固体物理 第二章 结合能

合集下载

固体物理 课后习题解答(黄昆版)第二章

固体物理 课后习题解答(黄昆版)第二章

黄昆 固体物理 习题解答第二章 晶体的结合2.1 证明两种一价离子组成的一维晶格的马德隆常数为α = 2 2n解:设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用 r 表示相邻离子间的距离,于是有α= ∑ ′ ( 1)=2[1 1 1 1 −+−+ ...]r jr ijr 2r 3r 4r前边的因子 2 是因为存在着两个相等距离 的离子,一个在参考离子左面,一个在其右面,i1 1 1故对一边求和后要乘 2,马德隆常数为234α = 2[1− + − + ...] 2 3 4xx xQl n(1 + x ) = −x + − + ... 当 x=1 时,有12 3 4 1 1 1...− + − + = l n2∴ =α 2 2n2 3 42.2 讨论使离子电荷加倍所引起的对 Nacl 晶格常数及结合能的影响(排斥势看作不变)α2e C解: u r ( )= −α2+rrnα2nC1du e nCenC 由| =−= 0 解得=+r e−1 r2n +12n 1( ) (=2)ndrrrrr 0nC11α e于是当 e 变为 2e 时,有 r−1= 4 −1 r e( )(2 ) (=2)nn= − α214α e结合能为 u r( )e (1−) 当 e 变为 2e 时,有4α e 2r0 1nnu e(2 )= −r (2 ) (1 −) = u e( ) 4 −n 1nu r( )= − α+βm n 2.3 若一晶体两个离子之间的相互作用能可以表示为计算: 1) 平衡间距r0解答(初稿)作者季正华- 1 -r r黄昆固体物理习题解答2) 结合能W(单个原子的)3) 体弹性模量4) 若取m = 2, n = 10, r= 0.3 , = 4 eV计算αβ, 的值解:1) 平衡间距r0的计算NαβdU= mαnβU r ( ) = (−+m n) dr0 −r m+1 + r n+1 = 0晶体内能nβ 12 r r平衡条件r r0 即0 0r0= ( )n m所以mα2) 单个原子的结合能W = −1u( )r u r( ) (0= −α+βm n) r nβ 1r r0=( ) n m2 0β−m r r0 αmW = 1 α(1−)( )m n n m2 n mα3)体弹性模量K = ∂2U(2)V⋅V0∂V0晶体的体积V = NAr3—— A 为常数,N 为原胞数目NαβU r ( ) = (−+m n)晶体内能∂=α2nβr rU∂U r∂N m− 1∂V ∂∂r V= 2 ( r m+1 r n+1 ) NAr23∂2 = ∂∂mαnβU N r[( −) 1 ]∂V 2 2 ∂∂V r rm+1 r n+1 3 N Ar2∂2U∂2UN1[2αmn2βmαnβK = (2)V⋅V0 ∂V2= 2 9V2−r m+ r n−r m+ r n]体弹性模量由平衡条件∂U∂V=N mα−V Vnβ 1= 00 0 0 0∂V 2 ( r m+1 r n+1 ) 3NAr2V V0解答(初稿)作者季正华0 0 0- 2 -α=n β∂2UN黄昆 固体物理 习题解答m 2αn 2βm r 0mr 0n ∂V 2V V=1[− 2 9V 02r 0m + r 0n ]体弹性模量 K= ∂2U(2)V⋅V 0∂2U=mn(−U )∂ V∂ V2 V V 9V 2mn K = U 0V 904)若取 m =β12, n = 10, r 0=0.3 ,= 4 eVβ−m计算 α β,的值r = n( ) −n mW = 1 α (1− )( )m n n mαm2 αn mβ =Wr 10α = r 2β+W 2[r 102 ]β =1.2 ×10-95eV ⋅m 103α =−7.5 ×1019eV ⋅ m 22.4 经过 sp 杂化后形成的共价键,其方向沿着立方体的四条对角线 的方向,求共价键之间的夹角。

固体物理:第二章 晶体的结合

固体物理:第二章 晶体的结合

晶体为什么形成这么有序的结构?
7
原子结合成晶体时,原子的外层电子要作重新
分布
不同分布产生了不同类型的结合

不同类型的结合力,导致了晶体结合
的不同类型。
+ = 原子
原子核+ 芯电子(稳定、满壳层)
价电子
原子外层的芯电子层对相互作用贡献不大,价电子的
相互作用
决定了原子间的相互作用后的性质。
同一种原子,不同的结合类型中具有不同的电子云分布,因此呈现出
10
我们讲到:
原子外层的芯电子层对相互作用贡献不大,价电子相互
作用
决定了原子间相互作用的性质。
原来中性的原子能够结合成晶体,除了外界的压力和温度 等条件的作用外,主要取决于原子最外层电子的作用。没 有一种晶体结合类型,不是与原子的电性有关的。
下面我们来系统学习一下:18
各壳层容纳的电子数
19
能量最低原理 “电子优先占据最低能态”
20
21
22
原子捕获电子的能力(电性)
一、电离能
定义:使原子失去一个电子所需要的能量称为原子的电离能。 从原子中移去第一个电子所需要的能量为第一电离能,从正1 价离子中再移去一个电子所需要的能量为第二电离能。
Na + 5.14 eV Na+ + e
23
电离能的大小可以用来度量原子对价电子的束缚强弱。 电离能越大,越难失去电子;电离能越小,越易失去电 子,金属性越强。 在一个周期内,从左到右,电离能不断增加。
24
二、电子亲和能
定义:一个中性原子获得一个电子成为负离子所释放出的能 量称为电子亲和能,亲和过程不能看成是电离过程的逆过程。 电子亲和能越大,那么得到电子的能力越大。 电子亲和能一般随原子半径的减小而增大。因为原子半径小, 核电荷对电子的吸引力较强,对应较大的互作用势。

固体物理-第二章

固体物理-第二章


如H2、N2、O2在低温时可以变成固体,室温下它们都是以气态分

子形式存在的,也就是说,室温的热能已足够破坏分子之间的结

合力,但分子内的结合力是很牢固的。这种分子间的力实际上是 范德瓦尔斯力,分子内的力就是共价键力,由于电子对键的客观
限制,使得H2、N2、O2只能以低配位的形式存在。
➢ 固态:存在一些相对高配位的共价键晶体结构,即整个晶体是靠 共价键力结合起来的,例如:金刚石的结构。
➢共价键与共价晶体
金刚石

➢ 和闪锌矿的结构有点类似:几何结构上两者的构型

完全相同(四配位),只是闪锌矿由S2-和Zn2+两种

离子组成,金刚石则全都是碳原子。






➢共价键与共价晶体
金刚石


➢ 两者存在本质差别:结合力不同。

✓ 闪锌矿是一种典型的离子晶体,同其它AB型离子结构一

样,是由于S2-和Zn2+两种离子的相对大小恰好合适,使 得相等数目的阴、阳离子成为六方密堆积,即大个的阴
1 k

V
P V
T
V
2U

V
2
V
应 用
在T=0K时(忽略原子振动的影响),晶体平衡体积为V0,则:
2U
K
V0

V 2
V V0
➢原子间相互作用能
抗张强度的计算
抗张强度Pm:晶体所能承受的最大引力


当晶体所受张力处于r=rm处时,有效引力最大,此时张力
氢键与氢键晶体
离子晶体的结合力与结合能混合键与混合键晶体

固体物理基础第2章 固体的结合

固体物理基础第2章 固体的结合

2-1 亲和能
亲和能: 中性原子 + (-e) → 负离子 中性原子吸收一个电子成为负离子所放出的能量
3 2 1 电子亲和能 / eV 0 -1 -2 -3 -4
Be
Mg Ca Zn
He
Ne
Ar
Kr
C
Si
V
Cu
Ge
F
Cl
Br
电离能均为正值(吸收能量),亲和能有正有负 与电离能的变化规律有何区别?
2-1 晶体结合能的普遍规律
原子间相互作用势能
A B u( r ) m n r r
r :两原子间的距离 A、B、m、n>0
A m r
吸引能
B n r
f (r )
排斥能
两原子间的相互作用力
du( r ) dr
2-1 晶体结合能的普遍规律
假设相距无穷远的两个自由原子间的相互作用能为零,相互作用力为零。
u( r )
(a)互作用势能和原子间距的关系 (b)互作用力和原子间距的关系
r
(a ) f (r )
rr r0 , f (r ) 0 ,
斥力 引力
r r0 , f (r ) 0, u(r )min
(b)
r r0 , f (r ) 0 ,
r0
rm
df d 2u ( ) ( 2 ) rm 0 r dr dr r

2-1 元素周期性规律
随着原子序数的递增
引起了
最外层电子数 1→8 (K层电子数 1→2) 原子半径: 化合价: 大→小(除稀有气体) +1→+7 -4→-1
核外电子排布呈周期性变化
决定了
(稀有气体元素为零)

固体物理第二章复习

固体物理第二章复习

式中



B
1
6
;

A2
A
4B
'N 1
A12
j
a12 j
A6 , A12 是仅与晶体结构有关的常数。
'N 1
A6
j
a6 j
3.原子晶体、金属晶体和氢键晶体
(1)原子晶体
结构:第Ⅳ族、第Ⅴ族、第Ⅵ族、第Ⅶ族元素都可以形成
原子晶体。
结合力: 共价键 (2)金属晶体
饱和性 方向性
层一共有 8 个量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就 是共价结合的 “饱和性”.
共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的 “方向性”.
10. 为什么许多金属为密积结构? 金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的
(2)结合力: 范德瓦尔斯力。
(3)配位数: 通常取密堆积,配位数为12。
(4)互作用势能:
u(r )

4
12



6

r r
U ( R)

2 N

A12


R
12

A6


R

6


雷纳德-琼斯势
r1 rA a, a1 1, r2 rB 2a, a2 2, r3 rC 3a, a3 3,
2( 1 1 1 1 ) ln( 1 x ) x x2 x3 x4

固体物理第二章 固体的结合

固体物理第二章 固体的结合

(四)范德瓦耳斯结合
1879年范德瓦耳斯(Van der Waals)提出在实际气体 分子中,两个中性分子(或原子)间存在着“分子力”, 即范德瓦耳斯力。由范德瓦耳斯力的作用所组成的晶体称 为分子晶体。
范德瓦耳斯结合往往产生于原来具有稳固电子结构的 原子或分子之间,如:具有满壳层结构的惰性气体元素, 或价电子已用于形成共价键的饱和分子。
18
固体物理
固体物理学
共价键与离子键间的混合键
完全离子结合(如NaCl):正负离子通过库仑相互 作用结合在一起, Na+和Cl-的电子云几乎没有重叠。
19
固体物理
固体物理学
完全共价结合(如金刚石):相邻两个C原子各出一个 未配对的自旋相反的电子归这两个原子所共有,在这两个原 子上找到电子的概率相等,即这两个C原子对共价键的贡献
15
固体物理
固体物理学
1

1 2
(j2s
j2 px
j2 py
j2 pz
)
2

1 2
(j2s
j2 px
j2 py
j2 pz
)
3

1 2
(j2s
j2 px
j2 py
j2 pz
)
4

1 2
(j2
s
j2 px
j2 py
j2pz )
“杂化轨道”
原来在2s和2p轨道上的4个电子,分别处于 1 , 2 , 3 , 4
21
固体物理
固体物理学
1. 有效离子电荷 q*
以 GaAs 为例:GaAs的离子实分别为带+3q 和+5q 的离 子Ga3+和As5+,每一对Ga 和As 共有8个价电子。 (1) 若为完全的共价结合,共价键上的每对电子均分在两 个近邻原子上,则:Ga-1As+1。 (2) 若为完全的离子结合(设Ga原子的3个价电子转移到As 原子),则:Ga3+As3-。 (3) 实际介于二者之间,引入有效离子电荷q*,(以电子 电荷为单位)Ga原子的q*肯定介于-1和+3之间。

固体物理第二章习题及答案

固体物理第二章习题及答案

第2章晶体的结合思考题1.是否有与库仑力无关的晶体结合类型?[解答]共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.2.如何理解库仑力是原子结合的动力?[解答]晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?[解答]自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.原子的动能与原子间的相互作用势能之和为晶体的内能.在0K时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能.4.原子间的排斥作用取决于什么原因?[解答]相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.5.原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么?[解答]在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为0r, 当相邻原子间的距离r>0r时, 吸引力起主导作用; 当相邻原子间的距离r<0r时, 排斥力起主导作用.6.共价结合为什么有“饱和性”和“方向性”?[解答]设N为一个原子的价电子数目, 对于IV A、V A、VI A、VII A族元素,价电子壳层一共有8个量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就是共价结合的“饱和性”.共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的 “方向性”.7. 共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?[解答]共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大. 8.试解释一个中性原子吸收一个电子一定要放出能量的现象.[解答]当一个中性原子吸收一个电子变成负离子, 这个电子能稳定的进入原子的壳层中, 这个电子与原子核的库仑吸引能的绝对值一定大于它与其它电子的排斥能. 但这个电子与原子核的库仑吸引能是一负值. 也就是说, 当中性原子吸收一个电子变成负离子后, 这个离子的能量要低于中性原子原子的能量. 因此, 一个中性原子吸收一个电子一定要放出能量. 9.如何理解电负性可用电离能加亲和能来表征?[解答]使原子失去一个电子所需要的能量称为原子的电离能, 电离能的大小可用来度量原子对价电子的束缚强弱. 一个中性原子获得一个电子成为负离子所释放出来的能量称为电子亲和能. 放出来的能量越多, 这个负离子的能量越低, 说明中性原子与这个电子的结合越稳定. 也就是说, 亲和能的大小也可用来度量原子对电子的束缚强弱. 原子的电负性大小是原子吸引电子的能力大小的度量. 用电离能加亲和能来表征原子的电负性是符合电负性的定义的.10.为什么许多金属为密积结构?[解答]金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云靠得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构. 11.何为杂化轨道?[解答]为了解释金刚石中碳原子具有4个等同的共价键, 1931年泡林(Pauling)和斯莱特(Slater)提出了杂化轨道理论. 碳原子有4个价电子, 它们分别对应s 2ϕ、xp 2ϕ、yp 2ϕ、zp 2ϕ量子态, 在构成共价键时, 它们组成了4个新的量子态).(21),(21),(21),(2122221222212222122221z y x z y x z y x z y x p p p s p p p s p p p s p p p s ϕϕϕϕψϕϕϕϕψϕϕϕϕψϕϕϕϕψ+−−=−+−=−−+=+++=,4个电子分别占据1ψ、2ψ、3ψ、4ψ新轨道, 在四面体顶角方向(参见图1.18)形成4个共价键.12.你认为固体的弹性强弱主要由排斥作用决定呢, 还是吸引作用决定?[解答]如上图所示, 0r 附近的力曲线越陡, 当施加一定外力, 固体的形变就越小. 0r 附近力曲线的斜率决定了固体的弹性性质. 而0r 附近力曲线的斜率主要取决于排斥力. 因此, 固体的弹性强弱主要由排斥作用决定. 13.固体呈现宏观弹性的微观本质是什么?[解答]固体受到外力作用时发生形变, 外力撤消后形变消失的性质称为固体的弹性. 设无外力时相邻原子间的距离为0r , 当相邻原子间的距离r >0r 时, 吸引力起主导作用; 当相邻原子间的距离r <0r 时, 排斥力起主导作用. 当固体受挤压时, r <0r , 原子间的排斥力抗击着这一形变. 当固体受拉伸时, r >0r , 原子间的吸引力抗击着这一形变. 因此, 固体呈现宏观弹性的微观本质是原子间存在着相互作用力, 这种作用力既包含着吸引力, 又包含着排斥力.14.你是如何理解弹性的, 当施加一定力, 形变大的弹性强呢, 还是形变小的强?[解答]对于弹性形变, 相邻原子间的距离在0r 附近变化. 令r r r ∆+=0, 则有).1(),1()1()(0000000r rnr r r rmr r rr r r r n n m m m m m ∆∆∆∆−≈−≈+=+=−−−−−−−因为0/r r ∆是相对形变, 弹性力学称为应变, 并计作S , 所以原子间的作用力.)(000000S r Bn r Am r BnS r AmS r B r A r B r A f n m n m n m n m −=−++−=+−=再令c r Bnr Am nm =−00, cS f =.可见, 当施加一定力, 形变S 大的固体c 小, 形变S 小的固体c 大. 固体的弹性是固体的属性, 它与外力和形变无关. 弹性常数c 是固体的属性, 它的大小可作为固体弹性强弱的度量. 因此, 当施加一定力, 形变大的弹性弱, 形变小的强. 从这种意义上说, 金刚石的弹性最强.15.拉伸一长棒, 任一横截面上的应力是什么方向? 压缩时, 又是什么方向?[解答]如上图所示, 在长棒中取一横截面, 长棒被拉伸时, 从截面的右边看, 应力向右, 但从截面的左边看, 应力向左. 压缩时, 如下图所示, 应力方向与拉伸时正相反. 可见, 应16.固体中某一面积元两边的应力有何关系?[解答以上题为例, 在长棒中平行于横截面取一很薄的体积元, 拉伸时体积元两边受的应力如图所示.压缩时体积元两边受的应力如下图所示.当体积元无限薄, 体积元将变成面积元. 从以上两图可以看出, 面积元两边的应力大小相等方向相反.17.沿某立方晶体一晶轴取一细长棒做拉伸实验, 忽略宽度和厚度的形变, 由此能否测出弹性劲度常数11c ?[解答]立方晶体c b a , ,轴是等价的, 设长棒方向为x (a , 或b , 或c )轴方向, 做拉伸实验时若忽略宽度和厚度的形变, 则只有应力1T 应变1S 不为0, 其它应力应变分量都为0. 由(2.55)可得 1111S c T =. 设长棒的横截面积为A , 长度为L , 拉伸力为F , 伸长量为L ∆, 则有: L L S A F T / ,/11∆==. 于是, L A FL c ∆/11=.18.若把上题等价成弹簧的形变, 弹簧受的力kx F −=, k 与11c 有何关系?[解答]上题中长棒受的力L c L AF ∆11=,长棒的伸长量L ∆即是弹簧的伸长量x . 因此,.11c L A k =可见, 弹簧的弹性系数k 与弹性劲度常数的量纲是不同的.19.固体中的应力与理想流体中的压强有何关系?[解答]固体受挤压时, 固体中的正应力321 , ,T T T 与理想流体中的压强是等价的, 但654 , ,T T T 不同于理想流体中的压强概念. 因为压强的作用力与所考虑截面垂直, 而654 , ,T T T 与所考虑截面平行. 也就是说, 理想流体中不存在与所考虑截面平行的作用力.这是因为理想流体分子间的距离比固体原子间距大得多, 流层与流层分子间不存在切向作用力.20.固体中的弹性波与理想流体中的传播的波有何差异? 为什么?[解答]理想流体中只能传播纵波. 固体中不仅能传播纵波, 还能传播切变波. 这是因为理想流体分子间距离大, 分子间不存在切向作用力, 只存在纵向作用力;而固体原子间距离小, 原子间不仅存在纵向作用力, 还存在切向作用力.。

固体物理2-2结合力和结合能

固体物理2-2结合力和结合能

2.2.1 两个饱和原子间的相互作用 考虑:由惰性原子所组成的最简单的分子晶体 分子晶体主要由 Van der waals 作用进行结合
-e
-e -e
-e
(a)
(b)
瞬时偶极矩的相互作用
(a)状态产生Coulomb吸引
(b)状态产生排斥
两个饱和原子,虽然电子是对称分布,但在某个 瞬时具有电偶极矩。
2U 0
r 2 r r0
f 0 r
2U
0
r 2 r rm
从上图可以看出:
1、当两原子相距很远时,相互作用力为0; 2、当两原子逐渐靠近时,原子间出现吸引力; 3、当r rm 时,吸引力达到最大; 4、当距离再缩小,排斥力起主导作用; 5、当r r0 时,排斥力和吸引力和相等,互作用力 为0,当 r r0时,排斥力迅速增大,相互作用主要 由排斥力决定。
V R3
U 0 R RR0
U V V0
R0 9V02
2U ()
R 2
K
R02 9V0
2U ( R 2 ) R0
2.2 分子力结合---分子晶体
1.分子晶体:由具有封闭满电子壳层结构的原子 或分子组成的晶体称为分子晶体。
2·举例:
a)满壳层结构的惰性气体He, Ne, Ar, Kr, Xe — 非极性(原子正负电荷重心重合)
U V
V V0
2U V 2
(V V V0
V ) 0
1 3U
2 V 3
(V V V0
V )2 0
只取到一次项,即线性
平衡位置时 U 0 V VV0

P
2U V 2
V V0
(V
V 0
)

压强与体弹性模量之间的关系

固体物理学:第二章 晶体的结合 (2)

固体物理学:第二章 晶体的结合 (2)

两粒子间的相互作用力f(r)和相互作用势能u(r)随粒子间距r变化 的一般关系如图
1:两粒子间的相互作用势能u(r) 两粒子间的相互作用势能u(r),可用下面的表达式表示
1:两粒子间的相互作用力
二. 晶体的结合能
Eb 为负值,表示晶体的能量比构成晶体的粒子处在自由状态时 的能量总和低。 Eb 的绝对值就是把晶体分离成自由原子所需要 的能量。Eb 也称为晶体的总相互作用能。
3:离子晶体:由正离子和负离子组成。
4:
二:基本特征
1. 离子晶体的模型:正、负离子—— 刚球 化合物:NaCl, CsCl是典型的离子晶体,晶体结
构如图所示。一种离子的最近邻离子为异性离子,离子 晶体的配位数最多只能是8(例如CsCl 晶体)。氯化钠 配位数是6。
2. 离子结合的特征
(1)离子键的形成 以 NaCl 为例 ,在凝聚成固体时,Na 原子失去
离子间的相互作用分为两大类:吸引作用和排斥作用。 (1) 静电引力,即正、负离子之间的库仑作用力(又称为 离子键;异极键)。
离子键无方向性和饱和性: 与任何方向的电性不同的离 子相吸引,所以无方向性;且只要是正负离子之间,则彼 此吸引,即无饱和性。
(2) 由于泡利不相容原理,两个离子的闭合壳层电子云的交 迭产生强大的排斥力; —— 排斥力和吸引力相互平衡时,形成稳定的离子晶体。
F
+-+-+-+-
-+-+-+-+
位错
+-+-+-+- -+-+-+-+
受力时发生错位,使正正离子相切,负负离子相切,彼此排 斥,离子键失去作用,故离子晶体无延展性 。如 CaCO3 可 用于 雕刻,而不可用于锻造,即不具有延展性 。

《固体物理学》房晓勇教材02-第二章 晶体的结合和弹性

《固体物理学》房晓勇教材02-第二章 晶体的结合和弹性


海 纳 百 川
大 道 致 远

(1)稀有气体的I1总是处于极大值(完满电子层),碱金属的I1处 于极小值(原子实外仅一个电子),易形成一价正离子。
(2)除过渡金属外,同一周期元素的I1基本随Z增加而增大(半 径减小);同一族中随Z增加I1减小。

(3)过渡金属的I1不规则地随Z增加,同一周期中,最外层ns2 大 纳 相同,核电荷加一,(n-1)d轨道加一电子,所加电子大部分 道 百 在ns以内,有效核电荷增加不多,易失去最外层的s电子。
1 1 ( 2 s 2 p x 2 p y 2 pz ) 2
“杂化轨道”
大 道 致 远
共价键结合比较强:原子晶体具有高力学强度、高熔点、 高沸点和低挥发性的特点,导电率和导热率低。原子晶

三、金属晶体
结合力:金属键
第Ⅰ族、第Ⅱ族及过渡元素晶体都是典型的金属晶体。
海 纳 百 川
海 纳 百 川
f (r )
r
(a )
r r0 , f (r ) 0 ,
斥力
r r0 , f (r ) 0 , 引力

r0
rm
r
(b )
r r0 , f (r ) 0, u(r )min
r rm , f ( rm )
最大有效引力

u(r )
du ( ) |r r0 0 dr
大 道 致 远

2.3 结合力的一般性质
一、原子间的相互作用 吸引力
海 纳 百 川
库仑引力 库仑斥力

原子间的相互作用力
排斥力
泡利原理引起
道 致 远

假设相距无穷远的两个自由原子间的相互作用能为零,相

《固体物理学》房晓勇-习题02第二章 晶体的结合和弹性

《固体物理学》房晓勇-习题02第二章 晶体的结合和弹性

第二章 晶体的结合和弹性2.1有一晶体,在平衡时的体积为0V ,原子之间总的相互作用能为0U ,如果相距为r 的原子间相互作用能由下式给出:()m n A Bu r r r=-+, 证明:(1)体积弹性模量为9mnK U V = (2)求出体心立方结构惰性分子晶体的体积弹性模量。

解:参考王矜奉2.2.1 根据弹性模量的定义可知022V V dV U d V dV dP V K ⎪⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-= …………………(1) 上式中利用了dVdUP -=的关系式。

设系统包含N 个原子,则系统的内能可以写成()()22m n N N A BU u r r r==-+ ……………(2) 又因为可把N 个原子组成的晶体的体积表示成最近邻原子间距r 的函数,即3V Nv NBr == (3)上式中B为与晶体结构有关的因子(如面心立方结构,2B =)。

又因为0211211()()323R m n dU dU N mA nB dV BNr dr r r NBr ++⎛⎫==-⋅ ⎪⎝⎭ ………………(4)00222111()(32V m n r r d U dr d N mA nB dV dV dr NBr r r ++=⎧⎫⎡⎤=⋅-⎨⎬⎢⎥⎣⎦⎩⎭ 2220000013392m n m n Nm A n B mA nB V r r r r ⎡⎤=⋅-+-+⎢⎥⎣⎦ (5)考虑平衡条件0)(0=r dVdU,得00m n mA nB r r =,那么(5)式可化为002222220000011()9292V m n m n d U Nm A n B NmA nB m n dV V r r V r r ⎡⎤⎡⎤=⋅-+=⋅-+⎢⎥⎢⎥⎣⎦⎣⎦022200000001()92929n m m n NnB mA mn N A B mnm n U V r r V r r V ⎡⎤⎡⎤=⋅-+=-⋅-+=-⎢⎥⎢⎥⎣⎦⎣⎦ ……(6) 将(6)式代入(1)式得:00020099mn mnK V U U V V =⋅-= (2)惰性分子晶体原子之间的相互作用势可以下式描述126()4()2()u r rr σσε⎡⎤=-⎢⎥⎣⎦ (7)此时m=12,n=6,式中1/6B A σ⎛⎫= ⎪⎝⎭,24A B ε≡,称为雷纳德-琼斯参数。

黄昆版固体物理学课后答案解析答案(1)

黄昆版固体物理学课后答案解析答案(1)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理第二章

固体物理第二章
第二章 晶体的结合
§2.1 晶体结合的基本类型
一、离子晶体
正负离子的电子壳层饱和,电子云分布基本上球对称,
满足球密堆积原则。 结合能 ~ 150 kcal/mol 典型晶体:NaCl、LiF等
二、共价晶体 共价结合的特征是具有方向性和饱和性。电子云分 布不是球对称的,不满足球密堆积原则。 共价结合的键合能力相当强,共价晶体一般硬度高, 熔点高。 结合能:~150 kcal/mol 典型晶体:金刚石、SiC等
任意两离子间的相互作用能为
q2 b u( r ) n 4 0 r r
q:一个离子所带的电量,异号: =+1 ;同号: =-1 设晶体中有N个正离子和N个负离子,
j q2 1 b U (2 N ) 4 r r n 2 j 0 0 j j

rj jr ,r为最近邻两离子间的距离,有
N q2 B U (r) n 4 0 r r

j0
j
j
—— Madelung常数,只与晶体结构有关
b B N n j0 j
待定
u实验(10-18J/pair) u理论(10-18J/pair) NaCl NaBr KCl KBr RbCl RbBr -1.27 -1.21 -1.15 -1.10 -1.11 -1.06 -1.25 -1.18 -1.13 -1.08 -1.10 -1.05
C2 C2 fi = 2 2 = 2 E h + C Eg
Zn
Se
2. 电离度 a. Coulson标度
2 PA - PB 1-λ fi = = 2 PA + PB 1+λ
PA、PB: 在A原子和B原子上找到电子的概率

固体物理第二章3-7

固体物理第二章3-7
晶体的结合能Eb(晶体的总相互作用能):
注: Eb的绝晶对体时值在的绝总是对能把零量E晶度b =体分E-离E成由组a原成自子(晶由能体负原量的值的N子个总)所自和需要的能量。
总相互作用能与结合能: N个原子组成的晶体的总相互作用能:
说明:
U 1 2
N i
N
u(rij )
j, ji
第i与第j个原子间 的相互作用能
基础。
1
2
氢分子的结合的价键理论:
忽略自旋与轨道、自旋与自旋的
相互作用。两氢原子的哈密顿量


为:
两氢原子的相互作用
Hˆ 2m
12
2 2
1
4 0
e2 rI 1
e2 rII 1
e2 rI 2
e2 rII 2
e2 r12
e2 rIII
电子 氢核
原子为孤立原子时,电子的基态波函数为:
rI1
两个极性分子之间的作 用力是库仑力。这一作 用力有定向作用。有使 偶极矩排成一个方向的
趋势。
极性分子存在永久偶 极矩, 每个极性分子就 是一个电偶极子, 相距 较远的两个极性分子之 间的作用力是库仑力。 有定向作用。
极性分子的相互作用
两个相互平行的电偶极子间的库仑势能:
库仑势能为:
+q
l1
q
r
+q
将平衡时晶格常数代入
U
(R)
2
N
[
A12
(
R
)12
A6
( )6
R
]
可以得到平衡时总的相互作用势为
U0
NA62
2 A12
平衡时体弹性模量:
根据
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ui u( rij ), i j
j 1 N
最大有效位置,对
U
应于能量曲线拐点 rm的物理含义:r=rm时,原子间的引力最大, 即结合力最大,也即结合强度。
固体物理第二章 7
1 N 1 N N ui u( rij ), i j 2 i 1 2 i 1 j 1
忽略表面效应,表面原子与其它原子相互作 用能相同:
固体物理第二章
17
固体物理第二章
18
3
典型的共价键是氢分子的共价键,两个氢原子 的价电子,围绕着两个氢原子核运动,形成 电子云。在两个氢核之间,为两个氢核所共 有。实际上,共价键的现代理论正是由氢分 子的量子理论开始的。 设想有原子A 和 B ,它们表示互为近邻的一对 原子。当它们是自由原子时,各有一个价电 子,归一化的波函数分别用 A 、 B 表示,即:
从能量角度来看,一块晶体处于稳定状态时,它的 总能量(动能和势能)比组成这个晶体的N个原子 在自由时的总能量低,两者之差就被定义为晶体的 结合能: Eb(cohesive energy) = EN(free energy)-Eo(crystal energy) 早期人们对结合能的研究很重视,希望能了解晶体 结构的稳定性,同时由结合能出发计算晶体的一些 平衡态性质。研究晶体结合能的意义: (1)计算晶格常数和体积弹性模量。因为晶体的结 合能和晶格常数和晶体的体积弹性模量有关,可以 通过结合能求出晶格常数和提及弹性模量。 (2)通过实验和理论的比较可以验证理论的正确性 (3)对实际研究提供正确的理论指导
0 2 U 设r=rm时,P=Pm,则: Pm ( )V Vm V V V
固体物理第二章 11
一些晶体的结合能,可粗略用下式来表示
U (r ) A B rm rn
P
2U
一般A, B, m, n均大于零,其中第一项为 吸引能,第二项为排斥能,通常m<n,因 为吸引能的变化比排斥能要缓慢的多。 对一些离子晶体m=1,n=9 对一些金属,m=1,n=3。
在两原子间的自旋反向电子对似乎产生吸引力,使两 原 子 键 和 , 从 而 能 量 降 低 , 称 为 成 键 态 ( bonding state)。 能量较高的-态则称反键态(antibonding state),电 子处在-态时,能量高于自由原子情形,不利于原子 间的键和。
固体物理第二章 23
思考题:参考下图分析在离子晶体中为什么没 有密堆积结构
( 4 )离子晶体的结合能高,对 NaCl , u0 为 7.95eV,一般的典型值为每对离子为5eV ( 5 )离子晶体的特点:硬度高,具有很高 的熔点,离子晶体结合的稳定性导致导电 性能差,膨胀系数小。 二 、 共 价 键 (covalent bond) 与 共 价 晶 体 (covalent crystal) 有效地填满原子的外电子层而达到某种稳定组 态的另一种方法是共用电子,于是形成共价键。 以共价键结合的晶体称为共价晶体,共价结合 是靠两个原子各贡献一个电子形成所谓共价键。
成键态能量相对于原子能级降低了。其物理原因是由 于成键态中电子云密集在两个原子核之间,同时受 两个原子核的库仑吸引作用的结果。与此同时,反 键态的能量升高了。 由于成键态可以填充正、反自旋的两个电子,这样一 对为两个原子所共有的自旋相反配对的电子结构称 为共价键。 分子轨道亦可以按对称性分类 态:相对于键轴(两核连线)旋转对称且不存在平 行通过键轴的节面的分子轨道
固体物理第二章 3
2-1 结合力的普遍性质与结合能
研究组成晶体的原子结构和它们之间的结合力与结 合力的性质,是固体物理中最基本、最重要的问题 之一。 不同的晶体具有不同的结合力类型,但它们的结合力 在定性上具有共同的普遍性质。 在晶体中,粒子的相互作用可分为吸引作用和排斥作 用两类。当粒子间距离较远时(大于几个A),吸引作 用为主;当距离较近时 ( 小于平均粒子间距),排斥 作用为主;当距离适当时,二者相等,相互抵消, 使晶体中的粒子处于平衡状态。 首先研究处于基态的两个相同的原子由相距无穷远处 移到一起时能量和结合能变化的情形。
固体物理第二章 12
2
2-2 晶体结合力的基本类型与晶体分类
按结合力的性质,晶体可分为五类,即离子晶体, 共价晶体,金属晶体,分子晶体及氢键晶体。 一、离子键(ionic bond)与离子晶体(ionic crystal) 原子间最简单的作用力是离子键,它产生于正电 荷与负电荷之间的静电相互吸引。 这种结合的基本特点是以离子而不是以原子为结 合的单元。 离子晶体的典型晶格是正负离子相间排列。因此 库仑作用的总效果是吸引的。。
(r )
1 ( A B ), S A (r )B (r )dr 2(1 S )
其中S为重叠积分,标志A和B的交叠程度,+(r)和 -(r)称为分子轨道。在某一位置找到电子的几率为:
| (r ) |2 1 (| A |2 | B |2 2 A B ) 2(1 S )
第二章 晶体的结合(crystal binding)
到底是什么使晶体结合在一起?为什么会有结构、性能 上如此大差别的各种各样的晶体? 这取决于组成晶体 的元素的性质及其相互作用。 在自然界存在的四大相互作用(万有引力、电磁相互作 用力、强相互作用力和弱相互作用力)中, 与固体内 原子相互作用有关的只有一种:即电磁相互作用, (强弱相互作用范围在 10-15 ~ 10-16m 内,此为原子核 范围内) 在晶体中,束缚原子和分子的力主要是静电力,而磁力 的作用则是很微弱的,万有引力可忽略。原子内电子 的运动,对结合力产生很重要的影响。晶体的几种结 合类型,主要是由原子和分子周围电子分布的差异决 1 固体物理第二章 定的。
H A A ( 2 2 V A ) A A A 2m
固体物理第二章 19
H B B (
2 2 V B ) B B B 2m
A B 0
VA , VB 为作用在电子上的库仑势,在绝热 近似下,氢分子中电子系统的哈密顿量为:
H
固体物理第二章 2
结合能的单位为:KJ/mol, kcal/mol, eV/atom 现在,在新材料的研究中,通过结合能的计算对可能 的结构进行判断仍颇受关注,同时,基于密度泛函理 论和高性能计算机应用的计算材料的发展,也使对共 价晶体和金属结合能的计算更为准确。但总体来讲, 人们更多的关注材料的能带结构、非平衡性质、光学 吸收特性等。结合能的研究不再像早期那样重要。 密度泛函理论是一种研究多电子体系电子结构的量子 力学方法。密度泛函理论的主要目标就是做为研究的 基本量。自1970年以来,密度泛函理论用电子密度取 代波函数在固体物理学的计算中得到广泛的应用。密 度泛函理论是目前多种领域中电子结构计算的领先方 法。

* H dr
* H aa * A H A dr B H B dr 0
* H ab * A H B dr B H A dr 0

* dr
2 2C ( H aa H ab )
+态波函数是对称的,可填充两个自旋相反的电子, +态的能量亦低于自由氢原子1s态的能量。较多出现
(1)晶格常数(Equllibrium lattice constant): 当质点结合成稳定的晶体时,结合能为极小;
u ( r ) 0 r r r0
(2)压缩系数(compressibility)和体弹性模量 (bulk modulus)

1 V ( ) V P
P ( U ) V
固体物理第二章 4
如图,表示原子间相互作用力f及能量u随原 子间距r的变化规律。
对原子做功能量是正的, 吸 引 是原 子做 功 ,所 以 其能量是负的。
吸引力:异性电荷的库仑引力 排斥力有两个来源: 同种电荷静电排斥 泡利不相容原理的要求,这种情况相当于电 子之间的排斥力作用。 总之,原子间的相互作用包含引力和斥力两部 分,当两原子很靠近时,斥力大于引力,总作 用为斥力,当两原子处于 r r 时,引力和斥 0 力相等,达到平衡。 r0 的物理含义: r=r0 时,原子间的势能最低, 结构最稳定,r0即为原子间的平衡距离。
固体物理第二章 21
沿两原子核连线方向给出几率函数的示意。-态电子 云在两核之间有分布几率为零的节点,而对+态,电 子云在两核之间的几率明显升高,大体是自由原子时 的一倍。
固体物理第二章 22


* H dr

* dr
2 2C ( H aa H ab )
H ii (
对于i (ri)一般近似为原子轨道的线性组合(LCAO)
i (ri ) C[ A (ri ) B (ri )]
2 2 i VAi VBi ) ii , i 1, 2 2m
其中C是归一化因子,表示不同原子波函数组合成分 子轨道波函数时的权重因子。计算结果可得 =1:
离子晶体的特点: ( 1 )构成离子晶体的单元是离子,电子分布 局域在离子实附近,形成稳定的球对称电子 壳层结构; ( 2 )库仑作用使离子聚合起来,但当两个满 壳层离子相互接近到它们的电子云发生重叠 时,就会产生强烈的排斥作用,电子云动能 正比于(电子云密度)2/3,实际的离子晶体便是 在邻近离子间的排斥作用相抵而达到平衡。 ( 3 )离子晶体是复式格子,配位数最多只能 是8,结构不能从密堆积考虑。而且一定是复 式格子。 16 固体物理第二章
这一四体问题迄今还不能严格求解,需作近 似处理,常用的比较成功的做法是分子轨道 法 (Molecular Orbital Method) 。忽略电子 - 电 子间相互作用,且假定 : (r1 , r2 ) 1 (r ) 2 (r )
固体物理第二章 20
2 2 2 2 1 2 VA1 VA 2 VB1 VB 2 V12 2m 2m
相关文档
最新文档