有限元试卷(1)答案
有限单元法考试题及答案
![有限单元法考试题及答案](https://img.taocdn.com/s3/m/c424d84d4a73f242336c1eb91a37f111f1850dee.png)
有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。
A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。
答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。
答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。
有限元试题及答案
![有限元试题及答案](https://img.taocdn.com/s3/m/b527f9b6f121dd36a32d8209.png)
有限元试题及答案 有限元试题及答案 一 判断题(20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。
二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内;后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。
2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。
3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。
4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。
5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。
6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。
7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]eD B σδ=。
有限元复习题及答案
![有限元复习题及答案](https://img.taocdn.com/s3/m/bac359f5844769eae109ed0f.png)
1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。
平面问题分为平面应力问题和平面应变问题。
平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。
由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。
平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。
平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。
2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。
其中包括6个应力分量,6个应变分量,3个位移分量。
平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。
根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。
对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。
对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。
设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。
外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。
有限元习题及答案
![有限元习题及答案](https://img.taocdn.com/s3/m/0429a30532687e21af45b307e87101f69e31fbf8.png)
有限元习题及答案有限元习题及答案有限元方法是一种常用的数值计算方法,用于求解各种工程和科学问题。
在学习有限元方法的过程中,练习习题是非常重要的,可以帮助学生巩固所学的知识,并提高解决实际问题的能力。
本文将介绍一些有限元习题及其答案,希望对学习有限元方法的同学有所帮助。
习题一:一维热传导问题考虑一个长度为L的一维杆,其两端固定,杆上的温度满足以下热传导方程:∂²T/∂x² = 0,其中T为温度,x为位置。
已知杆的两端温度分别为T1和T2,求解杆上的温度分布。
解答一:根据热传导方程,可以得到温度分布的一般解为T(x) = Ax + B,其中A和B为常数。
根据边界条件,可以得到方程组:T(0) = B = T1T(L) = AL + B = T2解方程组可得A = (T2 - T1) / L,B = T1。
因此,温度分布为T(x) = ((T2 - T1) / L) * x + T1。
习题二:二维弹性问题考虑一个矩形薄板,其长为L,宽为W,材料的弹性模量为E,泊松比为ν。
已知薄板的边界上施加了一定的边界条件,求解薄板上的位移场。
解答二:对于二维弹性问题,可以使用平面应力假设,即假设薄板内部的应力只有两个分量σx和σy,并且与z轴无关。
根据平面应力假设和胡克定律,可以得到位移场的偏微分方程:∂²u/∂x² + ν * (∂²u/∂y²) + (1 - ν) * (∂²v/∂x∂y) = 0∂²v/∂y² + ν * (∂²v/∂x²) + (1 - ν) * (∂²u/∂x∂y) = 0其中u和v分别为位移场在x和y方向上的分量。
边界条件根据具体情况给定。
通过数值方法,如有限元方法,可以求解位移场的近似解。
习题三:三维流体力学问题考虑一个三维流体力学问题,流体在一个封闭容器内流动,容器的形状为一个长方体,已知流体的速度场和压力场的初始条件,求解流体的运动状态。
(完整版)有限元考试试题及答案
![(完整版)有限元考试试题及答案](https://img.taocdn.com/s3/m/8809087a6137ee06eff918c7.png)
e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。
图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。
有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。
有限元复习题答案
![有限元复习题答案](https://img.taocdn.com/s3/m/64bb6ca7998fcc22bcd10de3.png)
1、何为有限元法?其基本思想是什么?有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。
基本思想是化整为零集零为整。
2、为什么说有限元法是近似的方法,体现在哪里?有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。
3、单元、节点的概念?节点:表达实际结构几何对象之间相互连接方式的概念单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点4、有限元法分析过程可归纳为几个步骤?结构离散化、单元分析、整体分析5、有限元方法分几种?本课程讲授的是哪一种?位移法、力法、混合法本课程讲授位移法6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?弹性力学变量:外力、应力、应变和位移。
描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。
弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。
7、何为平面应力问题和平面应变问题?平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。
b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。
平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。
b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。
1、何为结构的离散化?离散化的目的?何为有限元模型?①离散化:把连续的结构看成由有限个单元组成的集合体。
②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?①单元的数量要根据计算精度的要求和计算机的容量来确定,因此在保证精度的前提,力求采用较少的单元。
有限元作业试题及答案.doc
![有限元作业试题及答案.doc](https://img.taocdn.com/s3/m/d2333cfaa2161479171128f0.png)
2
答:一般选用三角形或四边形单元,在满足一定精度情况,
有限元划分网格的基本原则是:
1、拓朴正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接
2、几何保形原则。即网格划分后,单元的集合为原结构近似
3、特性一致原则。即材料相同,厚度相同
4、单元形状优良原则。单元边、角相差尽可能小
c j二elcm= —a
Ni = l/a2 • a x = x/a
同理可得:Nj二y/a
有限元方法及应用试题
1
答:单元离散(划分、剖分)一单元分析一整体分析
有限元分析的主要步骤主要有:
A结构的离散化
B单元分析。选择位移函数、根据几何方程建立应变与位移的关系、根据物理方程建立应力
与位移的关系、根据虚功原理建立节点力与节点位移的关系(单元刚度方程)
C等效节点载荷计算
D整体分析,建立整体刚度方程
7、图示三角形ijni为等边三角形单元,边长为1,单位面积材料密度位P,集 中力F垂直作用于nij边的中点,集度为q的均布载荷垂直作用于im边。写出三 角形单元的节点载荷向量。
q:移到m, i点F:移到m, j点重力:移到m, I, j点
要证{8}=0
只需证,Nm = 0
Nm= 1/2A (am+bmx +cmy)
(d)平面三角形单元,29个节点,38个自由度
4、什么是等参数单元?。
如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函
数一样,则称这种变换为等参变换,这样的单元称为等参单元。
5பைடு நூலகம்
v(x, y)=
答:不能取这样的位移模式,因为在平面三节点三角形单元中,位移模式应该是呈线性的。
有限元试卷答案
![有限元试卷答案](https://img.taocdn.com/s3/m/cfb095984b35eefdc9d3331b.png)
Computation,一口地道的伦敦腔,倍儿有面子。题目一扔进去就跑个把月,你要是一个星期以内出结
果,你都不好意思和别人打招呼。你说这样一趟算下来要发多少Paper? 10篇?10篇?就1篇!你还别嫌
少,说不定人家还发在会议上。你得琢磨牛人的心理啊,有能耐算这样题目的人,根本就不在乎多发一
篇两篇文章。什么叫大牛知道么?大牛就是不求灌水,但求经典。
0
R3
20 103 250 0
150
1
11.5 10kN
计算结果如下表(边长为1,厚度为0.01,弹模为1,波松比为0.3)
单元数 (1/4板)
四边固定 板中心挠度 wD/PL2
边中点弯矩 M/P
2×2
0.00614
-0.1178
4×4
0.00580
-0.1233
6×6
0.00571
-0.1245
理论解 0.00560
-0.1257
试分析本题中有限元解位移大于解析解、弯矩小于解析解的原因。
1 1
150
110.5 200MPa
1 1 / E 200 / 20 103 0.01
2
20 103
1 1
150
111..25 40MPa
2 2 / E 40 / 20 103 0.002
支座反力为:
0
R1
20 103 250 150
1
1
01.5 50kN
1.2
1. 写出线弹性平面问题三类基本方程和二类边界条件(分量或指标形式),并指出相应的自变量。 答:三个基本方程
①平衡方程
②本构方程 平面应力 平面应变
应变协调方程
③几何方程
(完整word版)有限元考试试题及答案
![(完整word版)有限元考试试题及答案](https://img.taocdn.com/s3/m/19365fbb770bf78a65295457.png)
江西理工大学研究生考试试卷一、 简答题(共40分,每题10分)1. 论述单元划分应遵循的原则。
2. 说明形函数应满足的条件。
3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。
4. 阐述边界元法的主要优缺点。
二、 计算题(共60分,每题20分)1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材料的杨氏模量2721/100.3in lbf E E ⨯==,截面积2125.5in A =,2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。
备注:(1)1 lbf (磅力,libra force ) = 4.45 N 。
(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10分)20__12__—20__13__ 学年 第___一___学期 课程名称:_____有限元及数值模拟________ 考试时间:___2012___ 年__11__月___3___日考试性质(正考、补考或其它):[ 正考 ] 考试方式(开卷、闭卷):[ 开卷 ] 试卷类别(A 、B):[ A ] 共 九 大题温 馨 提 示请考生自觉遵守考试纪律,争做文明诚信的大学生。
如有违犯考试纪律,将严格按照《江西理工大学学生违纪处分规定》(试行)处理。
学院 专业 学号 姓名 题号 一二三四五六七八九十十一十二总 分得分pyA1A2L1L2图12. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m,载荷F=20KN/m,设泊松比µ=0,材料的弹性模量为E,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。
图3一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
有限元复习题及答案.pdf
![有限元复习题及答案.pdf](https://img.taocdn.com/s3/m/418e3ec5e009581b6bd9ebfc.png)
有限元课程习题1、试简要阐述有限元分析的基本步骤主要有哪些。
有限元分析的主要步骤主要有:1、结构的离散化2、单元分析。
选择位移函数、根据几何方程建立应变与位移的关系、根据物理方程建立应力与位移的关系、根据虚功原理建立节点力与节点位移的关系(单元刚度方程)3、等效节点载荷计算4、整体分析,建立整体刚度方程2、有限元网格划分的基本原则是什么?提出图示网格划分中不合理的地方。
有限元划分网格的基本原则是:1、拓朴正确性原则。
即单元间是靠单元顶点、或单元边、或单元面连接2、几何保形原则。
即网格划分后,单元的集合为原结构近似3、特性一致原则。
即材料相同,厚度相同4、单元形状优良原则。
单元边、角相差尽可能小5、密度可控原则。
即在保证一定精度的前提下,网格尽可能稀疏一些(a)单元间没有考虑节点相联(b)网格形状太差,单元边长相差太大(c)没有考虑对称性,单元边长相差太大3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?(a)桁架结构模型• 划分为杆单元, 8个节点,12个自由度出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
有限元试题及答案[1]
![有限元试题及答案[1]](https://img.taocdn.com/s3/m/124aad996bec0975f465e211.png)
一、如图所示的1D 杆结构,试用取微单元体的方法建立起全部基本方程和边界条件,并求出它的所有解答。
注意它的弹性模量为E 、横截面积A解:如图1.1所示的1D 杆结构,其基本变量为 位移 x u 应变 x ε 应力 x σ取微单元体Adx ,其应力状态如图1.2,由泰勒展开式知()⋅⋅⋅⋅⋅+∂∂+⋅∂∂+=+22221dx x dx x dx x x x x σσσσ略去2阶以上的商阶微量知()dx xdx x xx ⋅∂∂+=+σσσ 由力的平衡知0=∑i x :0=-⎪⎭⎫ ⎝⎛∂∂+A A dx x x x x σσσ即力的平衡方程为:⋅⋅⋅⋅=0dxd xσ① 位移由图1.3知(泰勒展开,略去商阶微量)()dx xu u dx x u xx ⋅∂∂+=+ dxu dxdxdx u dx x uu ABABB A xx x x x ∂=-+-∂∂+=-=∴)(''ε应变 即几何方程为:⋅⋅⋅⋅=dxdu xx ε② 根据虎克定律知⋅⋅⋅⋅⋅⋅⋅=⋅=dxdu E E xx x εσ③ 由①、②、③知该1D 杆的基本方程为⎪⎪⎪⎩⎪⎪⎪⎨⎧====dx du E E dx du dx d x x xx xxεσεσ0 在节点1时位移:00==x x u 在节点2时应力:APlx x==σ即其边界条件为00==x x u on u SAPlx x==σ on P S 由①式知⋅⋅⋅⋅⋅=0c x σ ④ ④代入③解得:dxdu Ec x=0 ⋅⋅⋅⋅⋅⋅⋅+=10c x Ec u x ⑤ 0c 、1c 为待定系数结合边界条件知⎪⎪⎩⎪⎪⎨⎧==+A P c c x Ec 010解知得APc =0,01=c ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==⋅==EA P E x EA P u A P x xx x σεσ二、设平面问题中的应力问题y a x a a x 321++=σy a x a a y 654++=σ y a x a a xy 987++=τ其中i a (1、2、………9)为常数,令所有体积力为零,对下面特殊情况说明平衡是否满足?为什么?或者i a 之间有什么关系才满足平衡。
有限元例题及答案
![有限元例题及答案](https://img.taocdn.com/s3/m/fb1c684e852458fb770b56cc.png)
例 8-1:E ,A ,L ,s σ 杆I 弹塑性; 杆II 弹性。
求s AF σ3=下2点位移。
解:(1)理论解在荷载s A F σ3=作用下,杆I 屈服而有内力(拉力)S A N σ=1,杆II 内力(压力)为s II A N σ2=,中点2位移δ取决于杆II 的变形,即*===∆=δσσδ22)2(EL AE L A l S S II式中E Ls σδ=*(屈服位移)(2)直接迭代法杆I 和杆II 的刚度分别为⎩⎨⎧=**≤〉)()(δδδδδσL EAAI S k L EA k II =①迭I 迭代步迭代从*=δδ0开始,这时有L EAk k K II I 20=+=*-====δσσδ5.15.123101EL L EA A F K S S②第2迭代步杆I 进入塑性,有L EA A k s I 67.01==δσ杆Ⅱ完全弹性,刚度不变。
因此,总刚为L EAk k K II I 67.11=+=*-====δσσδ8.18.167.13112E L LEA A F k S s 整个迭代过程见表8-1。
表8-1 直接迭代法各次迭代结果(3)切线刚度法杆Ⅰ和杆Ⅱ的切线刚度分别为⎩⎨⎧=**≤〉)()(0δδδδLEAI k L EA k II =①第1迭代步初始状态时,00=δ,杆Ⅰ,Ⅱ中应力、应变均匀为零。
总刚为:L EAk k K T TI T 21=+=由F K T -=δψ,得S A σψ30-=由n Tn n K ψδ1--=∆得,*=--=∆δσδ5.1)3(10S A L由式n n n δδδ∆+=+1得,s δδ5.11=杆中应力:S SI σσσσ5.111-==杆中内力:S SI A N A N σσ5.111-==②第2迭代步由于杆I 已进入塑性,杆Ⅱ仍处弹性,总刚:L EAk k K TIITI T =+=2由F K T -=δψ,得S S S A A A σσσψ5.035.21-=-=由n Tn n K ψδ1--=∆得,*=--=∆δσδ5.0)5.0(11S A LEA由式n n n δδδ∆+=+1得,*=∆+=σδδδ0.2112杆中应力:S II SI A N A N σσ0.222-==检验F K T -=δψ,有030.32=-=S S A A σσψ迭代平衡。
西工大-有限元试题(附答案)
![西工大-有限元试题(附答案)](https://img.taocdn.com/s3/m/f2b537b819e8b8f67c1cb982.png)
1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。
2.如下图所示,求下列情况的带宽:a) 4结点四边形元;b) 2结点线性杆元。
3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。
图左下角的四边形在两种不同编号方式下,单元的带宽分别是多大?4.下图所示,若单元是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。
系统的带宽是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。
5.设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F2与杆端位移之间的关系式,并求出杆件的单元刚度矩阵6.设阶梯形杆件由两个等截面杆件与所组成,试写出三个结点1、2、3的结点轴向力F1,F2,F3与结点轴向位移之间的整体刚度矩阵[K]。
7.在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F1=P,求各结点的轴向位移和各杆的轴力。
8.下图所示为平面桁架中的任一单元,为局部坐标系,x,y为总体坐标系,轴与x轴的夹角为。
(1)求在局部坐标系中的单元刚度矩阵(2)求单元的坐标转换矩阵 [T];(3)求在总体坐标系中的单元刚度矩阵9.如图所示一个直角三角形桁架,已知,两个直角边长度,各杆截面面积,求整体刚度矩阵[K]。
10.设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。
11.进行结点编号时,如果把所有固定端处的结点编在最后,那么在引入边界条件时是否会更简便些?12.针对下图所示的3结点三角形单元,同一网格的两种不同的编号方式,单元的带宽分别是多大?13.下图所示一个矩形单元,边长分别为2a与2b,坐标原点取在单元中心。
位移模式取为导出内部任一点位移与四个角点位移之间的关系式。
14 桁架结构如图所示,设各杆EA/L均相等,单元及结点编号如图所示,试写出各单元的单刚矩阵[k]e。
15 图所示三杆桁架,节点1、节点3处固定,节点2处受力Fx2,Fy2,所有杆件材料相同,弹性模量为E,截面积均为A,求各杆内力。
机械有限元试卷A、B及标准答案必考
![机械有限元试卷A、B及标准答案必考](https://img.taocdn.com/s3/m/a91db35e767f5acfa1c7cd19.png)
《有限元方法》考试试卷(A卷)一、选择题1、弹性力学与材料力学的主要不同之处在于。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
σ是。
2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。
3、利用ANSYS进行结构分析时,结果文件为。
A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。
4、在ANSYS的单元库中,PLANE42单元属于。
A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。
5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。
A. 特性;B. 说明;C. 参考号;D.方法。
6、ANSYS与Pro/E的接口文件类型是。
A..x_t;B. .prt;C. .sat;D. .model。
7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。
A. DOF约束;B. 力;C. 体载荷;D.应力。
8、要求面或者体有规则的形状,即必须满足一定的准则。
A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。
9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。
A.阶跃载荷B. 有限元模型载荷C. 实体模型载荷;D. 斜坡载荷。
10、有限元法首先求出的解是,单元应力和应变可由它求得。
A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。
二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。
2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。
3、典型的ANSYS文件包括、、。
4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。
有限元试题和答案
![有限元试题和答案](https://img.taocdn.com/s3/m/eb774c17f18583d049645942.png)
一。
简答题:1.轴对称体上作用正对称形式的载荷时,沿坐标,,r z θ的三个分量(,,)r P r z θ,z (,,)P r z θ和(,,)P r z θθ有何特点?(P85)(,,)r P r z θ和z (,,)P r z θ是偶函数,傅里叶级数展开式中不含sin k θ,(,,)P r z θθ是奇函数,傅里叶级数展开式中不含cos k θ。
2.某单元的节点上,既有位移自由度又有转动自由度,试述此单元的协调性要求?(P27) 在交界面上满足变形协调条件,变形后既不分裂,也不重叠,从而保证了整个结构的位移连续。
3.用泛函变分求解弹性力学的场问题时,为什么只需要考虑几何边界条件?(P179) 泛函求极值与求满足位移及力边界条件的平衡方程的解是完全等价的。
利用变分求解只需要满足位移边界条件,而力边界条件是在求解泛函的极值中自动满足的。
4.写出用位移梯度表示的格林应变张量和阿尔曼西应变张量,并证明他们的参考变形?(P201)格林应变张量1=+2j i k k ij j i i j u u u u E x x x x ∂∂∂∂∂∂∂∂(+) 阿尔曼西应变张量1=+2j i k k ij j i i ju u u u e x x x x ∂∂∂∂∂∂∂∂(-) 5.写出接触问题中的运动学条件和动力学条件?(P225)运动学条件:满足不可贯穿条件,对于两个接触物体,可表示为0ABV V ⋂=动力学条件:要求连个物体接触面的合力为零0ABq q += 二、三角形单元的位移为:012012(cos 1)(sin )(sin )(cos 1)u u x x v v x x θθθθ=+-+-=++-式中0u 和0v 分别为1x 和2x 方向的刚体位移,θ为逆时针绕原点的刚体转角。
计算单元的柯西应变和格林应变。
证明此位移为刚体运动。
(P201) 解:柯西应变:11=cos 1u x εθ∂=-∂,22=cos 1v x εθ∂=-∂,12212=+sin sin 0u v x x εθθ∂∂=-+=∂∂ 格林应变:1111111111=+(cos 1cos 1(cos 1)(cos 1)sin sin )022u u u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=122121121211==+(sin sin (cos 1)(sin )sin (cos 1))022u v u u v v E E x x x x x x θθθθθθ∂∂∂∂∂∂+-++--+-=∂∂∂∂∂∂(+)=2222222211=+(cos 1cos 1(cos 1)(cos 1)sin sin )022v v u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=三 周向有集中载荷作用的悬臂梁,弯曲刚度为EI ,(1)建立梁的总势能表达式,(2)假定瑞利-里茨能为2323w C x C x =+,计算梁的挠度表达式。
机械有限元试卷A、B及标准答案必考
![机械有限元试卷A、B及标准答案必考](https://img.taocdn.com/s3/m/b379f00f5727a5e9856a6163.png)
《有限元方法》考试试卷(A卷)一、选择题1、弹性力学与材料力学的主要不同之处在于。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
σ是。
2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。
3、利用ANSYS进行结构分析时,结果文件为。
A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。
4、在ANSYS的单元库中,PLANE42单元属于。
A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。
5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。
A. 特性;B. 说明;C. 参考号;D.方法。
6、ANSYS与Pro/E的接口文件类型是。
A..x_t;B. .prt;C. .sat;D. .model。
7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。
A. DOF约束;B. 力;C. 体载荷;D.应力。
8、要求面或者体有规则的形状,即必须满足一定的准则。
A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。
9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。
A.阶跃载荷B. 有限元模型载荷C. 实体模型载荷;D. 斜坡载荷。
10、有限元法首先求出的解是,单元应力和应变可由它求得。
A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。
二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。
2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。
3、典型的ANSYS文件包括、、。
4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。
有限元考试试题
![有限元考试试题](https://img.taocdn.com/s3/m/6966796ee3bd960590c69ec3d5bbfd0a7956d59c.png)
有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。
8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。
9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。
10、在有限元分析中,我们通常使用______来描述物理场的性质。
三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。
12、请说明在有限元分析中,如何处理边界条件,并举例说明。
13、请简述有限元分析的优点和局限性。
有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。
在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。
2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。
在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。
3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静、动态有限元试卷(一)答案一、(1)答:圣维南原理第一种叙述:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(即主矢量相同、对同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但远处所受的影响可以不计。
圣维南原理第二种叙述:如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么,这个面力就只会使得近处产生显著的应力,远处的应力可以不计。
(2)答:所谓等效节点力,就是把分布载荷按照虚功相等的原则移至到节点上的力。
(3)答:首先导出关于局部坐标系的规整形状的单元(母单元)的高阶位移模式的形函数,然后利用形函数进行坐标变换,得到关于整体坐标系的复杂形状的单元(子单元),如果子单元的位移函数插值结点数与其位移坐标变换节点数相等,其位移函数插值公式与位移坐标变换式都有相同的形函数与结点参数进行插值,则称其为等参元。
(4)答:单元节点I发生单位位移时,函数Ni表示单元内部的位移分布形状,故Ni,,Nj,Nm都称为位移的形状函数,简称形函数。
(5)答:系统随时间变化时的响应。
(6)答:系统随频率变化时的响应。
(7)答:在静力分析时,一个结构在不同时刻可能承受不同的载荷。
结构同时承受的一组载荷,它是各种实际作用的集中载荷和分布载荷的组合。
称为一组结构载荷工况。
(8)答:单元的位移模式就是把单元内任一点的位移近似地表达为其坐标的函数二、答:(1)A:有限元的基本思想是:将连续结构分割成数目有限的小单元体(成为单元),这些小单元体彼此间只在数目有限的指定点(成为节点)上互相连接,用这些小单元体组成的集合体来代替原来的连续结构。
当然,每个小单元体的力学特性都与原结构对应与该小单元的力学特性相同,再把每个小单元体上实际作用的外载荷按虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。
这一过程通常称为结构离散化。
其次,对每个小单元根据分块近似的思想,选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中变分原理建立起单元节点力与节点位移之间的关系。
最后,把全部单元的节点力与节点位移之间的关系组集起来,就得到了一组以结构节点位移为位置量的代数方程组,并考虑结构约束情况,消去节点位移分量。
B:有限元方法的解题步骤:1)根据工程的实际情况和原始条件选定适当的力学模型,并按一定比例尺绘制结构图形,注明尺寸、载荷和约束情况;2)选定单元类型,对力学模型进行离散化,编制单元和节点号码,选定坐标,并求出各节点坐标值;3)根据载荷类型,将各单元所受的载荷移置到有关节点上,4)并求出各节点的等效节点载荷;5)根据节点坐标值和材料参数(E,μ等),按公式求出各单元刚度矩阵;6)按刚度集成法,由各单元刚度矩阵组集成结构的整体刚度矩阵,由各节点位移组集成整体结构位移列阵,再由各单元节点的载荷列阵组集成整体结构的载荷列阵,并建立整体刚度方程;7)引入约束条件,修改整体刚都举镇和载荷列阵,并求解此方程组得出各节点位移;8)根据以求得的各单元节点的位移分量,求解各单元的应力分量和各单元的主应力以及住平面方向角;9)将计算结果输出,并绘制结构的变形图和各应力分量的分布图等。
(2)答:1)对称性由于各单元刚度矩阵是对称的,所以整体刚度矩阵也具有对称性,利用它的对称性可以只存储总体刚度矩阵的上三角部分,从而节省了近一般的存储容量。
2)稀疏性整体刚度矩阵是零元素比较多的稀疏矩阵,特别是离散化结构中节点越多,网格划分越细[K]越稀疏。
3)[K]是奇异矩阵因为未考虑结构的约束,当排除了整体刚度矩阵位移后,它就变成了正定矩阵。
4)[K]呈带状分布规律在一定节点编号顺序下,可使整体刚度矩阵的非零元素对称地分布在主对角线的两侧,呈现出一主对角线为中心的斜带状分布的特点,故称[K]为带状矩阵。
(3)答:1)一般在结构的应力集中处,应力梯度较大的地方,单元网格划分要细些,其它次要部位可使网格划分较大一些,但这还要考虑计算机容量和计算精度,通常在保证精度的前提下,力求采用较少的单元;2)尽量能使每个单元各边长度接近相等,或相差较小,以免在计算中出现过大的误差;3)应充分利用结构的对称性。
(包括载荷和约束的对称),对于对称性结构可只取结构的1/2或1/4来研究,从而大大减少计算量;4)在材料性质突变处,结构厚度突变处,应把变化的界限作为单元的分界线。
并将集中载荷作用点和分布载荷集度的突变点取为节点;5)节点编号应尽量使同一单元的相邻节点编号的最大号差值最小,以便减小刚度矩阵的半带宽,节省计算机容量。
同时单元、节点编号均要考虑到有利于单元和节点的自动生成,对于较大的结构和使用通用程序时此条尤为重要。
(4)答:1)平面应力问题是只长宽方向的尺寸远大于厚度,沿板面受有平行板面且不沿厚度变化,在平板的前后面无外力作用。
如:木制门拐角处的角铁。
2)平面应变问题是指Z方向的尺寸远大于X,Y;受有平行于横截面且不沿Z变化。
如:分析隧道各截面受力时。
(5)答:1)位移模式必须包含单元的刚体位移。
也就是说,当节点位移是有刚体位移所引起时,弹性体内将不会产生应变。
2)位移模式必须能包含单元的常应变。
每个单元的应变一般都是包含着两个部分:一部分是与该单元中各点的坐标位置有关的应变(即所谓的各点的变应变);另一部分是与位置坐标无关的应变(即所谓的常应变)。
从物理意义上看,当单元尺寸无限缩小时,每个单元中的应变应该趋于常量。
因此,在位移模式中必须包含有这些常应变,否则就不可能使数值解收敛于正确解。
3)位移模式在单元内要连续且在相邻单元之间的位移必须协调。
当选择多项式来构成位移模式时,单元内的连续性要求总是得到满足的,单元间的位移协调性,就是要求单元之间既不会出现开裂也不会出现重叠的现象。
通常,当单元交界面上的位移取决于该交界面上结点的位移时,就可以保证位移的协调性。
三、答:在非线性结构分析中,较为常见的非线性行为有以下三种:(1)状态变化非线性许多普通结构的表现出一种与状态相关的非线性。
例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。
轴承套可能是接触的,也可能是不接触的,冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间突然变化。
状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土分析中)。
(2)材料非线性非线性的应力-应变关系是结构非线性的常见原因。
许多因素可以影响材料的应力-应变性质,包括加载历史(如在弹-塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。
(3)几何非线性如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。
例如钓鱼杆,在轻微的垂向载荷作用下,杆端是柔性的。
随着垂向载荷的增加(钓到鱼),杆不断弯曲以至于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。
四、答:主要有以下五种功能:(1)计算特征对 求解特征方程,计算结构的固有频率和阵型,为进一步计算动力响应作好准备,也可直接用于确定结构可能发生的共振频率和轴系的临界转速。
(2)历程响应分析 用阵型叠加法计算结构在强迫力和强迫位移下的瞬态响应。
(3)谱分析 根据给定的反映谱曲线,采用阵型叠加法对基础的随机的强迫位移进行结构的最大位移和最大应力分析。
(4)用逐步积分法求历程响应 不必求解特征方程的特征值和特征向量,而用Wilson θ法直接对动力方程进行数值积分,求解结构在强迫力和强迫位移下的瞬态响应。
(5) 频率响应分析 计算由于基础做简谐运动引起的结构稳态响应,确定结构的幅频特性和相频特性,也可以模拟结构在振动台上的振动试验。
五、1.力学模型的确定由于此结构长、宽远大于厚度,而载荷作用于板平面内,且沿板厚均匀分布,故可按平面应力问题处理,考虑到结构和载荷的对称性,可取结构的1/4来研究。
2.结构离散 该1/4结构被离散为两个三角形单元,节点编号 ,单元划分及取坐标如图3-15所示 ,其各节点的坐标值见表3-1。
3.求单元的刚度矩阵(1)计算单元的节点坐标差及单元面积单元1(i 、j 、m 1,2,3)(2) 计算各单元的刚度矩阵 先计算用到的常数:代入可得:所以单元1的刚度矩阵为:()()()()()[]211011212111023321213132321=-⨯-⨯=-=∆=--=-=--==--=c b c b x x c x x c x x c 89)1(2169)1(4312122EE EEt =∆-=∆-=-μμμ[]()()()()()()()()⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯-⨯+⨯⨯-⨯+-⨯⨯-⨯⨯+⨯-⨯⨯⨯+-⨯-=310011691131000131103110310131003111169111E E K [][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=34323234169;031310169;3131311169122113112E K E K E K [][]⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10031169;131********33123E K E K 011213132321=-==-=-=-=y y b y y b y y b由于单元2若按341对应单元1的123排码时,则这两个单元刚度矩阵内容完全一样,故有:34 14、 组集整体刚度矩阵由于[K rs ]=[K sr ]T ,又单元1和单元2的节点号按123对应341,则可得:[]⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=⨯1031131343131323403131313131031101169266称对E K [][][][][][][][][][]⎥⎦⎤⎢⎣⎡--===⎥⎦⎤⎢⎣⎡--===⎥⎦⎤⎢⎣⎡==011016311131631003163113213131112243121233111E K K K E K K K E K K TT[][][][][][][][][][]⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯1031131343131323403131313131031101169133132131123122121113112111166称对E K K K K K K K K K K [][][][][][][][][][]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=+++⨯24424324121331322131122121211188K K K K K K K K K K [][][][][][][][][][][][][][][][]⎥⎦⎤⎢⎣⎡--===⎥⎦⎤⎢⎣⎡--===⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--===⎥⎦⎤⎢⎣⎡--==31111630110163300116331111634224163214123241213113231211133123214132244122E K K K E K K K EK K E K K K E K K TTT所以组集的整体刚度矩阵为:5、 计算各单元应力矩阵,求出各单元应力先求出各单元的应力矩阵[S]1、[S]2,然后再求得各单元的应力分量:单元应力可看作是单元形心处的应力值。