光伏离网系统设计思路、常见问题及解决方案

合集下载

离网光伏系统设计方案

离网光伏系统设计方案

离网光伏系统设计方案一、概述二、需求分析1.电源需求:需确定离网负载需要供应的电能,包括负载功率、耗电时间等。

2.光伏资源:通过研究目标地区的光伏辐照度数据,确定该地区的光伏资源充足度。

3.系统可靠性:需要保证系统的可靠性和稳定性,使其能持续为负载提供电能。

三、系统组成1.光伏发电子系统:通过光伏组件将太阳能转化为直流电能,并通过充电控制器、功率优化器等电路对光伏发电系统进行控制和保护。

2.电池储能系统:储能系统由蓄电池组成,将光伏发电系统产生的电能进行储存,以供给离网负载使用。

根据负载需求和离网时间的长短,选择合适的电池容量和种类。

3.逆变器系统:将储存在电池中的直流电能转换为交流电能,以满足离网负载的使用需求。

逆变器系统还具有电压稳定、频率稳定和保护等功能。

4.控制系统:控制系统对光伏发电子系统、电池储能系统和逆变器系统进行集中控制和管理,确保系统的正常工作和高效运行。

四、系统设计考虑因素1.光伏组件的选择:根据目标地区光照条件选择高效的光伏组件,以提高系统的发电效率。

2.电池容量的确定:需根据负载需求和离网时间长短,以及光伏系统的发电能力,合理确定电池容量。

3.逆变器的选型:需选择适合离网光伏系统的逆变器,确保逆变器能够正常工作和输出满足负载需求的交流电。

4.控制系统的设计:控制系统需要具备监测、控制、保护和管理等功能,以实现对系统的全面控制和管理。

五、系统运行与维护1.系统运行:光伏发电系统将通过充电控制器对电池进行充电,并将电能转换为直流电供逆变器使用。

逆变器将直流电能转换为交流电供给离网负载使用。

2.系统维护:定期对光伏组件进行清洁和检查,确保其正常工作。

对电池进行定期充电和放电以防止过充和过放,延长电池寿命。

对逆变器和控制系统进行检查和维护,确保其正常工作。

六、系统优化1.节能优化:通过调整离网负载的使用电量,减少能量消耗,提高系统能量利用率。

2.多能互补:可通过增加其他可再生能源发电系统,如风力发电、水力发电等,与光伏系统组合使用,以增加系统的稳定性和可靠性。

光伏离网系统设计思路、常见问题及解决方案

光伏离网系统设计思路、常见问题及解决方案

光伏离网系统设计思路、常见问题及解决方案在现代日常生活中,通常我们认为用电是理所当然的事情,然而,当今世界上却还有超过20亿人生活在缺电或者无电地区。

以我们国家为例,由于经济发展水平的差异,西部仍有部分偏远地区的人口没有解决基本用电问题,无法享受现代文明。

光伏离网发电不仅可以解决无电或者少电地区,最过5100考。

光伏离网发电系统主要由光伏组件,支架,控制器,逆变器,蓄电池以及配电系统组成。

系统电气方案设计,主要考虑组件,逆变器(控制器),蓄电池的选型和计算。

设计之前,前期工作要做好,需要先了解用户安装地点的气候条件,负载类型和功率;白天和晚上的用电量,当然,用户的预算和经济情况也要了解清楚,光伏离网系统,用电是靠天气,没有100%的可靠性,这一点一定要和客户讲清楚。

知道以上这些情况,就可以开始做设计了。

光伏离网系统设计三大原则1、根据用户的负载类型和功率确认离网逆变器的功率,家用负载一般分2远低于全年平均值,如果还按最差情况设计太阳能电池组件的功率,那么在一年中的其他时候发电量就会远远超过实际所需,造成浪费。

这时只能考虑适当加大蓄电池的设计容量,增加电能储存,使蓄电池处于浅放电状态,弥补光照最差季节发电量的不足对蓄电浊造成的伤害。

组件的发电量并不能完全转化为用电,还要考虑控制器的效率和机器的损耗以及蓄电池的损耗,太阳能控制器有PWM和MPPT两种类型,PWM控制器效率约85%,输入电压范围比较窄,但价格比较低,MPPT控制器效率约95%,价格比较高。

蓄电池在充放电过程中,也会有10-15%的损耗。

离网系统可用的电量=组件总功率*太阳能发电平均时数*控制器效率*蓄电池效率。

有一些离网用户,没有装过电表,对自己的用电情况不是十分清楚,还有1是W,度不等。

3信、导航、医院救治等则在3~7天内选取。

另外还要考虑光伏发电系统的安装地点,如果在偏远的地方,蓄电池容量要设计得较大,因为维护人员到达现场就需要很长时间。

离网光伏系统设计方案

离网光伏系统设计方案

离网光伏系统设计方案离网光伏系统设计方案离网光伏系统是一种独立的发电系统,不依赖于传统的电网供电,可以在没有电网供电的地方提供电力供应。

以下是一份离网光伏系统设计方案:1. 系统规模和功率需求:首先确定所需的发电容量和功率需求,考虑到用电设备的种类和数量,并预估每天的用电量。

根据这些信息,确定适当的系统规模和发电功率。

2. 太阳能电池板选择:选择高效的太阳能电池板以提供足够的电力。

考虑到可用的安装空间和太阳能资源的可利用程度,选择适当的太阳能电池板类型和数量。

3. 蓄电池选择:选择适当的蓄电池以存储白天收集到的电能,供应夜间或云天的电力需求。

选择高效的蓄电池,考虑其容量、充电和放电效率,以及寿命等因素。

4. 逆变器和控制器选择:逆变器将直流电转换为交流电,供应家庭和设备使用。

选择适当的逆变器,考虑其容量和转换效率。

控制器将太阳能电池板和蓄电池连接到逆变器,监控和管理系统运行。

5. 线路设计和安全:设计适当的电线和线路连接太阳能电池板、蓄电池、逆变器和用电设备,确保电力传输的安全和稳定。

6. 安全性和保护措施:考虑到天气条件和环境因素,对系统进行适当的安全性和保护措施。

例如,防雷、过压和短路保护装置。

7. 监控和维护:安装监控系统,监测太阳能电池板的发电效率和系统的运行情况。

定期维护和清洁太阳能电池板以最大程度地提高其效率和寿命。

8. 系统节能和优化:考虑到能源的有效利用和节约,设计系统以最大限度地提高能源利用率。

例如,使用高效的电器设备和灯具,合理设置用电时间和能源管理。

总之,离网光伏系统的设计方案应该充分考虑到用户的用电需求、可用的太阳能资源、系统组件的选择和配套、系统的安全性和稳定性,以及系统的监控和维护等方面。

同时,注重节能和优化,最大化提高能源利用效率。

光伏离网系统设计方案

光伏离网系统设计方案

光伏离网系统设计方案
离网光伏系统的设计方案主要包括组件选择、系统布置、控制器和逆变器选择以及系统运行和维护等方面。

首先,在组件选择方面,应选用具有高效率和良好耐候性能的太阳能光伏组件。

可以考虑使用单晶硅或多晶硅太阳能电池板,其高转换效率和长寿命能够保证系统的稳定和可靠运行。

其次,在系统布置方面,需要根据实际用电需求和光照条件合理布置光伏组件。

应选择光照条件良好、无遮挡物、日照时间充足的区域进行组件安装,并确保组件之间的间距合理,以充分利用太阳能资源。

再次,控制器和逆变器的选择也是离网光伏系统设计的重要方面。

控制器的主要功能是对电池的充放电过程进行控制和保护,确保电池的安全和稳定运行。

逆变器则负责将直流电转换为交流电供电使用。

应选用具有高效率和稳定性能的控制器和逆变器,以提高系统的整体效率和可靠性。

最后,系统运行和维护方面需要注意以下几点。

首先,应定期检查光伏组件的清洁情况,及时清除组件表面的灰尘和杂物,以确保光伏组件的发电效率。

其次,定期检查电池的充电和放电状态,及时补充不足的电量,防止电池失去充电能力。

同时,还应定期检查控制器和逆变器的运行状态,确保其正常工作。

最后,需要定期对系统进行巡检和维护,及时发现和处理故障,保证系统的正常运行。

综上所述,离网光伏系统的设计方案应综合考虑组件选择、系统布置、控制器和逆变器选择以及系统运行和维护等方面,以保证系统的高效率和可靠性。

新型离网光伏发电系统方案设计

新型离网光伏发电系统方案设计

新型离网光伏发电系统方案设计
一、研究背景
随着经济发展的加快,人们对能源的依赖也不断增加,其中电能的消
耗量不断增加,光伏发电作为可再生能源之一的优势越发凸显,越来越多
的人们开始重视这种可再生能源,认识到其能源的优势。

但是,传统的光
伏发电受电网接入限制,受地形和电网规划条件限制,导致很多人无法使
用这种技术,自给自足受到困扰,电力不足。

考虑到这个问题,研究开发
出离网光伏发电系统,从而解决用户的能源问题,真正实现自主发电,自
给自足,这是本文的研究背景。

二、研究内容
离网光伏发电系统是一种能够在电网外发电的能源系统。

它采用太阳
能转换成电能,利用电池存储电能,控制器调节发电,实现自主发电,解
决用户的电力不足问题。

本文针对此研究,主要是对其方案的设计,进行
如下研究内容:
1.在分析当地的气候条件,计算出需要的光伏发电系统容量,以便确
定所需的光伏发电系统组件的总容量;
2.确定系统组件的类型,并从技术性能,可靠性等方面考虑进行选型;
3.计算系统的配置,将系统组件分配到各个分支,达到最佳的配置;
4.计算系统指标。

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案一、引言离网型光伏发电系统是指将光伏发电系统与电网完全隔离,并通过储能设备储存电能,提供给用户使用。

光伏发电系统通过太阳能板将太阳能转换为直流电能,再经过逆变器将直流电转换为交流电,供电给用户使用。

在无法接入传统电网的地区或需要独立供电的应用场景中,离网型光伏发电系统具有广泛的应用前景。

二、系统组成1.光伏电池组:光伏电池组是光伏发电系统的核心部件,由多个太阳能电池板组成。

太阳能板能够将阳光转化为直流电能,为系统提供能源。

2.充放电控制器:充放电控制器主要负责对光伏电池组进行控制和管理,确保系统的充电和放电过程稳定。

充放电控制器还可监测电池组的电压、电流和温度等参数,以提高系统的安全性和效率。

3.储能设备:储能设备是离网型光伏发电系统的关键组成部分,用于储存多余的电能,并在需要时释放。

常见的储能设备包括蓄电池、超级电容、储氢罐等。

蓄电池是较常用的储能设备,能够将电能长时间存储,并通过逆变器将储存的直流电转换为交流电。

4.逆变器:逆变器是将光伏电池组输出的直流电转换为交流电的关键设备。

逆变器可以将直流电的电压和频率转换为符合用户需求的交流电。

三、系统设计1.太阳能资源评估:根据光照强度和日照时间等要素,评估系统所处地区可利用的太阳能资源。

通过太阳能资源评估,确定光伏电池组的组件类型和数量,以及逆变器的容量。

2.负载需求分析:根据用户的用电需求,确定系统的负载容量和负载类型。

负载需求的分析包括负载功率和运行时间的估算。

对于不同类型的负载,可以分配不同的储能容量。

3.储能容量设计:储能容量的设计需要考虑系统的负载需求和太阳能资源。

通过计算所需的电能储存量,确定储能设备的容量。

储能设备的容量应能满足负载的用电需求,并在连续阴天等情况下保证供电稳定。

4.系统可靠性设计:离网型光伏发电系统的可靠性设计是确保系统正常运行的重要因素。

采用双冗余设计可以提高系统的可靠性,例如采用多组光伏电池板、多台储能设备和逆变器等。

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案
一、系统基本原理离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。

系统一般由太阳电池组件组成的光伏方阵、太阳能充放电控制器、蓄电池组、离网型逆变器、直流负载和交流负载等构成。

光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能充放电控制器给负载供电,同时给蓄电池组充电;在无光照时,通过太阳能充放电控制器由蓄电池组给直流负载供电,同时蓄电池还要直接给独立逆变器供电,通过独立逆变器逆变成交流电,给交流负载供电。

图1 离网型光伏发电系统示意图
(1)太阳电池组件
太阳电池组件是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能;
(2)太阳能充放电控制器
也称光伏控制器,其作用是对太阳能电池组件所发的电能进行调节和控制,最大限度地对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。

在温差较大的地方,光伏控制器应具备温度补偿的功能。

(3)蓄电池组
其主要任务是贮能,以便在夜间或阴雨天保证负载用电。

(4)离网型逆变器
离网发电系统的核心部件,负责把直流电转换为交流电,供交流负荷使用。

为了提高光伏发电系统的整体性能,保证电站的长期稳定运行,逆变器的性能指标非常重要。

二、主要组成部件介绍。

太阳能离网工程安装方案

太阳能离网工程安装方案

太阳能离网工程安装方案一、前言太阳能离网工程是指通过太阳能光伏发电系统,将太阳能转化为电能,满足建筑物、车辆、通信设备等设施的独立供电需求,不依赖于电网。

太阳能离网系统具有环保、可靠性高、无噪音、维护成本低等优势,适用于边远地区、山区、荒漠及需要临时电力的地方。

本文旨在介绍太阳能离网工程的安装方案,包括方案概述、系统组成、安装步骤及注意事项等内容,希望能对相关人员提供参考。

二、方案概述1. 方案目的本方案旨在设计并安装一套太阳能离网系统,以实现独立供电的需求。

系统将由太阳能组件、控制器、电池、逆变器、电源管理系统等组成,能够稳定、高效地将太阳能转化为电能,并能储存电能以备不时之需。

2. 方案范围本方案范围包括太阳能组件的安装、太阳能电池储能系统的配置、逆变器的安装以及整个系统的联调等工作。

3. 方案目标本方案的目标是通过合理选材、合理布局、合理规划等手段,确保系统能够稳定、高效地运行,满足用户的独立供电需求。

三、系统组成1. 太阳能组件太阳能组件是太阳能离网系统的核心部件之一,将太阳能转化为电能。

优质的太阳能组件应具备高光电转换效率、耐腐蚀、耐高温、抗风吹等特点。

常见的太阳能组件有单晶硅、多晶硅、薄膜等类型。

2. 控制器控制器用于对太阳能组件的输出电压和电流进行控制,保证充电电压和电流的精确控制,并对电池进行过充、过放、过流、短路等保护措施。

3. 电池电池是太阳能离网系统的储能部件,可以储存白天太阳能发电系统产生的电能,以供晚上或天阴时使用。

电池的选择应考虑功率、容量、寿命、充放电效率、安全性等方面。

逆变器是将直流电转化为交流电的装置,实现光伏电池发出的直流电转变为交流电,以满足实际用电需求。

逆变器的选择应考虑功率、波形、效率等方面。

5. 电源管理系统电源管理系统用于监测、管理太阳能离网系统中的各种设备,包括太阳能组件、控制器、逆变器、电池等设备。

该系统可实现远程监控、诊断及故障排除,并能实现系统的自动化运行。

光伏离网系统设计方案

光伏离网系统设计方案

光伏离网系统设计方案一、引言随着可再生能源的快速发展和环境问题的日益严重,光伏离网系统逐渐成为人们研究和应用的焦点之一。

光伏离网系统是指通过太阳能光伏发电系统将太阳能转化为电能,并将其中一部分直接馈回电网供给其他用户使用,同时将另一部分电能储存在电池中以备无光照时使用。

本文将介绍光伏离网系统的设计方案。

二、主要组成1. 太阳能光伏模块太阳能光伏模块是光伏离网系统的核心部件,它的作用是将太阳能转化为直流电能。

光伏模块通常由多个太阳能电池组成,通过并联或串联的方式组成电池组。

2. 光伏逆变器光伏逆变器是将光伏发电模块产生的直流电能转化为交流电能的装置。

逆变器具有高效率、低损耗和稳定的特点,能够将直流电能转化为标准的交流电输出。

3. 电池组电池组是光伏离网系统的储能装置,它可以储存太阳能发电系统产生的多余电能,并在无光照时提供电能供给使用。

电池组通常由多个电池单元组成,并可以根据需要进行扩展。

4. 电网连接装置电网连接装置是将光伏离网系统连接到公共电网的关键设备。

它通过逆变器将系统产生的电能馈回电网,并可以将电网的电能供给系统使用。

三、离网系统设计方案1. 太阳能光伏模块的选择在选择太阳能光伏模块时,需要考虑模块的转换效率、耐久性和可靠性。

同时,根据实际情况确定光伏模块的数量和布置方式,以确保最大程度地利用太阳能资源。

2. 光伏逆变器的选型逆变器的选型要考虑系统的容量和负载特点,确保逆变器能够稳定地运行和高效地将直流电能转化为交流电能。

此外,还要考虑逆变器的保护功能和通信接口,以便实现远程监控和管理。

3. 电池组容量的确定电池组的容量应根据用户的负荷需求和无光照期间的供电时间确定。

需要考虑到充电和放电效率、循环寿命以及安全性等因素,确保系统能够提供稳定可靠的电能供应。

4. 电网连接装置的设计电网连接装置需要符合当地的电网标准和要求,确保光伏离网系统与电网的连接稳定可靠。

同时,还需要考虑到电网故障时的安全保护和自动切换功能。

基于10KW离网光伏发电系统地面电站系统及施工方案

基于10KW离网光伏发电系统地面电站系统及施工方案

基于10KW离网光伏发电系统地面电站系统及施工方案离网光伏发电系统是一种通过光伏板将太阳能转换为电能的绿色能源系统。

它可以独立运行,不依赖传统电网,适用于偏远地区、岛屿等无法接入电网的地方。

下面我将基于10KW离网光伏发电系统,介绍地面电站系统和施工方案。

地面电站系统的设计:1.光伏板选型:为了确保系统的性能和寿命,选择高效率、高质量的光伏板至关重要。

常见的光伏板类型有单晶硅、多晶硅和薄膜太阳能电池板,可以根据实际需求进行选择。

2.支架结构设计:支架是承载光伏板的重要组成部分,必须具备足够的承载能力和稳定性。

常见的支架有固定支架、倾斜支架和跟踪支架,根据地形和日照角度选择合适的支架结构。

3.逆变器选型:逆变器是将光伏发电系统输出的直流电转换为交流电的关键设备。

选用品质可靠、效率高的逆变器可以提高系统的发电效率和稳定性。

4.电池储能系统:为了应对天气变化和能源波动,可以考虑增加电池储能系统。

储能系统可以帮助存储多余的电能,以备不时之需。

施工方案:1.地面准备:首先需要对选定的地面进行准备工作,包括清理杂草、夯实土地、平整地面等,确保地面平坦、承载能力足够。

2.安装支架:根据设计方案,在地面上安装支架结构,确保支架结构稳固牢固,能够承载光伏板的重量。

3.安装光伏板:将选定的光伏板安装在支架上,连接好电缆,确保每块光伏板都能正常接收太阳能。

4.安装逆变器:选择合适的位置安装逆变器,并连接好输入输出线路,确保逆变器能够正常工作。

5.联调测试:安装完成后进行系统检查和联调测试,确保所有设备能够正常运行,输出电能稳定。

6.系统调试:根据实际情况进行系统调试,调整光伏板的角度和方向,优化系统的发电效率。

7.运行维护:定期对系统进行检查和维护,确保系统长期稳定运行,延长设备寿命。

总结:。

离网型太阳能光伏发电系统设计

离网型太阳能光伏发电系统设计

离网型太阳能光伏发电系统设计离网型太阳能光伏发电系统是一种利用太阳能光伏板将太阳能转化为电能,不依赖于传统电网供电的独立发电系统。

在一些偏远地区、山区、海岛等电力资源匮乏的地方,离网型太阳能光伏发电系统成为一种重要的可再生能源发电方式。

本文将从组成部分、系统设计和优势等方面进行详细介绍。

太阳能光伏板组是系统的核心部分,通过光伏效应将太阳能转化为直流电能。

在选择光伏板时,需要考虑光伏板的功率、转换效率和可靠性等参数,以确保系统的稳定发电。

储能设备主要用于储存电能,以应对夜间或阴天等无法直接获取太阳能的情况。

目前常用的储能设备有铅酸蓄电池和锂离子电池等。

在选择储能设备时,需要考虑储能容量、寿命、充放电效率等因素。

逆变器用于将直流电能转化为交流电能,以满足家庭或办公室等用电需求。

逆变器的选择需要考虑输出功率、转换效率和负载容量等因素。

控制器是系统的智能控制中心,用于监测和控制光伏发电系统的运行状态。

控制器可以监测太阳能光伏板组的输出功率、电池的电量、负载的电流等信息,并能根据实际情况进行调节,以保证系统正常运行和安全运行。

在设计离网型太阳能光伏发电系统时,需要考虑以下几个方面。

首先,要确定系统的总功率需求,从而确定光伏板组和储能设备的容量。

其次,需要确定太阳能光伏板的安装方式和角度,以最大限度地提高光伏板的光吸收效率。

此外,还需要考虑光伏板组到储能设备的连线方式和长度,以减小能量传输损失。

最后,需要合理安装逆变器和控制器,并确保系统的运行安全可靠。

离网型太阳能光伏发电系统具有诸多优势。

首先,它不依赖于传统电网供电,无需支付电费,可以有效降低用电成本。

其次,太阳能是一种可再生能源,具有取之不尽、用之不竭的优势,对环境没有污染。

再次,光伏发电系统可以按需配置光伏板组和储能设备,灵活性高,适应性强。

此外,太阳能光伏发电系统的维护成本相对较低,寿命长,维护简便。

综上所述,离网型太阳能光伏发电系统是一种可行的可再生能源发电方式。

离网光伏系统设计方案

离网光伏系统设计方案

离网光伏系统设计方案1. 引言在能源紧缺和环境污染加剧的今天,利用可再生能源成为解决全球能源问题的重要途径。

光伏发电作为一种清洁、可再生的能源,得到了广泛应用。

离网光伏系统通过将光能转化为电能,为家庭和企业提供独立的电力供应方案。

本文将详细介绍离网光伏系统的设计方案。

2. 设计方案离网光伏系统的设计包括以下几个关键步骤:2.1 光伏板选择光伏板是光伏系统的核心组件,质量和性能的选择对系统的发电效率和安全性有着重要影响。

选择光伏板时应考虑光伏板的功率、温度系数、转换效率等因素。

通常情况下,多晶硅光伏板是一种较为理想的选择。

2.2 电池组设计电池组是光伏系统的能量存储装置,用于储存白天发电所产生的多余电能以供夜间使用。

在设计电池组时,需要考虑储能容量、充放电效率和充放电速度等因素。

常见的电池组选择包括铅酸电池、锂离子电池和钠硫电池等。

2.3 逆变器选择逆变器是将光伏板产生的直流电转换为交流电的关键设备。

通过选择合适的逆变器,能够将不断变化的光伏板输出电压稳定在标准电压输出。

逆变器的选择应考虑额定功率、运行温度和转换效率等因素。

2.4 系统监控与维护建立系统监控与维护机制,能够及时发现和解决系统故障,确保系统的正常运行。

系统监控能够实时监测光伏板的发电功率、电池组的充放电状态以及逆变器的运行情况,及时报警并采取措施维护系统。

3. 设计过程在设计离网光伏系统的过程中,需要考虑以下几个关键因素:3.1 负载需求根据实际负载需求,估算出所需的电能储存容量和系统发电能力。

在考虑到负载需求的同时,还需充分利用光伏系统发电的可再生特性,提高系统的经济性和可持续性。

3.2 组件和材料选择根据系统设计要求,选择合适的光伏板、电池组和逆变器等组件。

在选择材料时,不仅要考虑其性能指标,还要考虑质量、耐用性和成本等因素。

3.3 系统布局根据实际场地条件,对光伏板进行布局,确保最大限度地接收到太阳辐射。

同时,合理布置电池组和逆变器,提高系统的能量转换效率和安全性。

光伏存在的问题和改进方案

光伏存在的问题和改进方案

光伏存在的问题和改进方案1. 问题概述光伏是一种利用太阳能产生电能的技术,具有环境友好、可再生等优点。

然而,光伏系统在实际应用中面临一些问题,如能效低下、稳定性差、材料成本高等。

解决这些问题将推动光伏技术的发展,提高其在能源领域的应用。

2. 目标通过改进现有光伏技术,解决光伏存在的问题,提高其能效、稳定性和降低成本,以推动光伏技术的可行性和效率。

3. 实施步骤步骤一:提高光伏能效目标:通过优化光伏系统的设计和调节,提高光伏能效。

1.优化光伏组件的设计,减少光伏能量损失。

–采用高效率太阳能电池,如多结太阳能电池、钙钛矿太阳能电池等。

–提高光伏组件的光电转换效率,降低光电转换过程中的能量损失。

2.提高光伏系统的发电效率。

–优化光伏阵列的布局和倾角,提高光照接收效率。

–采用追踪系统,随着太阳的位置调整光伏组件的角度,最大限度地吸收太阳能。

3.降低光伏系统的功耗。

–优化光伏系统的电路设计,减少电路的能量损耗。

–使用高效率的逆变器,将直流电转换为交流电时尽量减少能量损耗。

步骤二:提高光伏系统的稳定性目标:通过加强光伏系统的稳定性,提高其在不同环境条件下的工作效果。

1.解决光伏系统在高温条件下的性能问题。

–选择高温抗性好的材料和组件,减少光伏组件在高温环境下的功率降低。

–优化冷却系统,降低光伏组件的温度,提高光伏系统的效率和稳定性。

2.解决光伏系统在低光照条件下的能量收集问题。

–开发高效率的光伏组件,提高在低光照条件下的能量转换效率。

–使用反射器、聚光镜等光学设备,增加光伏组件吸收光线的能力。

3.解决光伏系统在恶劣环境下的抗污能力问题。

–优化材料的表面处理,提高光伏组件的防污能力。

–定期清洁和维护光伏系统,降低灰尘和污物对光伏组件的影响。

步骤三:降低光伏系统的材料成本目标:通过降低光伏组件和设备的材料成本,降低光伏系统的整体成本。

1.发展低成本的光伏材料。

–研究开发价格低、成本效益高的光伏材料,如有机太阳能电池、柔性太阳能电池等。

家庭用离网光伏发电系统技术方案

家庭用离网光伏发电系统技术方案

离网光伏发电系统技术方案一、光伏发电系统概述1.概念:光伏发电技术是指将太阳能直接转换为电能的技术,是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

2.优点:与常用的火力发电系统相比,光伏发电的优点主要体现在:①无枯竭危险;②安全可靠,无噪声,无污染排放外,绝对干净(无公害);③不受资源分布地域的限制,可利用建筑屋面的优势;例如:无电地区,以及地形复杂地区。

④无需消耗燃料和架设输电线路即可就地发电供电;⑤能源质量高;⑥使用者从感情上容易接受;⑦建设周期短,获取能源花费的时间短。

3.分类:光伏发电系统分为:离网系统和并网系统。

离网系统:是指太阳能电池发完电后储存在蓄电池内,然后供给用电设备使用的系统。

该系统一般包括:太阳能电池阵列、充放电控制器、蓄电池组、逆变器等几个部分。

离网系统具有使用灵活、用途广泛的特点。

离网系统并网系统:是指太阳能电池发完电后通过并网逆变器直接输送入电网的系统。

该系统一般包括:太阳能电池阵列、并网逆变器、升压控制系统等几个部分,节省了蓄电池组和充放电控制器。

这类系统单位造价较低,但需要外网的支持。

并网系统4.应用:二、项目建设地点概况1.项目建设所在地:项目建设所在地为尼泊尔。

尼泊尔联邦民主共和国,简称尼泊尔,尼泊尔首都加德满都位于北纬27°42',东经85°19',为南亚山区内陆国家,位于喜马拉雅山中段南麓,北与中国西藏接壤,东、西、南三面被印度包围,国境线长2400公里。

尼泊尔是一个近长方形的国家,从东到西长度为885公里,从南到北在145-241公里之间。

2. 气候环境:尼泊尔的气候基本上只有两季,每年的十月至次年的三月是干季(冬季),雨量极少,早晚温差较大,晨间摄氏10度左右,中午会升至摄氏25度;每年的四月至九月是雨季(夏季),其中四、五月气候尤其闷热,最高温常达到摄氏36度;五月起的降雨常作为雨季的前奏,一直持续到九月底,雨量丰沛,常泛滥成灾。

离网光伏发电系统方案

离网光伏发电系统方案

离网光伏发电系统方案随着能源危机的日益加剧,人们对可再生能源的需求也愈发迫切。

光伏发电作为一种清洁、可再生的能源形式,受到了广泛关注。

离网光伏发电系统作为光伏发电系统的一种,具有独立发电、不受电网限制、环保节能等优点,逐渐成为人们关注的焦点。

本文将就离网光伏发电系统的方案进行详细探讨。

首先,离网光伏发电系统的核心组成部分包括光伏组件、逆变器、电池组、控制器等。

光伏组件负责将太阳能转化为直流电能,逆变器则将直流电能转化为交流电能,电池组用于存储电能,控制器则起到调节和保护作用。

这些部件的选择和配置将直接影响系统的发电效率和稳定性。

其次,离网光伏发电系统的方案设计需要充分考虑当地的光照条件和用电需求。

合理选择光伏组件的类型和数量,确定逆变器的额定容量,设计电池组的储能容量,是确保系统正常运行的关键。

同时,还需要考虑系统的安装位置、倾斜角度、阴影遮挡等因素,以最大程度地提高系统的发电效率。

再者,离网光伏发电系统的方案设计还需要考虑系统的可靠性和安全性。

在选用光伏组件和电池组时,需要考虑其品牌和质量,以确保系统的长期稳定运行。

同时,还需要对系统进行过载、短路、过压、欠压等情况的保护设计,以防止发生安全事故。

最后,离网光伏发电系统的方案设计还需要考虑系统的维护和管理。

定期对光伏组件进行清洗、检查和维护,对电池组进行充放电管理,对逆变器和控制器进行检测和维护,是确保系统长期稳定运行的重要措施。

同时,还需要建立健全的监控系统,及时发现和处理系统运行中的问题。

总之,离网光伏发电系统的方案设计需要综合考虑多种因素,以确保系统的高效、稳定、安全运行。

只有在充分考虑当地条件和用电需求的基础上,选择合适的组件和配置方案,加强系统的维护和管理,才能真正实现离网光伏发电系统的可持续发展和利用。

离网光伏发电系统方案

离网光伏发电系统方案

离网光伏发电系统方案离网光伏发电系统方案是一种独立运行的能源解决方案,通过光伏发电系统将太阳能转化为电能,供应给独立的电力设备。

该系统不依赖于传统的电网,在偏远地区或无法接入电网的地方具有广泛的应用前景。

本文将就离网光伏发电系统的组成、应用场景及可行性进行讨论。

首先,离网光伏发电系统主要由太阳能电池板、电池储能设备和逆变器三部分组成。

太阳能电池板是系统的核心,负责将太阳能转化为直流电能。

通过电池储能设备对电能进行存储,以满足晚上或阴天无法直接获取太阳能的情况下的使用需求。

逆变器负责将直流电转化为交流电,以供给独立电力设备使用。

离网光伏发电系统的应用场景非常广泛。

在偏远地区或乡村,传统电网的覆盖范围有限,离网光伏发电系统能够为当地居民提供稳定的电力供应。

此外,对于一些岛屿或海上设施来说,连接到电网十分困难,离网光伏发电系统成为了解决能源问题的理想选择。

此外,离网光伏发电系统还可以应用于野外探险、露营活动等户外场合,为人们提供便利的电力支持。

离网光伏发电系统的优势主要体现在以下几个方面。

首先是环保和可持续性。

光伏发电系统依靠太阳能进行发电,不会产生污染物排放,对环境友好,且太阳能作为可再生资源,具有长期可持续的发展潜力。

其次是节约成本。

对于一些无法接入电网的地区来说,传统的电力供应需要进行高额的投资和维护费用,而离网光伏发电系统则可以有效地降低这些成本。

此外,离网光伏发电系统还能够提供可靠的电力供应,不受天气和电网故障的影响。

然而,离网光伏发电系统也存在一些挑战和限制。

首先是系统初期投资较高。

尽管光伏发电技术不断推进和降价,但建设离网光伏发电系统仍然需要投入一定的资金。

其次是能源储存问题。

由于日夜交替和天气变化,需要对电能进行存储,但目前电池储能设备的成本相对较高。

最后是系统易受天气和季节影响。

在阴雨天或冬季,太阳能电池板的效率会下降,对电力供应造成一定影响。

为了克服这些限制,可以采取一些措施。

首先是增加储能容量,以便在光照不足时能够更长时间地供电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏离网系统设计思路、常见问题及解决方案在现代日常生活中,通常我们认为用电是理所当然的事情,然而,当今世界上却还有超过20亿人生活在缺电或者无电地区。

以我们国家为例,由于经济发展水平的差异,西部仍有部分偏远地区的人口没有解决基本用电问题,无法享受现代文明。

光伏离网发电不仅可以解决无电或者少电地区居民基本用电问题,还可以清洁高效地利用当地的可在生能源,有效解决能源和环境之间的矛盾。

从目前来看,并网系统的研究已获得足够的重视,技术成熟,但离网系统还面临诸多困难,制约了光伏离网的应用和发展。

光伏离网是刚性消费需求,客户两极分化,一种是不差钱的“土豪”,最关心是系统的可靠性,主要是私人海岛业主、别墅业主、通信基站、监控系统等,另一种是偏远地区的贫困户,最关心是产品价格。

从项目规模上看,一种是针对单个客户的小项目或者单个项目的小工程,另一种是针对特定人群的大项目,如国家无电地区光伏扶贫项目。

离网系统对不同的客户,要采取不同的设计方案,尽量满足客户的实际需要。

晶福源公司是国内最大的光伏离网逆变器厂家,每年出货的离网逆变器超过5万多套,占全国总量60%以上,笔者从事光伏离网系统售前技术支持和售后安装指导工作,先后设计过1000多套离网系统,现场调试过100多套系统,并参观过100多家离网电站,从中总结出一些经验,仅各位参考。

光伏离网发电系统主要由光伏组件,支架,控制器,逆变器,蓄电池以及配电系统组成。

系统电气方案设计,主要考虑组件,逆变器(控制器),蓄电池的选型和计算。

设计之前,前期工作要做好,需要先了解用户安装地点的气候条件,负载类型和功率;白天和晚上的用电量,当然,用户的预算和经济情况也要了解清楚,光伏离网系统,用电是靠天气,没有100%的可靠性,这一点一定要和客户讲清楚。

知道以上这些情况,就可以开始做设计了。

光伏离网系统设计三大原则1、根据用户的负载类型和功率确认离网逆变器的功率,家用负载一般分为感性负载和阻性负载,洗衣机、空调、冰箱、水泵、抽油烟机等带有电动机的负载是感性负载,电动机启动功率是额定功率的5-7倍,在计算逆变器的功率时,要把这些负载的启动功率考虑进去。

逆变器的输出功率要大于负载的功率。

对于监控站,通信站等要求严格的场合,输出功率是按所以的负载功率之和。

但对于一般贫困家庭而言,考虑到所有的负载不可能同时开启,为了节省成本,可以在负载功率之和乘以0.7-0.9的系数。

并不是每一个客户都会对负载功率很清楚,下面的列表是常用家用电器的功率,供设计时参考。

2、根据用户每天的用电量确认组件功率。

组件的设计原则是要满足平均天气条件下负载每日用电量的需求,也就是说太阳能电池组件的全年发电量要等于负载全年用电量。

因为天气条件有低于和高于平均值的情况,太阳能电池组件设计的基本满足光照最差季节的需要,就是在光照最差的季节蓄电池也能够基本上天天充满电。

但在有些地区,最差季节的光照度远远低于全年平均值,如果还按最差情况设计太阳能电池组件的功率,那么在一年中的其他时候发电量就会远远超过实际所需,造成浪费。

这时只能考虑适当加大蓄电池的设计容量,增加电能储存,使蓄电池处于浅放电状态,弥补光照最差季节发电量的不足对蓄电浊造成的伤害。

组件的发电量并不能完全转化为用电,还要考虑控制器的效率和机器的损耗以及蓄电池的损耗,太阳能控制器有PWM和MPPT 两种类型,PWM控制器效率约85%,输入电压范围比较窄,但价格比较低,MPPT控制器效率约95%,价格比较高。

蓄电池在充放电过程中,也会有10-15%的损耗。

离网系统可用的电量=组件总功率*太阳能发电平均时数*控制器效率*蓄电池效率。

有一些离网用户,没有装过电表,对自己的用电情况不是十分清楚,还有一些离网系统,是新建的,这时就需要去估算每天的用电量,对于灯泡、电风扇、电吹风这样的负载,用电量等于功率乘以时间;但空调,冰箱这样的负载,是间隙性工作的,电视,电脑,音响这样的负载,工作时很少在满功率状态,计算电量时,就要综合考虑了。

空调是家用电器耗电量最大的负载,1匹空调的电功率是735W,也就是说1小时满负荷运行消耗0.735度电,空调还有一个指标“制冷量”,单位也是W,1匹空调制冷量约2300W,空调的耗电和室内外温度差,房间面积,空调的能效率有很大关系,1台1P的空调,晚上用8小时,耗电1-5度不等。

3、根据用户晚上用电量或者期望待机时间确定蓄电池容量。

蓄电池的任务是在太阳能辐射量不足时,保证系统负载的正常用电。

对于重要的负载,要能在几天内保证系统的正常工作,要考虑连续阴雨天数。

对于一般的负载如太阳能路灯等可根据经验或需要在2~3天内选取。

重要的负载如通信、导航、医院救治等则在3~7天内选取。

另外还要考虑光伏发电系统的安装地点,如果在偏远的地方,蓄电池容量要设计得较大,因为维护人员到达现场就需要很长时间。

实际应用中,有的移动通信基站由于山高路远,去一次很不方便,除了配置正常蓄电池组外,还要配备一组备用蓄电池组,对于一般贫困家庭而言,主要考虑价格,则不用考虑阴雨天,太阳好的时候多用。

太阳不好的时候少用,没有太阳则不用。

选择负载时,尽量使用节能设备,如LED灯,变频空调。

蓄电池的设计主要包括蓄电池容量的设计计算和蓄电池组串并联组合的设计。

在光伏发电系统中,大部分使用的都是铅酸蓄电池,考虑到电池的寿命,一般取放电深度为0.5-0.7之间。

蓄电池设计容量=(负载日均用电量*连续阴雨天数)/蓄电池放电深度。

离网用户的需求是多种多样的,根据用户的要求设计光伏系统。

这时候就要灵活处理,不一定要按上述的原则去设计,例如有一个客户,家里有6块260W的组件,要做一套光伏离网系统,客户家里有市电,但经常会停电,总负载是10KW,一天的用电量是20-30度,如果只有这1.56KW组件,根本没有办法满足客户的用电量要求,这时候就可以考虑满足客户一部分负载的需求,经计算组件一天能发5度电,采用3.0KVA的离网逆变器,4块12V150Ah的蓄电池,输出接一个插板,平时接家里的照明灯泡,电脑,洗衣机之类的负载,晚上如果还有电,也可以单独接一台空调。

对于针对特定人群的大项目,由于每个用户情况不一样,无法满足所有的需求,这时候就要综合考虑。

一般情况下,是取一个平均值,如解决我国西部无电地区用电问题的光伏工程,一般牧民家庭,采用2块250W的组件,一个500VA 的离网逆变一体机,2个12V150AH的蓄电池,每天能发2.5度电,原材料成本价约6000元左右,可满足电视机、小型电冰箱、DVD机、节能灯等电器的用电需求。

重量比较轻,方便移动。

在四川甘孜州某光伏扶贫项目中,采用中功率离网系统,8块250W的组件,3KVA的离网逆变一体机,4节12V200AH的蓄电池,每天可以发8-10度电,可满足电视机、电冰箱、DVD机、电脑、1P空调,节能灯等电器的用电需求。

由于系统总体发电量高,可以支持更多的家用电器设备,生活质量得到提高。

光伏离网系统常见问题:设计光伏离网系统时,要灵活处理,不要拘泥于某一个固定公式。

光伏离网系统不能解决所有的用电问题,遇到多个连续阴雨天,只能省着用电。

离网逆变器没有统一的标准,也不需要强制认证,市面上的产品良莠不齐,产品质量和价格相差很大,大家在选购离网逆变器时,请认准:“晶福源”或者“JFY”商标。

碰到假货或者劣质产品要及时投诉或者报警。

1、组件,逆变器,蓄电池设计时要匹配,任何一个都不能过大或者过小,新手设计时,经常会把用电量计算过大,如1P空调运行12小时,算成10度电,300W的冰箱运行24小时,算成7.2度电,造成蓄电池容量过大,系统成本过高。

设计蓄电池容量时,最好2天时间就给能充满。

2、光伏离网系统输出连接负载,每个逆变器输出端电压和电流相位和幅值都不一样,逆变器不支持输出端并联。

不要把逆变器输出端接在一起。

3、负载是电梯之类的负载不能直接和逆变器输出端相连接,因为电梯在下降时,电动机反转,会产生一个反电动势,进入逆变器时,对逆变器有损坏。

如果必须要用离网系统,建议在逆变器和电梯电动机之间加一个变频器。

4、带市电互补输入的光伏微网系统,组件的绝缘要做好,如果组件对地有漏电流,会传到市电,引起市电的漏电开关跳闸。

5、组件的电压和蓄电池的电压要匹配,PWM型控制器太阳能组件和蓄电池之间通过一个电子开关相连接,中间没有电感等装置,组件的电压是蓄电池的电压1.2-2.0倍之间,如果是24V的蓄电池,组件输入电压在30-50V之间,MPPT控制器,中间有一个功率开关管和电感等电路,组件的电压是蓄电池的电压1.2-3.5倍之间,如果是24V的蓄电池,组件输入电压在30-90V之间。

6、组件的输出功率和控制器的功率要相近,如一个48V30A 的控制器,输出功率为1440VA,组件的功率应该在1500W 左右。

选择控制器时,先看蓄电池的电压,再用组件功率除以蓄电池的电压,就是控制器的输出电流。

7、蓄电池的充电电流一般为0.1C-0.2C,最大不超过0.3C,例如1节铅酸蓄电池12V200AH,充电电流一般在20A到40A 之间,最大不能超过60A;蓄电池的放电电流一般为0.2C-0.5C,最大不超过1C,1节12V200AH铅酸蓄电池,输出最大功率不超过2400W,不同的厂家,不同的型号,具体的数值也不一样,设计时要向厂家索取说明书。

以上方法只是我在长期的工作中极小的一部分经验,欢迎各位同行和我联系,如有转载,请注明出处。

作者简介:刘继茂,深圳晶福源市场部业务员,哈尔滨工业大学电力电子研究生。

1994年开始从事设备维修和设计工作,2008年开始从事逆变器研发和光伏系统设计工作。

长期跟踪国内外100多个光伏电站运行情况,设计过1000多个并网和离网系统,对光伏逆变器的发展、光伏系统设备的选型,可靠性设计,运行维护有独到的理解。

相关文档
最新文档