七年级第十九章四边形单元测试题Ⅱ

合集下载

华东师大版七年级数学上册单元测试题全套(含答案)

华东师大版七年级数学上册单元测试题全套(含答案)

华东师大版七年级数学上册单元测试题全套(含答案)1.给出一列数:2,3,5,8,13,__,34,里应填()答案:21解析:这是一个斐波那契数列,每个数都是前两个数之和,所以缺失的数是21.2.某学校的教学楼从每层楼到它的上一层楼都要经过20级台阶,则小明从一楼到五楼要经过的台阶数是()答案:80解析:每层楼到上一层楼都要经过20级台阶,所以从一楼到五楼需要经过4层楼,即4×20=80级台阶。

3.将一个长方形框架拉成一个平行四边形后,长方形与平行四边形相比()答案:周长相等,面积相等解析:将长方形框架拉成平行四边形后,四条边的长度和原来一样,所以周长相等;同时,拉成平行四边形后,底边和高不变,所以面积也相等。

4.如图所示的信息,以下结论正确的是()答案:八年级男生人数是女生人数的2倍解析:根据图中数据,六年级学生人数为60,七年级学生人数为80,八年级学生人数为120,九年级学生人数为90.同时,根据图中男女比例,八年级男生人数为80,女生人数为40,所以八年级男生人数是女生人数的2倍。

5.如图,是一座房子的平面图,这幅图是由()组成的。

答案:三角形、正方形、长方形、梯形解析:图中有三个三角形、一个正方形、两个长方形和一个梯形。

6.正常人的体温一般在37℃左右,在一天中的不同时刻体温有所不同,如图反映的是某天24小时内小明的体温变化情况,下列说法不正确的是()答案:从6时到24时,小明的体温一直是升高的解析:从图中可以看出,小明的体温在6时达到最低点,之后一直升高,但在12时左右达到峰值,之后开始下降,直到24时回到最低点。

7.小强拿了一张正方形的纸如图①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,打开这张纸后的形状应是()答案:正三角形解析:将正方形沿虚线对折两次后,得到一个等腰梯形,剪去一个角后,打开得到的形状是正三角形。

8.已知a、b是两个自然数,若a+b=10,则a×b的值最大为()答案:25解析:根据求最值的方法,当a和b的差距最小时,积最大。

新版精选2019年七年级数学下册单元测试题-第二章《图形的变换》完整版考核题(含参考答案)

新版精选2019年七年级数学下册单元测试题-第二章《图形的变换》完整版考核题(含参考答案)

2019年七年级下册数学单元测试题第二章 图形的变换一、选择题1.下面四张扑克牌中,以牌的对角线交点为旋转中心,旋转 180°后能与原图形重合的有( )A .B .C .D .答案:B2.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是 ( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍答案:D3.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是 ( )答案:C4.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( •)答案:CA B CD5.在下图右侧的四个三角形中不能由△ABC经过旋转或平移得到的是()答案:B6.一个多边形各边长为5,6,7,8,9,另一个相似图形和6对应的边长为9,则这个相似图形的周长为()A.35 B.40.5 C.45 D.52.5答案:D7.以下四幅图形中有三幅图案是可以相互旋转得到的,另外的一幅是()答案:B8.下列图形绕某点旋转后,不能与原来图形重合的是(旋转度数不超过180°)()答案:B9.如图,把线段AB=2 cm向右平移3 cm,得到线段CD,连结对应点,则平行四边形ABCD的面积有可能为()A.cm2B.6cm2C.8cm2D.9cm2答案:A10.如图,①、③、④、⑤、⑥中可以通过平移图案②得到的是()A.②B.④C.⑤D.⑥答案:C11.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行答案:B12.如图,8×8方格纸的两条对称轴EF,MN相交于点0,对图a分别作下列变换:①先以直线MN为对称轴作轴对称图形,再向上平移4格;②先以点0为中心旋转180°,再向右平移1格;③先以直线EF为对称轴作轴对称图形,再向右平移4格,其中能将图a变换成图b的是()A.①②B.①③C.②③D.③答案:D二、填空题13.如图,线段A′B°是线段AB经一次旋转变换得到的,旋转的角度是 .解析:130°14.下列各图中,从左到右的变换分别是什么变换?ACBA'B'C'图2图1解析:轴对称变换,旋转变换,相似变换,平移变换15.△ABC平移到△DEF,若AD = 5,则CF为_____________.解析:516.宋体的汉字“王”、“中”、“田”等都是轴对称图形,•请再写出三个这样的汉字:_________.解析:略17.如图,把△ABC向左平移,使平移的距离等于BC,则B的对应点是 ,AB的对应线段是 ,∠ABC的对应角是 .解析:B,,A,B,,∠A,B,C,18.如图,当半径为30 cm的转动轮转过l80°角时,传送带上的物体A平移的距离为cm.解析:3019.从l2:40到13:10,钟表的分针转动的角度是,时针转动的角度是.解析:180°,l5°20.如图所示,在图②、③中画出由图①所示的阴影部分图形绕点P按顺时针方向旋转90°和l80°后所成的图形.解析:图略21.如图所示,△ABC是等腰直角三角形,AD⊥BC,则△ABD可以看做是由△ACD绕点逆时针旋转得到的.解析:D,90°22.将如图所示中标号为A,B,C,D的正方形沿虚线剪开后得到标号为P,Q,M,N的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系填空:A与对应; B与对应;C与对应;D与对应.解析:M,P,Q,N23.如图所示,是用笔尖扎重叠的纸得到的关于直线l成轴对称的两个图形,连结CE交l 于0,则⊥,且 = ,AB的对应线段是,EF的对应线段是,∠DC0的对应角是.解析:l,CE,OC,O)E,GH.CD,∠FE0三、解答题24.如图,先画出三角形关于直线n的轴对称图形,再画出所得图形关于直线m的轴对称图形;经过这样两次轴对称变换后所得的图形和原来图形有什么关系?解析:略25.如图是由一个圆,一个半圆和一个三角形组成的图形,请你以直线AB为对称轴,把原图形补成轴对称图形(用尺规作图,不要求写作法和证明,但要保留作图痕迹).解析:略26.如图所示,其中的图案是小树的一半,以树干为对称轴画出小树的另一半.解析:略27.李明家住在河岸边(如图所示),其房子和小树在河中的倒影构成一幅美丽的画面,你能画出它们的倒影吗?解析:略28.如图所示,草原上两个居民点A,B在河流l的同旁,一汽车从A出发到B,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短?在图中画出该点.解析:作点A关于直线l的对称点A′,连结A′B交直线l于点P,则点P即是要找的那一点29.在如图所示的6个箭头中,哪几个箭头是可以通过平移得到的,请你们指出它们的序号.解析:①与⑤可以通过平移得到30.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L明一挥羽扇.军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?解析:略31.如图,在小正方形组成的“L”形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.解析:图略32.已知边长为l cm的等边三角形ABC,如图所示.(1)将这个三角形绕它的顶点C按顺时针方向旋转30°,作出这个图形;(2)再将已知三角形分别按顺时针方向旋转60°,90°,l20°,作出这些图形.(3)继续将三角形向同一方向旋转150°,180°,210°,240°,270°,300°,330°,作出这些图形.你将会得到一个美丽的图案.解析:略33.尺规作图:把图(实线部分)补成以虚线l为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法,保留作图痕迹).解析:如图:34.在一幅比例尺为l:9000000的位置图上,高雄市到基隆市的距离是35 mm,则高雄市到基隆市的距离是多少km?解析:315 km35.如图,一长方形的长为12,宽为8.(1)将其四周往内各减少1,得一新的小长方形,则原长方形与新长方形是相似图形吗?为什么?(2)如果将宽增加l ,则长增加多少后,所得长方形与原长方形为相似图形?解析:(1)不是相似图形,理由略;(2)1.536.如图所示的图案,此图案可由怎么样的基本图形通过平移得到?请你分析.解析:略37.如图请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.解析:略.38.如图,(1)在方格纸上作下列相似变换:把△ABC 的每条边扩大到原来的2倍;(2)放大后的图形的周长是原图形周长的多少倍?(3)放大后的图形的面积是原图形面积的多少倍?方方方解析:(1)略,(2)2,(3)439.如图①,在6×6的方格纸中,给出如下三种变换:P变换,Q变换,R变换.将图形F 沿直线x向右平移l格得图形F1,称为作1次P变换;将图形F沿直线y翻折得图形F2,称为作1次Q变换;将图形F绕坐标原点顺时针旋转90°得图形F3,称为作1次R变换.规定:PQ变换表示先作1次Q变换,再作1次P变换;n R变换表示作n次R变换.解答下列问题:(1)作R4变换相当于至少作次Q变换;(2)请在图②中画出图形F作R2007变换后得到的图形F4;(3)PQ变换与QP变换是否是相同的变换?请在图③中画出PQ变换后得到的图形F5,在图④中画出QP变换后得到的图形F6.解析:(1)2 (2)略(3)略40.如图,大正方形的边长为9 cm,阴影部分的宽为1 cm,试用平移的方法求出空白部分的面积.解析:49 cm2。

2022年精品解析沪科版八年级数学下册第19章 四边形单元测试试卷(含答案详解)

2022年精品解析沪科版八年级数学下册第19章 四边形单元测试试卷(含答案详解)

沪科版八年级数学下册第19章四边形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是()A.75°B.60°C.55°D.40°2、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以v cm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A.2 B.4 C.4或65D.2或1253、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3)A.1个B.2个C.3个D.4个4、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式()A.1种B.2种C.3种D.4种5、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20ºB.25ºC.30ºD.35º6、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.1)B.(1,1)C.(1D.,1)7、若一个直角三角形的周长为31,则此直角三角形的面积为()A B C.3D.8、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为()A.30°B.36°C.37.5°D.45°9、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP =MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③B.②③④C.①②④D.①④10、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC ,将线段EC 绕点C 按逆时针方向旋转60°得到FC ,连接DF ,则在点E 的运动过程中,DF 的最小值是( )A .1B .1.5C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长方形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把B 沿AE 折叠,使点B 落在点B ′处.当CEB '为直角三角形时,BE 的长为______.2、菱形ABCD 的周长为AC 和BD 相交于点O ,AO :BO =1:2,则菱形ABCD 的面积为________.3、如图,四边形ABCD ,BP 、CP 分别平分ABC ∠、BCD ∠,写出A ∠、D ∠、P ∠之间的数量关系______.4、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN =AM AN +的最小值是________.5、如图,△ABC 中,AC=BC=3,AB=2,将它沿AB 翻折得到△ABD ,点P 、E 、F 分别为线段AB 、AD 、DB 上的动点,则PE+PF 的最小值是_____.三、解答题(5小题,每小题10分,共计50分)1、已知平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程 ()244210x mx m -+-=的两个实数根.(1)当m 为何值时,平行四边形ABCD 是菱形?(2)若AB 的长为2,那么平行四边形ABCD 的周长是多少?2、如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 的三等分点,连接BE ,DF .证明BE =DF .3、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形.(1)如图①,在各边相等的四边形ABCD 中,当AC =BD 时,四边形ABCD 正四边形;(填“是”或“不是”)(2)如图②,在各边相等的五边形ABCDE中,AC=CE=EB=BD=DA,求证:五边形ABCDE是正五边形;(3)如图③,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由.4、如图,矩形ABCD中,E、F是BC上的点,∠DAE=∠ADF.求证:BF=CE.5、如图,四边形ABCD是平行四边形,AC为对角线.(1)尺规作图:请作出AC的垂直平分线,分别交AD,BC,AC于点E,F,G,连接CE,AF.不写作法,保留作图痕迹;(2)请判断四边形AFCE的形状,并说明理由.-参考答案-一、单选题1、C【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF=∠B=55°,故选:C.【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.2、D【分析】根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP 时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】解:当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP时,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=125.故选:D.【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.3、C【分析】根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=12S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.【详解】解:①∵四边形ACHI和四边形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB =∠CAD ,在△ABI 和△ADC 中,AI AC IAB CAD AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABI ≌△ADC (SAS ),∴BI =CD ,故①正确;②过点B 作BM ⊥IA ,交IA 的延长线于点M ,∴∠BMA =90°,∵四边形ACHI 是正方形,∴AI =AC ,∠IAC =90°,S 1=AC 2, ∴∠CAM =90°,又∵∠ACB =90°,∴∠ACB =∠CAM =∠BMA =90°, ∴四边形AMBC 是矩形,∴BM =AC ,∵S △ABI =12AI •BM =12AI •AC =12AC 2=12S 1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=12S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=12AD•CN=12AD•AK=12S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.4、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.故只购买一种瓷砖进行平铺,有3种方式.故选:C.【点睛】本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.5、C【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.6、B【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD =CD =1是解决问题的关键.7、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC =2BD =2.∵一个直角三角形的周长为∴AB +BC等式两边平方得(AB +BC )2 2,即AB 2+BC 2+2AB •BC∵AB 2+BC 2=AC 2=4,∴2AB •BC AB •BC即三角形的面积为12×AB •BC 故选:B .【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC •BC 的值是解此题的关键,值得学习应用.8、C【分析】根据矩形和平行线的性质,得30DBC BDA ∠=∠=︒;根据等腰三角形和三角形内角和性质,得∠BOE ;根据全等三角形性质,通过证明OBE ODF △∽△,得OE OF =;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得OFG ∠,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD∴//AD BC∴30DBC BDA ∠=∠=︒∵OB =EB , ∴180752DBC BOE BEO ︒-∠∠=∠==︒ ∴75FOG BOE ∠=∠=︒∵点O 为对角线BD 的中点,∴OB OD =OBE △和ODF △中30DBC BDA OB OD BOE DOF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴OBE ODF △∽△∴OE OF =∵EG ⊥FG ,即90EGF ∠=︒∴OE OF OG∴18052.52FOGOFG OGF︒-∠∠=∠==︒∴9037.5OGE OGF∠=︒-∠=︒故选:C.【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.9、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴12 PM PN BC==故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:BN=故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.10、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【详解】解:取线段AC的中点G,连接EG,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =2. 故选:C .【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF =GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.二、填空题1、32或3 【分析】分两种情形:如图1中,当A ,B ′,C 共线时,90EB C ∠'=︒.如图2中,当点B ′落在AD 上时,90CEB ∠'=︒,分别求解即可.【详解】解:如图1中,当A ,B ′,C 共线时,90EB C ∠'=︒.四边形ABCD 是矩形,90B ∴∠=︒,5AC ∴,3AB AB ='=,532CB ∴'=-=,设BE EB x ='=,则4EC x =-,在'Rt CEB 中,222CE B E B C ='+',222(4)2x x ∴-=+,32x ∴=, 如图2中,当点B ′落在AD 上时,90CEB ∠'=︒,此时四边形ABEB'是正方形,3BE AB∴==,综上所述,满足条件的BE的值为32或3.故答案是:32或3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,解题的关键是学会用分类讨论的思想思考问题.2、4【分析】根据菱形的性质求得边长,根据AO:BO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.【详解】解:如图四边形ABCD是菱形AB AD DC CB ∴===,11,22AO AC BO BD ==菱形ABCD 的周长为AB ∴ AO :BO =1:2,AB ∴1,2AO BO ∴==2,4AC BD ==1124422ABCD S AC BD ∴=⋅=⨯⨯=菱形 故答案为:4【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键. 3、2D A P +∠∠=∠【分析】如图(见解析),先根据角平分线的定义可得21,22ABC BCD ∠=∠∠=∠,再根据三角形的内角和定理、四边形的内角和即可得.【详解】解:如图,BP 、CP 分别平分ABC ∠、BCD ∠,21,22ABC BCD ∴∠=∠∠=∠,20118P ∠︒+=∠+∠,23221260P ∴∠+∠+∠=︒,又3212260D ABC A BCD A D ∠+∠=∠+∠∠+∠++∠=︒∠+,∴=∠∠,+∠A PD2故答案为:2∠=∠.D+∠A P【点睛】本题考查了角平分线的定义、三角形的内角和定理、四边形的内角和,熟练掌握三角形的内角和定理、四边形的内角和是解题关键.4【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN+最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,∴MD=AN,AD=MN,作点A关于BC的对称点A′,连接A A′交BC于点O,连接A′M,则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长,∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO =CO =AO∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】 本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN 转化为DM 是解题的关键.5【分析】首先证明四边四边形ABCD 是菱形,作出F 关于AB 的对称点M ,再过M 作ME ′⊥AD ,交AB 于点P ′,此时P ′E ′+P ′F 最小,求出ME 即可.【详解】解:作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,此时P′E′+P′F=ME′,过点A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=12AB=1,由勾股定理可得,CH∵12×AB×CH=12×BC×AN,可得AN∴ME ′=AN∴PE +PF .【点睛】 本题考查翻折变换,等腰三角形的性质,轴对称−最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题1、(1)当m 为1时,四边形ABCD 是菱形.(2)▱ABCD 的周长是5.【分析】(1)根据一元二次方程有实根求出△=16(m -1)2≥0,结合根的判别式,当△=0时,AB =AD ,平行四边形ABCD 为菱形,得出16(m -1)2=0求出m 的值即可;(2)根据AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根,将x =2代入原方程可求出m 的值,将m 的值代入原方程,求出方程的另一根AD 的长,再根据平行四边形的周长公式即可求出▱ABCD 的周长.【详解】解:(1)∵平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程()244210x mx m -+-=的两个实数根∴△=(-4m )2-4×4(21m -)=16(m -1)2≥0,当△=0时,AB =AD ,平行四边形ABCD 为菱形,∴16(m -1)2=0∴m =1,∴当m 为1时,四边形ABCD 是菱形.(2)∵AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根把x =2代入原方程,得:()4442210m m ⨯-⨯+-=解得:m =52.将m =52代入原方程,得:24104=0x x -+整理得2252=0x x -+,因式分解得()()2120x x --=∴x 1=2,x 2=12∴AD =12,∴▱ABCD 的周长是2×(2+12)=5.【点睛】本题考查一元二次方程的根的判别式,菱形的性质,平四边形周长,一元二次方程的解,解一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、见详解【分析】由题意易得AB =CD ,AB ∥CD ,AE =CF ,则有∠BAE =∠DCF ,进而问题可求证.【详解】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∵E ,F 是对角线AC 的三等分点,∴AE =CF ,在△ABE 和△CDF 中,AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS ),∴BE =DF .【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.3、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS 证明△ABC ≌△BCD ≌△CDE ≌△DEA ≌△EAB 得出∠ABC =∠BCD =∠CDE =∠DEA =∠EAB ,即可得出结论;(3)由SSS 证明△ABE ≌△BCA ≌△DEC 得出∠BAE =∠CBA =∠EDC ,∠AEB =∠ABE =∠BAC =∠BCA =∠DCE =∠DEC ,由SSS 证明△ACE ≌△BEC 得出∠ACE =∠CEB ,∠CEA =∠CAE =∠EBC =∠ECB ,由四边形ABCE 内角和为360°得出∠ABC +∠ECB =180°,证出AB ∥CE ,由平行线的性质得出∠ABE =∠BEC ,∠BAC =∠ACE ,证出∠BAE =3∠ABE ,同理:∠CBA =∠D =∠AED =∠BCD =3∠ABE =∠BAE ,即可得出结论;【详解】(1)解:结论:四边形ABCD 是正四边形.理由:∵AB =BC =CD =DA ,∴四边形ABCD 是菱形,∵AC =BD ,∴四边形ABCD 是正方形.∴四边形ABCD 是正四边形.故答案为:是.(2)证明:∵凸五边形ABCDE 的各条边都相等,∴AB =BC =CD =DE =EA ,在△ABC 、△BCD 、△CDE 、△DEA 、△EAB 中,AB BC CD DE EA BC CD DE EA AB AC BD CE DA BE ====⎧⎪====⎨⎪====⎩∴△ABC ≌△BCD ≌△CDE ≌△DEA ≌EAB (SSS ),∴∠ABC =∠BCD =∠CDE =∠DEA =∠EAB ,∴五边形ABCDE 是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形.若AC =BE =CE ,五边形ABCDE 是正五边形,理由如下:在△ABE 、△BCA 和△DEC 中,AE BA DC AB BC DE BE AC CE ==⎧⎪==⎨⎪==⎩, ∴△ABE ≌△BCA ≌△DEC (SSS ),∴∠BAE =∠CBA =∠EDC ,∠AEB =∠ABE =∠BAC =∠BCA =∠DCE =∠DEC ,在△ACE 和△BEC 中,AE BC CE BE AC CE =⎧⎪=⎨⎪=⎩∴△ACE ≌△BEC (SSS ),∴∠ACE =∠CEB ,∠CEA =∠CAE =∠EBC =∠ECB ,∵四边形ABCE 内角和为360°,∴∠ABC +∠ECB =180°,∴AB ∥CE ,∴∠ABE =∠BEC ,∠BAC =∠ACE ,∴∠CAE =∠CEA =2∠ABE ,∴∠BAE =3∠ABE ,同理:∠CBA =∠D =∠AED =∠BCD =3∠ABE =∠BAE ,∴五边形ABCDE 是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.4、见解析【分析】先证明=AEB DFC ∠∠,然后证明△ABE ≌△DCF ,再根据全等三角形的性质得出结论.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,90B C ∠=∠=︒,AD ∥BC ,∴∠ADF =∠CFD ,∠DAE =∠AEB ,∵=DAE ADF ∠∠,∴=AEB DFC ∠∠.在ABE △和DCF 中,=AEB DFC B CAB DC ∠∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABE DCF AAS △≌△,∴BE CF =,∴BE -FE =CF -EF ,即BF =CE .【点睛】本题主要考查了矩形的性质,全等三角形的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.5、(1)见解析,(2)菱形,理由见解析【分析】(1)利用基本作图,作线段AC 的垂直平分线即可;(2)先根据线段垂直平分线的性质得到EA =EC ,FA =FC ,AG =GC ,再证明△AGE ≌△CGF 得到AE =CF ,根据四边相等可判断四边形AFCE 为菱形.(1)解:如图,EF 、CE 、AF 为所作;(2)解:四边形AFCE 为菱形.理由如下:如图,∵EF 垂直平分AC ,∴EC =EA ,FC =FA ,AG =GC ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠EAC =∠FCA ,在△AGE 和△CGF 中,EAC FCA AG CGAGE CGF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGE ≌△CGF (ASA ),∴AE =CF ,∴AE =EC =CF =AF ,∴四边形AFCE 为菱形.【点睛】本题考查了作图﹣基本作图,线段垂直平分线的性质和菱形的判定,熟练掌握基本作图,熟练运用垂直平分线的性质和菱形判定进行推理证明是解题关键.。

2021年八年级数学第19章(四边形)第四单元测试试卷A卷

2021年八年级数学第19章(四边形)第四单元测试试卷A卷

八年级数学(下)第四单元自主学习达标检测A 卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 .3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm .7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm .9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF的长为 .D A C F 1S 2S A B D EF 第10题 第11题11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分)15.如图, Y ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100° B .80° C .60° D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( )30°30°30°第8题第13题第15题。

北师大版数学七年级上册第一、第二单元测试题及答案(各一套)

北师大版数学七年级上册第一、第二单元测试题及答案(各一套)

北师大版数学七年级上册第一单元测试题一.选择题(共12小题)1.下列图形中,属于立体图形的是()A.B.C.D.2.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V甲、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()A.V甲>V乙S甲=S乙B.V甲<V乙S甲=S乙C.V甲=V乙S甲=S乙 D.V甲>V乙S甲<S乙3.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.184.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.下面平面图形中能围成三棱柱的是()A.B.C.D.7.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港8.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.9.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.10.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.11.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+412.如图是边长为1的六个小正方形组成的平面图形,经过折叠能围成一个正方体,那么点A、B在围成的正方体上相距()A.0 B.1 C.D.二.填空题(共4小题)13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是平行.14.如图,一个长方体的表面展开图中四边形ABCD是正方形,则根据图中数据可得原长方体的体积是12cm3.15.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12个;只有一面涂色的小正方体有6个.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为24π.(结果保留π)三.解答题(共6小题)17.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.18.把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.19.小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长6cm,长方形的长为8cm,宽为6cm,请求出修正后所折叠而成的长方体的表面积和体积.20.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.21.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?22.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)参考答案一.选择题(共12小题)1.下列图形中,属于立体图形的是()A.B.C.D.【考点】认识立体图形.【分析】根据平面图形所表示的各个部分都在同一平面内,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形,可得答案.【解答】解:A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.故选:C.【点评】本题考查了认识立体图形,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形.2.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V甲、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()A.V甲>V乙S甲=S乙B.V甲<V乙S甲=S乙C.V甲=V乙S甲=S乙 D.V甲>V乙S甲<S乙【考点】点、线、面、体.【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案.【解答】解:V甲=π•b2×a=πab2,V乙=π•a2×b=πba2,∵πab2<πba2,∴V甲<V乙,∵S甲=2πb•a=2πab,S乙=2πa•b=2πab,∴S甲=S乙,故选:B.【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.3.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.18【考点】几何体的表面积.【分析】观察几何体,得到这个几何体向前、向后、向上、向下、向左、向右分别有3个正方形,则它的表面积=6×3×1.【解答】解:这个几何体的表面积=6×3×1=18.故选:D.【点评】本题考查了几何体的表面积:正方体表面积为6a2 (a为正方体棱长).4.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【考点】几何体的展开图.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.6.下面平面图形中能围成三棱柱的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、能围成三棱柱,故选项正确;B、折叠后有两个面重合,不能围成三棱柱,故选项错误;C、不能围成三棱柱,故选项错误;D、折叠后有两个侧面重合,不能围成三棱柱,故选项错误.故选:A.【点评】考查了展开图折叠成几何体,解题时勿忘记三棱柱的特征及正方体展开图的各种情形.7.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.【考点】截一个几何体;几何体的展开图.【分析】根据正六面体和截面的特征,可动手操作得到答案.【解答】解:动手操作可知,画出所有的切割线的是图形C.故选C.【点评】考查了截一个几何体和几何体的展开图,观察思考与动手操作结合,得到相应的规律是解决本题的关键.9.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】从左面看会看到该几何体的两个侧面.【解答】解:从左边看去,应该是两个并列并且大小相同的矩形,故选B.【点评】本题考查了几何体的三视图及空间想象能力.10.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+4【考点】由三视图判断几何体.【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【解答】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选D.【点评】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.12.如图是边长为1的六个小正方形组成的平面图形,经过折叠能围成一个正方体,那么点A、B在围成的正方体上相距()A.0 B.1 C.D.【考点】展开图折叠成几何体.【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【解答】解:将图1折成正方体后点A和点B为同一条棱的两个端点,故此AB=1.故选:B.【点评】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置关系是解题的关键.二.填空题(共4小题)13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是平行.【考点】认识立体图形.【分析】在长方体中,面与面之间的关系有平行和垂直两种.【解答】解:平面ABFE与平面DCGH,故答案为:平行.【点评】此题主要考查了认识立体图形,在立体图形中,两个平行的面中的每条棱也互相平行.14.如图,一个长方体的表面展开图中四边形ABCD是正方形,则根据图中数据可得原长方体的体积是12cm3.【考点】几何体的展开图.【分析】利用正方形的性质以及图形中标注的长度得出AB=AE=4cm,进而得出长方体的长、宽、高进而得出答案.【解答】解:如图,∵四边形ABCD是正方形,∴AB=AE=4cm,∴立方体的高为:(6﹣4)÷2=1(cm),∴EF=4﹣1=3(cm),∴原长方体的体积是:3×4×1=12(cm3).故答案为:12.【点评】此题主要考查了几何体的展开图,利用已知图形得出各边长是解题关键.15.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12个;只有一面涂色的小正方体有6个.【考点】截一个几何体.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【点评】主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为24π.(结果保留π)【考点】由三视图判断几何体.【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【解答】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4•π×6=24π.故答案为:24π.【点评】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三.解答题(共6小题)17.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【考点】点、线、面、体.【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【解答】解:连线如下:【点评】本题考查了图形的旋转,注意培养自己的空间想象能力.18.把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.【考点】几何体的表面积.【分析】前后面各有10个小正方形,上下面各有9个小正方形,左右面各有8个小正方形,而每个小正方形的面积是4,即可求出表面积.【解答】解:这个立体图形的表面积是4×2×(9+8+10)=216(平方厘米),答:这个立体图形的表面积是216平方厘米.【点评】本题考查了几何体的表面积的应用,能理解表面积的意义是解此题的关键,难度不是很大.19.小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长6cm,长方形的长为8cm,宽为6cm,请求出修正后所折叠而成的长方体的表面积和体积.【考点】展开图折叠成几何体;几何体的展开图.【分析】(1)根据长方体展开图中每个面都有一个全等的对面,可得答案;(2)根据表面积公式,可得答案;根据长方体的体积,可得答案.【解答】解:(1)多余一个正方形如图所示;(2)表面积=6×8×4+62×2=192+72=264cm2.【点评】本题考查了展开图折叠成几何题,利用长方体展开图中每个面都有一个全等的对面是解题关键.20.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体的表面展开图,相对的面之间一定相隔一个正方形,可得x+3x=2+6,y﹣1+5=2+6,解方程求出x与y的值,进而求解即可.【解答】解:由题意,得x+3x=2+6,y﹣1+5=2+6,解得x=2,y=4,所以y﹣x=4﹣2=2.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?【考点】截一个几何体;几何体的表面积.【分析】根据长方体的切割特点可知,切割成三段后,表面积是增加了4个长方体的侧面的面积,由此利用增加的表面积即可求出这根木料的侧面积,再利用长方体的体积公式即可解答问题.【解答】解:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为80÷4=20cm2,∴这根木料本来的体积是:1.6×100×20=3200(cm3).【点评】此题主要考查了几何体的表面积,抓住切割特点和表面积增加面的情况是解决本题的关键.22.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)【考点】简单组合体的三视图;几何体的表面积.【分析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出下面长方体表面积+上面圆柱的侧面积.【解答】解:(1)如图所示:;(2)表面积=2(8×5+8×2+5×2)+4×π×6=2(8×5+8×2+5×2)+4×3.14×6=207.36(cm2).【点评】此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.北师大版数学七年级上册第二单元测试题一、选择题(每小题4分,共32分)1.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克2.下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个 B.2个 C.3个 D.4个3.小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷×2=12;④0﹣(﹣1)2016=﹣1.则她做对的道数是()A.1 B.2 C.3 D.44.(2018•济南)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1025.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c6.已知①1﹣22;②|1﹣2|;③(1﹣2)2;④1﹣(﹣2),其中相等的是()A.②和③B.③和④C.②和④D.①和②7.若(﹣ab)2017>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>08.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11二、填空题(每小题4分,共16分)9.﹣2的相反数是,倒数是,绝对值是.10.在数轴上,与点﹣3距离4个单位长度的点有个,它们对应的数是.11.若m、n互为相反数,则|m﹣1+n|=.12.某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子,一个月后也能繁殖3对新小兔子,总之,所有的每对兔子,都是每月繁殖3对小兔子,如果开始只有一对兔子,那么半年后有对兔子(不考虑意外死亡).三、解答题(共52分)13.(12分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)﹣17+17÷(﹣1)11﹣52×(﹣0.2)3;(3)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].14.(10分)(2015秋•武平县校级期中)小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有1人参加,数学老师想出了一个主题,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组,你也一起来试一试吧!15.(10分)小明是“环保小卫士”,课后他经常关心环境天气的变化,他了解到本周白天的平均气温,如表(“+”表示比前一天上升了,“﹣”表示比前一天下降了.单位:℃)已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的平均气温最高,最高是多少?(2)计算这一周每天的平均气温.16.(10分)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,组成一个最大的数,则应如何抽取?最大的数是多少?(4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).参考答案一、选择题(每小题4分,共32分)1.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【考点】正数和负数.【专题】计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.2.下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个 B.2个 C.3个 D.4个【考点】有理数.【专题】计算题;实数.【分析】利用正数与负数的定义判断即可.【解答】解:①一个数不是正数就是负数或0,错误;②海拔﹣155m表示比海平面低155m,正确;③负分数是有理数,错误;④零不是最小的数,错误;⑤零是整数,不是正数,错误.故选A【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.3.小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷×2=12;④0﹣(﹣1)2016=﹣1.则她做对的道数是()A.1 B.2 C.3 D.4【考点】有理数的混合运算.【分析】根据绝对值、有理数的加减法、乘除进行计算即可.【解答】解:①﹣6﹣6=﹣12,故错误;②﹣3﹣|﹣3|=﹣6,故正确;③3÷×2=12,故正确;④0﹣(﹣1)2016=﹣1,故正确;故选C.【点评】本题考查了有理数的混合运算,掌握有理数的加减乘除混合运算是解题的关键.4.(2018•济南)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104 B.7.6×103 C.7.6×104 D.76×102【考点】科学记数法—表示较大的数.有理数科学记数法【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:7600=7.6×103,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【考点】实数与数轴.【专题】数形结合.【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.6.已知①1﹣22;②|1﹣2|;③(1﹣2)2;④1﹣(﹣2),其中相等的是()A.②和③B.③和④C.②和④D.①和②【考点】有理数的混合运算.【分析】①先算平方,再算减法;②先做绝对值里面的减法运算,再根据绝对值的定义去掉绝对值的符号;③先做括号里面的减法运算,再根据有理数的乘方运算法则计算;④根据减法法则计算.计算出各式的值以后,再比较即可.【解答】解:因为①1﹣22=1﹣4=﹣3;②|1﹣2|=|﹣1|=1;③(1﹣2)2=(﹣1)2=1;④1﹣(﹣2)=1+2=3.所以,相等的是②和③.故选A.【点评】此题主要考查了有理数的混合运算.7.若(﹣ab)2017>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>0【考点】有理数的乘方;有理数的除法.【分析】根据乘方法则得的结果.【解答】解:∵(﹣ab)2017>0,∴﹣ab>0,∴ab<0,即ab异号,∴A选项正确,B选项错误;CD错误,故选A.【点评】本题主要考查了乘方运算,注意正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0是解答此题的关键.8.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11【考点】绝对值.【分析】根据所给a,b绝对值,可知a=±5,b=±6;又知a>b,那么应分类讨论两种情况:a为5,b为﹣6;a为﹣5,b为﹣6,求得a+b的值.【解答】解:已知|a|=5,|b|=6,则a=±5,b=±76∵a>b,∴当a=5,b=﹣6时,a+b=5﹣6=﹣1;当a=﹣5,b=﹣6时,a+b=﹣5﹣6=﹣11.故选C.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.根据题意确定绝对值符号中数的正负再计算结果.二、填空题(每小题4分,共16分)9.﹣2的相反数是2,倒数是﹣,绝对值是2.【考点】倒数;相反数;绝对值.【分析】运用倒数,相反数及绝对值的定义求解即可.【解答】解:﹣2的相反数是2,倒数是﹣,绝对值是2.故答案为:2,﹣,2.【点评】本题主要考查了倒数,相反数及绝对值,解题的关键是熟记定义.10.在数轴上,与点﹣3距离4个单位长度的点有2个,它们对应的数是﹣7和1.【考点】数轴.【专题】计算题;实数.【分析】结合数轴,确定出所求的数即可.【解答】解:在数轴上,与点﹣3距离4个单位长度的点有2个,分别位于﹣3的两侧且到﹣3这一点的距离都是4,右边的数为﹣3+4=1,左边的数为﹣3﹣4=﹣7.故答案为:2;﹣7和1【点评】此题考查了数轴,利用了数形结合的思想,画出相应的数轴是解本题的关键.11.若m、n互为相反数,则|m﹣1+n|=1.【考点】有理数的加减混合运算;相反数;绝对值.【专题】计算题.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:∵m、n互为相反数,∴m+n=0.∴|m﹣1+n|=|﹣1|=1.故答案为:1.【点评】主要考查相反数,绝对值的概念及性质.12.某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子,一个月后也能繁殖3对新小兔子,总之,所有的每对兔子,都是每月繁殖3对小兔子,如。

电白县十中八年级数学下册第19章四边形单元综合测试题新版沪科版

电白县十中八年级数学下册第19章四边形单元综合测试题新版沪科版
∴△AEB≌△AEC(SAS), ∴BE=CE, ∴四边形BECF是菱形.
11.解 : ∵四边形ABCD是菱形,
∴AC⊥BD , DO=BO.
∵AB=5, AO=4,
∴BO= = =3,
∴BD=2BO=6.
12.解 : (1)证明 : ∵AB=AC, AD是BC边上的中线,
∴AD⊥BC ,
∴∠ADB=90°.
四边形测试题
(一)选择题(本大题共5小题,每道题5分,共25分 ; 在每道题列出的四个选项中,只有一项符合题意)
1.假设菱形的周长为48cm ,那么其边长是( )
A.24 cm
B.12cm
C.8 cm
D.4 cm
2.如以下图3-G-1,在矩形ABCD中,対角线AC,BD相交于点O, ∠ACB=30° ,那么∠AOB的大小为( )
图3-G-9
14.(12分)如以下图3-G-10,在四边形ABCD中,対角线AC, BD相交于点O, AO=CO, BO=DO,且∠ABC+∠ADC=180°.
(1)求证 : 四边形ABCD是矩形.
(2)假设∠ADF∶∠FDC=3∶2, DF⊥AC ,那么∠BDF的度数是多少 ?
图3-G-10
15.(12分)如以下图3-G-11,▱ABCD的対角线AC, BD相交于点O, BD=12cm, AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.
∵四边形ADBE是平行四边形,
∴▱ADBE是矩形.
(2)∵AB=AC=5, BC=6, AD是BC边上的中线,
∴BD=DC=6× =3.
在Rt△ACD中,
AD= = =4,
∴S矩形ADBE=BD·AD=3×4=12.

华东师大版初中八年级数学下册第19章单元测试卷含答案(2套)

华东师大版初中八年级数学下册第19章单元测试卷含答案(2套)

第19章矩形、菱形、正方形单元检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列命题中正确的是( B )A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形2.如图,在矩形ABCD中,AC与BD相交于点O,若∠DBC=30°,则∠AOB等于( D )A.120° B.15° C.30° D.60°3.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连结AE,CF,则四边形AECF是( C )A.梯形 B.矩形 C.菱形 D.正方形,第2题图),第3题图),第5题图),第6题图) 4.一个菱形的周长为8 cm,高为1 cm,则这个菱形的两邻角的度数之比为( D )A.2∶1 B.3∶1 C.4∶1 D.5∶15.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断中不正确的是( D )A .四边形AEDF 是平行四边形B .如果∠BAC =90°,那么四边形AEDF 是矩形C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形D .如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是正方形6.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( D )A .AF =AEB .△ABE ≌△AGFC .EF =2 5D .AF =EF7.如图,一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21 cm 2,则该矩形的面积为( A )A .60 cm 2B .70 cm 2C .120 cm 2D .140 cm 28.如图,正方形ABCD 的边长为1,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .1-22D.2-4 ,第7题图),第8题图),第9题图),第10题图)9.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m ,32),反比例函数y =k x的图象与菱形对角线AO 交于D 点,连结BD ,当DB ⊥x轴时,k的值是( D )A.1 B.-1 C. 3 D.- 310.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG,CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是( C )A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为__5__.,第11题图) ,第13题图),第14题图) ,第15题图) 12.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是__20__.13.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E,F不重合,已知△ACD的面积为3,则图中阴影部分两个三角形的面积和为__3__.14.如图,▱ABCD的两条对角线AC,BD相交于点O,AB=5,AC=4,BD=2,小明说:“这个四边形是菱形.”他说这话的根据是__对角线互相垂直的平行四边形是菱形__.15.▱ABCD中,给出下列四个条件:①AC⊥BD;②∠ADC=90°;③BC=CD;④AC=BD.其中选两个条件能使▱ABCD是正方形的有__①②、①④、②③、③④__.(填上所有正确结果的序号)16.如图,在矩形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A ′处,则AE 的长为__103__. ,第16题图) ,第17题图),第18题图)17.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF ,若菱形ABCD 的边长为2 cm ,∠A =120°,则EF =18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x轴上,已知点B 1(1,1),B 2(3,2),则点B n 的坐标为__(2n -1,2n -1)__.三、解答题(共66分)19.(8分)如图,在矩形ABCD 中,两条对角线AC ,BD 相交于点O ,E 是AC 上的一点,且BO =2AE ,∠AOD =120°,求证:BE ⊥AC.解:∵四边形ABCD 是矩形,∴OB =OA ,又∵OB =2AE ,∴AE =OE ,又∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形.又∵AE =OE ,∴BE ⊥AO ,即BE ⊥AC20.(8分)如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=2,求线段AE的长.解:(1)用SAS证△ABE≌△CDF (2)∵∠B=60°,∴△ABC是等边三角形,∴BE=CE=1,AE⊥BC,∴AE=AB2-BE2=22-12= 321.(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连结DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连结AE,试判断AE与DF的位置关系,并说明理由.解:(1)△ADC≌△ABC,△ADF≌△ABF,△CDF≌△CBF (2)AE ⊥DF.理由如下:设AE与DF相交于点H,易证△ADF≌△ABF,∴∠ADF=∠ABF,再证△ADE≌△BCE,∴∠DAE=∠CBE,∵∠ABF+∠CBE =90°,∴∠ADF+∠DAE=90°,∴∠DHA=90°,∴AE⊥DF22.(9分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE 于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.解:易证四边形ACGF是平行四边形,再证AC=AF,故四边形ACGF 是菱形23.(9分)如图,△ABC中,AB=AC,D是BC的中点,DE∥AB交AC于点E,DF∥AC交AB于点F.(1)求证:四边形AFDE是菱形;(2)当∠ABC等于多少度时,四边形AFDE是正方形?请说明理由.解:(1)易证四边形AFDE是平行四边形,∵D为BC中点,DE∥AB,DF∥AC,∴DE=12AB,DF=12AC,∵AB=AC,∴DE=DF,∴四边形AFDE是菱形(2)当∠ABC=45°时,四边形AFDE是正方形,理由略24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连结DO并延长到点E,使OE=OD,连结AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.解:(1)∵OA=OB,OE=OD,∴四边形AEBD为平行四边形,∵AB =AC,AD平分∠BAC,∴AD⊥BC,即∠ADB=90°,∴四边形AEBD为矩形(2)当∠BAC=90°时,四边形AEBD为正方形,理由如下:∵∠BAC=90°,AD平分∠BAC,AD⊥BC,∴∠DAB=∠DBA=45°,∴BD=AD,∴矩形AEBD为正方形25.(12分)已知,在△ABC 中,∠BAC =90°,∠ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连结CF.(1)如图①,当点D 在线段BC 上时,求证:CF +CD =BC ;(2)如图②,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图③,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变:①请直接写出CF ,BC ,CD 三条线段之间的关系;②若正方形ADEF 的边长为2,对角线AE ,DF 相交于点O ,连结OC ,求OC 的长度.解:(1)∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,可证△BAD ≌△CAF(SSS),∴BD =CF ,∵BC =BD +CD ,∴CF +CD =BC (2)BC =CF -CD (3)①CD -CF =BC ②由题知,∠BAC =90°,∠ABC =45°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°-∠BAF ,∠CAF =90°-∠BAF ,∴∠BAD =∠CAF ,又∵AB =AC ,∴△BAD ≌△CAF(SAS),∴∠ACF =∠ABD ,∵∠ABC =45°,∴∠ABD =135°,∴∠ACF =∠ABD =135°,∴∠FCD =90°,∴△FCD 为直角三角形,∵DE =2,∴DF =2DE =22,∴OC =12DF = 2四边形测试题一、选择题(本大题共5小题,每小题5分,共25分;在每小题列出的四个选项中,只有一项符合题意)1.若菱形的周长为48 cm,则其边长是()A.24 cmB.12 cmC.8 cmD.4 cm2.如图3-G-1,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()图3-G-1A.30°B.60°C.90°D.120°3.如图3-G-2所示,在菱形ABCD中,不一定成立的是()图3-G-2A.四边形ABCD是平行四边形B.AC⊥BDC.△ABD是等边三角形D.∠CAB=∠CAD4.如图3-G-3,在矩形ABCD中,O是对角线AC,BD的交点,点E,F分别是OD,OC的中点.如果AC=10,BC=8,那么EF的长为()A.6 B.5 C.4 D.3图3-G-35.如图3-G-4,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()图3-G-4A.4 3B.4C.2 3D.2二、填空题(本大题共5小题,每小题5分,共25分)6.在菱形ABCD中,若对角线AC=8 cm,BD=6 cm,则边长AB=________ cm.7.矩形两对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.8.如图3-G-5所示,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD,BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为________.图3-G-59.已知菱形ABCD的面积为24 cm2,若对角线AC=6 cm,则这个菱形的边长为________cm.10.如图3-G-6,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是________(只填写序号).图3-G-6三、解答题(本大题共5小题,共50分)11.(6分)如图3-G-7所示,已知四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.图3-G-712.(8分)如图3-G-8,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.图3-G-813.(12分)如图3-G-9①,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠DCE =90°,AB与CE交于点F,ED与AB,BC分别交于M,H.(1)求证:CF=CH;(2)如图②,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.图3-G-914.(12分)如图3-G-10,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF∶∠FDC=3∶2,DF⊥AC,则∠BDF的度数是多少?图3-G-1015.(12分)如图3-G-11,▱ABCD的对角线AC,BD相交于点O,BD=12 cm,AC =6 cm,点E在线段BO上从点B以1 cm/s的速度运动,点F在线段OD上从点O以2 cm/s 的速度运动.(1)若点E,F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形?(2)在(1)的条件下,①当AB为何值时,四边形AECF是菱形?②四边形AECF可以是矩形吗?为什么?图3-G-111.B 2.B3.C [解析] 灵活掌握菱形的性质定理即可判断. 4.D [解析] ∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =90°.∵AC =10,BC =8,由勾股定理得AB =102-82=6,∴CD =AB =6.∵点E ,F 分别是OD ,OC 的中点,∴EF =12CD =3.故选D . 5.A [解析] 设AC 与BD 交于点E ,则∠ABE =60°.根据菱形的周长求出AB =16÷4=4.在Rt △ABE 中,求出BE =2,根据勾股定理求出AE =42-22=2 3,故可得AC =2AE =4 3.6.5 [解析] 如图,∵在菱形ABCD 中,对角线AC =8 cm ,BD =6 cm ,∴AO =12AC=4 cm ,BO =12BD =3 cm .∵菱形的对角线互相垂直,∴在Rt △AOB 中,AB =AO 2+BO 2=42+32=5(cm ).7.9 3 [解析] 根据勾股定理求得矩形的另一边长为3 3,所以面积是9 3.8.3 [解析] 可证得△AOE ≌△COF ,所以阴影部分的面积就是△BCD 的面积,即矩形面积的一半.9.5 [解析] 菱形ABCD 的面积=12AC·BD.∵菱形ABCD 的面积是24 cm 2,其中一条对角线AC 长6 cm ,∴另一条对角线BD 的长为8 cm .边长=32+42=5 (cm ).10.③ [解析] 由题意得BD =CD ,ED =FD ,∴四边形EBFC 是平行四边形.①BE ⊥EC ,根据这个条件只能得出四边形EBFC 是矩形;②BF ∥CE ,根据EBFC 是平行四边形已可以得出BF ∥CE ,因此不能根据此条件得出▱EBFC 是菱形;③AB =AC ,∵⎩⎨⎧AB =AC ,DB =DC ,AD =AD ,∴△ADB ≌△ADC(SSS),∴∠BAD =∠CAD ,∴△AEB ≌△AEC(SAS),∴BE =CE ,∴四边形BECF 是菱形. 11.解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,DO =BO. ∵AB =5,AO =4,∴BO =AB 2-AO 2=52-42=3, ∴BD =2BO =6.12.解:(1)证明:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC , ∴∠ADB =90°.∵四边形ADBE 是平行四边形, ∴▱ADBE 是矩形.(2)∵AB =AC =5,BC =6,AD 是BC 边上的中线,∴BD =DC =6×12=3.在Rt △ACD 中,AD =AC 2-DC 2=52-32=4, ∴S 矩形ADBE =BD·AD =3×4=12.13.解:(1)证明:∵AC =CE =CB =CD ,∠ACB =∠ECD =90°, ∴∠A =∠B =∠D =∠E =45°. 在△BCF 和△ECH 中, ⎩⎨⎧∠B =∠E ,BC =EC ,∠BCF =∠ECH ,∴△BCF ≌△ECH(ASA), ∴CF =CH.(2)四边形ACDM 是菱形.证明:∵∠ACB =∠DCE =90°,∠BCE =45°, ∴∠ACE =∠DCH =45°.∵∠E =45°,∴∠ACE =∠E ,∴AC ∥DE , ∴∠AMH =180°-∠A =135°=∠ACD. 又∵∠A =∠D =45°,∴四边形ACDM 是平行四边形. ∵AC =CD ,∴四边形ACDM 是菱形.14.解:(1)证明:∵AO =CO ,BO =DO , ∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC.∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°, ∴四边形ABCD 是矩形.(2)∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°.∵DF ⊥AC ,∴∠DCO =90°-36°=54°. ∵四边形ABCD 是矩形,∴OC =OD ,∴∠ODC =54°, ∴∠BDF =∠ODC -∠FDC =18°.15.解:(1)若四边形AECF 是平行四边形, 则AO =OC ,EO =OF.∵四边形ABCD 是平行四边形, ∴BO =OD =6 cm , ∴EO =6-t ,OF =2t , ∴6-t =2t ,∴t =2,∴当t =2时,四边形AECF 是平行四边形. (2)①若四边形AECF 是菱形, ∴AC ⊥BD ,∴AO 2+BO 2=AB 2,∴AB =36+9=3 5, 即当AB =3 5时,四边形AECF 是菱形. ②不可以.理由:若四边形AECF 是矩形,则EF =AC , ∴6-t +2t =6,∴t =0,则此时点E 在点B 处,点F 在点O 处, 显然四边形AECF 不可以是矩形.四边形全章综合测试1.如图,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是( )A.1对B.2对C.3对D.4对2.如图,在在平行四边形ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是是平行四边形( ) A.OE OF = B.DE BF = C.ADE CBF ∠=∠ D.ABE CDF ∠=∠ABF ECD3.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角线是否都为直角D .测量其中三角形是否都为直角4.如果一个四边形绕对角线的交点旋转90,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形B.矩形C.菱形D.正方形5. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠=.其中,正确的个数有( ) A.1个B.2个C.3个D.4个7.如图,平行四边形ABCD 中,AB3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是() A.6B.8C.9D.108.把长为10cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉..部分的面积为12cm 2,则打开后梯形的周长是 ( )A 、(10+25)cmB 、(12+25)cmC 、22cmD 、20cm9.如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形,设AFC △的面积为S ,则( )A.2S =B. 2.4S = C.4S =D.S 与BE 长度有关10.梯形ABCD 中,AD ∥BC ,E 、F 为BC 上点,且DE ∥AB ,AF ∥DC ,DE ⊥AF 于G ,若AG =3,DG =4,四边形ABED 的面积为36,则梯形ABCD 的周长为( )A .49B .43C .41D .4611. 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点, 连结OE 、OF.下列结论,其中正确的是( ).①AE=BF ;②AE ⊥BF ;③OM=ON=12DF ;④CE+CF=22AC .(A )①②④ (B )①②(C )①②③④(D )②③④12.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =23,那么AP 的长为 .13.(7分)如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点.(1) 求证:四边形BDEF 是菱形;(2) 若12AB =cm ,求菱形BDEF 的周长.AFBDCEGBF A E ABCDOMENFACE GF EDCBA14.(7分)如图,将一张矩形纸片A B C D ''''沿EF 折叠,使点B '落在A D '' 边上的点B 处;沿BG 折叠,使点D '落在点D 处,且BD 过F 点.⑴试判断四边形BEFG 的形状,并证明你的结论. ⑵当∠BFE 为多少度时,四边形BEFG 是菱形.15.(7分)如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF=BE ,连接EC 并延长,使CG=CE ,连接FG .H 为FG 的中点,连接DH . (1) 求证:四边形AFHD 为平行四边形;(2)若CB=CE ,∠BAE=600 ,∠DCE=200 求∠CBE 的度数.16.(7分)如图,梯形ABCD 中,120AD BC AB DC ADC =∠=∥,,,对角线CA平分DCB ∠,E 为BC 的中点,试求DCE △与四边形ABED 面积的比.17.(8分)在矩形纸片ABCD 中,33AB =,6BC =,沿EF 折叠后,点C 落在AB 边上的点P处,点D 落在点Q 处,AD 与PQ 相交于点H ,30BPE ∠=.ADBEC(1)求BE 、QF 的长; (2)求四边形PEFH 的面积.18.(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2上,且AB ∥CD ∥y 轴,AD ∥x 轴,B (1,0)、C (3,0)。

新版2019七年级数学下册章节测试题-《第二章图形的变换》考核题完整版(含答案)

新版2019七年级数学下册章节测试题-《第二章图形的变换》考核题完整版(含答案)
解析:将图形A向上平移4个单位长度,得到图形B;将图形B以点P1为旋转中心顺时针旋转 90°,再向右平移4个单位长度得到图形C或将图形B向右平移4个单位长度,再以P2为旋转 中心顺时针旋转90°得到图形C 29.如图所示,图①和图②都是轴对称图形,依照①和②,把③,④也画成轴对称图形 .
解析:略 30.△ABC,△A1B1C1和△A2B2C2在方格纸中的位置如图所示.方格纸每格的边长为1. (1)将△ABC向下平移 格得到△A1B1C1; (2)将△A1B1C1的各边长放大 倍,得到△A2B2C2; (3)分别计算△A2B2C2和△ABC的面积,并说明△A2B2C2的面积是△ABC的面积的多少倍.
D. 15:10
答案:B
20.如图,正方形ABCD的边长是3
cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB BC CD DA
AB连续地翻转,那么这个小正方形第一次回到起始位置时,小正方形中箭头的方向( )
A.朝左
B.朝上
C.朝右
D.朝下
答案:B
21.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )
⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图 ).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称 图形.
解析:略. 28.如图所示,在方格纸中如何通过平移或旋转这两种变换,由图形A得到图形B,再由图 形B得到图形C?(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回 答出旋转中心、旋转方向和旋转角度)
解析:(1)特征一:都是轴对称图形;特征二:这些图形的面积都等于4个单位面积等; (2)图略 37.如图所示,草原上两个居民点A,B在河流 l 的同旁,一汽车从A出发到B,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短 ?在图中画出该点.

第十九章 单元测试题(二)

第十九章 单元测试题(二)

第十九章单元测试题一、选择题1、下列说法中,正确的是()A.α射线的本质是高速氦核流B.γ射线经常伴随α或β射线产生C.天然放射现象表明原子核也是可分的D.同一原子核在发生衰变时,会同时产生三种射线2、放射性元素的半衰期在下列哪些情况下没有发生变化()①放射性元素放出α射线后,得到的新放射性元素②放射性元素与其他物质进行化学反应,生成一种新的化合物③对放射性元素升温、加压④用高能粒子轰击,得到新的放射性元素A.①②③B.①③④C.②③D.③④3、“两弹一星”可以说长了中国人的志气,助了中国人的威风。

下列核反应方程中属研究两弹的基本核反应方程式的是()A.147N+42He→178O B.23592U+1n→9038Sr+13654Xe+101nC.23892U→23490Th+42He D.21H+31H→42He+1n4、太阳每秒辐射出来的能量约为3.8×1026J,这些能量是()A.重核的裂变反应产生的B.轻核的聚变反应产生的C.原子核的衰变产生的D.热核反应产生的5、关于天然放射现象,下列说法中正确的是()A.具有天然放射性的原子核由于不稳定而自发地进行衰变B.放射线是从原子核内释放出来的看不见的射线C.放射线中有带负电的粒子,表示原子核内有负电荷D.放射线中带正电的粒子由卢瑟福首先确定是氦原子核6、放射性同位素2411Na的样品经过6小时还剩下1/8没有衰变,它的半衰期是()A.2小时B.1.5小时C.1.17小时D.0.75小时7、下面列出的是一些核反应方程3015P →3014Si+X 、94Be+21H →105B+Y 、42He+42He →73Li+Z则下列判断正确的是( )A.X 是质子,Y 是中子,Z 是正电子B.X 是正电子,Y 是质子,Z 是中子C.X 是中子,Y 是正电子,Z 是质子D.X 是正电子,Y 是中子,Z 是质子8、如图1所示,x 为未知的放射源,L 为薄铝片,若在放射源和计数器之间加上L 后,计数器的计数率大幅度减小,在L 和计数器之间再加竖直向下的匀强磁场,计数器的计数率不变,则x 可能是( )A.α和β的混合放射源B.纯α放射源C.α和γ的混合放射源D.纯γ放射源9、下列哪些应用是利用了放射性同位素的射线( )A.利用α射线照射可消除机器运转中产生的有害静电B.用射线照射种子可以使种子变异,培育出新品种C.用伦琴射线透视人体D.肿瘤病人在医院进行放疗10、目前我国已经建成秦山和大亚湾核电站并投入使用,请根据所学物理知识,判断下列说法正确的是( )A.核能发电对环境的污染比火力发电要小B.核能发电对环境的污染比火力发电要大C.都只利用重核裂变释放大量的原子能D.既有重核裂变,又有轻核聚变释放大量的原子能11、中子n 、质子p 、氘核D 的质量分别为n m 、p m 、D m .现用光子能量为E 的γ射线照射静止氘核使之分解,反应的方程为γD p n +=+.若分解后中子、质子的动能可视为相等,则中子的动能为( ) A.2D p n 1()2m m m c E ⎡⎤---⎣⎦ B.2D n p 1()2m m m c E ⎡⎤+-+⎣⎦ C.2D p n 1()2m m m c E ⎡⎤--+⎣⎦ D.2D n p 1()2m m m c E ⎡⎤+--⎣⎦图112、如图2所示,一个静止的铀核,放在匀强磁场中,它发生一次α衰变后变为钍核,α粒子和钍核都在匀强磁场中做匀速圆周运动,则以下判断正确的是( )A.1是α粒子的径迹,2是钍核的径迹B.1是钍核的径迹,2是α粒子的径迹C.3是α粒子的径迹,4是钍核的径迹D.3是钍核的径迹,4是α粒子的径迹13、目前普遍认为,质子和中子都是由被称为u 夸克和d 夸克的两类夸克组成,u 夸克带电荷量为e 32,d 夸克带电荷量为3e ,e 为元电荷,下列论断可能正确的是( )A.质子由1个u 夸克和1个d 夸克组成,中子由1个u 夸克和2个d 夸克组成B.质子由2个u 夸克和1个d 夸克组成,中子由1个u 夸克和2个d 夸克组成C.质子由1个u 夸克和2个d 夸克组成,中子由2个u 夸克和1个d 夸克组成D.质子由2个u 夸克和1个d 夸克组成,中子由1个u 夸克和1个d 夸克组成 14、1994年3月,中国科技大学研制成功了比较先进的HT-7型超导托卡马克,托卡马克(Tokamak )是研究受控核聚变的一种装置,这个词是toroidal (环形的)、kamera (真空室)、magnet (磁)的头两个字母以及katushka (线圈)的第一个字母组成的缩写词.根据以上信息,下列说法错误的是( )A.这种装置的核反应原理是氘核的聚变,同时释放出大量的能量,与太阳发光的原理类似B.这种装置同我国秦山核电站、大亚湾核电站所使用的核装置反应原理相同C.这种装置可以控制热核反应的速度,使聚变能缓慢而稳定地释放D.这种装置产生的核聚变对环境的污染比核裂变要轻得多二、填空题15、完成下列核反应,并指出衰变方式:(1)23490Th →23491Pa+ ,属于 ;(2)23688Th →22286Rn+ ,属于 .16、1999年北约在对南联盟进行的轰炸中,大量使用了贫铀炸弹,贫铀是从金图2属中提炼铀235以后所得的副产品,其主要成分为铀238,它的比重为钢的2.5倍,贫铀炸弹的最大穿甲厚度可达900mm,杀伤力极大,残留物可长期起作用. (1)常规炸弹最大穿甲厚度为100mm,弹头可穿过50个人的人墙,同样形状的贫铀炸弹可以穿过的人数可达()A.100人B.200人C.400人D.800人(2)贫铀炸弹的放射性,使生物体发生变异,导致癌症、白血病和新生儿畸形等,这是射线的作用;导致生物产生变异的机制是。

(缩放A4打印)新人教版物理第十九章 生活用电单元测试题(2)

(缩放A4打印)新人教版物理第十九章  生活用电单元测试题(2)

第十九章《生活用电》单元测试题(二)一、选择题(每小题2分,共30分)1.如图1,有关测电笔的使用,下列说法正确的是()A.氖管发光时测电笔接触的是零线B.使用时手可以接触测电笔的任何部位C.测电笔不能用来辨别电池的正负极D.测电笔与手接触的部分都是绝缘体2.家庭电路中的保险丝熔断了,以下原因中不可能的是()A.家庭中用电器的总功率过大B.电灯开关中的两根导线相碰C.保险丝的规格不合适,熔断电流太小D.插头中的两根导线相碰3.如图2所示,墙壁上线盒内有三根电线,其中红色为火线、蓝色为零线、黄绿色为地线,现将三孔插座与三根电线连接,图3中接线情况正确的是()A B C D4.下列说法中,不符合安全用电要求的是()A.三孔插座的中间插孔接地B.更换或维修用电器时切断电源C.家中尽量不同时使用多个大功率用电器D.为了方便,可以抓住导线拉出插座上的插头5.如图4所示,教室内两盏日光灯由一个开关控制,图5所示的电路中能反映它们正确连接的是()6.小刚家有一个带有开关、指示灯和多个插座的接线板,如图6所示,每当接线板的插头插入家庭电路中的插座,闭合接线板上的开关时,总出现“跳闸”现象,关于“跳闸”原因和接线板中的电路连接,下列说法正确的是()A.“跳闸”的原因是接线板中的电路发生了断路B.“跳闸”的原因是接线板中的电路发生了短路C.接线板上的多个插座与指示灯串联D.接线板上的开关与指示灯并联7.小明刚学完初中的电学知识,恰逢家中电灯突然熄灭。

在闭合开关的情况下,他兴冲冲地拿起试电笔测试如图7中的a、b、c、d四点时,四点均不发光,请你帮他分析最有可能发生的故障是()A.入户火线断了B.入户零线断了C.保险丝熔断D.灯丝熔断8.某家庭电路的组成如图8所示,下列说法正确的是()A.图中的三个插座是串联的B.控制灯泡的开关要接在零线与灯泡之间C.彩灯接入电路后都不亮,是由于其中的一个小彩灯短路D.有金属外壳的家用电器必须使用三孔插座,以确保安全二、填空题(每空2分,共30分)9.如图9所示为家庭电路的组成,其中接入①的用电器和②为联,用电器②和元件③为联。

七年级数学下册《生活中的轴对称》单元测试卷(附答案解析)

七年级数学下册《生活中的轴对称》单元测试卷(附答案解析)

七年级数学下册《生活中的轴对称》单元测试卷(附答案解析)一、选择题(共10小题,每小题3分,共30分)1.下列图形:其中轴对称图形的个数是( )A.4B.3C.2D.12.如图,△ABC与△DEF关于直线MN成轴对称,则下列结论中不一定成立的是( )A.AB=DEB.∠B=∠EC.AB∥DFD.线段AD被MN垂直平分3.如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于( )A.40°B.30°C.20°D.150°4.如图,直线DE,DF分别是线段AB,BC的垂直平分线,连接DA,DC,则( )A.∠A=∠CB.∠B=∠ADCC.DA=DCD.DE=DF5.下列各点中,到∠AOB两边距离相等的是( )A.点PB.点QC.点MD.点N6.如图,点P是∠AOC的平分线上一点,PD⊥OA,垂足为点D,且PD=2,点M是射线OC上一动点,则PM的最小值为( )A.1B.1.5C.2D.2.57.如图,在△ABC中,AB=AC,BE=CD,BD=CF,若∠EDF=48°,则∠A的度数为( )A.48°B.64°C.68°D.84°8.如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A.60°B.70°C.80°D.90°9.如图所示,将一张长方形纸片斜折过去,使顶点A落在A'处,BC为折痕,然后再把BE折过去,使之与BA'重合,折痕为BD,若∠ABC=62°,则∠EBD的度数为( )A.31°B.28°C.62°D.56°10.把一张正方形纸片按图①、图②所示的方式对折两次后,再挖去一个三角形小孔(如图③),则展开后的图形是( )A B C D二、填空题(共6小题,每小题3分,共18分)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形.其中一定是轴对称图形的有个.12.如图,正方形ABCD的边长为4,则图中阴影部分的面积为.13.如图,在△ABC中,直线DE是线段AC的垂直平分线,AE=2,△ABD的周长为10,则△ABC的周长为.BC的长为半径作弧,两弧相交于点14.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,大于12M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.15.如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.16.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF和EF.当△AEF的周长最小时,∠EAF的度数为.三、解答题(共5小题,共52分)17.(10分)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于M,连接BM. (1)求证:△APB≌△CEB;(2)求∠PME的度数.18.(10分)如图,在由边长为1个单位长度的小正方形组成的6×8的网格中,给出了格点△ABC(顶点为网格线的交点),l是过网格线的一条直线.(1)求△ABC的面积;(2)作△ABC关于直线l对称的△A'B'C';(3)在边BC上找一点D,连接AD,使得∠BAD=∠ABD.(保留作图痕迹)19.(10分)如图,在△ABC中,以点B为圆心,BA的长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,求∠DAC的度数.20.(10分)如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上运动,PD始终保持与PA相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.判断DE与PD的位置关系,并说明理由.21.(12分)如图,BD是△ABC的角平分线,AB=AC.(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数.参考答案与解析1.B 第1个图形在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图形在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图形找不到对称轴,不是轴对称图形,不符合题意;第4个图形在竖直方向有一条对称轴,是轴对称图形,符合题意.因此轴对称图形的个数是3.故选B.2.C 由题意得,AB=DE,∠B=∠E,线段AD被MN垂直平分,故A、B、D中的结论一定成立,AB与DF不一定平行,故C中的结论不一定成立.故选C.3.C 如图,过点E作EF∥CD,则∠CEF=∠DCE=40°,∵△ACE为等边三角形,∴∠AEC=60°,∴∠AEF=∠AEC-∠CEF=20°,∵AB∥CD,∴AB∥EF,∴∠EAB=∠AEF=20°.故选C.4.C 如图,连接BD,∵直线DE,DF分别是线段AB,BC的垂直平分线,∴DA=DB,DB=DC,∴DA=DC,故选C.5.B 由题图可知,点Q在∠AOB的平分线上,∴点Q到∠AOB两边距离相等,故选B.6.C 过P点作PH⊥OC于H,如图,∵点P是∠AOC的平分线上一点,PD⊥OA,PH⊥OC,∴PH=PD=2,∵点M是射线OC上一动点,∴PM的最小值为2.故选C.7.D ∵在△ABC中,AB=AC,∴∠B=∠C.又∵BE=CD,BD=CF,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠BED+∠BDE+∠B=180°,∠CDF+∠BDE+∠EDF=180°, ∴∠B=∠EDF=48°,∴∠B=∠C=48°,∴∠A=180°-∠B-∠C=84°,故选D.8.B 过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=40°,(180°-∠BAC)=70°,∴∠ACB=12∴∠1+∠2=70°.故选B.9.B 根据折叠得出∠ABC=∠A'BC,∠EBD=∠E'BD,∵∠ABC+∠A'BC+∠EBD+∠E'BD=180°,∴∠ABC+∠EBD=90°,∵∠ABC=62°,∴∠EBD=28°.故选B.10.C 将题图③中的图形展开后得到的是选项C中的图形.故选C.11.4解析角,等边三角形,线段,等腰三角形一定是轴对称图形,故答案为4.12.8解析易知阴影部分的面积等于正方形ABCD的面积的一半,×4×4=8.所以阴影部分的面积为12故答案是8.13.14解析∵直线DE是线段AC的垂直平分线,AE=2,∴AC=2AE=4,AD=DC,∵AB+BD+AD=10,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=10+4=14.故答案为14.14.105°解析由题意可得MN垂直平分BC,则DC=BD,∴∠DCB=∠DBC=25°,∴∠CDB=180°-25°-25°=130°,∴∠CDA=180°-130°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°-50°-25°=105°.15.108°或72°解析∵AB=AC,∴∠B=∠C=36°.①当AD=AE时,∠ADE=∠AED=36°,∵∠AED=∠C,与∠AED>∠C矛盾,∴此时不符合题意;②当DA=DE时,∠DAE=∠DEA=1×(180°-36°)=72°,2∵∠BAC=180°-36°-36°=108°,∴∠BAD=108°-72°=36°,∴∠BDA=180°-36°-36°=108°;③当EA=ED时,∠ADE=∠DAE=36°,∴∠BAD=108°-36°=72°,∴∠BDA=180°-72°-36°=72°.综上所述,当△ADE是等腰三角形时,∠BDA的度数是108°或72°.16.100°解析如图,作A关于BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则A'A″的长度即为△AEF 的周长的最小值.∵∠DAB=140°,∴∠AA'E +∠A ″=180°-140°=40°, ∵∠EA'A =∠EAA',∠FAD =∠A ″, ∴∠EAA'+∠A ″AF =40°, ∴∠EAF =140°-40°=100°.17.解析 (1)在等边△ABC 和等边△BPE 中, ∠ABC =∠PBE =60°,AB =BC ,PB =BE , 在△APB 与△CEB 中,{AB =CB,∠ABP =∠CBE,BP =BE,∴△APB ≌△CEB. (2)∵△APB ≌△CEB , ∴∠APB =∠CEB , ∵△BPE 是等边三角形, ∴∠BEP =∠BPE =60°,∴∠MEP +∠MPE =∠MEP +∠BEC +∠BPE =∠BEP +∠BPE =120°, ∴∠PME =180°-(∠MEP +∠MPE )=60°. 18.解析 (1)△ABC 的面积=12×4×5=10. (2)如图,△A'B'C'即为所求. (3)如图,点D 即为所求.19.解析 ∵∠B =40°,∠C =36°, ∴∠BAC =180°-∠B -∠C =104°, 由题意可得BA =BD ,∴∠BAD =∠BDA =(180°-∠B )÷2=70°, ∴∠DAC =∠BAC -∠BAD =34°. 20.解析 DE ⊥DP. 理由:∵PD =PA , ∴∠A =∠PDA ,∵直线EF 是线段BD 的垂直平分线, ∴EB =ED ,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°-90°=90°,∴DE⊥DP.21.解析(1)∠A=90°.证明如下:如图,在BC上截取BE=BA,连接DE.∵BC=AB+AD,∴CE=AD,∵BD是△ABC的角平分线,∴∠ABD=∠EBD,又∵AB=BE,BD=BD,∴△ABD≌△EBD,∴AD=DE=CE,∠A=∠DEB,∴∠C=∠EDC,∵∠DEC+∠C+∠EDC=180°,∠DEC+∠DEB=180°, ∴∠A=∠DEB=∠C+∠EDC=2∠C,∵AB=AC,∴∠C=∠ABC,∵∠A+∠ABC+∠C=180°,∴4∠C=180°,∴∠C=45°,∴∠A=2∠C=90°.(2)如图,在BC上截取CF=CD,连接DF.∵BC=BA+CD,∴BF=BA,又∵∠ABD=∠FBD,BD=BD,∴△ABD≌△FBD,∴∠A=∠DFB,∵CD=CF,∴∠CDF=∠CFD,∴∠C+2∠DFC=180°①,易知∠A+∠DFC=180°②,②×2-①可得2∠A-∠C=180°③, ∵AB=AC,∴∠ABC=∠C,∴∠A+2∠C=180°④,③×2+④可得5∠A=540°,∴∠A=108°.第11 页共11 页。

第20章 平行四边形的判定单元测试卷(2)(含答案)

第20章 平行四边形的判定单元测试卷(2)(含答案)

平行四边形的判定单元测试卷一、选择题1. 在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )(A )1:2:3:4 (B ) 3:4:4:3 (C ) 3:3:4:4 (D ) 3:4:3:42. 下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是 ( )(A )1:2:3:4 (B )2:2:3:3 (C )2;3:2:3 (D )2:3:3:23. 下列叙述中,正确的是 ( )(A ) 只有一组对边平行的四边形是梯形; (B )矩形可以看作是一种特殊的梯形 (C )梯形有两个内角是锐角,其余两个角是钝角; (D )形的对角互补4. 小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是( ) (A ) 矩形 (B ) 正方形 (C ) 等腰梯形 (D ) 无法确定5. 如图1,宽为50 cm 的矩形图案由10个全等的小长方形 成,其中一个小长方形的面积为 ( )(A )400 cm 2(B )500 cm 2(C ) 600 cm 2(D )4000 cm 2 6. 将一矩形纸片对折后再对折,如图2(1)、(2),然后沿图(3)中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是( )B )矩形(C )菱形 (D )正方形7. 如图3,某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是 ( )② 图(3) 图(2) ①图2 图18. 如图4,矩形ABCD 的边长AB =6,BC =8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是( )(A )7.5 (B ) 6 (C ) 10 (D ) 59. 如图5:矩形花园ABCD 中, AB=a , AD=b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。

湘教版七年级数学下册单元测试题全套及参考答案

湘教版七年级数学下册单元测试题全套及参考答案

湘教版七年级数学下册单元测试题全套(含答案)第1章检测卷(满分:120分 时间:90分钟)一、选择题(每小题3分,共30分)1.在方程组⎩⎨⎧2x -y =1,y =3z +1,⎩⎨⎧x =2,3y -x =1,⎩⎨⎧x +y =0,3x -y =5,⎩⎪⎨⎪⎧1x +1y =1,x +y =1中,是二元一次方程组的有( ) A .1个 B .2个 C .3个 D .4个2.用“加减法”将方程组⎩⎨⎧5x -3y =-5,5x +4y =-1中的未知数x 消去后得到的方程是( )A .y =4B .7y =4C .-7y =4D .-7y =14 3.以⎩⎨⎧x =-1,y =1为解的二元一次方程组是( )A.⎩⎨⎧x +y =0,x -y =1B.⎩⎨⎧x +y =0,x -y =-1C.⎩⎨⎧x +y =0,x -y =2 D.⎩⎨⎧x +y =0,x -y =-24.二元一次方程组⎩⎨⎧x +2y =10,y =2x 的解是( )A.⎩⎨⎧x =4,y =3B.⎩⎨⎧x =3,y =6 C.⎩⎨⎧x =2,y =4 D.⎩⎨⎧x =4,y =25.如果12a 3x b y 与-a 2y b x +1是同类项,则( )A.⎩⎨⎧x =-2,y =3 B.⎩⎨⎧x =2,y =-3C.⎩⎨⎧x =-2,y =-3D.⎩⎨⎧x =2,y =36.方程组⎩⎨⎧2x +y =64,x +2y =8中x +y 的值为( )A .24B .-24C .72D .487.买甲、乙两种纯净水共用250元,两种桶装水的价格如图,已知乙种水的桶数是甲种水的桶数的75%,设买甲种水x 桶,乙种水y 桶,则所列方程中正确的是( )A.⎩⎨⎧8x +6y =250,y =75%·xB.⎩⎨⎧8x +6y =250,x =75%·y C.⎩⎨⎧6x +8y =250,y =75%·x D.⎩⎨⎧6x +8y =250,x =75%·y(第7题图)8.若方程组⎩⎨⎧x +y =3,2x +y =□的解为⎩⎨⎧x =1,y =□,则前后两个□的数分别是( )A .4,2B .1,3C .2,3D .5,29.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .410.如图,用一根长40cm 的铁丝围成一个长方形,若长方形的宽比长少2cm ,则这个长方形的面积为( )A .90cm 2B .96cm 2C .99cm 2D .100cm 2(第10题图)二、填空题(每小题3分,共24分)11.已知方程-2x +y +5=0,用含x 的代数式表示y ,则y =________. 12.若x2a -3+yb +2=3是二元一次方程,则a -b =________.13.方程组⎩⎨⎧x +2y =2,2x +y =4的解是________.14.已知(x +y +3)2+|2x -y -1|=0,则x y的值是________.15.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =2,nx -my =1的解,则m +3n 的值为________.16.已知方程组⎩⎨⎧x +2y =k ,2x +y =1的解满足x +y =3,则k 的值为________.17.关于x ,y 的二元一次方程组⎩⎨⎧x +y =1-m ,x -3y =5+3m中,m 与方程组的解中的x 或y 相等,则m 的值为____________.18.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的.现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟.则李师傅加工2个甲种零件和4个乙种零件共需________分钟. 三、解答题(共66分) 19.(16分)解方程组:(1)⎩⎨⎧4x +y =5①,3x -2y =1②;(2)⎩⎨⎧2x =3-y ①,3x +2y =2②;(3)⎩⎨⎧2x +3y =8①,3x -2y =-1②;(4)⎩⎪⎨⎪⎧2x -y =5①,x -1=12(2y -1)②.20.(8分)已知方程组⎩⎨⎧ax +by =5,bx +ay =2的解为⎩⎨⎧x =4,y =3,试求a ,b 的值.21.(10分)已知方程组⎩⎨⎧ax +5y =4,5x +y =7与方程组⎩⎨⎧3x -y =1,5x +by =1的解相同,求a ,b 的值.22.(10分)某运动员在一场篮球比赛中的技术统计如下表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.23.(10分)代数式ax+by,当x=5,y=2时,它的值是1;当x=1,y=3时,它的值是-5.试求当x=7,y=-5时,代数式ax+by的值.24.(12分)某中学为了提高绿化品位,美化环境,准备将一块周长为114m 的长方形草地,设计成长和宽分别相等的9块长方形(如图所示),种上各种花卉,经市场预测,绿化每平方米造价100元. (1)求出每个小长方形的长和宽;(2)请计算出完成这块草地的绿化工程预计投入资金多少元.(第24题图)参考答案与解析一、1.B 2.B 3.D 4.C 5.D 6.A 7.A 8.A9.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5m 时,不造成浪费,设截成2m 长的彩绳x 根,1m 长的y 根,由题意得2x +y =5.∵x ,y 都是非负整数,∴符合条件的解为⎩⎨⎧x =0,y =5,⎩⎨⎧x =1,y =3,⎩⎨⎧x =2,y =1.则共有3种不同截法.故选C.10.C 解析:设长方形的长为x cm ,宽为y cm ,根据题意得⎩⎨⎧x -y =2,2(x +y )=40,解得⎩⎨⎧x =11,y =9.∴这个长方形的面积为xy =11×9=99(cm 2).故选C. 二、11.2x -5 12.3 13.⎩⎨⎧x =2,y =0 14.27118.40 解析:设李师傅加工1个甲种零件需x 分钟,加工1个乙种零件需y 分钟,根据题意得⎩⎨⎧3x +5y =55①,4x +9y =85②,①+②,得7x +14y =140,∴x +2y =20,∴2x +4y =40. 三、19.解:(1)①×2+②,得11x =11,解得x =1.把x =1代入①,得4+y =5,解得y =1.则方程组的解为⎩⎨⎧x =1,y =1.(4分) (2)将①变形,得y =3-2x ③,将③代入②中,得3x +2(3-2x )=2,解得x =4.把x =4代入③,得y =-5.则方程组的解为⎩⎨⎧x =4,y =-5.(8分)(3)①×2+②×3,得13x =13,解得x =1.将x =1代入①,得2+3y =8,解得y =2.则方程组的解为⎩⎨⎧x =1,y =2.(12分)(4)原方程组可化为⎩⎪⎨⎪⎧2x -y =5①,x -y =12③,①-③得x =92.把x =92代入①,得9-y =5,解得y =4,则方程组的解为⎩⎪⎨⎪⎧x =92,y =4.(16分) 20.解:把⎩⎨⎧x =4,y =3代入方程组⎩⎨⎧ax +by =5,bx +ay =2,得⎩⎨⎧4a +3b =5,4b +3a =2,(4分)解得⎩⎨⎧a =2,b =-1.(8分)21.解:由题意联立方程组,得⎩⎨⎧5x +y =7①,3x -y =1②,(2分)①+②,得8x =8,解得x =1.(4分)把x =1代入②,得y =2.(6分)把x =1,y =2代入原方程组,得⎩⎨⎧a +10=4,5+2b =1,(8分)解得⎩⎨⎧a =-6,b =-2.(10分)22.解:设本场比赛中该运动员投中2分球x 个,3分球y 个,(1分)依题意得⎩⎨⎧10+2x +3y =60,x +y =22,(5分)解得⎩⎨⎧x =16,y =6.(8分)答:本场比赛中该运动员投中2分球16个,3分球6个.(10分)23.解:由题意得⎩⎨⎧5a +2b =1,a +3b =-5,(3分)解得⎩⎨⎧a =1,b =-2.(6分)∴ax +by =x -2y ,(7分)∴当x =7,y =-5时,x -2y =17.(10分)24.解:(1)设小长方形的宽为x m ,长为y m ,由题意得⎩⎨⎧2(y +2x +5x )=114,5x =2y ,(3分)解得⎩⎨⎧x =6,y =15.(6分)答:每个小长方形的宽为6m ,长为15m.(7分) (2)15×6×9×100=81000(元).(10分)答:完成这块草地的绿化工程预计投入资金81000元.(12分)第2章检测卷(满分:120分 时间:90分钟)一、选择题(每小题3分,共30分) 1.计算(2a 2)3的结果是( )A .2a6 B .6a 6C .8a 6D .8a 52.计算(2x -1)(1-2x )结果正确的是( )A .4x 2-1 B .1-4x 2C .-4x 2+4x -1 D .4x 2-4x +13.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x 2+20xy +■,不小心把最后一项染黑了,你认为这一项是( )A .5y 2B .10y 2C .100y 2D .25y 24.下列各式计算正确的是( )A .(x 2)3=x 6B .(2x )2=2x 2C .(x -y )2=x 2-y 2D .x 2·x 3=x 65.下列运算不能用平方差公式的是( )A .(4a 2-1)(1+4a 2) B .(x -y )(-x -y ) C .(2x -3y )(2x +3y ) D .(3a -2b )(2b -3a )6.若(y +3)(y -2)=y 2+my +n ,则m ,n 的值分别为( )C .m =1,n =6D .m =5,n =-67.若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为( )A .-6B .6C .18D .308.三个连续偶数,中间一个数是k ,它们的积为( ) A .8k 2-8k B .k 3-4k C .8k 3-2k D .4k 3-4k 9.若a +b =3,ab =1,则2a 2+2b 2的值为( )A .7B .10C .12D .1410.如图,在边长为2a 的正方形中央剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )(第10题图)A .a 2+4 B.2a 2+4a C .3a 2-4a -4 D.4a 2-a -2 二、填空题(每小题3分,共24分) 11.若2m ·23=26,则m =________.12.光的速度约为3×105km/s ,太阳光照到地球上要5×102s ,那么太阳与地球的距离为__________km(用科学记数法表示).13.若a 2-b 2=1,a -b =12,则a +b 的值为________.14.如果(y +a )2=y 2-8y +b ,则a ,b 的值分别为________.15.已知对于整式A =(x -3)(x -1),B =(x +1)(x -5),如果其中x 取值相同时,则整式A ________B (填“>”“<”或“=”).16.若ab =1,则(a n -b n )2-(a n +b n )2=________. 17.已知a +b =8,a 2b 2=4,则a 2+b 22-ab =________.18.观察下列各式的计算结果与相乘的两个多项式之间的关系:(x +1)(x 2-x +1)=x 3+1;(x +2)(x 2-2x +4)=x 3+8; (x +3)(x 2-3x +9)=x 3+27.请根据以上规律填空:(x +y )(x 2-xy +y 2)=________. 三、解答题(共66分) 19.(16分)计算:(1)x 4·x 6-(x 5)2;(2)(-xy )2·x 4y +(-2x 2y )3;(3)(1-3a )2-2(1-3a );(4)(a +2b )(a -2b )-12b (a -8b ).20.(8分)已知甲数是a ,乙数比甲数的3倍少1,丙数比乙数多2,试求甲、乙、丙三数的积.21.(8分)已知多项式x2-mx-n与x-2的乘积中不含x2项和x项,求m,n的值.22.(12分)先化简,再求值:(1)(a+b)(a-b)-(a-2b)2,其中a=2,b=-1;(2)(x+2y)(x-2y)-(2x-y)2+(3x-y)(2x-5y),其中x=-1,y=-2.23.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第23题图)24.(12分)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm ,它们的面积的差为40cm 2,则这两个正方形的边长差为________;探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x cm ,宽为y cm.(1)用含x ,y 的代数式表示正方形的边长为________;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.参考答案一、1.C 2.C 3.D 4.A 5.D 6.B 7.B 8.B 9.D 10.C 二、11.3 12.1.5×10813.2 14.-4,16 15.> 16.-4 17.28或36 解析:∵a +b =8,a 2b 2=4,∴ab =2或ab =-2,a 2+b 22-ab =(a +b )2-4ab 2.当ab =2时,a 2+b 22-ab =82-4×22=28;当ab =-2时,a 2+b 22-ab =82-4×(-2)2=36.18.x 3+y 3三、19.解:(1)原式=x 10-x 10=0.(4分) (2)原式=x 6y 3-8x 6y 3=-7x 6y 3.(8分) (3)原式=1-6a +9a 2-2+6a =9a 2-1.(12分)(4)原式=a 2-4b 2-12ab +4b 2=a 2-12ab .(16分)20.解:由题意知乙数为3a -1,丙数为3a +1.(2分)因此甲、乙、丙三数的积为a ·(3a -1)·(3a +1)=a ·[(3a -1)·(3a +1)]=a ·(9a 2-1)=9a 3-a .(8分)21.解:(x -2)(x 2-mx -n )=x 3-mx 2-nx -2x 2+2mx +2n =x 3-(m +2)x 2+(2m -n )x +2n ,(4分)∵不含x 2项和x 项,∴-(m +2)=0,2m -n =0,(6分)解得m =-2,n =-4.(8分)22.解:(1)原式=a 2-b 2-a 2+4ab -4b 2=4ab -5b 2.(4分)当a =2,b =-1时,原式=4×2×(-1)-5×1=-13.(6分)(2)原式=x 2-4y 2-4x 2+4xy -y 2+6x 2-17xy +5y 2=3x 2-13xy .(10分)当x =-1,y =-2时,原式=3×(-1)2-13×(-1)×(-2)=3-26=-23.(12分)23.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分) 24.解:探究1:2cm.(4分) 探究2: (1)x +y2cm(7分)(2)正方形的面积较大,(8分)理由如下:正方形的面积为⎝ ⎛⎭⎪⎫x +y 22cm 2,长方形的面积为xy cm 2.⎝ ⎛⎭⎪⎫x +y 22-xy=(x -y )24.∵x >y ,∴(x -y )24>0,∴⎝ ⎛⎭⎪⎫x +y 22>xy ,∴正方形的面积大于长方形的面积.(12分)第3章检测卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列等式从左到右的变形属于因式分解的是( ) A .a (x -y )=ax -ay B .x 2+2x +1=x (x +2)+1 C .(x +1)(x +3)=x 2+4x +3D.x3-x=x(x+1)(x-1)2.多项式-6xy2+9xy2z-12x2y2的公因式是() A.-3xy B.3xyzC.3y2z D.-3xy23.下列各式中,不能用平方差公式因式分解的是() A.-a2-4b2 B.-1+25a2C.116-9a2 D.-a4+14.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2C.x(y+3)(y-3) D.x(y+9)(y-9)5.若(x+y)3-xy(x+y)=(x+y)·M,则M是()A.x2+y2 B.x2-xy+y2C.x2-3xy+y2 D.x2+xy+y26.计算2100+(-2)101的结果是()A.2100 B.-2100C.2 D.-27.下列因式分解中,正确的是()A.x2y2-z2=x2(y+z)(y-z)B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1)D.9-12a+4a2=-(3-2a)28.如图是边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为()(第8题图)A.70B.60C.130D.1409.设n为整数,则代数式(2n+1)2-25一定能被下列数整除的是()A .4B .5C .n +2D .1210.已知a ,b ,c 是三角形ABC 的三条边,且三角形两边之和大于第三边,则代数式(a -c )2-b 2的值是( ) A .正数 B .0 C .负数 D .无法确定 二、填空题(每小题3分,共24分)11.分解因式2a (b +c )-3(b +c )的结果是______________. 12.多项式3a 2b 2-6a 3b 3-12a 2b 2c 的公因式是________. 13.已知a ,b 互为相反数,则a 2-b 24的值为________.14.把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解:________________.(第14题图)15.分解因式:(m +1)(m -9)+8m =________________. 16.若x +y =10,xy =1,则x 3y +xy 3的值是________.17.若二次三项式x 2+mx +9是一个完全平方式,则代数式m 2-2m +1的值为________.18.先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法分解因式:x 4+64=______________. 三、解答题(共66分) 19.(16分)分解因式:(1)(2a +b )2-(a +2b )2;(2)-3x 2+2x -13;(3)3m 4-48;(4)x 2(x -y )+4(y -x ).20.(10分)(1)已知x =13,y =12,求代数式(3x +2y )2-(3x -6y )2的值;(2)已知a -b =-1,ab =3,求a 3b +ab 3-2a 2b 2的值.21.(8分)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(10分)利用因式分解计算:(1)8352-1652;(2)2032-203×206+1032.23.(10分)如图,在半径为R的圆形钢板上,钻四个半径为r的小圆孔,若R=8.9cm,r=0.55cm,请你应用所学知识用最简单的方法计算剩余部分面积(结果保留π).(第23题图)24.(12分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=____________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案一、1.D 2.D 3.A 4.C 5.D 6.B 7.C 8.B 9.A 10.C 二、11.(b +c )(2a -3) 12.3a 2b 213.0 14.x 2+3x +2=(x +2)(x +1) 15.(m +3)(m -3) 16.98 17.25或49 18.(x 2-4x +8)(x 2+4x +8) 三、19.解:(1)原式=(2a +b +a +2b )(2a +b -a -2b )=3(a +b )(a -b ).(4分)(2)原式=-3⎝ ⎛⎭⎪⎫x 2-23x +19=-3⎝ ⎛⎭⎪⎫x -132.(8分)(3)原式=3(m 4-42)=3(m 2+4)(m 2-4)=3(m 2+4)(m +2)(m -2).(12分) (4)原式=(x -y )(x 2-4)=(x -y )(x +2)(x -2).(16分)20.解:(1)原式=(3x +2y +3x -6y )(3x +2y -3x +6y )=(6x -4y )·8y =16y (3x -2y ).(2分)当x =13,y=12时,原式=16×12×⎝ ⎛⎭⎪⎫3×13-2×12=0.(5分)(2)原式=ab (a 2+b 2-2ab )=ab (a -b )2.(7分)当ab =3,a -b =-1时,原式=3×(-1)2=3.(10分) 21.解:12x 2+2x -1+12x 2+4x +1=x 2+6x =x (x +6)(答案不唯一).(8分)22.解:(1)原式=(835+165)×(835-165)=1000×670=670000.(5分) (2)原式=2032-2×203×103+1032=(203-103)2=1002=10000.(10分)23.解:S剩余=πR2-4πr2=π(R+2r)(R-2r).(5分)当R=8.9cm,r=0.55cm时,S剩余=π×10×7.8=78π(cm2).(9分)答:剩余部分的面积为78πcm2.(10分)24.解:(1)(x-y+1)2(2分)(2)令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,故(a+b)(a+b-4)+4=(a+b-2)2.(6分)(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(12分)第4章检测卷(满分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.如图,直线a,b被直线c所截,∠1和∠2的位置关系是()A.同位角 B.内错角C.同旁内角 D.对顶角(第1题图)2.下列图形中,不能通过其中一个四边形平移得到的是()3.如图,直线a,b被直线c所截,下列说法正确的是()A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b(第3题图)4.O为直线l外一点,A,B,C三点在直线l上,OA=4cm,OB=5cm,OC=1.5cm.则点O到直线l的距离()A.大于1.5cm B.等于1.5cmC.小于1.5cm D.不大于1.5cm5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是D A.30° B.35°C.40° D.45°(第5题图)6.如图,AB∥CD,DA⊥AC,垂足为A.若∠ADC=35°,则∠1的度数为()A.65° B.55° C.45° D.35°(第6题图)(第7题图)7.如图,下列说法正确的个数有()①过点A有且只有一条直线AC垂直于直线l;②线段AC的长是点A到直线l的距离;③线段AB,AC,AD中,线段AC最短,根据是两点之间线段最短;④线段AB,AC,AD中,线段AC最短,根据是垂线段最短.A.1个 B.2个C.3个 D.4个8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120° D.∠5=40°(第8题图)(第9题图)9.如图,在甲、乙两城市之间要修建一条笔直的城际铁路,从甲地测得公路的走向是北偏东42°,现在甲、乙两城市同时开工,为使若干天后铁路能准确在途中接通,则乙城市所修铁路的走向应是() A.南偏西42° B.北偏西42°C.南偏西48° D.北偏西48°10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是BA.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A-∠C+∠D+∠E=180°D.∠E-∠C+∠D-∠A=90°(第10题图)(第11题图)二、填空题(每小题3分,共24分)11.如图,若剪刀中的∠AOB=30°时,则∠COD=________.12.如图,直线AB,CD被直线AE所截,AB∥CD,∠A=110°,则∠1=________度.(第12题图)(第13题图)13.如图,把河水引入试验田P灌溉,沿过P作河岸l的垂线开沟引水的理由是:____________.14.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=________.(第14题图)(第15题图)15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=____度.16.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=63°30′.(第16题图)17.对于同一平面内的三条直线a,b,c,给出下列五个结论:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a ⊥c.请以其中两个作为已知条件,一个作为结论,组成一个正确的语句________________ __(用数学语言作答).18.如图,a∥b,c⊥a,∠1=130°,则∠2等于________.(第18题图)三、解答题(共66分)19.(8分)如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.(第19题图)20.(10分)推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,试说明∠B+∠F=180°.(第20题图)解:∵∠B=__ __(已知),∴AB∥CD( ).∵∠DGF=____________(已知),∴CD∥EF( ).∴AB∥EF(___________________).∴∠B+______=180°(____ ).21.(10分)如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=60°,求∠DOG的度数.(第21题图)22.(12分)如图,AD∥BC,∠1=60°,∠B=∠C,DF为∠ADC的平分线.(1)求∠ADC的度数;(2)试说明DF∥AB.(第22题图)23.(12分)如图,BD⊥AC,ED∥BC,∠1=∠2,AC=9cm,且点D为AF的中点,点F为DC的中点.(1)试说明BD∥GF;(2)求BD与GF之间的距离.(第23题图)24.(14分)已知BC∥OA,∠B=∠A=100°,试回答下列问题:(第24题图)(1)如图①所示,试说明OB∥AC;(2)如图②,若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于________(在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB∶∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,在平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA的度数等于________(在横线上填上答案即可).参考答案一、1.B 2.D 3.D 4.D 5.D 6.B 7.C 8.D 9.A10.C 解析:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,则∠A =∠ACG ,∠EDH =180°-∠E .∵AB ∥EF ,∴CG ∥DH ,∴∠CDH =∠DCG ,∴∠ACD =∠ACG +∠DCG =∠A +∠CDH =∠A +∠CDE -(180°-∠E ),∴∠A -∠ACD +∠CDE +∠E =180°.故选C.(第10题答图)二、11.30° 12.70 13.垂线段最短 14.65° 15.80 16.63°30′ 17.若a ∥b ,b ∥c ,则a ∥c (答案不唯一) 18.40° 三、19.解:平移后的小船如答图.(8分)(第19题答图)20.解:∠CGF 同位角相等,两直线平行(2分) ∠F 内错角相等,两直线平行(6分) 平行于同一直线的两直线平行(8分) ∠F 两直线平行,同旁内角互补(10分)21.解:∵∠AOE =60°,∴∠BOF =∠AOE =60°(2分).∵OG 平分∠BOF ,∴∠BOG =12∠BOF =30°.(4分)∵CD ⊥EF ,∴∠COE =90°,∴∠AOC =90°-60°=30°,∴∠BOD =30°,(8分)∴∠DOG =∠BOD +∠BOG =60°.(10分)22.解:(1)∵AD ∥BC ,∴∠B =∠1=60°,∠C +∠ADC =180°.(3分)∵∠B =∠C ,∴∠C =60°,∴∠ADC =180°-60°=120°.(6分)(2)∵DF 平分∠ADC ,∴∠ADF =12∠ADC =12×120°=60°.(8分)又∵∠1=60°,∴∠1=∠ADF ,∴AB ∥DF .(12分)23.解:(1)∵ED ∥BC ,∴∠1=∠DBC .(2分)∵∠1=∠2,∴∠DBC =∠2,(4分)∴BD ∥GF .(6分) (2)∵AC =9cm ,D 为AF 的中点,F 为DC 的中点,∴AD =DF =FC =9÷3=3(cm).(9分)∵DF ⊥BD ,BD ∥GF ,∴BD 与GF 之间的距离为3cm.(12分)24.解:(1)∵BC ∥OA ,∴∠B +∠O =180°.∵∠A =∠B ,∴∠A +∠O =180°,∴OB ∥AC .(3分)(2)40°(6分) 解析:∵∠A =∠B =100°,由(1)得∠BOA =180°-∠B =80°.∵∠FOC =∠AOC ,OE 平分∠BOF ,∴∠EOF =12∠BOF ,∠FOC =12∠FOA ,∴∠EOC =∠EOF +∠FOC =12(∠BOF +∠FOA )=12∠BOA =40°.(3)∠OCB ∶∠OFB 的值不发生变化.(8分)理由如下:∵BC ∥OA ,∴∠OFB =∠FOA ,∠OCB =∠AOC .又∵∠FOC =∠AOC ,∴∠FOC =∠OCB ,∴∠OFB =∠FOA =∠FOC +∠AOC =2∠OCB ,(10分)∴∠OCB ∶∠OFB =1∶2.(11分)(4)60°(14分) 解析:由(1)知OB ∥AC ,∴∠OCA =∠BOC ,由(2)可设∠BOE =∠EOF =α,∠FOC =∠AOC =β,∴∠OCA =∠BOC =2α+β.∵BC ∥OA ,∴∠OEB =∠EOA =α+2β.∵∠OEB =∠OCA ,∴2α+β=α+2β,∴α=β.∵∠AOB =80°,∴α=β=20°,∴∠OCA =2α+β=40°+20°=60°.第5章检测卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是( )2.将图形按顺时针方向旋转90°得到的图形是( )3.如图是一个风筝的图案,它是轴对称图形,量得∠B =30°,则∠E 的度数为( )A .30°B .35°C .40°D .45°(第3题图) (第4题图)4.如图,直线a 与直线b 交于点A ,与直线c 交于点B ,∠1=120°,∠2=45°,若使直线b 与直线c 平行,则可将直线b 绕点A 逆时针旋转( )A.15° B.30°C.45° D.60°5.下列四个图形中,若以其中一部分作为基本图形,无论用旋转还是平移都不能得到的图形是()6.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是() A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM(第6题图)(第7题图)7.如图,将直角三角形AOB绕点O逆时针旋转得到直角三角形COD,若∠AOB=90°,∠BOC=130°,则∠AOD的度数为()A.40° B.50° C.60° D.30°8.将一张长方形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到的是下列图形中的()9.如图,在三角形ABC中,BC=4,其面积为12,AD⊥BC.将三角形ABC绕点A旋转到三角形AB′C′的位置,使得AC⊥B′C′于点D′,则AD′的长度为()A.6 B.8 C.10 D.12(第9题图)(第10题图)10.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①以点O为中心逆时针方向旋转180°;②先以A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;③先以直线MN为对称轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将三角形ABC变换成三角形PQR的是()A.①② B.①③ C.②③ D.①②③二、填空题(每小题3分,共24分)11.汉字中、天、日、田等都可看作是轴对称图形,请你再写出一个这样的汉字:____.12.如图,下列图片中,是由图片(1)平移得到的,是由图片(1)旋转得到的,是由图片(1)轴对称得到的.(第12题图)13.如图,AD是三角形ABC的对称轴,AC=8 cm,DC=4 cm,则三角形ABC的周长为 cm.(第13题图)(第14题图)14.如图所示的图案是由三个叶片组成,绕点O旋转120°后可以与自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 cm2.15.在三角形ABC中,∠A=90°,将三角形ABC绕A点沿顺时针方向旋转85°,得到三角形AEF,点B,点C分别对应点E,点F,则下列结论:①∠BAE=85°;②AC=AF;③EF=BC;④∠EAF=85°.其中正确的是(填序号).16.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是 .(第16题图)(第17题图)17.如图,将三角形ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是70°.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.(第18题图)三、解答题(共66分)19.(10分)我们在学完“平移、轴对称、旋转”三种图形的变换后,可以进行进一步研究,请根据示例图形,完成下表.图形的变换示例图形与对应线段有关的结论与对应点有关的结论平移(1)________________________;AA′=BB′AA′∥BB′轴对称(2)____________;对应线段AB和A′B′所在的直线如果相交,交点在______________;(3)____________________________;旋转AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.(4)__________________________.20.(10分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.(第20题图)21.(10分)如图,在三角形ABC中,∠ACB=90°,沿CD折叠三角形CBD,使点B恰好落在AC边上的点E 处.若∠A=22°,求∠BDC的度数(提示:三角形的内角和等于180°).(第21题图)22.(12分)在三角形ABC中,∠ACB=90°,∠B=30°,将三角形ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到三角形A′B′C.如图,当AB∥CB′时,设A′B′与CB相交于点D.试求∠A′DC的度数(提示:三角形的内角和等于180°).(第22题图)23.(12分)某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图①所示的等腰直角三角形,王聪同学设计了如图②所示的四种图案.(第23题图)(1)你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用所学过的知识再设计三幅与上述不同的图案.24.(12分)四边形ABCD是正方形,三角形ADF旋转一定角度后得到三角形ABE,如图所示,如果AF=4,AB=7.(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由(提示:三角形的内角和等于180°).(第24题图)参考答案与解析一、1.D 2.D 3.A 4.A 5.C 6.B 7.B 8.C 9.A 10.C二、11.平(答案不唯一) 12.(5)(2)和(3)(4) 13.24 14.4 15.①②③16.60°17.70° 18.3三、19.解:(1)AB =A ′B ′,AB ∥A ′B ′(2分) (2)AB =A ′B ′ 对称轴l 上(6分)(3)AA ′∥BB ′,l 垂直平分AA ′,BB ′(8分) (4)OA =OA ′,OB =OB ′,∠AOA ′=∠BOB ′(10分) 20.解:(1)如答图.(5分)(2)如答图的四边形A ′B ′C ′D ′即为所要画的四边形.(10分)(第20题答图)21.解:∵∠ACB =90°,∠A =22°,∴∠B =68°.(3分)由折叠的性质知,∠BCD =∠ECD =12∠ACB =45°.(6分)在三角形BCD 中,∠B =68°,∠BCD =45°,∴∠BDC =180°-∠B -∠BCD =180°-68°-45°=67°.(10分)22.解:∵三角形A ′B ′C 是由三角形ABC 经过旋转得到的,∴∠A ′CB ′=∠ACB =90°,∠B ′=∠B =30°.又∵AB ∥CB ′,∴∠BCB ′=∠B =30°.(6分)∴∠A ′CD =∠A ′CB ′-∠BCB ′=90°-30°=60°,(8分)∠A ′=180°-∠A ′CB ′-∠B ′=60°.(10分)∴∠A ′DC =180°-∠A ′-∠A ′CD =180°-60°-60°=60°.(12分)23.解:(1)我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°.(答案不唯一)(6分)(2)如图所示.(12分)(第23题答图)24.解:(1)旋转中心为点A ,旋转角度为90°.(4分)(2)由题意,可得AE =AF =4,AD =AB =7,∴DE =AD -AE =7-4=3.(8分)(3)BE ⊥DF .(9分)理由如下:延长BE 交DF 于点G ,由旋转的性质得∠ADF =∠ABE ,∠FAD =∠DAB =90°,∴∠F +∠ADF =90°,∴∠ABE +∠F =90°,∴∠BGF =90°.即BE 与DF 互相垂直.(12分)第6章检测卷(满分:120分时间:90分钟)一、选择题(每小题4分,共32分)1.某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数为()A.6 B.7C.8 D.92.课外作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五名同学每天的课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75C.80 D.603.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们0.6和0.4的权.根据四人各自的平均成绩,公司将录取()A.甲 B.乙C.丙 D.丁4.已知一组数据-1,x,1,2,0的平均数是1,则这组数据的中位数是()A.1 B.0C.-1 D.25.某市6月2日至8日的每日最高温度如图所示,则这组数据的众数和中位数分别是()(第5题图)A.30℃,29℃B.30℃,30℃C.29℃,30℃D.29℃,29.5℃6.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数 B.中位数C.众数 D.方差7.某次知识竞赛中,10名学生的成绩统计如下:分数(分)60708090100人数(人)1152 1则下列说法正确的是()A.学生成绩的方差是4B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均分是80分8.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.0方差 3.290.49 1.8(第6题图)根据以上图表信息,参赛选手应选()A.甲 B.乙 C.丙 D.丁二、填空题(每小题4分,共24分)9.一组数据:5,7,6,5,6,5,8,这组数据的平均数是________.10.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是________岁.11.九年级一班同学体育测试后,老师将全班同学成绩绘制成如图所示的条形统计图.每个等级成绩的人数的众数是________.(第11题图)(第12题图)12.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是小李.13.有5个从小到大排列的正整数,其中位数是3,唯一的众数是7,则这5个数的平均数是________.14.已知一组数据0,1,2,2,x,3的平均数为2,则这组数据的方差是________.三、解答题(共64分)15.(8分)某蔬菜市场某天批发1000千克青菜,上午按每千克0.8元的价格批发了500千克,中午按每千克0.6元的价格批发了200千克,下午以每千克0.4元的价格将余下的青菜批发完,求这批青菜的平均批发价格.(500×0.8+200×0.6+0.4×300)÷1000=0.64(元/千克).16.(10分)在“心系灾区”自愿捐款活动中,某班50名同学的捐款情况如下表:捐款(元)5101520253050100人数67911853 1(1)问这个班级捐款总数是多少元?(2)求这50名同学捐款的平均数、中位数.(3)从表中你还能得到什么信息(只写一条即可)?17.(10分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3∶3∶2∶2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.(12分)小明和小红5次数学单元测试成绩如下(单位:分):小明:89、67、89、92、96;小红:86、62、89、92、92.他们都认为自己的成绩比另一位同学好.(1)分别计算小明和小红5次数学单元测试成绩的平均数、中位数和众数,并分析他们各自认为自己的成绩比另一位同学好的理由;(2)你认为谁的成绩更好些?说一说你的理由.19.(12分)已知一组数据x 1,x 2,…,x 6的平均数为1,方差为53.(1)求x 21+x 22+…+x 26的值;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).20.(12分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下统计图①和②,请根据相关信息,解答下列问题:(第20题图)(1)图①中a 的值为________;(2)求统计的这组初赛数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人能进行复赛,请直接写出初赛成绩为1.65m 的运动员能否进入初赛.参考答案一、1.B 2.B 3.B 4.A 5.A 6.B 7.C 8.D 9.6二、10.15 11.6 12.乙 13.414.53 解析:∵16(0+1+2+2+x +3)=2,∴x =4.s 2=16[(0-2)2+(1-2)2+(2-2)2+(2-2)2+(4-2)2+(3-2)2]=53. 三、15.解:(0.8×500+0.6×200+0.4×300)÷1000=0.64(元/千克)(6分).答:这批青菜的平均批发价格为0.64元/千克.(8分)16.解:(1)捐款总数为5×6+10×7+15×9+20×11+25×8+30×5+50×3+100=1055(元).(3分)(2)50名同学捐款的平均数为1055÷50=21.1(元),(6分)中位数为(20+20)÷2=20.(8分)(3)答案不唯一,如“捐20元的人数最多”等.(10分)17.解:(1)甲成绩的中位数为(90+90)÷2=90;(2分)乙成绩的中位数为(92+94)÷2=93.(4分)(2)3+3+2+2=10,甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分),(7分)乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).(9分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.(10分)18.解:(1)小明成绩的平均数是15(89+67+89+92+96)=86.6,(2分)按从小到大的顺序排列得到第3个数为89.∴中位数是89.(3分)出现次数最多的是89.∴众数是89.(4分)同理,小红成绩的平均数是84.2,中位数是89,众数是92.(7分)因此小明的理由是他成绩的平均数比小红高,而小红的理由是她成绩的众数比小明高.(9分)(2)小明的成绩好一点.∵小明成绩的平均数高于小红成绩的平均数,而且小明每次的成绩都比小红的高.(12分)19.解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6.(1分)又∵方差为53,∴s 2=16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[x 21+x 22+…+x 26-2(x 1+x 2+…+x 6)+6]=16(x 21+x 22+…+x 26-2×6+6)=16(x 21+x 22+…+x 26)-1=53,∴x 21+x 22+…+x 26=16.(6分) (2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,∴x 7=1.(8分)∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,(10分)∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107.(12分) 20.解:(1)25(3分)(2)x =1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3=1.61.∴这组数据的平均数是1.61.(5分)∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65.(7分)∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,1.60+1.602=1.60.∴这组数据的中位数为1.60.(9分) (3)能.(12分)。

华师大版七年级数学下册单元测试题全套.doc

华师大版七年级数学下册单元测试题全套.doc

最新华师大版七年级数学下册单元测试题全套2016-2017学年度下学期,标准配套试题第6章一元一次方程综合检测题一、选择题1方程4兀-1二3的解是()A.X = —1B. X = 1C. X = —2D. X = 22、如果x = 2是方程丄x + a = —1的根,那么a的值是()2A. 0B. 2C. —2D. -63、若a = b —3 ,则h-a的值是()A. 3B. — 3C. 0D. 64、某品牌的书包按相同折数打折销售,如果原价200元的书包,现价160元,那么原价150 元的书包,现价是()A.100 元B. 110 元C. 120 元D. 130 元5、某书店把一本新书按标价的九折出售,仍可获得20%・若该书的进价为21元,则标价为()A.26 元B. 27 元C. 28 元D. 29 元6、A种饮料B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为兀元/瓶,那么下面所列方程正确的是()A.2(x — 1) + 3兀=13 ;B. 2(兀+1) + 3兀=13 ;C. 2兀+ 3(无+1) = 13 ;D. 2x + 3(x —1) = 137、小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设兀月后他能捐出100元,则下列方程中能正确计算出X的是()A.10兀+20 = 100;B. 10兀一20 = 100;C. 20 —10兀= 100;D. 20x4-10 = 1008、家电下乡是我国应对当前国际金融危机,惠农强农,帯动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1 H,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是()A. 20x-13% = 2340;B. 20兀= 2340x13%;C. 20x(1 -13%) = 2340 ; D . 13%-x = 23409、中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金兀元,则所列方程正确的是()A.x-5000 = 5000x3.06%B.x + 5000x20% = 5000x(1 + 3.06%)C.x + 5000x3.06%x20% = 5000x(1 + 3.06%);D.x + 5000x3.06%x20% = 5000x3.06%10、为确保信息安全,信息需要加密传输,发送方由明文T密文(加密),接收方rtl密文T 明文(解密).已知加密规则为:明文Q,b, c对应的密文Q +1,2/?+4,3C +9.例如明文1, 2, 3对应的密文2, 8, 如果接收方收到密文7, 15,则解密得到的明文为()二、填空题11、方程2兀一6二0的解为 __________ ・12、如果2是一元二次方程x2 + bx+2= 0的一个根,那么常数b的值为____________13、己知a, b互为相反数,并且3Q —2b = 5,则cr+b2= _____________ .14、某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件X元,则x满足的方程是 ____________________ .15、某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是_________ 万元.16、某商店--套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为_________________ 元.17、如图屮标有相同字母的物体的质量相同,若A的质量为A. 4, 5, 6B.6, 7, 2C.2, 6, 7 ID. 7, 2, 620克,当天平处于平衡状态时,3的质量为___________ 克.18.如图,天秤屮的物体a、b、c使天秤处于平衡状态,则质董最大的物体是\Bg]/ ~A~~~A~四、解应用题19、某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得o 分.一个队踢14场 球负5场共得19分,问这个队胜了儿场?20、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了 14%.求这个月的石油价格相对上个月的增长率.21、一件商品按成本价提高20%后标价,又以9折销售,售价为270元,则这件商品的成本价是多少? 22、梅林屮学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县 城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方 出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小 汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h (上、下车时间忽略不计).(1) 若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过汁算说明他们 能否在截止进考场的时刻前到达考场;(2) 0.5x-0.7 = 6.5-1.3x(3) 8x — —2(x + 4)(4)3)一1 ]二 5y-7 4 ~ 6三、解方程:(1) 2x + 3 = x + 5(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.第7章一次方程组综合检测题一•、填空题(每题2分,共20分)1、在2x—3y=6中,有含x的代数式表示y为_______________ ,当y=0时,x= _________2、若{离,情是方程组ax+by=7的两组解,则a=_b=_。

四边形单元测试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载

四边形单元测试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载

四边形单元测试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------第十九章四边形单元测试卷一、精心选一选(每小题2分,共20分)1.如图1,在ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中面积相等的平行四边形有()对.A.3B.4C.5D.62.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③一组对边相等,一组对角相等的四边形是平行四边形.其中正确的有().A.0个B.1个C.2个D.3个3.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是().A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∥A=∥CC.AO=BO=CO=DOD.AO=CO,BO=DO,AB=BC4.能判定四边形ABCD是平行四边形的题设是().A. AB∥CD, AD=BCB.∥A=∥B,∥C=∥DC.AB=CD,AD=BCD. AB=AD,CB=CD5.在给定的条件中,能画出平行四边形的是().A.以60cm为一条对角线,20cm、34cm为两邻边B.以6cm、10cm为对角线,8cm为一边C.以20cm、36cm为对角线,22cm为一边D.以6cm为一条对角线,3cm、10cm为两邻边6.正方形具有而菱形不一定具有的性质是().A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.下列说法:①对角线互相垂直且相等的四边形是矩形;②对角线互相垂直平分的四边形是菱形;③对角线互相垂直的矩形是正方形;④对角线相等的菱形是正方形;⑤对角线互相垂直且相等的平行四边形是正方形;⑥对角线互相垂直且相等的四边形是正方形.其中错误的有().A.1个B.2个C.3个D.4个8.如果平行四边形四个内角的平分线能围成一个四边形,那么这个四边形是().A.矩形B.正方形C.菱形D.等腰梯形9.如图2,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积().A.B.C. D.10.如图3,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为()A.12B.13C.14D.15二、耐心填一填(每小题3分,共30分)11.如图4所示,木板两边是线段,把两把曲尺的一边紧靠木板边缘,再看木板另一边上刻度是否相等,就可以判断木板的两个边缘是否平行,其根据是__________________________________________________。

青岛版七年级数学上册单元测试题全套(含答案)

青岛版七年级数学上册单元测试题全套(含答案)

青岛版七年级数学上册单元测试题全套(含答案)第1章检测卷一.选择题1.某工程队,在修建兰宁高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程().A. 直线的公理B. 直线的公理或线段的公理C. 线段最短的公理D. 平行公理2.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()(第2题图)A. 30B. 34C. 36D. 483.延长线段AB到C,下列说法正确的是()A. 点C在线段AB上B. 点C在直线AB上C. 点C不在直线AB上D. 点C在直线BA的延长线上4.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()(第4题图)A. 创B. 教C. 强D. 市5.如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()(第5题图)A. 2B. 4C. 6D. 86.如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段CD的长是()A.4B.3C.2D.17. 下面四个图形是如图的展开图的是( )(第7题图)A. B. C. D.8.如图,从A 到B 的四条路径中,最短的路线是( )(第8题图)A. A ﹣E ﹣G ﹣BB. A ﹣E ﹣C ﹣BC. A ﹣E ﹣G ﹣D ﹣BD. A ﹣E ﹣F ﹣B9. 下列图形中,经过折叠可围成长方体的是( )10.观察图形,下列说法正确的个数是( )①直线和直线是同一条直线;②射线和射线是同一条射线; ③.A.1B.2C.3D.0二.填空题11.笔尖在纸上快速滑动写出英文字母C ,这说明了________.12.如图,点E ,F 分别是线段AC ,BC 的中点,若EF=3厘米,则线段AB= 厘米.A B C D (第10题图)13.下列图形中,是柱体的有________ .(填序号)14.用6根火柴最多组成________ 个一样大的三角形,所得几何体的名称是________.15.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 ____(填序号).(第15题图)16.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是________cm3.(第16题图)17.如图,线段AC=BD,那么AB=________.(第17题图)18.如图所示,C和D是线段的三等分点,M是AC的中点,那么CD=________BC,AB=________MC.(第18题图)三. 解答题19.如图,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?(第19题图)20.将长为10厘米的一条线段用任意方式分成5小段,以这5小段为边可以围成一个五边形.问其中最长的一段的取值范围.21.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.(第21题图)22.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).(第22题图)23.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)(第23题图)24.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.(第24题图)25.如图,已知AD=5cm,B是AC的中点,CD= AC.求AB、BC、CD的长.(第25题图)26.已知,如图,线段AD=10cm,点B,C都是线段AD上的点,且AC=7cm,BD=4cm,若E,F分别是线段AB,CD的中点,求BC与EF的长度.(第26题图)答案一.1.C 【解析】由题意修建兰宁高速公路时,有时需将弯曲的道路改直,修路肯定要尽量缩短两地之间的里程,从而减少成本,就用到两点间线段最短公理.故选C.2.C 【解析】第一层露出5个面;第二层露出4×2+2个面;第三层露出4×2+3+2×1+2;底面6个面.所以露出的面积=5+4×2+2+4×2+3+2×1+2+6=36.故选C.3.B 【解析】延长线段AB到C,则点C在直线AB上.故选B.4.C 【解析】因为正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“强”是相对面.故选C.5.C 【解析】因为点C为线段AB的中点,AB=8,则BC=AC=4.点D为线段AC的中点,则AD=DC=2.所以BD=CD+BC=6.故选C.6.C 【解析】因为AB=10,AC=6,所以BC=AB﹣AC=10﹣6=4,又因为点D是线段BC的中点,所以CD=BC=×4=2.故选C.7.A 【解析】A、能折叠成原正方体的形式,符合题意;B、C带图案的三个面不相邻,没有一个公共顶点,不能折叠成原正方体的形式,不符合题意;D、折叠后带圆圈的面在上面时,带三角形的面在左边与原正方体中的位置不同,不符合题意.故选A.8.D 【解析】最短的路线是A﹣E﹣F﹣B.故选D.9.B 【解析】A、C、D不能折叠成长方体,只有B符合条件.10.C 【解析】①直线和直线是同一条直线,正确;②射线和射线是同一条射线,都是以为端点,同一方向的射线,正确;③由“两点之间,线段最短”知,故此说法正确.所以共有3个正确的.故选C.二.11.点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;故答案为:点动成线.12.6 【解析】因为点E,F分别是线段AC,BC的中点,所以CE=12AB,BF=12BC,所以EF=CE﹣CF= 12AC﹣12BC=12(AC﹣BC)=3,所以AC﹣BC=6,即AB=6.13.②③⑥【解析】①是圆锥,②是正方体,属于棱柱,③是圆柱,④是棱锥,⑤是球,⑥是三棱柱.所以是柱体的有②③⑥.14. 4;三棱锥或四面体【解析】要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.(第14题答图)15. 1或2或6 【解析】根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.16. 12 【解析】因为四边形ABCD是正方形,所以AB=AE=4cm,所以立方体的高为:(6﹣4)÷2=1(cm),所以EF=4﹣1=3(cm),所以原长方体的体积是:3×4×1=12(cm3).(第16题答图)17.CD 【解析】由题意得:AB﹣BC=BD﹣BC,故可得:AB=CD.故答案为:CD.18.;6 【解析】【由已知条件可知CD= AB,BC= AB,所以CD= BC;又因为AB=3AC,MC= AC,所以AB=6MC.故答案为CD= BC;AB=6MC.三.19.第一个可以得到圆柱;第二个可以得到圆锥;第三个可以得到球.20.【解】设最长的一段AB的长度为x厘米(如图),则其余4段的和为(10﹣x)厘米.因为它是最长的边,假定所有边相等,则此时它最小为2.又由线段基本性质知x<10﹣x,所以x<5,所以2≤x<5.即最长的一段AB的长度必须大于等于2厘米且小于5厘米.(第20题答图)21.【解】(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm2).(2)顶点共10个,棱共有15条;(3)n棱柱的顶点数2n;面数n+2;棱的条数3n.22.【解】答案如下:或或等.23.【解】只写出一种答案即可.图1:图2:24.【解】点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.25.【解】设AC=x,有x+ x=5,解得:x=3,即AC=3cm,所以CD=2,又B是AC的中点,AB=BC= cm26.【解】由线段的和差,得 AC+BD=AC+BC+CD=AD+BC=7+4=11cm,由AD=10cm,得10+BC=11,解得BC=1cm;由线段的和差,得AB+CD=AD﹣BC=10﹣1=9cm,由E,F分别是线段AB,CD的中点,得AE= AB,DF= CD.由线段得和差,得EF=AD﹣(AE+DF)=AD﹣(AB+ CD)=10﹣(AB+CD)=10﹣= cm.第2章检测卷一.选择题1.-的绝对值是()A. -B.C.3D. -32.如果m表示有理数,那么|m|+m的值()A.可能是负数;B.不可能是负数;C.必定是正数;D.可能是负数也可能是正数3.下列各数中:+3、-2.1、−、9、、-(-8)、0、-|+3|负有理数有()A.2个B.3个C.4个D.5个4.2的相反数是()A.2B.C. -2D. -5.﹣3的绝对值是()A. -3B.C.D.36.﹣的绝对值为()A. -2B. -C.D.17.数轴上的点A到原点的距离是4,则点A表示的数为()A.4B. -4C.4或﹣4D.2或﹣28.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100gB.150gC.300gD.400g9.在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A.10分B.﹣20分C.﹣10分D.+20分10.若向东走15米记为+15米,则向西走28米记为()A.﹣28米B.+28米C.56米D.﹣56米二.填空题11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________(2)数轴上表示x与2的两点之间的距离可以表示为________(3)如果|x﹣2|=5,则x=________(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为________.16.如果“盈利5%”记作+5%,那么亏损3%记作________.17.用“>”“<”或“=”连接:﹣π________﹣3.14.18.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.三.解答题19.某校对七年级男生进行定跳远测试,以能跳1.7m及以上为达标.超过1.7m的厘米数用正数表示,不足1.7m的厘米数用负数表示.第一组10名男生成绩如下(单位:cm):问:第一组有百分之几的学生达标?20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.21.随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km 的记为“0”,记录数据如下表:(1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km需用汽油8L,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?22.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112 ,0,﹣(﹣212),﹣(﹣1)100,﹣22.23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?答案一.1.B 【解析】|-|=.故-的绝对值是.故选B.2.B 【解析】当m>0时,原式=2m>0.当m=0时,原式=0.当m<0时,原式=0.故选B.3.B 【解析】把各式化简得:3,-2.1,-,9,1.4,8,0,-3.-2.1为负数有限小数,-为负数无限循环小数,-|+3|是负整数,所以是负有理数.共3个.故选B.4.C 【解析】根据相反数的含义,可得2的相反数是:﹣2.故选C.5.D 【解析】:因为﹣3的绝对值表示﹣3到原点的距离,所以|﹣3|=3.故选D.6.C 【解析】因为|﹣|=,所以﹣的绝对值为.故选C.7.C 【解析】在数轴上,4和﹣4到原点的距离为4.所以点A所表示的数是4和﹣4.故选C.8.D 【解析】根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选D.9.B 【解析】把加10分记为“+10分”,那么扣20分应记为﹣20分.故选B.10.A 【解析】向东走15米记为+15米,则向西走28米记为﹣28米.故选A.二.11. 1 【解析】由题意得,a﹣3+a+1=0,解得a=1.故答案为1.12.7;|x﹣2|;7或﹣3;﹣3、﹣2、﹣1、0、1 【解析】(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)因为|x﹣2|=5,所以x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)因为|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+ |x﹣1|=4,所以这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;13.<【解析】因为﹣|﹣34|=﹣34 ,所以两数均为负,取其相反数做商,即45÷34=1615>1.即45>34 ,所以﹣45<﹣34=﹣|﹣34|.故答案为:<.14.±3 【解析】设数轴上离开原点3个单位长的点所表示的数是x,则|x﹣0|=3,解得x=±3.故答案为:±3.15. 7 ﹣2或﹣7 ﹣2 【解析】设B点表示的数是x,因为﹣2对应的点为A,点B与点A的距离为7 ,所以|x+2|= 7 ,解得x= 7﹣2或x=﹣7﹣2.故答案为:7﹣2或﹣7﹣2.16.﹣3% 【解析】“盈利5%”记作+5%,那么亏损3%记作﹣3%,故答案为:﹣3%.17. <【解析】因为|﹣π|=π,|﹣3.14|=3.14,而π>3.14,所以﹣π<﹣3.14.故答案为<.18.,【解析】当点B在点A的右侧时,点B所表示的实数是;当点B在点A的左侧时,点B表示的实数是;所以点B所表示的实数是或. 三.19. 【解】根据题意,得超过1.7m的用正数表示,不足的用负数表示.由表格可知这10名男生的成绩是正数的有4个,刚好为0m的有2个,所以一共有6名成绩达标,则6÷10×100%=60%.答:第一组有60%的学生达标.20.【解】(1)根据所给图形可知A:1,B:﹣2.5.(2)依题意得:AB之间的距离为:1+2.5=3.5.(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.21.【解】(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米.(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.22.【解】:因为﹣|﹣2.5|﹣2.5,﹣(﹣212)=212=2.5,﹣(﹣1)100=﹣1,﹣22=﹣4,所以如图所示:所以用“<”连接各数为:﹣22<﹣|﹣2.5|<﹣(﹣1)100<0<112<﹣(﹣212).23.【解】7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元).答:共赚了555元.24.【解】售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元).答:当它卖完这8套儿童服装后盈利36元.第3章检测卷一.选择题1.计算:(﹣)×(﹣2)的结果等于()A. 1B. -1C. 4D. -2.计算:的结果是()A. -1B. 1C.D. -493.(﹣1)2015的值是()A. -1B. 1C. 2015D. -20154.形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.-5B.-11C.5D.115.长汀冬季的某天的最高气温是8℃,最低气温是﹣1℃,则这一天的温差是()A. 9℃B. ﹣7℃C. 7℃D. ﹣9℃6.计算:﹣1﹣1的值为()A. 0B. -1C. -2D. -37.计算:1﹣1×(﹣3)=()A. 0B. 4C. -4D. 58.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣39.计算(﹣20)+16的结果是()A.4B.4C.﹣2016D.201610.马小虎做了6道题:①(﹣1)2013=﹣2013;②0﹣(﹣1)=1;③﹣+ =﹣;④÷(﹣)=﹣1;⑤2×(﹣3)2=36;⑥﹣3÷×2=﹣3.那么,他做对了()题.A. 1道B.2道C.3道D.4道二.填空题11.-6×0×10=________.12.小芳在用计算器计算“14.9×73”时,发现计算器的小数点键坏了,你还能用这个计算器把正确的结果算出来吗?请把你想到的方法用算式表示出来:________.13.若m<n<0,则(m+n)(m﹣n)________0.(填“<”、“>”或“=”)14.如图是一个计算程序,若输入的值为﹣1,则输出的结果应为________.15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+…+3101,因此3M﹣M=3101﹣1,所以M= ,即1+3+32+33+…+3100= ,仿照以上推理计算:1+5+52+53+…+52016的值是________.16.计算:﹣5÷ ×5=________,(﹣1)2000﹣02015+(﹣1)2016=___ _,(﹣2)11+(﹣2)10=________.17.规定a*b=5a+2b﹣1,则(﹣3)*7的值为________.三.解答题18.一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位.(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了?19.你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?20.用简便方法计算:(﹣﹣+)÷(﹣).21.小强有5张卡片写着不同的数字的卡片,他想从中取出2张卡片,使这2张卡片上数字乘积最大.(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?22.(1)计算下列各题:①22×32与(2×3)2;②(﹣2)4×34与(﹣2×3)4;③27×2与28.(2)比较(1)中的结果,由此可以推断a n×b n(a×b)n,a n+1a n×a.(3)试根据(2)的结论,不用计算器计算0.1252010×82011的值.23.已知|x|=3,y2=4,且x+y<0,求的值.答案一.1.A 【解析】(﹣)×(﹣2)=1.故选A.2.C 【解析】原式=﹣1××=﹣.故选C.3.A 【解析】(﹣1)2015=﹣1.故选A.4.A 【解析】根据题意,得=2×(﹣4)﹣(﹣3)×1=﹣8+3=﹣5.故选A.5.A 【解析】8﹣(﹣1)=9(℃).故选:A.6.C 【解析】﹣1﹣1=﹣2.故选C.7.B 【解析】1﹣1×(﹣3)=1﹣(﹣3)=4.故选:B.8.B 【解析】A、23=8≠6,错误;B、﹣42=﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误.故选B.9.A 【解析】(﹣20)+16 =﹣(20﹣16)=﹣4.故选A.10.C 【解析】因为(﹣1)2013=﹣1,所以①不正确;因为0﹣(﹣1)=1,所以②正确;因为﹣+ =﹣,所以③正确;因为÷(﹣)=﹣1,所以④正确;因为2×(﹣3)2=18,所以⑤不正确;因为﹣3÷ ×2=﹣12,所以⑥不正确.综上,可得他做对了3题:②、③、④.故选C.二.11. 0 【解析】原式=0×(-10)=0,0和任何数相乘都等于0.12. 149÷10×73 【解析】根据题意得:149÷10×73.13.>【解析】解:因为m<n<0,所以m+n<0,m﹣n<0,所以(m+n)(m﹣n)>0.故答案是>.14. 7 【解析】依题意,所求代数式为(a2﹣2)×(﹣3)+4=[(﹣1)2﹣2]×(﹣3)+4=[1﹣2]×(﹣3)+4=﹣1×(﹣3)+4=3+4=7.15.【解析】设M=1+5+52+53+...+52016,则5M=5+52+53+54 (52017)两式相减得:4M=52017﹣1,则M= .16.﹣125;2;﹣210【解析】原式=﹣5×5×5=﹣125,原式=1﹣0+1=2,原式=(﹣2)10×(﹣2+1)=﹣210.故答案为:﹣125;2;﹣21017. -2 【解析】(﹣3)*7 =5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2.18. 8 【解析】因为a+8+b﹣5=8+b﹣5+c=b﹣5+c+d=﹣5+c+d+4,所以a+8+b﹣5=8+b﹣5+c①,8+b﹣5+c=b﹣5+c+d②,b﹣5+c+d=﹣5+c+d+4③,所以a﹣5=c﹣5,8+c=c+d,b﹣5=﹣5+4,所以b=4,d=8,a=c.故答案为8.三.19. 【解】(1)因为第一天,185;第二天,170;第三天,183;第四天,198;第五天,178,所以该病人周四的血压最高,周二的血压最低低;(2)因为+25﹣15+13+15﹣20=18,所以与上周比,本周五的血压升了.20. 【解】对折一次拉出的面条根数是,21=2 ;对折二次拉出的面条根数是,22=4 ;对折三次拉出的面条根数是,23=8 ;……对折10次拉出的面条根数是,210=1024 ;所以对折10次,会拉出1024根面条.21.【解】原式=(﹣﹣+)×(﹣36)=16+15﹣6=25.22.【解】(1)抽取﹣8和4,数字的积最小,﹣8×4=﹣32;(2)抽取﹣8和﹣3.5,数字的积最大,﹣8×(﹣3.5)=28.23.【解】(1)①22×32=36,(2×3)2=36;②(﹣2)4×34=1296,(﹣2×3)4=1296;③27×2=256,28=256;(2)由(1)可以推断a n×b n=(a×b)n,a n+1=a n×a;(3)0.1252010×82011=(18×8)2010×8=8.24.【解】因为|x|=3,y2=4,所以x=±3,y=±2.因为x+y<0,所以当x=﹣3时,y=2或x=﹣3,y=﹣2,所以当x=﹣3,y=2时,=﹣;当x=﹣3,y=﹣2时,=.第4章检测卷一.选择题1.为了了解我市城区某一天的气温变化情况,应选择()A.条形统计图B.折线统计图C.扇形统计图D.以上图形均可2.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本是()A.每台电视机的使用寿命B.40台电视机C.40台电视机的使用寿命D.403.如图的两个统计图,女生人数多的学校是()(第3题图)A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定4.八年级(1)班有60位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为60°,则下列说法正确的是()A.想去动物园的学生占全班学生的60%B.想去动物园的学生有36人C.想去动物园的学生肯定最多D.想去动物园的学生占全班学生的5.某市从参加数学质量检测的4355名学生中,随机抽取了部分学生的成绩为研究对象,结果如表所示:则被抽取的学生人数是()A.70人B.105人C.175人D.200人6.下列调查中,适宜采用全面调查(普查)方式的是()A.调查长江流域的水污染情况B.调查重庆市民对中央电视台2016年春节联欢晚会的满意度C.为保证我国首艘航母“瓦良格”的成功试航,对其零部件进行检查D.调查一批新型节能灯泡的使用寿命7.今天我们全区约1500名初二学生参加数学考试,拟从中抽取300名考生的数学成绩进行分析,则在该调查中,样本指的是()A.300名考生的数学成绩B.300C.1500名考生的数学成绩D.300名考生8.为直观反映某种股票的涨跌情况,选择()最合适.A.扇形统计图B.条形统计图C.折线统计图D.统计表9.下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④10.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()(第10题图)A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°二.填空题11.小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是________.(第11题图)12.如图是某城市2010年以来绿化面积变化折线图,根据图中所给信息可知,2011年、2012年、2013年这三年中,绿化面积增加最多的是年.(第12题图)13.清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(第13题图)(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是°.(2)请你帮学校估算此次活动共种________棵树.14.根据环保公布的重庆市2014年至2015年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是________(观察图形填主要来源的名称).(第14题图)15.调查某城市的空气质量,应选择(填抽样或全面)调查.16.从某市不同职业的居民中抽取200户调查各自的年消费额,在这个问题中样本是________.17.为了考察某区3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是________.18.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有________万人.三.解答题19.某市为了了解七年级学生的身体素质情况,随机抽取了本市七年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如图的统计图表,请你结合图表所给的信息解答下列问题:(1)请你根据图表中的信息计算出所抽取的样本容量是多少;(2)请将表格中缺少的数据补充完整;(3)如果本市共有50000名七年级学生,试估计出合格以上(包括合格)的学生有多少人.(第19题图)20.从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气,某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(Ⅰ)求接受调查的总人数;(Ⅱ)m、n各等于多少?扇形统计图中E组所占的百分比是多少?(Ⅲ)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数.(第20题图)21.三名同学想了解所在城市的小学生是否感觉学习压力大,他们各自提出了自己的调查设想.甲:周末去公园,随机询问10个小学生,就可以知道大致情况了.乙:我有个弟弟,正在上小学,成绩中等,问问他就可以了解绝大部分学生的感受了.丙:我妈妈是小学老师,向她询问就可以了.你觉得这三位同学提出的调查方式,能比较客观地反映“他们所在城市的小学生是否感觉学习压力大”吗?为什么?22.小华在A班随机询问了30名同学,其中有10人患有近视,他又在同年级的B班询问了2名同学,发现其中有1人患有近视,于是,他认为B班的近视率比A班高,你同意他的观点吗?23.某学生组织全体学生参加了“走出校门,服务社会”的活动,八年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:(1)八年级一班有多少名学生?(2)求去敬老院服务的学生人数,并补全直方图的空缺部分.(3)若八年级有800名学生,估计该年级去敬老院的人数.(第23题图)24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.(第23题图)答案一.1.B 【解析】天气的温度变化会随着每天的基本情况进行变化,故,只有折线统计图适合题意。

新版2019年七年级数学下册章节测试题《第二章图形的变换》完整题(含答案)

新版2019年七年级数学下册章节测试题《第二章图形的变换》完整题(含答案)

2019年七年级下册数学单元测试题第二章图形的变换一、选择题1.观察下面的图形,由图甲变为图乙,其中既不是通过平移也不是通过旋转得到的图案是()答案:A2.如图所示的图形都是轴对称图形,其中对称轴条数最少的是()答案:B3.如图所示,将一张正方形纸片沿图①中虚线剪开后,能拼成图②中的四个图形,则其中轴对称图形的个数是()A.1个B.2个C.3个D.4个答案:C4.在平面镜里看到其对面墙上电子钟示数如图所示,那么实际时间是()A.21:O5 B..21:50 C.20:l5 D.20:51答案:A5.如图所示,△DEF是由边长为2 cm的等边△ABC平移3cm得到的,则AD为() A.1 cm B.2 cm C.3 cm D.无法确定答案:C6.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面的平移中正确的是()A.先向下移动l格,再向左移动l格B.先向下移动l格,再向左移动2格C.先向下移动2格,再向左移动l格D.先向下移动2格,再向左移动2格答案:C7.下列各个现象中.平移现象的个数是()①电梯的升降;②时针的运动:③镜子中的图形与原图形.A.0个B.1个C.2个D.3个答案:B8.如图是条跳棋棋盘.其中格点上的黑色为棋子.剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行.跳行一次称为一步.已知点A为乙方一枚棋子.欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为()A.2步B.3步C.4步D.5步答案:B9.一个四边形通过旋转形成另一个四边形,下列说法中,正确的是()A.这两个四边形一定是轴对称图形B.这两个四边形一定可以通过互相平移得到C.旋转中,任意一对对应点的连线必过旋转中心D.旋转中,一个四边形上的每一点绕旋转中心沿相同的方向转动的角度相等答案:D10.下列各语句中,正确的是()A.两个全等三角形一定关于某直线对称B.关于某直线对称的两个三角形不一定是全等三角形C.关于某直线对称的两个三角形对应点连接的线段平行于对称轴D.关于某直线对称的两个三角形一定是全等三角形答案:D11.下面四个图中,在旋转180°后还和原来一样的是()答案:C12.下列甩纸折叠成的图案中,轴对称图形的个数是()A.4个B.3个C.2个D.1个答案:B13.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个答案:B14.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有()A.2个B.3个C.4个D.5个答案:C15.如图,正方形ABCD的边长是3 cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→ CD→DA→AB连续地翻转,那么这个小正方形第一次回到起始位置时,小正方形中箭头的方向()A.朝左B.朝上C.朝右D.朝下答案:B16.观察图1,在A、B、C、D 四幅图案中,能通过图1平移得到的是()图1 A. B. C. D.答案:C17.用一个 5倍的放大镜去观察一个三角形,对此,四位同学有如下说法. 甲说:三角形的每个内角都扩大到原来的5倍;乙说:三角形每条边都扩大到原来的5倍;丙说:三角形的面积扩大到原来的5倍;丁说:三角形的周长扩大到原来的5倍.上述说法中,正确的个数是()A.1 B.2 C.3 D. 3答案:B18.下列图形绕某点旋转后,不能与原来图形重合的是(旋转度数不超过180°)()答案:B二、填空题19.说出图示花边图案的设计运用了哪些图形变换: .解析:轴对称变换,平移变换20.图形的相似变换不改变图形中的大小;图形中的都扩大或缩小相同的倍数.解析:每一个角;每一条边21.举出生活中你所看到的相似图形的一个实例.解析:略22.在直角三角形ABC中,∠ACB=90O,∠A=30O,先以点C为旋转中心,将ΔABC按逆时针方向旋转45O,得ΔA1B1C.然后以直线A1C为对称轴,将ΔA1B1C轴对称变换,得ΔA1B2C,则A1B2与AB所夹的∠α的度数为 .解析:75°三、解答题23.如图①所示,在△ABC中,BC=1,AC=2,∠C=90°.(1)在图②中,画出△ABC放大2倍后的△A′B′C′;(2)若将(1)中△A′B′C′称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在图③中设计一个以点0为对称中心,并且以直线l为对称轴的图案.解析:略24.在下列图形中,分别画出它们关于直线l的对称图形.解析:图略25.如图所示,其中的图案是小树的一半,以树干为对称轴画出小树的另一半.解析:略26.如图所示,草原上两个居民点A,B在河流l的同旁,一汽车从A出发到B,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短?在图中画出该点.解析:作点A关于直线l的对称点A′,连结A′B交直线l于点P,则点P即是要找的那一点27.汽车轮胎直径为80 cm,轮胎滚动一周后,轴心平移了多少距离?解析:80 cm28.如图,将图中左上角的小旗先向右移动五格,再向下移动四格,画出移动后的像.解析:图略29.如图所示,下面两个图形是旋转变换所得的图形,它们分剐可绕自身图形中的哪一点至少旋转多少度后与它本身重合?解析:①绕正方形对角线交点,逆时针旋转90°;②绕整个图形对角线的交点,旋转l80°30.木匠张师傅在做家具时遇到一块不规则的木板(如图①),现需要将这块木板锯开后胶合成一正方形,张师傅已锯开了一条线(如图②),请你帮他再锯一线,然后拼成正方形,想想看,在锯拼过程中用到了什么变换?解析:略31.如图,已知图形“”和点0,以点O为旋转中心,将图形按顺时针方向旋转90°,作出经旋转变换后的像,经几次旋转变换后的像可以与原图形重合?解析:图略,经4次旋转变换32.(不要求写作法):如图,在10×1O的方格纸中,有一个格点四边形ABCD(即四边形的顶点都在格点上).(1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形A1B1C2D1;(2)在给出的方格纸中,画出与四边形ABCD关于直线l对称的四边形A2B2C2D2.解析:如图:33.如图所示,长方形ABCD中,AE=13AB,AG=13AD,分别过点E,G作AD和AB的平行线,相交于点F.(1)从长方形ABCD到长方形AEFG是什么变换?(2)经过这一变换,长方形ABCD的角分别变为哪些角?它们的大小改变吗?(3)经过这一变换,长方形ABCD的各条边和面积发生了怎样的变化?解析:(1)相似变换;(2)∠D→∠AGF,∠C→∠F,∠B→∠AEF,∠A→∠A;大小不改变;(3)各边为原来的13,面积为原来的1934.如图所示,图①和图②都是轴对称图形,依照①和②,把③,④也画成轴对称图形.解析:略35.用四块如图①所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形(如图②).请你分别在图③、图④中各画一种与图②不同的拼法,要求两种拼法各不相同,且是轴对称图形.解析:略36.如图请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.方方方解析:略.37.如下图在10×10的正方形网格中,每个小正方形的边长均为1个单位,将△ABC作相似变换得到△A1B1C1,使得边长扩大2倍,再将△A1B1C1绕点C1顺时针旋转900,得到△A2B2C1请你画出△A1B1C1和△A2B2C1 (不要求写出画法),并写出△A2B2C1的面积.解析:略.38.请你用正方形、三角形、•圆设计一个有具体形象的轴对称图形(例如下图的脸谱),并给你的作品取一个适当的名字.解析:略39.分析如图(1)、(2)、(4)中阴影部分的分布规律,按此规律在如图(3)中画出其中的阴影部分.解析:如图:40.如图所示,将△ABC绕点O按逆时针方向旋转60°后,得到△DEF,请画出△DEF.解析:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下马关中学第十九章四边形单元测试题H
一、选择题(每小题3分,共30分)
1、能够判定一个四边形是平行四边形的条件是 (

A 、一组对角相等
B 、两条对角线互相平分
C 、两条对角线互相垂直
D 、一对邻角的和为
9、 已知四边形ABCD 的对角线相交于O ,给出下列5个条件①AB // CD ②AD // BC ③ AB=CD ④/ BAD= / DCB ,从以上4个条件中任选2个条件为一组,能推出四边形 ABCD 为平
行四边形的有(

A 6组 B.5组 C.4组 D.3组
10、 某校计划修建一座既是中心对称图形又是轴对称图形的花坛,
?从学生中征集到设
计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是(). A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形
2、夕且 BCD 中,^A:Z£:Za:ZD 的值可以是
A. 1: 2: 3: 4 B . 1: 2: 2: 1 1
C . 2: 2: 1: 1: 2:
3、 对角线互相垂直平分的四边形是 A 、平行四边形
4、 已知:如图, =2, AD-4,
A. 8
B 、矩形
在矩形ABCD 中, 则图中阴影部分的面积为
()
C. 4
D. 3

C 、菱形
E 、
F 、
G
H 分别为边AB BC 梯形
CD DA 的中点. AB
B. 6
5、如图,□ ABCD 中,对角线AC BD 交于点O,点E 是BC 的中点.若OE=3 cm 的长为()
A. 3 cm B . 6 cm C . 9 cm D. 12 cm
6、如图,□ ABC 冲,/ C=108 ,BE 平分/ ABC J ®/ABE 等 于() A.18 ° B.36 ° C.72 ° D.108 ° ).
等腰梯形的两条对角线相等
顺次连结四边形的各边中点所得的四边形是平行四边形 菱形的对角线平分一组对角
两条对角线互相垂直且相等的四边形是正方形
7、下列四个命题中,假命题是( A
D
&等腰梯形的腰长为13cm ,两底差为10cm ,贝U 高为
( B 、 12cm C 、 69cm
D 、144cm
180°
则 AB
二.填空题:(每小题3分,共24分)
1.在口ABCD 中,/ A+/ C=270°,则/ B=
求证:OE=OF.
2.平行四边形的周长等于 56 cm ,两邻边长的比为3 : 1,那么这个平行四边形较长的
A
边长为 _______ . 3. _______________________________________ 平行四边形ABCD 加一个条件 __________________________________ ,它就是菱形. 4. 如图,长方形ABCD 是篮球场地的简图,长是 28m 宽是15m ? 则它的对角线长约为 ________ m (精确到10) 5如图,在正方形 ABCD 勺外侧,作等边^ ADE 则/ AEB= ___________. 6. 如图,在梯形 ABCD 中, AD// BC , DE// AB △ DEC 勺周长为 10cm, BE=5cm 则该梯形的周长为 ______________ 。

7. ___ 若菱形的周长为24 cm , 一个内角为60° ,则菱形的面积为 _____ cm?。

8•如图,I 是四形形ABCD 的对称轴,如果AD // BC ,有下列结 论:①AB // CD ②AB = BC ③AB 丄BC ④AO = OC 其中正 确的结论是 _______________ 。

(把你认为正确的结论的序号都填 ・ ・ 上)
三.解答题:(共66分)
1. ( 6分)已知:在 □ ABCD 中,/ A 的角平分线交 CD 于 E , DE : EC 3:1, AB 的长为8,求BC 的长。

2. (7分)、如图,在菱形 求:(1)/ BAC 的度数; ABCD 中, AB=BD=5,
(2)求AC 的长。

3. (7分)、已知:如
图,
梯形 ABCD 中, CD//AB , A
z >
£
Z~7\
E
V / \ /
B
C
D

B
E
C
C
A 40 ,
B 70 .
求证:AD=AB — DC .
4. (7分)、已知:如图,在四边形ABCD 中,/ B= / C, AB 与CD 不平行,且AB=CD .求 证:四边形ABCD 是等腰梯形.
5. (7分)、如图,平行四边形 ABCDK AE1 BD CF 丄BD 垂足分别为E 、F ,
求证:/ BAE=/ DCF
6. (7分)、如图,在口ABCD 中,O 是对角线 AC 和BD 的交点,OE 丄AD 于E , OF 丄 BC 于
F.
D
A
7、(7分)如图,
想^ ACE是怎样的
三角形,并证明你
的猜想。

E,猜
8. (8分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG. 观察猜想BE与DG之间的大小关系,并证明你的结论;
9. (10分)如图,已知四边形ABCD是平行四边形,/ BCD的平分线CF交边AB于
F, / ADC的平分线DG交边AB于G.
(1)求证:AF=GB;
(2)请你在已知条件的基础上再添加一个条件,使得△ EFG为等腰三角形,并说明理由。

求证:OE=OF.。

相关文档
最新文档