大型汽轮机叶片事故原因分析(正式)
汽轮机叶片断裂的原因
汽轮机叶片断裂的原因 The Standardization Office was revised on the afternoon of December 13, 2020汽轮机叶片的损坏形式主要是疲劳断裂。
由于叶片工作条件恶劣,受力情况复杂,断裂事故较常发生,且后果又较严重,所以对叶片断裂事故的分析研究一直受到特别重视。
按照叶片断裂的性质,可以分为短期超载疲劳损坏、长期疲劳损坏、高温疲劳损坏、应力疲劳损坏、腐蚀疲劳损坏、接触疲劳损坏等六钟。
1、期超载疲劳损坏这种损坏是指叶片受到外加较大应力或受到较大激振力,而振动次数低于107次就发生断裂的机械疲劳损坏。
如叶片受到水击而承受较大的应力,或因转子不平引起振动及安装不良存在周期力等较大的低频激振力,当这些力引起叶片共振时,叶片会很快断裂。
叶片短期超载疲劳损坏的宏观特征为:断面粗糙,疲劳前沿线(即贝壳纹)不明显,断面上疲劳区面积小于最终静撕断区面积;经受水击而损坏的叶片的断面呈“人”字形纹络特征。
防止短期超载疲劳损坏的主要方法是:防止水击,作好消除低频共振的调频及在正常周波下运行。
2、长期疲劳损坏长期疲劳损坏是指叶片运行中承受低于疲劳强度极限而应力循环次数又远高于107次发生的一种机械疲劳损坏。
造成长期疲劳损坏的原因有:叶片或叶片组在高频激振力作用下引起的共振损坏;叶片表面缺陷处出现局部应力集中而发生的疲劳损坏;低频率运行、超负荷运行使某些级的叶片应力升高导致提早损坏等等。
长期疲劳损坏在电厂叶片断裂事故中最为常见。
防止长期疲劳损坏的办法是:按规定避开高频激振力共振范围,提高叶片加工质量和改善运行条件。
如防止低周波、超负荷运行,防止腐蚀和水击等。
3、高温疲劳损坏高温疲劳损坏是指由蠕变和疲劳共同作用所形成的介于静应力产生的蠕变和动应力产生的疲劳之间的一种损坏形式。
裂纹源部位呈蠕变现象,断裂性质为持久断裂和疲劳断裂的组合,而且往往伴随着材料组织的变化。
高温疲劳损坏裂纹基本上是穿晶的,断口宏观貌有贝壳花纹,断口微观貌有较厚的氧化皮。
深度调峰状态下汽轮机末级叶片出汽侧水蚀事故分析
图1 37级末级叶片出汽侧水蚀图通过对三组末级动叶进行观察,发现进汽侧钎焊司太立合金处状态一致,仅发生了轻微水蚀。
如图表明三组末级动叶进汽状态基本一次。
图2 进汽侧水蚀情况问题分析水蚀发生的机理工作在湿蒸汽区的动叶片,与汽流中夹带的二次水滴高速撞击,从静叶栅出来的水滴与高速转动的动叶片发生冲击,水滴与动叶片接触部位产生了很高的压力,其压力超过了材料的屈服极限,使叶片材料产生局部的塑性变形和表面硬化。
这种压力反复作用于叶片,叶片材料达到疲劳极限时,局部即开始产生疲劳裂纹。
水滴冲击到这种裂纹时,产生的压力将加剧裂纹向更深处发展,致使叶片材料从叶片表面脱离形成水蚀。
图3 进汽侧速度三角形水蚀原因查找本次汽轮机末级叶片水蚀发生在出汽侧与正常水蚀在进汽侧现象不一致。
从水蚀发生机理可以判断出该级末级叶片属于特殊情况。
考虑到末级叶片离低压缸喷水减温较近,怀疑喷水减温管道有故障。
通过试投5号机排汽缸喷水装置,发现2号排汽缸(炉侧)垂直安装的冷却水管喷水口喷射方向正对级叶片,但喷射位置与叶片损坏豁口处相差约15cm,如所示。
图4 静态时投低压缸喷水减温状态图考虑到现场试投5号机排汽缸喷水装置时汽轮机转子为静态,若机组在运行状态,根据“伯努利效应”,流体的流速越大,压强越小;流体的流速越小大。
汽轮机转子叶顶汽流较叶根汽流速大很多,产生一个向叶顶的一个压力梯度,也即运行时冷却水喷水位置会向叶顶处偏移。
该喷水管为机组原始安装。
以往未发生该问题原因分析该机组至1988年投产至今已经历过七次大修,期间检查并未发现末级叶片有异常现象。
运行方式上由于近年来为满足电网辅助调峰需要,三元正极材料用高速混合机使用问题的研究。
汽轮机叶片断裂原因分析及防范措施
汽轮机叶片断裂原因分析及防范措施伍爵技术协作信息技术推广与应用汽轮机叶片断裂原因分析及防范措施武有军李恒坤/蒙华泰热电厂摘要:由于汽轮机叶片工作务件恶劣,受力情况比较复杂,断裂事故较常发生,且后果又比较严重,所以对叶片断裂的原因进行分析, 同时提出相关防范措施就显得尤为重要,文章就此进行分析.关键词:汽轮机;叶片断裂一,引言在汽轮机发生的事故中,由于汽轮机叶片损坏而发生的占主要部分,而这其中汽轮机叶片的断裂,对机组的运行来说是一种危害甚大且较多发生的故障.叶片断裂事故的防止,又因单机容量日益增大,叶片长度增加,叶片的工作应力上升而变得13趋复杂.因此,找出叶片断裂的原因并提出预防措施,这对汽轮机的安全运行是很有必要的.二,汽轮机叶片的组成1.叶型:叶片的主要工作部分,汽流通过由相邻叶片的型线部分构成的通道,完成能量转换.2.叶根:将叶片固定在转子叶轮上的装配部分.3.围带,拉筋等:属于连接件,把几只或整圈叶片连成叶片组,并可调整叶片的自振频率和减少叶片所受的动应力.三,叶片断裂的主要现象分析1.汽轮机内或凝汽器内产生突然的声响.2.机组振动突然增大或抖动,轴向位移显示增大或摆动.3.叶片损坏较多时,同样负荷下蒸汽流量增加,监视段压力上升.4.断裂的叶片可能进入抽汽管道,造成逆止门卡涩等.5.停机惰走或盘车状态能听到金属摩擦声.6.可能引起轴瓦温度和回油温度升高,这是因转子平衡遭到破坏而造成的,同时推力瓦温度上升.7.停机过程经过临界转速区时振动明显增加.四,汽轮机叶片断裂的原因分析众所周知,热电厂汽轮机叶片,特别是动叶片,所处的工况条件及环境极为恶劣.主要表现在应力状态,工作温度,环境介质等方面.汽轮机在工作时,动叶片承受着最大的静应力及交变应力.静应力主要是转子旋转时作用在叶片上的离心力所引起的拉应力,叶片愈长, 转子的直径及转速愈大,其拉应力愈大.所以处于次末级的这两失效叶片,受到了相当大的拉应力.此外,由于蒸汽流的压力作用还产生弯曲应力和扭力,叶片受激振力的作用会产生强迫振动;当强迫振动的频率与叶片自振频率相同时即会引起共振,振幅进一步加大,交变应力急剧增加,会导致叶片发生疲劳断裂.汽轮机的每一级叶片工作温度都不相同,第一级叶片所处的温度最高,大约535~C左右;随后由于蒸汽逐级做功,温度逐级降低,直到末级叶片将降低到IO0~E以下.这两片次末级失效叶片所处的温度是95℃,在这个部位会有游离水分子存在,游离水分子由于过冷凝结成水滴,冲击动叶片进汽侧背弧面,造成水冲蚀.叶片在水蒸汽介质中工作,其中多数是在过热蒸汽中工作,末级叶片是在潮湿蒸汽中工作;过热蒸汽中含有氧,会造成高温氧化腐蚀,生成腐蚀性盐而影响叶片的疲劳强度;湿蒸汽区,可溶性盐垢(如钠盐)吸收水珠成为电解液,造成电化学腐蚀.汽轮机叶片的点蚀是一个电化学的过程.金属与电解质相互作用,阳极发生溶解,铁原子失去电子成为Fe.叶片表面钝化膜的不均匀或破裂,微区化学成分的差异,残余应力较高均为产生点蚀的原因,当介质中含有活性阴离子(c1]时,它们被吸附在金属表面某些点上,形成微电池.膜破坏处成为阳极,而未破坏处为阴极.由于阳极面积比阴极小得多,阳极电流密度大,很快被腐蚀成小孔,溶液中的cl—随着电流向小孔里迁移,使小孔内金属氯化物浓度升高.由于氯化物的水解,小孔内溶液的酸度增加,加上小孑L内氧的供应困难,阻碍孔内金属的再钝化,使孑L内金属处于活化状态,不断受到腐蚀.在交变应力的作用下,在点蚀坑底部会有应力集中而促进裂纹的萌生,形成微裂纹,继而扩展成宏观裂纹,当裂纹扩展到一定的程度时,叶片发生最终的断裂,整个过程是一个腐蚀疲劳断裂过程.此外,由于叶片根部松动,叶根参加振动,使叶根之间或叶片与叶轮机接触面产生往复微量相对摩擦运动而造成机械损坏.同时摩擦表面材料晶体滑移和硬化,使硬化区内产生许多平行的显微裂纹,并不断扩展,从而引起疲劳断裂.五,防范措施探讨1.机组启动前必须对来汽管道充分疏水,启动中蒸汽须保持较高的过热度,当启动或运行中蒸汽温度突然直线下降50%或lOmin内下降50~C时,应立即打闸停机或者发现汽温突然下降,并且来汽管道,主汽门,调节汽门冒白汽时,也应立即果断打闸停机.2.机组启动前应将轴向位移保护投入,运行中不得将轴向位移保护退出,特别是启动中,进行主汽门,调节汽门严密性试验时,轴向位移保护动作后不得以怀疑其误动为理由退出保护强行挂闸.在轴向位置指示达到定值,如保护不动作时,应立即打闸停机.3.并列运行的机组要有串联截止门,保证减温水管路切断可靠,以防止停机状态或启动给水泵后水漏入热态的汽轮机.锅炉打压时,要采取严密的措施阻隔水进入母管.4.采取防止加热器满水返人汽缸的措施,尤其是抽汽逆止门不严密或者加热器铜管易破裂的机组,要经常监控水位变化.5.完善调节各抽汽门等可能有水进入汽缸的温度测点,以便于及时监视汽缸进水或进冷汽并定期试验,确保抽汽逆止门动作可靠,严密不漏.6.改进疏水系统使其管道,联箱,容器的断面或容积适应疏水量的需要,并按压力合理布置进入联箱,容器的位置顺序,确保各级疏水畅通,不发生疏水压力升高返入汽缸.在机组整体布局设计上,一定要注意疏水联箱的底部标高应高于凝汽器热水井最高点的标高,必要时可开大级间疏水孔或取消疏水环,抽汽机组要保证抽汽口间的联络疏水常通.7.确保门杆漏汽管道和汽机溢汽管道上的逆止门动作可靠,截止门严密不漏,防止除氧器满水返入汽缸.8.新机组验收时应检查确定叶片经探伤,测频合格.投产后大修中应对叶片进行损伤检查,发现问题及时解决.9.经常保持系统频率在合格范围内运行,并尽可能减少机组在偏离正常频率下的运行时间.1O.机组运行中振动突然增加,听到甩脱叶片的撞击声,机组内部有摩擦声以及出现凝汽器铜管突然泄漏等情况,是掉叶片故障的征兆, 应按规程规定果断停运机组进行检查,切不可拖延时机,否则将造成设备严重损坏.l1.发生个别叶片断落故障后,可对断裂叶片采取对称切割叶片技术措施,还应对未断落的叶片全面进行探伤,测频检验,确认无问题后方可恢复机组运行.此外,应加强机组运行中的监视,尤其是在机组启,停,加减负荷过程中,必须加强对汽压,汽温,出力,真空,胀差,串轴,振动等的监视,精心调整,不允许这些参数剧烈变化,严格执行规程规定.启,停机过程应按照操作票和启,停机睦线逐步进行操作;同时还要加强汽,水品质的监督,防止叶片结垢,腐蚀;另外,若停机时间较长,应做好保养工作,现经常用的方法是真空干燥法,有效地防止了通流部分锈蚀.充分利用机组大修,小修机会对叶片进行重点检查和探伤,及时发现问题,从而把事故消灭在萌芽之中.参考文献【1】谢永慧,孟庆集:汽轮机叶片疲劳寿命预测方法的研究Uj,西安:西安交通大学,2002;【2】王江洪,齐琰,苏辉等:电站汽轮机叶片疲劳断裂失效综述01,汽轮机技术,2004;【3】程绍兵,刁伟辽:300MW汽轮机叶片点蚀损伤机理分析及预防措施UJ,热力发电,2003;【4】韩彦波:汽轮机叶片裂断事故剖析[1],黑龙江科技信息,2007.?l35?。
宁东发电2号机组叶片事故调查报告
宁夏京能宁东发电有限责任公司2号机组叶片断裂事故调查报告宁夏京能宁东发电有限责任公司一期2×660MW工程汽轮机为哈尔滨汽轮机厂生产的超临界、一次中间再热、单轴、三缸四排汽、间接空冷凝汽式汽轮机,机组型号为CLNJK660-24.2/566/566型。
其中2号机组于2011年6月20日完成168小时试运后进入商业运行。
6月25日2号机组停机临修,7月8日临修结束,经过机组轴系加装配重,7月9日正常启动,带满负荷运行。
2011年7月19日2号机组运行中发生中压第六级(中压末级)的N-35叶片断裂,8月16日修复后恢复运行。
2011年10月10日,2号机组运行中又发生1号低压转子反向(调端)次末级的2-32叶片断裂。
鉴于宁夏京能宁东发电有限责任公司2号机组在三个月内先后发生两次汽轮机叶片断裂事故,机组跳闸停机,严重影响了电厂的正常运行,造成经济损失,本着“四不放过”的原则,集团决定成立宁夏京能宁东发电有限责任公司2号机组叶片断裂事故调查组,聘请了华北电科院和西安热工院等外部专家,就叶片断裂事故发生的原因、损失和事故的责任进行调查,提出对相关责任单位和责任人的处理意见。
同时制定机组修复的技术路线和时间安排。
一、调查过程2011年10月21日集团公司“宁夏京能宁东发电有限责任公司2号机组叶片断裂事故调查组”由集团公司总工程师、调查组组长关天罡带队,赴宁夏京能宁东发电有限责任公司开展事故调查工作。
10月21日下午17时,在宁夏京能宁东发电有限责任公司办公楼一层会议室召开了事故调查工作启动会,集团公司事故调查组成员,事故调查组外聘专家,宁夏京能宁东发电有限责任公司领导班子有关成员,宁夏京能宁东发电有限责任公司部分中层干部和相关技术管理人员参加了会议。
会议由集团公司安全与科技环保部主任梅东升主持并宣读了京能集团办字[2011]456号文《关于成立宁夏京能宁东发电有限责任公司2号机组叶片断裂事故调查组的通知》(以下简称“事故调查通知”),会议听取了宁夏京能宁东发电有限责任公司对事故过程的介绍,会议确定成立了制造、安装及设备监造调查小组和生产运行及调整试运调查小组分别开展事故调查工作。
汽轮机常见事故分析和处理 一
汽轮机常见事故分析及处理一、汽轮机真空下降汽轮机运行中,凝汽器真空下降,将导致排汽压力升高,可用焓减小,同时机组出力降低;排汽缸及轴承座受热膨胀,轴承负荷分配发生变化,机组产生振动;凝汽器铜管受热膨胀产生松弛、变形,甚至断裂;若保持负荷不变,将使轴向推力增大以及叶片过负荷,排汽的容积流量减少,末级要产生脱流及旋流;同时还会在叶片的某一部位产生较大的激振力,有可能损伤叶片。
因此机组在运行中发现真空下降时必须采取如下措施:1)发现真空下降时首先要对照表计。
如果真空表指示下降,排汽室温度升高,即可确认为真空下降。
在工况不变时,随着真空降低,负荷相应地减小。
2)确认真空下降后应迅速检查原因,根据真空下降原因采取相应的处理措施。
3)应启动备用射水轴气器或辅助空气抽气器。
”4)在处理过程中,若真空继续下降,应按规程规定降负荷,防止排汽室温度超限,防止低压缸大气安全门动作。
汽轮机真空下降分为急剧下降和缓慢下降两种情况。
(一)真空急剧下降的原因和处理1.循环水中断循环水中断的故障可以从循环泵的工作情况判断出。
若循环泵电机电流和水泵出口压力到零,即可确认为循环泵跳闸,此时应立即启动备用循环泵。
若强合跳闸泵,应检查泵是否倒转;若倒转,严禁强合,以免电机过载和断轴。
如无备用泵,则应迅速将负荷降到零,打闸停机。
循环水泵出口压力、电机电流摆动,通常是循环水泵吸入口水位过低、网滤堵塞等所致,此时应尽快采取措施,提高水位或清降杂物。
如果循环水泵出口压力、电机电流大幅度降低,则可能是循环水泵本身故障引起。
如果循环泵在运行中出口误关,或备用泵出口门误门,造成循环水倒流,也会造成真空急剧下降。
2.射水抽气器工作失常如果发现射水泵出口压力,电机电流同时到零,说明射水泵跳闸;如射水泵压力.电流下降,说明泵本身故障或水池水位过低。
发生以上情况时,均应启动备用射水磁和射水抽气器,水位过低时应补水至正常水位。
3.凝汽器满水凝汽器在短时间内满水,一般是凝汽器铜管泄漏严重,大量循环水进入汽侧或凝结水泵故障所致。
800MW汽轮机末级叶片断裂原因分析及措施
800MW汽轮机末级叶片断裂原因分析及防范措施[ 关闭窗口]俄罗斯超临界800MW燃煤机组,低压缸末级960mm叶片第43和84号叶片断裂事故进行讨论。
会议前我们编写的800MW汽轮机末级叶片断裂的原因分析及防范措施作为此次会议的交流材料也进行了研讨。
一、动叶片简介1、动叶的作用:将蒸汽的动能和部分热能在由动叶组成的环形叶栅汽道内转换为转子上的机械能。
2、设计制造动叶片主要考虑如下方面的要求:⑴叶片应具有足够的强度和良好的振动特性,即避开共振区以保证叶片安全运行。
⑵应具有良好的空气动力特性,以达到较高的效率。
⑶应有合理的结构和良好的工艺性,便于制造和安装。
3、叶片的组成:⑴叶型:叶片的主要工作部分,汽流通过由相邻叶片的型线部分构成的通道,完成能量转换。
⑵叶根:将叶片固定在转子叶轮上的装配部分。
⑶围带、拉筋等:属于连接件,把几只或整圈叶片连成叶片组,并可调整叶片的自振频率和减少叶片所受的动应力。
4、800MW汽轮机低压缸布置及叶片型式本机共有三个低压缸,每个缸前后各设有5级叶片。
蒸汽由中压缸末级排汽经二根Φ1196mm 的管道进入三个低压缸,低压缸蒸汽作功后,排汽进入两台纵向布置的凝汽器。
800MW汽机低压缸叶片是带有一定反动度的冲动式叶片,叶片为型线沿叶高变化的变截面扭曲叶片。
末级长度为960mm,末级叶轮平均直径2480mm,末级叶片环形排汽面积6×7.48m2,三个低压缸合计出力236MW(高压缸出力260MW,中压缸出力304MW)。
低压缸各级叶片反动度:低压第一级0.33低压第二级0.40低压第三级0.46低压第四级0.55低压第五级0.69二、汽轮机叶片断裂现象1. 汽轮机内或凝汽器内产生突然的声响。
2. 机组振动突然增大或抖动,轴向位移显示增大或摆动。
3. 叶片损坏较多时,同样负荷下蒸汽流量增加,监视段压力上升。
4. 凝结水导电度、Na离子、Cl根增加、凝汽器水位上升,凝泵电流增加。
2024年汽轮机运行所遇事故总结范文(3篇)
2024年汽轮机运行所遇事故总结范文摘要:____年,在汽轮机设备运行中,发生了一系列的事故事件,给企业生产、安全和经济造成了巨大的损失。
本文将对这些事故进行总结和分析,并提出一些建议,以提高汽轮机设备的安全性和运行效率。
关键词:汽轮机;事故;总结;分析;建议一、引言汽轮机是一种广泛应用于工业领域的发电设备,它具有功率大、效率高、安全性好等特点。
然而,在实际运行中,汽轮机设备由于多种原因可能会发生事故,给企业和员工的生产和生命安全带来严重的威胁。
因此,对汽轮机运行所遇事故进行总结和分析,并提出相应的建议,对于提高汽轮机设备的安全性和运行效率具有重要意义。
二、事故概述____年,某汽轮机设备运行期间发生了一系列的事故,主要包括以下几个方面:1. 燃烧室爆炸事故:____年1月,由于燃烧室内混合气浓度异常过高,引发了一起严重的爆炸事故,造成了设备严重损坏,停产了数周,巨大损失。
2. 润滑系统故障:____年3月,汽轮机设备的润滑系统发生故障,导致关键部件无法正常润滑,最终造成了设备的严重故障,需要更换重要部件,停产了近一个月。
3. 温度控制失灵:____年6月,由于温度控制系统失灵,导致汽轮机设备的温度异常升高,严重影响了设备的运行效率,造成了生产成本的增加。
4. 轴承故障:____年11月,汽轮机设备的某个关键轴承发生故障,导致设备转动不灵,严重影响了设备的工作效率,需要更换轴承,停产了两周。
以上事故不仅给企业带来了巨大的经济损失,还对企业的声誉和员工的生命安全造成了严重的威胁。
因此,如何有效预防和控制这些事故的发生,提高汽轮机设备的安全性和运行效率,是一个迫切需要解决的问题。
三、事故原因分析1. 燃烧室爆炸事故燃烧室爆炸事故的发生主要是由于燃烧室内混合气浓度异常过高,引发了爆炸。
造成这一原因的主要有以下几个方面:首先,燃烧室内混合气浓度检测系统失效,无法准确监测燃烧室内混合气的浓度情况。
其次,燃料供应系统存在故障,导致燃料供给量过高,燃烧室内混合气的浓度异常增高。
汽轮机叶片损坏的原因分析及处理
对 叶 片断 裂原 因的分析 , 出叶 片断 裂的 原 因 , 对处理方 法进行 详 细 的介绍 。 提 并
关 键词 : 汽轮 机 ; 片断裂 ; 因分 析 ; 理方 法 叶 原 处
中图分 类号 :I 6 . T 233 C
文 献标 识码 : B
文 章编号 :09—33 (090 —01 —0 10 2O2o )3 0 2 3
ai Ac o dn n lss, e l a (l f u t r e b a e i u d o t , n et a n ie t n. c r ig t a a i t e si o pu e i t l d f n u . a d t r t t s g l i o o y h l r l h so h e me i  ̄ l d ti. eal .
Ke r s: tr i e;ba e rp u e;r a o n lss rame t y wo d ubn ld u t r e s n a ay i ;te t n
1 概述
某公 司 l 汽轮 机 C4/20 3 号 15N 0 —10—5555 3/3
2 级上 隔板 的去 湿 环 紧 固 螺 钉 大部 分 已 断开 脱 7
2 现场 情况
停机 后检 修 人员 检 查 发 现 低 压励 侧 8
末级叶片编号为 5 号叶片从中部断裂 , 8 位置距嵌 入合金片约 10 m, 0r 距围带 40 m, a 3m 叶片断裂面断 口清晰( 如图 1 所示 ) 。揭低压缸对 2 、7 3 、2 6 2 、 l3
是超高压、 中间再热、 三缸、 两排汽 、 抽汽凝汽式供 热机 组 , 由哈 尔 滨 汽 轮 机 厂 生 产 制 造 , 机 组 于 该 19 年 投 入 运 行 。在 20 93 03年 4月 1号 机 组 大 修 中发 现励侧 末 级叶 片进汽 侧有 4片被拉 筋套 箍 击 伤。编号分别为 5、37 、 8 号 , 87 、9 和 7 叶片材料为 2 r3 , C1 钢 规格为 70 1 型。该公司委托哈尔滨汽轮 机厂 对其进 行 了补 焊处 理 , 20 自 03年 5月大 修 启 动后 , 机 组 运 行 了 12 2 8 该 24 .6小 时 , 间 机 组 启 期 停 5次 。20 04年 1 月 9日下午 l 1 6时 4 0分 , 行 运 人员在 主控 室 听 到 一声 撞 击 声 , 随后 一 号 汽 轮 机 组由于 4 号和 5号轴瓦振大而跳机 , 经检修人员 由凝 汽器 汽侧 人 孔 门进 入 低 压 排汽 缸 检 查 发 现 , 低压缸第 2 级末级有一叶片从 中间断裂甩 出, 7 撞 击到 围带 及 汽缸上 发 出响声 , 迫揭 缸检 修 。 被
某电厂汽轮机中压缸叶片大量断裂原因分析
化皮薄 , 这是 由于叶片材料 含c r 量远高于焊缝 金属 ,其抗 氧 行化 性能优于后者 。
3 结语
静叶片受到 由内环传来的撕扯 力而脱落 , 进 而造成最 终的大
面积 损坏 。
压缸 叶 片大 量断 裂 是 由于第 一级 静 叶与 隔板 的结构 焊 缝 处 出现微 裂纹 ,裂纹 缓慢 扩展 、静 叶 片脱 落 ,使 隔板 失 稳 ,隔 板 内环 向 出气 侧 位 移 ,与 第 一级 动 叶叶 根 发 生 摩 擦 ,把 第一 级动 叶 片全 部损 坏脱 落 ,波及 其他 级动 静叶 片
( 编辑 :王慧芳 )
A na l y s i s o n Re a s o ns o f Va ne Fa i l ur e i n I nt e r m e d i a t e Cy l i nde r of S t e a m T u r bi ne of Pow e r Pl a nt s W AN G Xi ng—yi , H UA N G Chu n—de , GA O Y i —b i n,
p ima r r y s t a t i c b l a d e s a nd s e p t u m .C r a c k p r o p a g a t i o n a n d s t a t i c l e a f f ll a i n g o f ma k e d i a p ra h g m i n n e r in r g t o v e n t t h e l a t e r l a d i s p l a c e me n t nd a r u b t o p r i ma r y mo v i n g b l a d e , wh i c h ma ke s mo v i n g b l a d e s f a l l o f e n t i r e l y nd a s e c o n d a r y nd a t e r t i a r y a c t i o n v ne a a r e d m a a g e d .
20起典型汽轮机事故原因分析及排除措施汇编
20起典型汽轮机事故原因分析及排除措施汇编一富拉尔基二电厂86年3号机断油烧瓦事故(一)、事故经过86年2月23日3号机(200MW)临检结束,2时25分3号炉点火,6时20分冲动,5分钟即到3000转/分定速。
汽机运行班长辛××来到三号机操作盘前见已定速便说:“调速油泵可以停了”,并准备自己下零米去关调速油泵出口门,这时备用司机王××说:“我去”,便下去了。
班长去五瓦处检查,室内只留司机朱××。
王××关闭凋速油泵出口门到一半(原未全开)的时候,听到给水泵声音不正常,便停止关门去给水泵处检查。
6时28分,高、中压油动机先后自行关闭,司机忙喊:“快去开调速油泵出口门”,但室内无值班员。
班长在机头手摇同步器挂闸未成功。
此时1—5瓦冒烟,立即打闸停机。
此时副班长跑下去把调速油泵出口门全开,但为时已晚。
6时33分,转子停止,惰走7分钟,经检查除1瓦外,其他各瓦都有不同程度的磨损。
汽封片磨平或倒状,22级以后的隔板汽封磨损较重,20级叶片围板及铆钉头有轻度磨痕。
转入大修处理。
(二)、原因分析1、油泵不打油,调速油压降低,各调速汽门关闭。
三号机于84年9月25日投产,11月曾发生大轴弯曲事故,汽封片磨损未完全处理,汽封漏汽很大,使主油箱存水结垢严重,主油箱排汽阀堵塞未能排出空气。
主油泵入口有空气使调速油压下降。
此次启动速度快,从冲动到定速只有5分钟,调速油泵运行时间短空气尚未排出,就急剧关闭调速油泵出口门。
过去也曾因调速油泵停的快,油压出现过波动,后改关出口门的方法停泵。
这次又操作联系不当,使油压下降。
2、交直流油泵未启动。
当备用司机关调速油泵出门时,司机未能很好的监视油压变化,慌乱中也忘记启动润滑油泵。
24伏直流监视灯光早已消失一直未能发现。
3、低油压联动电源已经切除。
20日热工人员未开工作票在三号机热控盘进行了四项工作,把热工保护电源总开关断开,工作结束忘记合上,致使低油压未能联动润滑油泵。
汽轮机常见事故及处理方法
三、防止措施
1. 调解、保安系统
2. 加强油质监督
3. 加强汽水品质监督
4. 定期进行调节、保安系统试验
5. (1)调节系统试验;
6. (2)保安系统试验。汽机大修后,连续运行2000h后, 甩负荷试验前,以及停机一个月在启动前,都应进行 两次提升转速试验,且两次动作转速不应超过0.6%。 冷态启动一般带负荷25%-30%连续运行3-4h后进行超 速试验。
轴承安装不好,轴瓦研磨不好。
➢ 真空的影响 使调节或保安系统动作不正常;
(3)调节汽门严密性试验和关闭试验。 运行过程中引起转子突然振动的常见原因:
二阶临界转速r/min
轴系
轴段
不平衡离心力 高中压转子
1640
1610
>4000
掉叶片或转子部件损伤 汽缸有打击声,振动增大后很快消失或稳定在较以前高的水平上;
(3)启动升速过程中,如在非临界转速下出现较大的振动,应及时判断,果断停机,防止事故扩大;
第八节 通流部分动静碰磨事故
低压转子Ⅰ (2)轴向位移增大,甚至保护动作。
第六节 汽轮机热膨胀
一、胀差过大的原因 1. 暖机时间不够,升速过快; 2. 增负荷速度过快; 3. 降负荷速度过快; 4. 发生水冲击; 5. 轴封蒸汽的影响; 6. 真空下降,排汽温度升高。 7. 危害:产生动静碰磨
胀差的影响因素:
➢ 轴封供汽温度和供汽时间的影响
供汽温度与转子温度相匹配;热态启动时先 供轴封,后抽真空。 (2)严禁在转子不动的情况下向轴封供汽或暖机
6. 危害:轴瓦乌金烧毁,转子轴颈损坏,汽轮机动
静碰磨等。
三、预防措施
1. 运行中监视润滑油压力、温度及回油量,并保证 有净化系统工作正常,油质合格;
350MW机组汽轮机末级叶片损伤原因分析及处理
350MW机组汽轮机末级叶片损伤原因分析及处理发布时间:2022-09-27T03:49:30.184Z 来源:《中国电业与能源》2022年第10期作者:陆永健邱以成汪磊[导读] 某电厂二期工程 2×350 MW 燃煤汽轮发电机组为GE制造的D5 TC2F42 型亚临界中间再热双排汽冲动凝汽式机组陆永健邱以成汪磊(华能国际电力江苏能源开发有限公司南通电厂,江苏南通226003)某电厂二期工程 2×350 MW 燃煤汽轮发电机组为GE制造的D5 TC2F42 型亚临界中间再热双排汽冲动凝汽式机组。
该汽轮机的高中压缸采用合缸结构,低压缸为对称分流式,高中压转子的高压段包括一级单列调节级,八级压力级,中压段包括七级压力级,低压转子包括2×6 级压力级。
该工程3号机组于2021年10月进行A级检修时,检查发现低压缸次末级动叶围带存在严重碰擦磨损痕迹。
低压缸次末级叶片的结构型式为四联叶片组,4只叶片的围带联为一整体,全周共33组叶片。
检查发现其中第1、2、3、4、5、6、18、24围带组磨损较严重,第8、11、21围带组有轻微磨损,其它各片围带无明显损伤。
围带材质为马氏体耐热不锈钢1Cr13。
1 围带磨损原因分析经现场检查发现次末级叶片的叶顶蜂窝汽封磨损严重,基本已经磨平,因此围带磨损的直接原因很明显为围带与叶顶汽封间的径向间隙消失导致的径向碰磨。
至于径向间隙的减小有以下的几种可能原因。
1.1围带的材质及装配质量不佳1.1.1化学成分及理化性能按照GB/T 223《钢铁及合金化学分析方法》系列标准对围带进行化学成分分析,围带的化学成分符合制造厂对1Cr13钢的技术要求。
由专业检测机构对围带的力学性能及金相组织进行检测,检测结果显示符合国家规定的要求。
围带材料符合设计要求。
1.1.2装配质量现场检查围带的铆钉头未见损伤,铆钉装配牢固,围带未见松动,故排除围带装配的工艺质量不佳这一可能。
浅析汽轮机叶片损坏事故原因
浅析汽轮机叶片损坏事故原因摘要:汽轮机叶片是蒸汽机械的重要组成部分,其安全性和可靠性直接影响蒸汽机械的运行安全。
汽轮机叶片损坏的原因是复杂多样的。
因此,为了保证汽轮机的安全运行,要认真研究原因,严肃纪律,制定科学合理的防范措施。
关键词:汽轮机;叶片损坏原因;预防措施引言在汽轮机故障检修中,叶片损伤是事故的主要原因,也是汽轮机最常见的事故。
叶片损伤引起汽轮机故障的多表现为叶片损伤、断裂,叶片损伤、断裂的原因是多方面的。
1叶片损坏的主要原因分析叶片损坏往往是多种因素综合作用的结果,比较常见的有以下四种。
(1)叶片振动特性不合格。
叶片振动不合格表现为叶片频率的不合格,使得叶片在正常运作时会因为共振有所损坏,这是汽轮机叶片故障的常见原因。
一旦出现叶片扰动力加大,那么可以推断几小时后叶片会发生故障,具体时间与振动特性及材料性能相关,此外,也可能是叶片质量不过关。
(2)设计上存在缺陷。
叶片设计存在缺陷也有可能引发叶片故障,其设计缺陷常常体现为叶片设计应力的过高或者叶栅结构的不合理,甚至是振动特性的不达标,这些都有可能引发叶片故障。
(3)材料质量不合格或者选材错误。
材料品质决定其机械性能,金属组织有缺陷或者有夹渣裂纹等都属于材料质量不合格,选用劣质的材料使得叶片在连续运行后,迫使疲劳而引起性能变化和功能下降,外部的腐蚀冲刷使得机械性能变差,综合这些因素造成叶片损坏。
(4)加工工艺不良。
除了材料性能影响叶片运行外,加工工艺也是影响叶片性能的关键因素。
粗糙的加工使得叶片表面不够细腻光滑,多数留有加工痕迹,使得扭转叶片接刀部位对接不当,围带铆钉孔或拉筋孔处无倒角、倒角不够或尺寸不准确等,使得应力集中受力不均衡,也造成叶片的损坏,引发汽轮机故障。
2运行方面的事故原因分析(1)汽轮机运行时偏离额定的频率。
汽轮机叶片振动按照对应频率运行,一般频率为50Hz,一旦电网频率下降,反而额定频率会偏离,叶片的共振安全频率发生异常,进而导致机组在共振状态下运行,这就使得叶片受损情况加重,很可能造成叶片的断裂。
汽轮机叶片断裂的原因
汽轮机叶片的损坏形式主要是疲劳断裂。
由于叶片工作条件恶劣,受力情况复杂,断裂事故较常发生,且后果又较严重,所以对叶片断裂事故的分析研究一直受到特别重视.按照叶片断裂的性质,可以分为短期超载疲劳损坏、长期疲劳损坏、高温疲劳损坏、应力疲劳损坏、腐蚀疲劳损坏、接触疲劳损坏等六钟。
1、期超载疲劳损坏这种损坏是指叶片受到外加较大应力或受到较大激振力,而振动次数低于107次就发生断裂的机械疲劳损坏。
如叶片受到水击而承受较大的应力,或因转子不平引起振动及安装不良存在周期力等较大的低频激振力,当这些力引起叶片共振时,叶片会很快断裂。
叶片短期超载疲劳损坏的宏观特征为:断面粗糙,疲劳前沿线(即贝壳纹)不明显,断面上疲劳区面积小于最终静撕断区面积;经受水击而损坏的叶片的断面呈“人"字形纹络特征。
防止短期超载疲劳损坏的主要方法是:防止水击,作好消除低频共振的调频及在正常周波下运行。
2、长期疲劳损坏长期疲劳损坏是指叶片运行中承受低于疲劳强度极限而应力循环次数又远高于107次发生的一种机械疲劳损坏。
造成长期疲劳损坏的原因有:叶片或叶片组在高频激振力作用下引起的共振损坏;叶片表面缺陷处出现局部应力集中而发生的疲劳损坏;低频率运行、超负荷运行使某些级的叶片应力升高导致提早损坏等等。
长期疲劳损坏在电厂叶片断裂事故中最为常见.防止长期疲劳损坏的办法是:按规定避开高频激振力共振范围,提高叶片加工质量和改善运行条件。
如防止低周波、超负荷运行,防止腐蚀和水击等.3、高温疲劳损坏高温疲劳损坏是指由蠕变和疲劳共同作用所形成的介于静应力产生的蠕变和动应力产生的疲劳之间的一种损坏形式。
裂纹源部位呈蠕变现象,断裂性质为持久断裂和疲劳断裂的组合,而且往往伴随着材料组织的变化。
高温疲劳损坏裂纹基本上是穿晶的,断口宏观貌有贝壳花纹,断口微观貌有较厚的氧化皮。
高温疲劳损坏发生在高压缸前几级叶片、中间再热式汽轮机中压缸前几级叶片以及中压汽轮机的调速级叶片。
汽轮机调节级动叶片断裂事故分析及处理
收稿日期:2006201209 作者简介:孙为民(19662),男,河南郑州人,副教授,现从事汽轮机设备的教学和科研。
汽轮机调节级动叶片断裂事故分析及处理孙为民1,李留轩2(1郑州电力高等专科学校,郑州450004;2洛阳华润热电有限公司,洛阳471900)摘要:针对50MW 汽轮机调节级动叶片断裂的事故原因进行了分析和研究,并根据当前机组情况选用了合理的处理方案。
关键词:汽轮机;叶片断裂;处理方案分类号:TK267 文献标识码:B 文章编号:100125884(2006)0620458202Processing and Fault Analysis ofMoving B lades Cripp ing of Steam Turbine Governing StageS UN W ei 2m in 1,L IL iu 2xuan2(1Zhengzhou Electric Power College,Zhengzhou 450004,China;2Luoyang China Res ourcus Ther moelectric Company L i m ited,Luoyang 471900,China )Abstract:The fault reas ons of moving blades cri pp ing of steam turbine governing stage were analyzed and studied,and based on the unit state,the paper choosed reas onable sche mee of treat m ent .Key words:steam turb i n e;bl ades cr i pp i n g;schem ee of trea t m en t0 前 言某发电厂有两台50MW 汽轮发电机组,机组型号为C50-8.83/1.3。
600MW汽轮机低压叶片断裂原因分析
叶片因为排汽边经淬火处理后材料组 织性能差 、残余
建议 :
在有腐蚀物参 与下 出现 了应力腐蚀裂纹 。 度过高 的现象 ,使得组织 中晶粒变大 ;另外淬火后 回火不 应力过大 , 能 出现异常 , 残余应力增大 。 区域 , 裂纹起 源于背 汽侧是 叶片承受拉应力作用的地方。
③低压 转子第 5级叶片处于干湿蒸汽 的交界处 ,在这
4 . 原 因分 析
结 论 及 建 议
①沿叶片排汽边经过 了淬火强化处 理 ,淬火 区宽 窄不 _, 硬度也 高低变化 , 说 明淬火温 度控制不好 , 存 在淬火 温
足, 组织中的马 氏体未完全转变 , 造成硬度偏高 。组织 及性
造成 # 3机低压低 5 级 叶片裂纹 的原 因是 :
AB S T R AC T :Ta k i n g o n e n e w p r o d u c t( Ma g n e t i c F l u x Re g u l a t i n g P o we r T r a n s f o r me r ) o f QRE a s a n e x a mp l e , d e s c i r b e a
汽轮机叶片断裂案例分析-091229
大型汽轮机叶片事故原因分析在火电厂、核电厂机组运行过程中,汽轮机叶片工作在高温、高压、高转速或湿蒸汽区等恶劣环境中,经受着离心力、蒸汽力、蒸汽激振力、腐蚀和振动以及湿蒸汽区高速水滴冲蚀的共同作用,再加上难以避免的设计、制造、安装质量及运行工况、检修工艺不佳等因素的影响,常会出现损坏,轻则引起汽轮发电机组振动,重则造成飞车事故。
因此,汽轮机叶片的安全可靠直接关系到汽轮机和整个电厂的安全、满发。
汽轮机叶片事故长期困扰电厂机组的安全经济运行。
从国内统计数据看,叶片损坏事故占汽轮机事故的30%。
叶片损坏的位置,从围带到叶根都有。
据日本历年的统计资料,各部位出现损坏的百分率见表1。
此外,汽轮机各级叶片的损坏机会是不均匀的,据美国对50台大型机组的统计,叶片事故几乎全发生在低压缸内,其中末级占20%,次末级占58%,而且集中区是高压第一级,即调节级。
据日本的统计,也有20%的事故发生于此。
因此,在汽轮机设计和运行时,均应注意这些部位。
叶片损坏的原因是多方面的,可以从不同角度加以分析。
例如,从发生的机理区分,60%~80%的损坏原因是振动;从责任范围区分,可归纳为设计、制造、安装、运行和老化等。
在实际工作中,如果能及时找出主要原因,掌握叶片事故前后的征兆,采取相应措施,就能避免事故的发生,提高机组的使用寿命和安全可靠性。
1、近年来大型机组叶片损坏概况从近年来发生的17例叶片故障统计中,笔者分析了上海汽轮机有限公司、哈尔滨汽轮机有限责任公司、东方汽轮机厂、北京重型电机厂(表中简称上汽、哈汽、东汽、北重)生产的以及美国、日本、前苏联和欧洲一些国家引进的200 MW以上超高压、亚临界及超临界压力大功率汽轮机叶片故障。
这些故障造成叶片损坏的形式分为损坏(丧失基本功能,危及安全)和损伤(降低经济性,能安全使用)。
叶片损坏形式:折断、裂纹、扭弯、二次损坏及其它;叶片损伤形式:蜂窝状、开焊、麻点、锈蚀、擦伤。
2、叶片故障原因分析2.1 叶片故障的特点(1) 叶片故障发生在低压缸的有13例,占统计总数的82.35%,而末级叶片损坏又为多发部位,有9例,占统计总数的52.94%,调速级有2例,占统计总数11.76%,中间级所占比例很小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编订:__________________
单位:__________________
时间:__________________
大型汽轮机叶片事故原因
分析(正式)
Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.
Word格式 / 完整 / 可编辑
文件编号:KG-AO-4913-33 大型汽轮机叶片事故原因分析(正
式)
使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
在火电厂、核电厂机组运行过程中,汽轮机叶片工作在高温、高压、高转速或湿蒸汽区等恶劣环境中,经受着离心力、蒸汽力、蒸汽激振力、腐蚀和振动以及湿蒸汽区高速水滴冲蚀的共同作用,再加上难以避免的设计、制造、安装质量及运行工况、检修工艺不佳等因素的影响,常会出现损坏,轻则引起汽轮发电机组振动,重则造成飞车事故。
因此,汽轮机叶片的安全可靠直接关系到汽轮机和整个电厂的安全、满发。
汽轮机叶片事故长期困扰电厂机组的安全经济运行。
从国内统计数据看,叶片损坏事故占汽轮机事故的30%。
叶片损坏的位置,从围带到叶根都有。
据日本历年的统计资料,各部位出现损坏的百分率见表1。
此
外,汽轮机各级叶片的损坏机会是不均匀的,据美国对50台大型机组的统计,叶片事故几乎全发生在低压缸内,其中末级占20%,次末级占58%,而且集中区是高压第一级,即调节级。
据日本的统计,也有20%的事故发生于此。
因此,在汽轮机设计和运行时,均应注意这些部位。
叶片损坏的原因是多方面的,可以从不同角度加以分析。
例如,从发生的机理区分,60%~80%的损坏原因是振动;从责任范围区分,可归纳为设计、制造、安装、运行和老化等。
在实际工作中,如果能及时找出主要原因,掌握叶片事故前后的征兆,采取相应措施,就能避免事故的发生,提高机组的使用寿命和安全可靠性。
1 近年来大型机组叶片损坏概况
从近年来发生的17例叶片故障统计中,笔者分析了上海汽轮机有限公司、哈尔滨汽轮机有限责任公司、东方汽轮机厂、北京重型电机厂(表中简称上汽、哈汽、东汽、北重)生产的以及美国、日本、前苏联和欧洲一
些国家引进的200 MW以上超高压、亚临界及超临界压力大功率汽轮机叶片故障。
这些故障造成叶片损坏的形式分为损坏(丧失基本功能,危及安全)和损伤(降低经济性,能安全使用)。
叶片损坏形式:折断、裂纹、扭弯、二次损坏及其它;叶片损伤形式:蜂窝状、开焊、麻点、锈蚀、擦伤。
2 叶片故障原因分析
2.1 叶片故障的特点
(1) 叶片故障发生在低压缸的有13例,占统计总数的82.35%,而末级叶片损坏又为多发部位,有9例,占统计总数的52.94%,调速级有2例,占统计总数11.76%,中间级所占比例很小。
(2) 运行维护方面的问题是近期引起叶片损坏的主要原因。
由于1996年以来大部分地区电力负荷需求不旺,致使大机组长期在低负荷下运行。
而许多大机组末级叶片按常规基本负荷设计,没有考虑调峰运行和高背压运行的需要,在小容积流量下长期运行的性能及对寿命损耗的影响难以确定。
由于当时技术水平
的限制,叶片未能按三元流方法设计,因而气动性能较差。
末级反动度沿叶高变化剧烈,叶型顶部的反动度大,底部的反动度小。
后者愈小,在部分负荷运行时愈容易产生脱流,进而增大叶片动应力响应,并产生出汽边水冲蚀。
这使末级叶片运行环境更差,叶片更容易出故障。
(3) 引进机组叶片损坏多为叶片设计制造问题。
(4) 调节级动叶及喷嘴受固体粒子冲蚀严重,由于不影响安全运行,没有引起足够重视,但它直接影响机组效率。
2.2 叶片损坏原因
2.2.1 设计原因
(1) 叶片振动特性设计不准,使叶片及轮系发生共振,而引起叶片断裂。
占统计总数的23.53%;
(2) 叶片设计动强度不足,使叶片出现故障。
占统计总数的17.65%。
2.2.2 制造原因
制造方面引起的叶片事故最多。
如叶片装配的问
题,还有机械加工的问题,占统计总数的58.82%。
2.2.3 运行原因
运行方面引起的叶片故障也不少。
如水蚀、水击、蒸汽参数低、湿度大、长期高周波、低负荷运行、频繁启停、汽水品质不好等,占统计总数的35.29%。
2.2.4 检修原因
检修方面引起的叶片故障有更换叶片未按规程进行,占统计总数的11.76%。
2.2.5 叶片材料原因
叶片材料缺陷,造成叶片损坏的有:材质不良、选材不当、材料热处理不当,占统计总数的17.65%。
3 防止叶片损坏事故的措施
3.1 用户应作好对制造厂的叶片监造工作,对机械加工、装配、检查和试验等,特别是装配的质量,应层层把关,把存在的问题消灭在萌芽状态,保证出厂产品质量优良。
3.2 安装过程中,要对叶片外观进行检查,对叶片频率进行复测,以检查制造厂提供叶片频率数据的
真实性并建立叶片技术档案。
为了防止损坏叶片,在汽、水系统的设计、安装过程中,应布置合理的疏水系统。
3.3 机组运行操作,必须严格按制造厂及运行规程所规定的程序进行,杜绝错误的运行操作程序,以防止由于操作不当而导致叶片损坏。
3.4 检修中,对汽轮机叶片的检查和维护应按正确合理的维修工艺进行。
(1) 对叶片进行外观检查,对损伤的轮级叶片进行探伤和仔细检查,严禁带缺陷运行。
(2) 对叶片进行静态振动频率测试,尤其对损伤的轮级叶片振动频率测试更为重要。
(3) 防止损伤叶片的残骸及检修工具杂物遗留在汽缸内。
(4) 防止对布置的中、低压缸前后隔板装错。
(5) 受机械损伤和水蚀的叶片在检修时应按合理的维修工艺及时进行修复。
(6) 更换汽轮机叶片时,叶片装配质量应符合
ZBK54018-98"汽轮机主要零部件(转子部分)加工装配技术条件”的要求。
(7) 对动静叶片结垢、第1级叶片的冲刷和末级叶片的水蚀要足够重视,并应在大修中进行处理和修复,否则将影响机组效率。
例如,对于300 MW及600 MW机组,由于结垢使调速级喷嘴面积减少10%,机组的出力将减少3%;由于外来硬质异物打击叶片损伤以及固体粒子侵蚀叶片损伤,视其严重程度都可能使级效率降低1%~3%。
(8) 对100 MW以上机组进行通流部分改造,以提高效率和增容时,不要忽视对通流部分损伤所造成的损失。
(罗剑斌谭士森袁立平)
请在这里输入公司或组织的名字
Enter The Name Of The Company Or Organization Here。