质和规律。

4.阐述文章目的:本文旨在探讨一次函数的k取值范围,并结合数形结合的方法,通过观察图像来解决相关问题。

同时,我们将进一步探讨一次函数在实际生活中的应用,以帮助读者更好地理解和应用数学知识。

通过以上内容的介绍,读者可以对本文的主题和目的有一个初步的了解。

接下来的文章将围绕一次函数的定义和性质以及数形结合的意义和应用展开,引领读者深入探究一次函数的k取值范围与数形结合之间的关系。

1.2文章结构文章结构部分主要介绍了本篇长文的整体架构和内容安排。

首先,我们将在引言部分概述本篇文章的主题和目的,然后详细介绍正文部分和结论部分的内容。

在正文部分,我们将首先定义和探讨一次函数的概念和性质,包括一次函数的定义、特点以及常见形式等。

通过对一次函数的基本性质和图像的分析,我们将深入理解一次函数的数学意义。

接下来,我们将探讨数形结合在数学中的意义和应用。

数形结合是一种综合运用数学和几何形象的方法,通过图形和图像的分析,我们可以更加直观地理解数学概念。

我们将通过实例介绍数形结合在解决数学问题中的重要性和实际应用,以便读者更好地理解该方法的优势和应用场景。

在结论部分,我们将介绍一次函数求解k取值范围的方法。

通过对一次函数图像的分析和对函数性质的研究,我们可以确定k的取值范围,使得函数满足特定条件。

正弦函数的图像与性质优秀教案

正弦函数的图像与性质优秀教案

正弦函数的图像与性质华蓥唐小丽【教学目标】1.会根据图象观察得出正弦函数的性质;2.在探究正弦函数根本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.【教学重点难点】教学重点:正弦函数的性质。

教学难点:正弦函数的性质的运用。

【教学过程】一、预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

二、复习导入、展示目标。

〔一〕问题情境复习:如何作出正弦函数的图象?生:描点法〔几何法、五点法〕,图象变换法。

并要求学生回忆哪五个关键点引入:研究一个函数的性质从哪几个方面考虑?生:定义域、值域、单调性、周期性、对称性等提出本节课学习目标——定义域与值域〔二〕探索研究给出正弦函数的图象,让学生观察,并思考以下问题:正弦函数的定义域是实数集R (或),(+∞-∞).正弦函数的值域是]1,1[-.由诱导公式Z k k ∈=+,sin )2(sin απα知:正弦函数值是按照一定规律不断重复地取得的.定义:对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时, 都有)()(x f T x f =+,那么函数)(x f 就叫做周期函数,非零常数T 叫做这个函数的周期. 由此可知,)0,(2,,4,2,,4,2≠∈--k Z k k πππππ 都是这两个函数的周期.对于一个周期函数)(x f ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期.根据上述定义,可知:正弦函数是周期函数,)≠∈(0,2k Z k k π都是它的周期,最小正周期是π2.由x x sin )sin(-=-可知:x y sin =(R x ∈)为奇函数,其图象关于原点O 对称正弦函数sin ()y x x R =∈的对称中心是()(),0k k Z π∈, 对称轴是直线()2x k k Z ππ=+∈;(正弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴(中轴线)的交点).正弦函数在每一个闭区间)](22,22[Z k k k ∈++-ππππ上都是增函数,其值从1-增大到1;在每一个闭区间)](22,22[Z k k k ∈+3+ππππ上都是减函数,其值从1减小到1-. 三、例题分析 例1、求函数y=sin(2x+3π)的单调增区间.变式训练1. 求函数y=sin(x+3π)的单调减区间 例2:求函数1sin 2cos y 2+-=x x 的值域。

例析二次函数问题解决的基本思想_分类讨论和数形结合

例析二次函数问题解决的基本思想_分类讨论和数形结合


,M(a)∈(-
2 a
,0)( 注 :
M(a)在对称轴右边 ),所 以 f[M(a)]=-4,令 ax2+4x-2=-4,


x=
-2±
姨4-2a a
,故
M(a)=
-2+
姨4-2a a

(2)

-2-
4 a
≥-4,
即 a≥2 时 ,
M(a)<- 2 a
(注:
M(a)在对称轴 左 边 ), 所 以 f[M(a)]=4,令 ax2+4x-2=-4,
题.
下面, 我们从一个具体例子出发, 给同学们详细
分析一下解决的基本过程.
例题. 已知函数 f(x)=3x2+a,g(x)=2ax+1(a∈R).
(I) 证 明 : 方 程 f(x)=g(x)恒 有 两 个 不 相 等 的 实 数
根;
(II) 若 函 数 f(x)在(0,2)上 无 零 点 , 请 你 探 究 函 数
责任编校 徐国坚
高中 2011 年第 5 期
17
数学有数
点拨
例析二次函数问题解决的基本思想 —— —分类讨论和数形结合
■俞新龙
二次函数问题是同学们初中重点解决的一类函数
问题, 有范围限制的二次函数问题 (包括换元后可化
为二次函数) 是高中一类比较重要的函数问题, 此类
问题比同学们初中遇到的难度要大, 因此, 同学们经
常会感觉处理起来比较难.其实, 该类问题的解决还
优越性.
变式 1:

f(x)=1-
2 2x+1
,方程 f(x2-2x-a)=0 在(0,3)

高中数学复习专题-函数值域的求法

高中数学复习专题-函数值域的求法

学习必备 欢迎下载专题四、函数及其性质(二)函数值域的求法1.求函数值域的数学思想:( 1)利用函数单调性求函数值域:( 2)利用函数图像求函数值域;注意: 求函数值域时要先关注函数定义域,时刻体现“定义域优先” 原则。

2.求函数值域的方法: 观察法、判别式法、双勾函数法、换元法、平方法、分离常数法、数形结合法、单调性法、构造法。

( 1)观察法:适合于常见的基本函数。

例 1.已知函数 f (x)e x1,g( x)x 24x3 ,若 a 、bR ,且存在有f (a)g(b) ,则b 的取值范围为()A. [22, 22]B. (22, 22)C.[1,3]D.(1,3)kx bdx 2exf的分式函数, 适用条件须函( 2)判别式法:适合于形如y或 yax2bx cax 2 bx c数的定义域应为 R ,即 ax 2bx c0 ,所以b 2 4ac0 。

例 2. 求函数 y2x 2 x3x 2的值域。

x 1( 3)双勾函数法:适合于高中阶段所有的分式函数,比判别式法具有更广泛的应用。

2例 3. 求函数 y2x11x7(0 x 1) 的值域。

x 3( 4)换元法:适合于含有根式的函数。

例 4.求函数 y2x 4 1 x 的值域。

( 5)平方法:适合于平方变形后具有简化效果的函数。

例 5.求函数 yx 3 5 x 的值域。

学习必备欢迎下载( 6)数形结合法:利用数形结合的方法,根据函数图像求得函数值域。

例 6.(2014 湖北 )已知函数 f( x)是定义在 R 上的奇函数,当 x ≥ 0 时, f(x)= 1(|x - a 2|+ |x - 2a 2|- 3a 2),若对于任意 x ∈ R , f( x -1)≤ f(x)恒成立,2则实数 a 的取值范围为( ) A. -1,1 B.- 6, 6 C. -1,1 D.-3, 36 6 6 6 3 3 3 3( 7)单调性法:确定函数在定义域上的单调性,求出函数的值域。

正弦函数的图像与性质教案

正弦函数的图像与性质教案

《正弦函数的图像与性质》(第一课时)(教案)神木职教中心 数学组 刘伟教学目标:1、理解正弦函数的周期性;2、掌握用“五点法”作正弦函数的简图;3、掌握利用正弦函数的图像观察其性质;4、掌握求简单正弦函数的定义域、值域和单调区间;5、初步理解“数形结合”的思想;6、培养学生的观察能力、分析能力、归纳能力和表达能力等教学重点:1、用“五点法”画正弦函数在一个周期上的图像;2、利用函数图像观察正弦函数的性质;3、给学生逐渐渗透“数形结合”的思想教学难点:正弦函数性质的理解和应用教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学 教学过程: Ⅰ 知识回顾终边相同角的诱导公式:)(sin )2sin(Z ∈=+k k απα所以正弦函数是周期函数,即 ,6-,4-,2-,6,4,2ππππππ及都是它的周期,其中π2是它的最小正周期,也直接叫周期,故正弦函数的周期为π2Ⅱ 新知识1、用描点法作出正弦函数在最小正周期上的图象x y sin =,[]π2,0∈x(1)、列表x 06π3π2π32π65π π67π 34π 23π 35π 611π π2 y 021 23123 210 -21 -23 -1 -23-21 0(2)、描点(3)、连线因为终边相同的角的三角函数值相同,所以x y sin =的图像在…,[][][][]ππππππ4,2,2,0,0,2,2,4--- ,…与x y sin =,[]π2,0∈x 的图像相同2、正弦函数的奇偶性由诱导公式x x sin )sin(-=-,R x ∈得: ①定义域关于原点对称 ②满足)()(x f x f -=-所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性 、值域 由图像观察可得: 正弦函数在⎥⎦⎤⎢⎣⎡++-ππππk k 22,22是增函数,在⎥⎦⎤⎢⎣⎡++ππππk k 223,22是减函数 得到最大值为1,最小值为-1,所以值域为[]1,1-Ⅲ知识巩固例1 作下列函数的简图(1)xy sin=,[]π2,0∈x(2)xy sin1+=,[]π2,0∈x解:(1)①列表②描点③连线(2)①列表②描点③连线例2 求下列函数的单调区间(1))sin(x y -= (2))4sin(π-=x y解:(1)因x x y sin )sin(-=-=所以函数在⎥⎦⎤⎢⎣⎡++-ππππk k 22,22是减函数,在⎥⎦⎤⎢⎣⎡++ππππk k 223,22是增函数 (2)由题知:πππππk x k 22422+≤-≤+-ππππk x k 24324+≤≤+-⇒ πππππk x k 223422+≤-≤+ππππk x k 247243+≤≤+⇒ 所以函数在⎥⎦⎤⎢⎣⎡++-ππππk k 243,24是增函数,在⎥⎦⎤⎢⎣⎡++ππππk k 247,243是减函数练习(师生互动,分层次提问)1. 课本第120页练习第1题 2. 求函数)4sin(π+=x y 的单调性解:由题知:πππππk x k 22422+≤+≤+-ππππk x k 24243+≤≤+-⇒ πππππk x k 223422+≤+≤+ππππk x k 24524+≤≤+⇒ 所以函数在⎥⎦⎤⎢⎣⎡++-ππππk k 24,243是增函数,在⎥⎦⎤⎢⎣⎡++ππππk k 245,24是减函数Ⅳ 小结本节课我们学习了用“五点法”作正弦函数的图像,利用正弦函数的简图可以观察到正弦函数的一些基本性质,如奇偶性、单调性、周期性等。

例说数形结合解决求函数最值问题

例说数形结合解决求函数最值问题

例说数形结合解决求函数最值问题数形结合就是将抽象的数的方式与直观图形结合起来,既分析其代数含义又分析其几何含义。

在数与形的结合上往往采用“以形助数”或“以数辅形”的手段寻找解题的思路。

求函数的最值是中学数学的重要内容之一,题型多变,解法灵活,也是历年高考的必考内容,下面仅就这一方面利用数形结合的技巧举例说明。

例1:求函数的值域。

分析:我们可以先进行换元,去掉根号,然后在寻找解决问题的突破口。

解:令则原函数表达式等价转化为,即为过点和点的直线的斜率。

作出示意图像,经观察,计算可知的变化范围为。

评注:此题若采取代数方法,比较繁琐,但是给代数问题赋以一个合适的几何意义,问题就变得鲜活,简单。

例2:已知,求的最小值。

【分析】将看成是直线上的点A(x,y)与定点B(1,1)间的距离,则的最小值也就是点B(1,1)到直线的距离。

解:是由直线上动点与定点间的距离,显然的最小值是点到直线的距离,即例3.求函数的最值。

分析:等式右边根号内同为的一次式,如简单的换元无法转化为二次函数求最值,故用常规方法比较难。

如能联想到直线的截距,数形结合换元后,以形助数,则可轻松解决。

令则则所函数化为以为参数的直线族,它与椭圆在第一象限的部分有公共点又例4:对于任意函数f(x)、g(x),在公共定义域内,规定f(x)*g(x)=min{ f(x)、g(x)},若f(x)=,g(x)=,求f(x)*g(x)的最大值。

分析:本题可首先确定函数的定义域,然后作出函数的图像,由图像可求出解析式,最后求最大值。

解:由题意得:的解为x=2故其图象如图,显然在点P时f(x)*g(x)取最大值,最大值为1。

例5.甲、乙两地相距S千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(km/h)的平方成正比,比例系数为b,固定部分为a 元(1)把全程运输成本y(元)表示为v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?分析:本题可根据实际问题抽象出函数模型,然后根据不等式性质、最值等知识,结合函数的图像,即可求解。

浅谈数形结合的思想

浅谈数形结合的思想

浅谈数形结合的思想摘要"数形结合百般好,隔离分家万事非"——这是我国著名数学家华罗庚在谈到数形结合时的精辟论断.数形结合是我国传统数学的基本思想方法之一,在数学教学历史中具有举足轻重的地位.从《九章算术》的“析理以辞,解体用图”,到现代数学各分支“交叉渗透,学科整合”,无不体现着数形结合长盛不衰的魅力. 数形结合是推动数学向前发展的一种比较重要手段,数学一大部分知识都是围绕其演变、发展而展开的.关键词数形结合数学思想以形助数以数辅形一、引言数形结合思想占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.我从以下几方面学习研究一下应用数形结合来提高学生的解题能力.1.数形结合的概念.2.数形结合的原则3.数形结合思想及其内涵.3.数形结合在数学中的应用由来已久.4、数形结合的途径5.数形结合在数学中的应用.“数”与“形”是贯穿于数学发展历史长河中的一条主线,是数学教学的两个基本概念,两块基石.可以说大多数数学知识基本上都是围绕这两个基本概念提炼、演变.采用数形结合思想解决问题的关键是找准数与形的契合点.如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果.二、数形结合的概念数形结合就是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维结合,通径的目的.一般地说,“形”具有形象、直观的特点,易于整体上定性地分析问题.“数形对照”便于寻求思路,化难为易;“数”则具有严谨、准确的特点,能够严格论证和定量求解.“由数想形”可以弥补“形”难以精确的弊端.恰当地应用数形结合是提高解题素的、优化解题过程的一种重要方法数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.三、数形结合的原则数形结合一般遵循以下三个原则:1、等价原则等价原则是指“数”的代数性质与“形”的几何的转化应是对应的,即对于所讨论的问题形与数所反映的对应关系应具有一致性.例题方程132sinX x=的实数根的个数为()A、3个B、5个C、7个D、9个错解图象法,作函数13y x=与2siny x=的草图.由于两个函数均为奇函数,故只需要作0x≥的部分,又因为x>8时,13x>22sin x≥.故图形只需取[0,3π]就行了(如图1).除原点外还有一个交点,再由奇偶性知有7个交点,故选C.x x 图1 图2分析当18x=时,13111122sin8288⎛⎫=>⨯>⎪⎝⎭.因此在(0,)2π内还有一个交点,所以正确的答案为D,如图2所示.2、双向性原则双向性原则是指几何形象直观的分析,进行代数计算的探索.3、简单性原则简单性原则是指数形转换时尽可能使构图简单合理,即使几何形象优美又使代数计算简洁,明了.四、数形结合思想及其内涵“数缺形,少直观;形缺数,难入微”,这是华罗庚教授对数形结合思想的深刻、透彻的阐释.具体地说,就是在解决数学问题时,根据问题的背景、数量关系、图形特征,或使“数”的问题,借助于“形”去观察;或将“形”的问题,借助于“数”去思考,这种解决问题的思想称为数形结合思想.事实上,数形结合思想,就是用联系的观点,根据数的结构特征,构造出与之相适应的图形,并利用图形的性质和规律,解决“数”的问题;或将图形的部分信息或全部信息转换成“数”的信息,弱化或消除“形”的推理,从而将“形”的问题转化为数量关系来解决.给“数”的问题以直观图形的描述,揭示出问题的几何特征,就能变抽象为直观;给“形”的问题以数的度量,分析数据之间的关系,更能从本质上深刻认识“形”的几何属性.五、数形结合的途径数形结合是一柄双刃的解题利剑,下面简单介绍一下数形结合的途径1、由数到形的转换途径(1)方程或不等式问题常可以转化为两个图象的交点位置关系的问题,并借助函数的图象和性质解决相关的问题.(2)利用平面向量的数量关系及模AB的性质来寻求代数式性质.(3)构造几何模型.通过代数式的结构分析,构造出符合代数式的几何图形,如将2a与正方形的面积互化,将abc.(4d=,直线的斜率,直线的截距)、定义等来寻求代数式的图形背景及有点到直线的距离关性质.2、由形到数的转换途径(1)解析法建立适当的坐标系(直角坐标系,极坐标系),引进坐标将几何图形变换为坐标间的代数关系.(2)三角法将几何问题与三角形沟通,运用三角代数知识获得探求结合的途径.(3)向量法将几何图形向量化,运用向量运算解决几何中的平角、垂直、夹角、距离等问题.把抽象的几何推理化为代数运算.特别是空间向量法使解决立体几何中平行、垂直、夹角、距离等问题变得有章可循.六、数形结合的应用数形结合思想在课本中,具有突出的地位.“数无形时不直观,形无数时难入微”道出了数形结合的辩证关系,数形结合简言之就是:见到数量就应想到它的几何意义,见到图形就应想到它的数量关系.比如:在集合运算中的应用.涉及集合的运算,常常采用文氏图,数轴等形象、直观的方式;在研究函数时,已知函数的解析式,作出函数的图象,再通过函数的图象研究函数的性质;或通过图、表的分析,抽象出变量之间的规律,再通过变量之间的规律的研究,进一步掌握图、表的变化趋势;运用数形结合思想,构出适当的图形证明不等式和解不等式往往十分简捷.又如,笛卡儿用数形结合思想将长期对立的代数与几何有机结合,创立了数学的一大分支——解析几何,构建曲线与方程的理论,集中解决了两大问题:已知曲线求方程和通过方程研究曲线的性质.1、利用数形结合思想解决集合的问题(1)利用韦恩图法解决集合之间的关系问题一般用圆来表示集合,两圆相交则表示两集合有公共元素,两圆相离则表示两个集合没有公共元素.利用韦恩图法能直观地解答有关集合之间的关系的问题.例1有48名学生,每人至少参加一个活动小组,参加数理化小组的人数分别为28,25,15,同时参加数理小组的8人,同时参加数化小组的6人,同时参加理化小组的7人,问同时参加数理化小组的有多少人?分析我们可用圆A、B、C分别表示参加数理化小组的人数(如图),则三圆的公共部分正好表示同时参加数理化小组的人数.用n表示集合的元素,则有:即所以()1=nCAB即参加数理化小组的有1人.(2)利用数轴解决集合的有关运算和集合的关系问题.例2 已知集合⑴若,求的范围.⑵若,求的范围.分析 先在数轴上表示出集合A 的范围,要使,由包含于的关系可知集合A 应该覆盖集合A , 从而有,这时的值不可能存在.要使,当0>a 时集合A 应该覆盖集合B ,应有⎪⎩⎪⎨⎧>≤-≥0331a a a 成立.即 10≤<a当0≤a 时,Φ=B ,显然成立.故 时2、利用数形结合思想解决方程和不等式问题(1)利用二次函数的图像解决一元二次方程根的分布情况问题 通过的相互转化,利用函数)(x f y =的图象直观解决问题.例3 如果方程的两个实根在方程的两实根之间,试求与应满足的关系式.分析 我们可联想对应的二次函数,的草图.这两个函数图像都是开口向上,形状相同且有公共对称轴的抛物线(如图).要使方程的两实根在方程的两实根之间,则对应的函数图像与轴的交点应在函数图像与轴的交点之内,它等价于抛物线的顶点纵坐标不大于零且大于抛物线的顶点纵坐标.由配方方法可知与的顶点分别为:())4,(,,2221-+--+--a a a P k a a P .故 求出与应满足的关系式为.(2)利用二次函数的图像求一元二次不等式的解集求一元二次不等式的解集时,只要联想对应的二次函数的图像,确定抛物线的开口方向和与轴的交点情况,便可直观地看出所求不等式地解集. 例4 解不等式.分析 我们可先联想对应的二次函数的图像.从解得知该抛物线与轴交点横坐标为-2,3,当取交点两侧的值时,即时,.即.故可得不等式的解集为:.(3)利用函数图像解决方程的近似解或解的个数问题通过构造函数,把求方程解的问题,转化为两函数图像的交点问题.例5 解方程分析由方程两边的表达式我们可以联想起函数,作出这两个函数的图像,这两个函数图像交点的横坐标为方程的近似解,可以看出方程的近似解为.例6设方程,试讨论取不同范围的值时其不同解的个数的情况.分析我们可把这个问题转化为确定函数与图像交点个数的情况,因函数表示平行于轴的所有直线,从图像可以直观看出:①当时,与没有交点,这时原方程无解;②当时,与有两个交点,原方程有两个不同的解;③当时,与有四个不同交点,原方程不同解的个数有四个;④当时,与有三个交点,原方程不同解的个数有三个;⑤当时与有两个交点,原方程不同解的个数有三个.(4)利用三角函数的图像解不等式.通过构造函数,把不等式问题转化为两个函数图像的关系问题.例7解不等式分析从不等式的两边表达式我们可以看成两个函数.在上作出它们的图像,得到四个不同的交点,横坐标分别为:,而当在区间内时,的图像都在的图像上方.所以可得到原不等式的解集为:.3、利用函数图像比较函数值的大小一些数值大小的比较,我们可转化为对应函数的函数值,利用它们图像的直观性进行比较.例8试判断三个数间的大小顺序.分析这三个数我们可以看成三个函数:在时,所对应的函数值.在同一坐标系内作出这三个函数的图像(如图),从图像可以直观地看出当时,所对应的三个点的位置,从而可得出结论:.4、利用单位圆中的有向线段解决三角不等式问题在教材中利用单位圆的有向线段表示角的正弦线,余弦线,正切线,并利用三角函数线可作出对应三角函数的图像.如果能利用单位圆中的有向线段表示三角函数线,应用它解决三角不等式问题,简便易行.例9 解不等式21sin ->x .分析 因为正弦线在单位圆中是用方向平行于轴的有向线段来表示.我们先在轴上取一点P ,使,恰好表示角的正弦线,过点P 作轴的平行线交单位圆于点,在内,分别对应于角,(这时所对应的正弦值恰好为21-).而要求的解集,只需将弦向上平移,使重合(也即点P 向上平移至与单位圆交点处).这样所扫过的范围即为所求的角.原不等式的解集为:.5、利用两点间距离公式或斜率公式模型构造辅助图形利用两点间距离公式或斜率公式模型构造辅助图形,找出代数问题的几何背景,简便解答某些代数综合题.例10 求证:(a 与c 、b 与d 不同时相等)分析 考察不等号两边特点为,其形式类同平面上两点间距离公式.在平面直角坐标系中设),(b a A ,)0,0(),,(o d c B .如图,()22)(AB d b c a -+=-=22b a AO +=,22d c BO +=当A 、B 、O 三点不共线时,BO AO AB +<.当A 、B 、O 三点共线,且A 、B 在O 点同侧时,BO AO AB +>.当A 、B 、O 三点共线,且A 、B 在O 点异侧时,或A 、B 之一与原点O 重合时,BO AO AB +=.综上可证.例11 求函数84122+-++=x x x y 的最小值.分析 考察式子特点,从代数的角度求解,学生的思维受阻,这时利用数形结合为转化手段,引导学生探索函数背后的几何背景,巧用两点间距离公式,可化为=令A (0,1),B (2,2),P (x ,0),则问题转化为在X 轴上求一点P ,使|PA |+|PB |有最小值.如图,由于AB 在X 轴同侧,故取A 关于X 轴的对称点,故(|PA |+|PB |)min=.例12 已知点P (x ,y )在线性区域内,求(1)U =;(2)V =的值域分析 由线性规划可知P (x ,y )在OAB Rt ∆内(包括边界),Umin 实质上是点M (4,3)到直线AB的距离;V的值域实质上是直线PM 斜率的取值范围.通过以上几个方面的探讨,我们初步领略了数形结合在解题中的美妙所在了.数形结合思想在数学解题中的应用很广泛,渗透在学习新知识和应用知识解决问题的过程之中,需要平时多注意数形结合的应用,有意识地加强这方面的训练,提高数学思维水平.在数形转化结合的过程中,必须遵循下述原则:转化等价原则;数形互补原则;求解简单原则.当然在渗透数形结合的思想时,应掌握以下几点:1. 善于观察图形,以揭示图形中蕴含的数量关系.2. 正确绘制图形,以反映图形中相应的数量关系.切实把握“数”与“形”的对应关系,以图识性,以性识图华罗庚先生曾指出:“数缺形时少直觉,形少数时难人微.”应用数形结合的思想就能扬这两种方法之长,避呆板单调解法之短.在解决有关问题时,数形结合思想方法所表现出来的思路上的灵活,过程上的简便,方法上的多样化是一目了然的,它为我们提供了多条解决问题的通道,使灵活性,创造性的思维品质在其中得到了更大限度的发挥.参考文献:[1] 袁桂珍. 数形结合思想方法及其运用[J]. 广西教育, 2004,(15) .[2] 陈喜娥, 尹雪峰. 浅谈数学思想方法的培养[J]. 山西煤炭管理干部学院学报, 2006,(02)[3] 刘焕芬. 巧用数形结合思想解题[J]. 数学通报, 2005,(01) .[4] 施献慧. 数形结合思想在数学解题中的应用[J]. 云南教育, 2003,(35) .[5] 王银篷. 浅谈数形结合的方法[J]. 中学数学, 2004,(12) .[6] 赵玲. 数形结合思想及其应用[J]. 山西煤炭管理干部学院学报, 2004,(03)[7] 吴雅平. 浅谈数形结合的解题思想[J]. 山西煤炭管理干部学院学报, 2004,(01)11。

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值
1.利用函数图像:函数的图像能够直观地表示出函数的性质和变化规律。

通过观察函数图像的形状和趋势,可以得到函数的最值。

例如,对于一个连续递增函数,其最小值一定在定义域的最左边,最大值一定在定义域的最右边。

对于一个连续递减函数,则相反。

因此,可以通过观察函数图像的趋势来确定函数的最值。

2.利用导数和极值:当函数存在导数时,可以通过导数和极值的关系来求函数的最值。

根据导数的定义,函数的极值点对应着导数为0的点。

因此,求函数的最值可以转化为求函数导数的零点。

利用微积分的知识,可以求得函数的导数,然后找出导数为0的点,通过比较这些点的函数值来确定函数的最值。

3.利用平均值不等式:平均值不等式是数学中的一个重要定理,它可以用来求函数的最值。

平均值不等式的基本内容是:对于一组非负数的平均值,其最大值等于这组数中的最大值,最小值等于这组数中的最小值。

利用这个定理,可以将函数的求最值问题转化为一组非负数的最值问题,进而求得函数的最值。

除了以上几种常见的数形结合思想,还有其他一些方法,如利用等式和不等式的性质,利用对称性等。

这些方法在不同的问题中都有所应用。

最后,需要注意的是,求函数的最值并不总是一件容易的事情,它涉及到数学的各个方面,需要灵活运用各种方法。

在解决问题的过程中,除了观察图形和利用数学定理外,还需要深入理解问题的背景和条件,灵活运用数学知识,才能得出准确的结果。

因此,在求函数最值时,需要注意综合运用各种数学思想和方法,以取得较好的效果。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

高一数学例析求函数值域的方法

高一数学例析求函数值域的方法

例析求函数值域的方法某某黔江新华中学 侯建新求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点。

注意:求值域要先求定义域。

虽然没有固定的方法和模式,但常用的方法有:一、直接法:从自变量x 的X 围出发,推出()y f x =的取值X 围。

例1:求函数1y =的值域。

0≥11≥,∴函数1y =的值域为[1,)+∞。

二、图像法:对于二次函数在给定区间求值域问题,一般采用图像法。

例2:求函数242y x x =-++([1,1]x ∈-)的值域。

(开口方向;区间与对称轴的关系)三、中间变量法:函数式中含有可以确定X 围的代数式。

例3:求函数2211x y x -=+的值域。

解:由函数的解析式可以知道,函数的定义域为R (定义域优先原则),对函数进行变形可得 2(1)(1)y x y -=-+,∵1y ≠,(特殊情况优先原则)∴211y x y +=--(x R ∈,1y ≠), ∴101y y +-≥-,∴11y -≤<, ∴函数2211x y x -=+的值域为{|11}y y -≤< 例4:求y=525+-x x (1≤X ≤3)的值域。

解:y =525+-x x ⇒ x =1255+-y y∵1≤X ≤3 ∴1≤1255+-y y ≤3 (怎么求解?)⇒ y ∈[112,74] 四、分离常数法:分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

例5:求函数125x y x -=+的值域。

解:(此处要先求定义域)∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。

五、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。

数形结合思想方法

数形结合思想方法

浅谈数形结合思想方法摘要:中学数学教学中,教师往往特别强调数学知识的教授,数学技能、技巧的训练,忽略数学思想方法的教学,而中学数学教学大纲中明确指出中学的数学基础知识是指:“数学概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想方法。

”新课标也特别强调教学中数学思想方法的渗透。

数形结合是高中数学中一种重要的思想方法,能够清楚地认识它,灵活地运用它,不管是教还是学都显得尤为重要。

本文从对数形结合思想方法的认识入手,分析其在中学数学中的应用,尽显其重要性。

关键词:数学思想方法、数形结合一、对数形结合思想方法的简单认识法国数学家笛卡尔创立了坐标系,使点与有序实数对建立了联系,进而使曲线与方程建立了联系,于是创立了《解析几何》学科,标志着代数与几何的第一次完美结合。

数形结合是高中数学中一种重要的思想方法,它指出了解决某些数学问题时应从“数”与“形”两者联系来考虑问题。

“数”指数量关系,“形”指空间图形,当我们解决某些数学问题时,常把问题中的代数形式转化为几何图形,借助于几何图形的直观寻找解决问题的思路;相反,当我研究几何图形时,常用代数的方法来研究。

数形结合的基本思想是:在研究数学问题的过程中,注意把数与形结合起来考察。

或者把几何图形问题转化为数量关系问题,运用代数、三角知识进行讨论;或者把数量关系问题转化为图形问题,借助于几何知识加以解决]1[。

简单的说,即“以形助数”和“以数辅形”两个方面,比如应用函数的图像来直观地说明函数的性质;或是应用曲线的方程来精确地阐明曲线的几何性质。

二、数形结合思想方法的具体应用华罗庚先生曾经说过:“数缺形时少直观,形缺数时难入微。

”这充分说明了数形结合思想的重要性。

数形结合思想贯穿于高中数学的全部,数轴、向量法、解析法、图解法等都是这一思想的具体应用。

在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,x y z AB CD 做好数形转化;第三是正确确定参数的取值范围。

高考数学模型归类:数形结合求函数值域

高考数学模型归类:数形结合求函数值域

高考数学一直是考生们备战的重点科目,而数学模型题更是考查学生综合运用各种数学知识解决实际问题的重要题型。

在数学模型题中,数形结合求函数值域是一个常见而又具有一定难度的类型。

接下来,本文将从数学模型的概念入手,结合具体例题进行详细的解析,帮助读者全面了解和掌握数形结合求函数值域的方法和技巧。

一、数学模型的概念数学模型是指用数学方法对实际问题进行抽象和描述,利用数学工具进行分析、推断和预测的过程。

在高考数学中,数学模型题往往涉及到函数、方程、不等式等知识,考查学生运用数学知识解决实际问题的能力。

二、数形结合求函数值域的基本思路数形结合求函数值域是一种通过数学模型解决实际问题的方法,其基本思路是将函数的图像和实际情况相结合,通过分析函数图像的性质,确定函数的值域。

在进行数形结合求函数值域时,有几个基本的步骤和技巧需要掌握:1. 分析函数的定义域和图像特征;2. 结合实际问题,确定函数的约束条件;3. 利用函数的性质和图像特征,求出函数的值域;4. 验证求得的函数值域是否符合实际问题的要求。

三、具体例题解析为了帮助读者更好地理解数形结合求函数值域的方法和技巧,接下来将通过具体的例题进行详细的解析。

例题:已知函数y=x^2在区间[-2,3]上的图像,并且y≥-1,求函数y=x^2的值域。

解析:1. 首先分析函数y=x^2的图像特征,函数y=x^2是一个开口向上的抛物线,对称轴为y轴,顶点为原点。

2. 结合实际问题的约束条件y≥-1,在图像上标出y=-1的水平线,由于y=x^2的图像是开口向上的抛物线,所以函数的值域应为[-1,+∞)。

3. 最后验证求得的函数值域是否符合实际问题的要求,即验证函数的图像是否位于y≥-1的范围内,通过对函数图像的观察可以得出结论,函数的值域为[-1,+∞),符合实际问题的要求。

通过以上例题的解析,相信读者对数形结合求函数值域的方法和技巧有了更清晰的认识和理解。

在解决这类问题时,关键是要充分理解函数的图像特征和实际问题的约束条件,灵活运用数学知识进行分析,得出准确的结论。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)
构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数 y = x2 + 9 + (5 − x)2 + 4 的值域。(答案:{y|y≥ 5 2 })
九、比例法:
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函 数,进而求出原函数的值域。
例:已知 x,y∈R,且 3x-4y-5=0,求函数 z = x2 + y2 的值域。
例:求函数 y = x - 3 + 2x +1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值, 确定原函数的值域。
解:设 t = 2x +1 (t≥0),则
x = t2 -1 。 2
于是 y = t2 -1 - 3 + t = (t +1)2 − 4 ≥ 1 − 4 = − 7 .
( )( ) 例:已知 2x2 - x - 3 3x2 + x +1 ≤ 0 ,且满足 x + y = 1,求函数 z = xy + 3x 的值域。
点拨:根据已知条件求出自变量 x 的取值范围,将目标函数消元、配方,可 求出函数的值域。
解:3x2 + x +1 0 ,上述分式不等式与不等式 2x2 - x - 3 ≤ 0 同解,解之得
3 3 3
3
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区 间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值 域。
练习:求函数 y = 3 + 4 - x 的值域。(答案:{y|y≥3})
七、换元法:
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形 式,进而求出值域。

《指数函数的图象与性质》教学设计

《指数函数的图象与性质》教学设计

《指数函数的图象与性质》教学设计究性质(五)强化训练,巩固双基a>1 0<a<1图象性质(1)定义域:R(2)值域为(0,+∞)(3) 过点(0,1),即x =0时,y =1(4)在R上是增函数(4)在R上是减函数(5)当x>0时,y>1当x<0时,0< y <1(5)当x<0时,y >1当x>0时,0<y <1教师点拨:1)单调性的说明能否由图像语言结合文字语言翻译为符号语言?2)教师点拨当底数不同函数值的变化不同来说明可以用来比较函数值的大小。

3)观察将y=2x与y=x)21(的图像同时展示于一个坐标系,观察图像有何特点?能否由一个图像来得出另一个图像?结论:对称性:(1)y=a x 单个图像不具备对称性,(2)底数互为倒数的两个指数函数图像在同一坐标系下关于y轴对称。

从形式上可变为y=a x与y=a-x教师提出问题,学生独立思考互相补充共同总结。

生:独立思考,尝试解决课本练习1,利用单调性比较大小做了很好的铺垫。

学生互为补充完成图像的特点的思考,进一步得出函数的图形及解析式的特点。

为学生画图像时,利用对称性画图提供了方法和思路。

同时提升学生对性质的理解。

明确底数是确定指数函数的要素.应用是加深理解概念最有效的途(六)归纳总结,拓展深化(七) 布置作业,提你能根据指数函数的定义解决课本练习题吗?练习 1 在同一坐标系中,画出y= y=(1/3)x和y=(3)x函数的图象。

练习2 求下列函数的定义域:(1) y=(3)x(2) y=(1/2)x① y=(3)②y=(1/2)例1,已知指数函数的图象经点 ,求分析:你能说出确定一个指数函数需要几个条件吗?活动:师:投影出例题(题目见教科书)并引导学生分析,当函数图象过某点时,该点的坐标满足该函数解析式,即当时,.师板书其过程。

例21、比较大小;本课你学到了哪些知识?掌握了哪些方法?生:思考,叙述解决例1的步骤和过程,并自己动手算出结果。

沪教版数学高一下册-6 三角函数的定义域与值域 教案

沪教版数学高一下册-6 三角函数的定义域与值域 教案

在研究三角函数的定义域与值域时,不仅要注意三角函数本身的特有属性,还要结合其 他基本函数求定义域与值域的规律. 二、例题解析 例 1. 求下列函数的定义域:
(1) y = sin x − 1 ; 2
解: ∵
sin x 1 ,∴ 2
x
2k
+
6
x
2k
+
5 6
,k
Z
变式:求函数 y =
sin
2x
4
2.
2 sin( + ), +
4
2
四、课堂小结
五、练习
1.求下列函数的定义域:
(1) y = lg(2cos x + 2) + 1− cos x ; 2sin x −1
(2) y = 2 + log1 x + tan x .
2
5/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
解:(1)由
(7) y = sin x +
3
cos
x

x

2
,
2

(4) y = 2sin x +1 ; sin x − 2
(6) y = cos(sin x) ;
(8) y = 2 3a sin x cos x − 2a cos2 x ( a 是非零常数).
解:(1) y = 4 tan x cos x = 4sin x ( cos x 0 ),
∴ 函数的值域为 (−4, 4) .
(2)
y
=
sin
x
+
tan
x

x

4

“函数图像”教学过程中的反思

“函数图像”教学过程中的反思

函数图像教学过程中的反思近日来,讲授了人教版数学必修1,基本初等函数的相关知识,重点学习了指数、对数函数的图像和性质,,但在教学过程中,通过对学生的函数图像的作图、读图、用图能力的考查,发现了几点问题感受颇深,归结为几点:(一)对函数图像基本作图方法——描点法认识不足。

(二)对函数图像理解能力薄弱,对图形信息的分析处理能力差,特别对现代社会生产、生活类型的试题带有恐惧感。

(三)应用函数图像解决问题的意识淡漠,即数形结合思想应用不够熟练。

基于以上三点问题,提示我在函数的教学中可能存在一些偏差,过分强调作图技巧而轻视了基本方法的落实,重视解题方法的训练,而忽视识图能力的培养,重视严谨细致的推理教学,而忽略了学生对数学的感性认识,因此,为了更好地开展今后的教学,将对函数的图像教学做以下调整:1.对基本初等函数的图像要熟悉,同时掌握函数图像的基本作图方法。

对一种函数的本质了解总是从函数图像入手,通过观察图像来发现函数的性质,加深对函数整体的把握,因此绘制图像就变得尤为重要,教学中应抓住“作图、变图”两个关键,而描点法作为基本的作图方法,要引导学生亲手实践操作,感受作图过程并熟练掌握,引起学生对它的重视,切不可强化图像变化而忽视描点法的功能。

2.挖掘现实生产、生活中的实例,与函数图像结合教学,培养学生的识图能力。

新课程理念强调情境教学,即结合学生身边实际,或尽可能创造接近实际的情境去展开教学活动。

函数本身就来自生活,用来描述客观世界的数学模型,因此函数图像也就与现实生产、生活紧密相连了,很多信息是通过图表来反映的,这就要求学生必须要具备识别图像的基本素质,能够从图像中提炼信息和数据。

教学中,要引入大量来自现实生产、生活中的图表,设计一系列问题串,由浅入深,让学生在图表中搜集信息,寻找答案,这样,一方面培养学生的读图能力,另一方面加强了数学与现实生活的联系,同时让学生体会到数学的重要应用。

3.灵活应用图像解决数学问题,重视数形结合思想的作用所谓数学,是研究空间形式和数量关系的科学,简单地说就是数与形两个问题,全部数学都是围绕数与形的提炼、演变、发展而展开的,二者在内容上互相依存,互相渗透和补充,并在一定条件下相互转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从函数图像和求函数值域方面认识数形结合思想
“数”和“形”是数学研究中既有区别又有联系的两个对象。

所谓数形结合,就是把问题的数量关系或几何形式结合起来考察,由形思数,由数思形,互相联想,根据解决问题的需要,可以把数量关系转化成图形的性质问题去讨论,或者把图形的性质转化为数量关系去研究。

下面我们应用数形结合的思想来求函数的值域。

例1. 求函数432--=x x y 的值域 分析:作函数432--=x x y 的图像。

解法Ⅰ:取绝对值化简函数得y ={()
()0.430.432
2<-+≥--x x x x x x
={()()0.47230.472322<-⎪⎭⎫ ⎝⎛+≥-⎪⎭⎫ ⎝
⎛-x x x x 作出函数的图像,由图像可知函数的最小值是47
-,所以函数的值域是⎪⎭
⎫ ⎝⎛-∞-47,。

解法Ⅱ:由函数的性质可知函数432--=x x y 是偶函数,所以只要
作出=y ()0.47232
≥-⎪⎭⎫ ⎝⎛-x x 的图像,当0<x 时的图像可以由对称性作出,,由图像可知函数的最小值是47-,所以函数的值域是⎪⎭
⎫ ⎝⎛-∞-47,。

例2.求函数x
x y cos 2sin +=的值域。

分析:x
x cos 2si n +可以看做点()x x sin ,c o s 和点()0,2-的直线的斜率,而点
()x x sin ,cos 在单位圆上,作出单位圆的图像,当直线和圆相切时取得最大值或最小值,由图像可知函数的最大值是
33,最小值是3
3-,所以函数的值域是⎥⎦⎤⎢⎣⎡-33,33 例3求函数13-++=x x y 的值域。

分析:解法Ⅰ化间函数取绝对值符号,然后作出函数图像,从而由图像看出函数的值域[)+∞,4 解法Ⅱ13-++=x x y 可以看作在数轴x 轴上一点到-3和1的距离之和。

在数轴上我们可以看到函数的最小值4,所以函数的值域是[)+∞,4。

通过这几个例题我们可以看出求函数的值域如果能够作出函数的图像,利用数形结合的思想很容易得到函数的值域。

,。

相关文档
最新文档