高考数学数列的求和测试
高三数学数列求和试题答案及解析
高三数学数列求和试题答案及解析1.数列{an }满足a1=1,且对任意的m,n∈N*,都有am+n=a m+a n+mn,则+++…+=()A.B.C.D.【答案】B【解析】令m=1得an+1=a n+n+1,即an+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),上述n-1个式子相加得an -a1=2+3+…+n,所以an=1+2+3+…+n=,当n=1时,a1=1满足上式,所以an= (n∈N*),因此==2(-),所以+++…+=2(1-+-+…+-)=2(1-)=2.函数f(x)对任意x∈R都有. (1)求和(n∈N*)的值;(2)数列{an }满足:,求an;(3)令,,,试比较Tn 和Sn的大小。
【答案】(1),;(2);(3).【解析】(1)由于函数f(x)对任意x∈R都有,则令可求的;再令求出;(2)利用倒序相加结合(1)的结论可求出;(3)由及第(2)问的结论求出,用放缩法变形(),用裂项相消法求,再与比较大小.(1)令=2,则;令得,(4分)(2)由,两式相加得:,∴,(8分)(3),(n≥2)∴.(12分)【考点】倒序相加、裂项相消法求数列的前项和.3.对任意,函数满足,设,数列的前15项的和为,则.【答案】【解析】因为,所以即因此数列任意相邻两项和为因为,因此所以或,又由.【考点】数列求和4.已知函数,且,则()A.0B.100C.5050D.10200【答案】C【解析】因为,所以,选C.5.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出.试题解析:(1)解法1:当时,,当时,.是等差数列,,得.又,,,、、成等比数列,,即,解得.解法2:设等差数列的公差为,则.,,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,②①②得. .解法2:由(1)得.,.,①由,两边对取导数得,.令,得. .【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导6.数列{an }满足an+1+(-1)n an=2n-1,则{an}的前60项和为____________.【答案】1830【解析】当时,;当时,;当时,.将与相减得:;将与相减得:.所以,,所以.【考点】数列.7.在数列{an }中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=.【答案】299【解析】设定值为M,则an +an+1+an+2=M,进而an+1+an+2+an+3=M,后式减去前式得an+3=an,即数列{an}是以3为周期的数列.由a7=2,可知a1=a4=a7=…=a100=2,共34项,其和为68;由a9=3,可得a 3=a6=…=a99=3,共33项,其和为99;由a98=4,可得a2=a5=…=a98=4,共33项,其和为132.故数列{an}的前100项的和S100=68+99+132=299.8..己知数列满足,则数列的前2016项的和的值是___________.【答案】1017072【解析】这个数列既不是等差数列也不是等比数列,因此我们要研究数列的各项之间有什么关系,与它们的和有什么联系?把已知条件具体化,有,,,,…,,,我们的目的是求,因此我们从上面2015个等式中寻找各项的和,可能首先想到把出现“+”的式子相加(即为偶数的式子相加),将会得到,好像离目标很近了,但少,而与分布在首尾两个式子中,那么能否把首尾两个式子相减呢?相减后得到,为了求,我们又不得不求,依次下去,发现此路可能较复杂或者就行不通,重新寻找思路,从头开始我们有,即,而,∴,因此,我们由开始的三个等式求出了,是不是还可用这种方法求出呢?下面舍去,考察,,,同样方法处理,,从而,于是,而,正好504组,看来此法可行,由此我们可得.【考点】分组求和.9.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图10.已知数列的各项都是正数,前项和是,且点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求.【答案】(Ⅰ);(Ⅱ)。
高考数列求和专项训练及解答
高考数列求和专项训练及解答一.选择题(共3小题)1.已知数列1,3,5,7,…则其前n项和S n为()A.n2+1﹣B.n2+2﹣C.n2+1﹣D.n2+2﹣2.已知项数为奇数的等差数列{a n}共有n项,其中奇数项之和为72,偶数项之和为60,则项数n的值是()A.9B.10C.11D.133.已知等差数列{a n}的前n项和为S n,S3=6,S5=15.设数列{}的前n项和为T n,若T n=,则n=()A.19B.20C.21D.22二.解答题(共5小题)4.已知数列{a n}的通项是a n=2n﹣1.(1)求数列{a n}的前n项和为S n(2)设数列的前n项和为T n,求T n.5.已知正项数列满足4S n=a n2+2a n+1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.6.已知等比数列{a n}的公比q>0,a1a5=8a2,且3a4,28,a6成等差数列.(1)求数列{a n}的通项公式;(2)记b n=,求数列{b n}的前n项和T n.7.在数列{a n}中,a1=1,.(1)求a2,a3,a4,猜想a n,无需证明;(2)若数列,求数列{a n}的前n项和S n.8.已知数列{a n}的前n项和为S n,a1=1,a n+1=2a n+2n.(1)证明数列{}是等差数列,并求出a n;(2)求S n;(3)令b n=,若对任意正整数n,不等式b n<恒成立,求实数m的取值范围.参考答案与试题解析一.选择题(共3小题)1.已知数列1,3,5,7,…则其前n项和S n为()A.n2+1﹣B.n2+2﹣C.n2+1﹣D.n2+2﹣【分析】利用等差数列与等比数列的前n项和公式即可得出.【解答】解:S n=1+3+5+…+(2n﹣1)++…+=+=n2+.故选:A.【点评】本题考查了等差数列与等比数列的前n项和公式,属于基础题.2.已知项数为奇数的等差数列{a n}共有n项,其中奇数项之和为72,偶数项之和为60,则项数n的值是()A.9B.10C.11D.13【分析】利用项数为奇数的等差数列{a n}共有n项,求出奇数项之和,偶数项之和,然后通过比值求解即可.【解答】解:由题意,;;∴,∴n=11.故选:C.【点评】本题考查数列求和,数列的应用,考查计算能力.3.已知等差数列{a n}的前n项和为S n,S3=6,S5=15.设数列{}的前n项和为T n,若T n=,则n=()A.19B.20C.21D.22【分析】等差数列{a n}的公差设为d,由等差数列的通项公式和求和公式,解方程可得首项、公差,求得==﹣,由裂项相消求和可得前n项和T n,解方程可得n的值.【解答】解:等差数列{a n}的公差设为d,前n项和为S n,S3=6,S5=15,可得3a1+3d=6,5a1+10d=15,解得a1=d=1,即a n=1+n﹣1=n,==﹣,前n项和为T n=1﹣+﹣+…+﹣=1﹣,由T n=,可得n=20,故选:B.【点评】本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.二.解答题(共5小题)4.已知数列{a n}的通项是a n=2n﹣1.(1)求数列{a n}的前n项和为S n(2)设数列的前n项和为T n,求T n.【分析】(1)利用等差数列的通项公式求解数列的和即可.(2)利用错位相减法求解数列的和即可.【解答】(12分)解:(1)∵a n=2n﹣1,∴a1=1,∴(2)①,②①减②得:==,∴.【点评】本题主要考查数列通项公式和前n项和的求解,利用错位相减法的应用,考查计算能力.5.已知正项数列满足4S n=a n2+2a n+1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)由,可知当n≥2时,,两式作差可得a n﹣a n﹣1=2(n≥2),再求出首项,代入等差数列的通项公式可得数列{a n}的通项公式;(2)把数列{a n}的通项公式代入b n=,再由裂项相消法求数列{b n}的前n项和T n.【解答】解:(1)由,可知当n≥2时,,两式作差得a n﹣a n﹣1=2(n≥2),又,得a1=1,∴a n=2n﹣1;(2)由(1)知,,∴T n=b1+b2+…+b n==.【点评】本题考查等差数列的通项公式,训练了利用裂项相消法求数列的前n 项和,是中档题.6.已知等比数列{a n}的公比q>0,a1a5=8a2,且3a4,28,a6成等差数列.(1)求数列{a n}的通项公式;(2)记b n=,求数列{b n}的前n项和T n.【分析】(1)利用等差数列以及等比数列的通项公式列出方程组,求出数列的首项与公比,然后求解数列的通项公式;(2)化简通项公式,利用错位相减法求解数列的和即可.【解答】解:(1)由a1a5=8a2得:a1q3=8,即a4=8,又∵3a4,28,a6成等差数列,∴3a4+a6=56,将a4=8代入得:a6=32.从而:a1=1,q=2.∴a n=2n﹣1;(2)b n==2n•()n﹣1,T n=2×()0+4×()1+6×()2+…+2(n﹣1)•()n﹣2+2n•()n﹣1……………………①T n=2×()1+4×()2+6×()3+…+2(n﹣1)•()n﹣1+2n•()n……………………②①﹣②得:T n=2×[()0+2()1+()2+…+()n﹣1]﹣2n•()n=2+2×﹣2n•()n=4﹣(n+2)•()n﹣1.∴T n=8﹣(n+2)•()n﹣2.【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查转化首项以及计算能力,是中档题.8.已知数列{a n}的前n项和为S n,a1=1,a n+1=2a n+2n.(1)证明数列{}是等差数列,并求出a n;(2)求S n;(3)令b n=,若对任意正整数n,不等式b n<恒成立,求实数m的取值范围.【分析】(1)两边同除以2n+1,结合等差数列的定义和通项公式,即可得到所求;(2)运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简可得所求和;(3)求得b n==()n+(n﹣1)•()n,讨论b n的单调性,求得最大值,可得m2﹣m﹣6>0,解不等式即可得到所求范围.【解答】解:(1)证明:a1=1,a n+1=2a n+2n,可得=+,可得数列{}是首项和公差均为的等差数列,可得=n,即a n=n•2n﹣1;(2)S n=1•20+2•2+3•22+…+n•2n﹣1,2S n=1•2+2•22+3•23+…+n•2n,相减可得﹣S n=1+2+22+…+2n﹣1﹣n•2n,=﹣n•2n,化简可得S n=1+(n﹣1)•2n;(3)b n==()n+(n﹣1)•()n,b n+1﹣b n=()n+1+n•()n+1﹣()n﹣(n﹣1)•()n=,当n=1时,b2﹣b1=;n=2时,b3﹣b2=;即b1<b2<b3,当n≥3时,b n﹣b n<0,即b3>b4>b5>…,+1则n=3时,b n的最大值为b3=,不等式b n<恒成立,可得<,即为m2﹣m﹣6>0,解得m>3或m<﹣2.则m的取值范围是(﹣∞,﹣2)∪(3,+∞).【点评】本题考查等差数列的定义和通项公式、求和公式的运用,考查数列的求和方法:错位相减法,以及数列的单调性的运用:解不等式,考查化简整理的运算能力,属于中档题.7.在数列{a n}中,a1=1,.(1)求a2,a3,a4,猜想a n,无需证明;(2)若数列,求数列{a n}的前n项和S n.【分析】(1)利用已知条件通过递推关系式求解a2,a3,a4,猜想a n;(2)化简数列,利用裂项消项法求数列{a n}的前n项和S n.【解答】解:(1)∵a1=1,a n+1=,∴a2==,a3=═,a4=═.猜想:a n=.(2)由(1)知:b n===2[﹣],从而s n=b1+b2+…+b n=2[(1﹣)+(﹣)+…+(﹣)]=2[1﹣]=.【点评】本题考查数列求和,数列的递推关系式的应用,考查计算能力.。
数列求和(错位相减) 高考数学
试卷讲评课件
=
【解析】∵
= ⋅
+ =
=
=
则
,解得
或
(舍去)
+ = ⋅ +
=
=
∴ = + − = − .
又∵ = − ,
当 = 时, = − ,则 =
− ⋅
+. . . + − ⋅
= +
− − ⋅
+
+
①
+
②
+. . . +
= −
+
+
− − ⋅
+
,
试卷讲评课件
+
∴ = − .
−
则 −
= −
− ,
当 ≥ 时,由 + + = 有− + − + = ,两式相减
可得�� = − ,
即{ }是以− 为首项,以 为公比的等比数列,
−
所以 = −
= −
.
试卷讲评课件
(2)设数列{bn }满足2bn + n − 3 an = 0 n ∈ N ∗ ,记数列{bn }的前n项
所以 = − ,
+
因为 − =
2025年高考数学一轮复习-6.4-数列求和-专项训练【含解析】
2025年高考数学一轮复习-6.4-数列求和-专项训练【原卷版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.82.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.93.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.634.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.45.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C.12,D.23,+∞6.(多选)已知数列{a n}满足a1=1,且对任意的n∈N*都有a n+1=a1+a n+n,则下列说法中正确的是()A.a n=n(n+1)2B2020项的和为20202021C2020项的和为40402021D.数列{a n}的第50项为25507.(多选)设数列{a n}的前n项和为S n,若S2nS4n为常数,则称数列{a n}为“吉祥数列”.则下列数列{b n}为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.9.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .202011.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n n 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +1412.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.2025年高考数学一轮复习-6.4-数列求和-专项训练【解析版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.8解析:A设{a n}的公差为d,根据题意得a23=a2·a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2,所以数列{a n}的前6项和为S6=6a1+6×52d=1×6+6×52×(-2)=-24.2.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.9解析:C∵1+2+22+…+2n-1为公比为2,首项为1的等比数列的前n项和S n,∴S n=12-1(2n-1)=2n-1>128=27,∴n≥8,∴n的最小值为8.故选C.3.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.63解析:D因为log2a n+1=1+log2a n,所以log2a n+1=log22a n,即a n+1=2a n,即数列{a n}是以2为公比的等比数列,又a3=4,所以a1=a34=1,因此S6=a1(1-26)1-2=26-1=63.故选D.4.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.4解析:A显然数列{a n}的公比不等于1,所以S n=a1·(q n-1)q-1=a1q-1·q n-a1q-1=4n+b,所以b=-1.5.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C .12,D .23,+∞解析:D设等比数列{a n }的公比为q ,q ≠0,则q 3=a 4a 1=18,解得q =12,所以a n =12n -1,所以a n a n +1=12n -1×12n =122n -1,所以数列{a n a n +1}是首项为12,公比为14的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=21-14=<23.因为a 1a 2+a 2a 3+…+a n a n +1<k ,所以k ≥23.故k 的取值范围是23,+D .6.(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是()A .a n =n (n +1)2B2020项的和为20202021C2020项的和为40402021D .数列{a n }的第50项为2550解析:AC因为a n +1=a 1+a n +n ,a 1=1,所以a n +1-a n =1+n ,即a n -a n -1=n (n ≥2),所以n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,a 1=1也适合此式,所以a n =n (n +1)2,a 50=1275,A 正确,D 错误;1a n =2n(n +1)=2020项和S 2020=-12+12-13+…+12020-=40402021,B 错误,C 正确.故选A 、C .7.(多选)设数列{a n }的前n 项和为S n ,若S2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n解析:BC对于A ,S n =(1+n )n 2,S 2n =n (1+2n ),S 4n =2n (1+4n ),所以S2n S 4n =n (1+2n )2n (1+4n )=1+2n 2(1+4n )不为常数,故A 错误;对于B ,由并项求和法知:S 2n =n ,S 4n =2n ,S 2n S 4n =n 2n =12,故B 正确;对于C ,S n =2+4n -22×n =2n 2,S 2n =8n 2,S 4n =32n 2,所以S 2n S 4n =14,故C 正确;对于D ,S n =2(1-2n )1-2=2(2n -1),S 2n =2(4n -1),S 4n =2(16n -1),所以S2n S 4n =4n -116n -1=14n +1不为常数,故D 错误.故选B 、C .8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析:S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n ,∴S n-na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案:59.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d a 1+10d =20,1+2d )2=(a 1+d )(a 1+4d ),化简得1+2d =4,1d =0,因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *,因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n n -n 2,n 为偶数,a n ,n 为奇数,n 为偶数,n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2)=n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .2020解析:D设{a n }的公差为da 1+6d =a 1+3d +7,1+9d =19,1=1,=2,∴a n =2n-1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2019+b 2020)=2×20202=2020.11.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A nn 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +14解析:ABD由a n =a 2n -1+a n -1,得a 2n -1=a n -a n -1≥0,所以a n ≥a n -1≥32,A n =a 21+a 22+…+a 2n =a 2-a 1+a 3-a 2+…+a n +1-a n =a n +1-a 1=a n +1-32,故A 正确;由a n =a 2n -1+a n -1=a n-1(a n -1+1),得1a n =1a n -1(a n -1+1)=1a n -1-1a n -1+1,即1a n -1+1=1a n -1-1a n ,所以B n =1a 1+1+1a 2+1+…+1a n +1=1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=23-1a n +1,故B 正确;易知A n ≠0,B n ≠0,所以A nB n =a n +1-3223-1a n +1=32a n +1,故C 不正确;易知a n =a 2n -1+a n -1<2a 2n -1,所以a n +1<2a 2n <23a 4n -1<…<22n -1a 2n 1=22n-1n =12×32n ,所以A n B n=32an +1<32×12×32n =32n +14,故D 正确.故选A 、B 、D .12.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2,两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2,即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1),则数列{a n -1}是首项为1,公比为3的等比数列,则a n -1=3n -1,故a n =1+3n -1.(2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1),设M n =1·30+2·31+3·32+…+n ·3n -1,3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n=1-3n 1-3-n ·3n ,化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.证明:二项展开式的通项为T k +1=C -k=C -k x12-3k,令12-3k =0,得k =4,得展开式的常数项为a 1=12.可选择的条件为①或②或③:若选择①:在S n =-a n +t 中,令n =1,得t =1,所以S n =-a n +1,当n ≥2时,S n -1=-a n -1+1.两式相减得a n =12a n -1,故{a n }是以12为首项,12为公比的等比数列,所以S n =a 1(1-q n )1-q =1<1.所以S n <1对任意的n ∈N *恒成立.若选择②:由(n +1)b n +1=nb n 得b n +1b n =nn +1,所以b n =b n b n -1·b n -1b n -2·…·b 2b 1b 1=1n (n ≥2),n =1时也满足,则a n =1n (n +1)=1n -1n +1,S n …1-1n +1<1.所以S n <1对任意的n ∈N *恒成立.若选择③:由题意得3a 2n +1-3a 2n =-(a n +1+a n ),得a n +1-a n =-13或a n +1+a n =0,又a 1=12,当a n +1+a n =0时,有S n n 为偶数,n 为奇数,所以S n <1,当a n +1-a n =-13时,有S n =n 2-n (n -1)6=-16(n 2-4n )=-16(n -2)2+23,当n =2时,S n 有最大值,为23<1.所以S n <1对任意的n ∈N *恒成立.。
高考数学 数列求和 专题
高考数学 数列求和 专题时间:45分钟 分值:100分一、选择题(每小题5分,共30分)1.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列{S nn}的前11项和为( )A .-45B .-50C .-55D .-66解析:S n =n [-1+(-2n +1)]2=-n 2,即S n n =-n ,则数列{S nn }的前11项和为-1-2-3-4-…-11=-66.答案:D2.若S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50等于( )A .1B .-1C .0D .2解析:S 2n =-n ,S 2n +1=S 2n +a 2n +1=-n +2n +1=n +1,∴S 17+S 33+S 50=9+17-25=1. 答案:A3.数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1020,那么n 的最小值是( )A .7B .8C .9D .10解析:a n =1+2+22+…+2n -1=2n -1, ∴S n=(21+22+…+2n )-n =2(2n -1)2-1-n =2n +1-2-n . S n >1020 即2n +1-2-n >1020. ∵210=1024,1024-2-9=1013<1020. 故n min =10. 答案:D4.已知数列{2(n +1)2-1}的前n 项和为S n ,则lim n →∞S n 等于 ( )A .0B .1 C.32D .2解析:∵2(n +1)2-1=2n (n +2)=1n -1n +2∴S n =(11-13)+(12-14)+(13-15)+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1n +2)=1+12-1n +1-1n +2.∴lim n →∞S n =lim n →∞ (1+12-1n +1-1n +2)=32. 答案:C5.已知S n 是等差数列{a n }的前n 项和,S 10>0且S 11=0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的构成集合为( )A .{5}B .{6}C .{5,6}D .{7}解析:由S 10>0,且S 11=0得 S 10=10(a 1+a 10)2>0⇒a 1+a 10=a 5+a 6>0 S 11=11(a 1+a 11)2=0⇒a 1+a 11=2a 6=0,故可知{a n }为递减数列且a 6=0,所以S 5=S 6≥S n ,即k =5或6.答案:C6.(2009·江西高考)数列{a n }的通项a n =n 2(cos 2nπ3-sin 2nπ3),其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510解析:a n =n 2·cos 2n 3π,a 1=12·(-12),a 2=22(-12),a 3=32,a 4=42(-12),…S 30=(-12)(12+22-2·32+42+52-2·62+…+282+292-2·302)=(-12)∑k =110[(3k -2)2+(3k-1)2-2·(3k )2]=(-12)∑k =110 (-18k +5)=-12=470. 答案:A二、填空题(每小题5分,共20分)7.数列{a n }的通项公式为a n =n +2n (n =1,2,3,…),则{a n }的前n 项和S n =__________. 解析:由题意得数列{a n }的前n 项和等于(1+2+3+…+n )+(2+22+23+…+2n )=n (n +1)2+2-2n +11-2=n (n +1)2+2n +1-2. 答案:n (n +1)2+2n +1-28.数列112+2,122+4,132+6,142+8…的前n 项和等于________.解析:a n =1n 2+2n =12⎝ ⎛⎭⎪⎫1n -1n +2∴S n =12⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…⎦⎤+⎝⎛⎭⎫1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2).答案:34-2n +32(n +1)(n +2)9.已知数列{a n }的通项公式为a n =2n -1+1,则a 1C 0n +a 2C 1n +a 3C 2n +…+a n +1C n n =________.解析:a 1C 0n +a 2C 1n +…+a n +1C n n =(20+1)C 0n +(21+1)C 1n +(22+1)C 2n +…+(2n +1)C n n =20C 0n +21C 1n +22C 2n +…+2n C n n +C 0n +C 1n +…+C n n =(2+1)n +2n =3n +2n .答案:2n +3n10.(2010·重庆质检二)设数列{a n }为等差数列,{b n }为公比大于1的等比数列,且a 1=b 1=2,a 2=b 2,a 2+a 62=b 2b 4,令数列{c n }满足c n =a n b n2,则数列{c n }的前n 项和S n 等于________.解析:设{a n }的公差为d ,{b n }的公比为q (q >1),∵a 2+a 62=b 2b 4,∴a 4=b 3,∴2+3d =2q 2①,由a 2=b 2,得:2+d =2q ②, 由①②得d =2,q =2,∴a n =2+(n -1)·2=2n ,b n =2·2n -1=2n .∴c n =a n b n2=n ·2n ,∴S n=c 1+c 2+…+c n =1·2+2·22+…+n ·2n ③∴2S n =1·22+2·23+…+n ·2n +1④,③-④得:-S n =2+(22+23+…+2n )-n ·2n +1=2(1-2n )1-2-n ·2n +1=(1-n )·2n +1-2, ∴S n =(n -1)2n +1+2.答案:(n -1)2n +1+2 三、解答题(共50分)11.(15分)求和:(1)11×3+13×5+…+1(2n -1)(2n +1).(2)12!+23!+34!+…+n (n +1)!. 解:(1)∵1(2n -1)(2n +1)=12(12n -1-12n +1)∴原式=12(1-13)+12(13-15)+…+12(12n -1-12n +1)=12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1)=n 2n +1. (2)∵n (n +1)!=(n +1)-1(n +1)!=1n !-1(n +1)!∴原式=11!-12!+12!-13!+…+1n !-1(n +1)!=1-1(n +1)!.12.(15分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1,数列{b n }的前n 项和为S n ,T n =S 2n -S n .(1)求数列{b n }的通项公式; (2)求证:T n +1>T n ;解:(1)由b n =a n -1得a n =b n +1,代入2a n =1+a n a n +1,得2(b n +1)=1+(b n +1)(b n +1+1),整理,得b n b n +1+b n +1-b n =0,从而有1b n +1-1b n=1,∵b 1=a 1-1=2-1=1,∴{1b n }是首项为1,公差为1的等差数列, ∴1b n =n ,即b n =1n. (2)∵S n =1+12+…+1n,∴T n =S 2n -S n =1n +1+1n +2+…+12n ,T n +1=1n +2+1n +3+…+12n +12n +1+12n +2,T n +1-T n =12n +1+12n +2-1n +1>12n +2+12n +2-1n +1=0,(∵2n +1<2n +2)∴T n +1>T n .13.(20分)(2009·全国卷Ⅰ)在数列{a n }中,a 1=1,a n +1=(1+1n )a n +n +12n .(1)设b n =a nn,求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由已知得b 1=a 1=1,且a n +1n +1=a n n +12n ,即b n +1=b n +12n ,从而b 2=b 1+12,b 3=b 2+122,…b n =b n -1+12n -1(n ≥2),于是b n =b 1+12+122+…+12n -1=2-12n -1(n ≥2).又b 1=1,故所求数列{b n }的通项公式为b n =2-12n -1.(2)由(1)知a n =n (2-12n -1)=2n -n2n -1.令T n =∑k =1nk2k -1,则2T n =∑k =1nk2k -2,于是T n =2T n -T n =∑k =0n -112k -1-n2n -1=4-n +22n -1. 又∑k =1n(2k )=n (n +1),所以S n =n (n +1)+n +22n -1-4.。
高考真题与模拟训练 专题12 数列求和(解析版)
专题12 数列求和第一部分 真题分类1.(2021·)111,N n a a n *+==∈.n项和为ABCD【答案】A11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++由累乘法可得n a ≤1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭1003S <<.故选:A .2.(2021·全国高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三4次共可以得到不同规格图形的种数为______次,那么1nkk S==∑______【答案】【解析】(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以125610320⨯⨯,,;4种不同规格(单位2dm );故对折46,53⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积第nn 此对折后的图形的规格形状种数,根据(1设0121120212031204222nk k S S =⨯⨯⨯==+++∑L两式作差得:()()112011203120360360222n n nn n -++=--=-,3.(2020·江苏高考真题)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.d ,等比数列{}n b 的公比为,根据题意1q ≠.,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭,.4.(2021·2的等差数列,其前8项和为640(I(II)记2*1,n n nc b b n N =+∈,(i(ii )证明)*nk n N =<∈【答案】(III )(i )证明见解析;(ii )证明见解析.【解析】(I 2的等差数列,其前8项和为64.,所以11a =,所以()12121,n n n n N a a *=+-=-∈;所以()221321484q b b b q q b q ==-=--(II )(i所以22224211442444n nn n n nn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以数列{}22n n c c -是等比数列;(ii<==设101211232222n n k k k T -===+++⋅⋅⋅+∑所以1242n n n T -+=-,5.(2021·13nn na b =(1(2nT{}n b 的前n项和.证明:n T <【答案】(12)证明见解析.1的等比数列且1a即29610q q -+=,解得q =11()3n n a -=,(2)证明:由(1211213333n n n n nT --=++++ ①,②①②所以31(143n n T =--所以n T <6.(2021·12a =,且()*1321n n a a n n N +=+-∈.(1(2(3n S .【答案】(1)见解析;(23【解析】(1∴{}n a n +是首项为3,公比为3的等比数列.(2(3.7.(2020·{}n b为等比数列,()()115435431,5,4a b a a a b b b ===-=-.{}n b 的通项公式;(Ⅱ)记{}n a ()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数,设()21132,,,.n nn n n n n a b n a ac a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c的前2n 项和.【解析】(Ⅰ)q .由11a =,()5435a a a =-,可得d =1.n a n =.又q ≠0,可得2440q q -+=,解得q =2,(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,从而2211(1)(2)02n n n S S S n n ++-=-++<,(Ⅲ)当n当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n①由223141135232144444n k n n k n n c +=--=+++++ ②①②由因此,22121114652194n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑2n 项和为465421949n nn n +--+⨯.8.(2020·全国高考真题(理))设数列{a n }满足a 1=3(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.【答案】(12【解析】(1{}n a2证明如下:21ka k=+成立..(2)由(1①②②得:()23162222(21)2n nnS n+-=+⨯+++-+⋅9.(2020·1(1(2)若11a=,求数列{}nna【答案】(12)1(13)(2)9nnnS-+-=.【解析】(1为23,a a的等差中项,(2n Sn S ∴=第二部分 模拟训练一、单选题1.定义[]x 表示不超过[]0.390=,[]1.281=.若数列{}n a 的通项公式为[]2log n a n ={}n a A .1122+B .11322⨯+C D .11922⨯+【答案】D【解析】1n ≥ ,2log 0n ∴≥,当20log 1n ≤<时,1n =,即10a =(共1项);2,3n =2项);当22log 3n ≤<时,4,5,6,7n =,即45672a a a a ====(共4项);…2047=.即122048k +=,所以10k =.故选:D .2满足123232n n aa a na ++++= ,设1(1)2nn n a b n -=+{}nb 的前n 项和.n *∈N 恒成立,则实数t 的最小值为( )A .1B .2CD .52【答案】C【解析】1n =111111313123341221n S n n n ⎛⎫=+-+-+-=-<⎪++⎝⎭ ,t故选:C.312a =下的三项按原来的顺序恰为等比数列{}n b 的前三项,则数列10项的和10T =( )AB C .12112⋅D .12122⋅【答案】A711767721352S a d a d ⨯=+⋅=+=, 解得1d =,,1516a =,所以4,8,16为等比数列{}n b 的前三项,,公比2q =,则23122322(1)2n n n T n n +=⋅+⋅+⋅⋅⋅+⋅++⋅,10故选:A.4112a =10项的和为( )A B C D .6532【答案】C1为首项,1为公差的等差数列,所以()211nn a n n =+-=,得na =n2311212222n n n n n S +-=++++ ,,即222n n n S +=-,故选:C.5535S =.n T ,若21n m T +>恒成立,则AB .0C .1D .2【答案】B,535S =.解得132a d =⎧⎨=⎩,1111((21)(23)22123n n n n ==-++++,所以1216+m …,解得≥m0.故选:B .6{}n a 项和,且315S =,34527a a a ++=,记n b ={}n b 的前20项和为( )ABCD .40129【答案】Cd ,根据题意3454327a a a a +=+=,得49a =1413315,39,a d a a d +=⎧⎨=+=⎩解得13a =,2d =.所以数列{}n b 的前20项和为故选:C .7中11a =,{}n aA .1,12⎡⎫⎪⎢⎣⎭B .1,12⎛⎫ ⎪⎝⎭C .13,24⎡⎫⎪⎢⎣⎭D .2,13⎡⎫⎪⎢⎣⎭【答案】A11a =∴1为首项,2为公差的等差数列,∴()1121n a a n d n =+-=-,∴211111n n b S n n n n n ===-+++,当1n =时n T =故选:A.8,35a=,则数列10项的和为( )ABCD【答案】D5127a a -=,35a =()()1111212122121n n n n ⎛⎫==- ⎪-+-+⎝⎭.所以数列11{}n n a a +的前10项的和为故选:D 二、填空题9.已知数列的前项和为n S,,且对任意的n *∈N【答案】5【解析】∴224321log 1log 16533321=+⋅⋅⋅⋅⎛⎫⋅⎪⎭=+ ⎝⋅=.故答案为:510.已知数列{}n a 的前n 项和为n S ,且21122n Sn n =+,若()1n n b =-{}n b 的前n项()()2211111112222n n na S S n n n n n-⎡⎤=-=+--+-=⎢⎥⎣⎦,满足11a=,为偶数时,111111111+122334111 nn Tn n n n⎛⎫⎛⎫⎛⎫⎛⎫=-++-++++=-+=-⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭,11.已知数列{}na满足()23*1232222nna a a a n nN++++=∈,若nb={}nb【解析】因为()23*1232222nna a a a n n N++++=∈,1n=时也满足,故111111122311n S n nn 1=-+-++-=-=++12.已知数列{}n a.【答案】880n S当1n =,10a > ,解得12a =;211142n n n S a a ---=+,()()()11141n nn n n b a a n n +=-⋅=-⋅+ ,可视为数列{}212n n b b -+项和,因此,()20101616108802T⨯+⨯==.三、解答题13.等比数列{}n a(1(2)设b n =log 3a 1+log 3a 2…++log3a n ,求数列1n b ⎧⎫⎨⎬⎩⎭【答案】(12)21nn -+.【解析】(1)设数列{a n }的公比为q ,9a 2a 6得23a =所以q 2由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1故数列{a n }的通项公式为a n(2)b n =log 3a 1+log 3a 2…++log 3a n =-(1+2…++n.2111111122122311n n b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦n 项和为14.已知数列{}n a(1(2)设等差数列{}n b21122n S n n k =-+{}n c 的前项和n T .【答案】(12【解析】(1)当1n =112=-,132a ∴=-;3122311112121212n n n a a a ---++++=-+++L ,②1na=-(2则()221111122222nn n d d dS nb n b n n n k-⎛⎫=+=+-=-+⎪⎝⎭,;由(1)知,212n n n nc b a kn n=-+=+,15na≠恒成立.(1(2,当11a=、4a=n a的通项公式;(3,11a=-nS最大值.【答案】(1;(23【解析】(11k= ;(2令1n =所以4221624a =⨯,所以32a =,解得2a =,12n -=,12=,以上式子累乘得:所以(()21n n a -=,(3132412n n n n a a a a ++++=-,所以22424111224n n n n n n a a aa a a +++++⎛⎫=-- ⎪=⎝⎭⨯,()48122020a a a a +++++()250441444a +++++,所以240a a >,因为所以()24a a +-≥=-24a a +≤-,令31y a =-+-,设2,t⎡=⎣,所以t =1234a a a a +++最大值为(211--=-,16.已知数列{}na 满足:()21*1231333N 3n n n aa a a n -++++⋅⋅⋅+=∈.(1(2n S .【答案】(1221【解析】解:(1所以,当1n =时,1a =相减可得1133n n a -=,所以n a =(2时,1111111112313131133n n n n n n b +++⎛⎫==- ⎪--⎛⎫⎛⎫⎝⎭-- ⎪⎪⎝⎭⎝⎭.综上,对*N n ∈都有,716n S <.。
2023高考数学合肥卷数列的求和公式历年真题及答案
2023高考数学合肥卷数列的求和公式历年真题及答案在高等教育考试中,数学一直是考生们最为重视的科目之一。
而在数学中,数列是一个常见的概念,求和公式更是数列的重要部分。
本文将介绍2023年高考数学合肥卷中关于数列求和公式的历年真题及答案,以帮助考生更好地准备考试。
数列求和公式是指用一定的方法计算数列前n个数之和的公式。
在高考中,求和公式是数列题中常考的一种题型。
以下是2023年高考数学合肥卷中的数列求和真题及答案,供考生参考:真题1:已知等差数列{an}的通项公式为an = 3n + 2,求该数列前100项的和Sn。
解析:由等差数列的通项公式可知,任意一项an与它的下一项an+1之间的差值是固定的。
根据题目中给出的通项公式an = 3n + 2,我们可以计算前100项的和Sn。
由数列求和公式Sn = n/2 * (a1 + an)可得:Sn = 100/2 * (a1 + a100)= 50 * (3 + 3*100 + 2)= 50 * (303 + 2)= 50 * 305= 15250因此,该数列前100项的和为15250。
真题2:已知等比数列{bn}的通项公式为bn = 2^n,求该数列前10项的和Sn。
解析:由等比数列的通项公式可知,任意一项bn与它的前一项bn-1之间的比值是固定的。
根据题目中给出的通项公式bn = 2^n,我们可以计算前10项的和Sn。
由数列求和公式Sn = a1 * (r^n - 1)/(r - 1)可得:Sn = b1 * (r^n - 1)/(r - 1)= 2 * (2^10 - 1)/(2 - 1)= 2 * (1024 - 1)/1= 2 * 1023= 2046因此,该数列前10项的和为2046。
通过上述两道真题的解析,我们可以看出在数列求和问题中,根据给出的数列类型选择合适的求和公式是关键。
掌握了不同数列类型的通项公式以及对应的求和公式,考生在应对数列求和问题上会事半功倍。
高考数列求和专项训练及解答
高考数列求和专项训练及解答一.选择题(共3小题)1.已知数列1,3,5,7,…则其前n项和Sn为()A.n2+1﹣B.n2+2﹣C.n2+1﹣D.n2+2﹣2.已知项数为奇数的等差数列{an}共有n项,其中奇数项之和为72,偶数项之和为60,则项数n 的值是()A.9B.10C.11D.133.已知等差数列{an }的前n项和为Sn,S3=6,S5=15.设数列{}的前n项和为Tn,若Tn=,则n=()A.19B.20C.21D.22二.解答题(共5小题)4.已知数列{an }的通项是an=2n﹣1.(1)求数列{an }的前n项和为Sn(2)设数列的前n项和为Tn ,求Tn.5.已知正项数列满足4Sn =an2+2an+1.(1)求数列{an}的通项公式;(2)设bn =,求数列{bn}的前n项和Tn.6.已知等比数列{an }的公比q>0,a1a5=8a2,且3a4,28,a6成等差数列.(1)求数列{an}的通项公式;(2)记bn =,求数列{bn}的前n项和Tn.7.在数列{an }中,a1=1,.(1)求a2,a3,a4,猜想an,无需证明;(2)若数列,求数列{an }的前n项和Sn.8.已知数列{an }的前n项和为Sn,a1=1,an+1=2an+2n.(1)证明数列{}是等差数列,并求出an;(2)求Sn;(3)令bn =,若对任意正整数n,不等式bn<恒成立,求实数m的取值范围.2018年10月20日克拉玛****高级中学的高中数学组卷参考答案与试题解析一.选择题(共3小题)1.已知数列1,3,5,7,…则其前n项和Sn为()A.n2+1﹣B.n2+2﹣C.n2+1﹣D.n2+2﹣【分析】利用等差数列与等比数列的前n项和公式即可得出.【解答】解:Sn=1+3+5+…+(2n﹣1)++…+=+=n2+.故选:A.【点评】本题考查了等差数列与等比数列的前n项和公式,属于基础题.2.已知项数为奇数的等差数列{an}共有n项,其中奇数项之和为72,偶数项之和为60,则项数n 的值是()A.9B.10C.11D.13【分析】利用项数为奇数的等差数列{an}共有n项,求出奇数项之和,偶数项之和,然后通过比值求解即可.【解答】解:由题意,;;∴,∴n=11.故选:C.【点评】本题考查数列求和,数列的应用,考查计算能力.3.已知等差数列{an }的前n项和为Sn,S3=6,S5=15.设数列{}的前n项和为Tn,若Tn=,则n=()A.19B.20C.21D.22【分析】等差数列{an}的公差设为d,由等差数列的通项公式和求和公式,解方程可得首项、公差,求得==﹣,由裂项相消求和可得前n项和Tn,解方程可得n的值.【解答】解:等差数列{an }的公差设为d,前n项和为Sn,S3=6,S5=15,可得3a1+3d=6,5a1+10d=15,解得a1=d=1,即an=1+n﹣1=n,==﹣,前n项和为Tn=1﹣+﹣+…+﹣=1﹣,由Tn=,可得n=20,故选:B.【点评】本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.二.解答题(共5小题)4.已知数列{an }的通项是an=2n﹣1.(1)求数列{an }的前n项和为Sn(2)设数列的前n项和为Tn ,求Tn.【分析】(1)利用等差数列的通项公式求解数列的和即可.(2)利用错位相减法求解数列的和即可.【解答】(12分)解:(1)∵an =2n﹣1,∴a1=1,∴(2)①,②①减②得:==,∴.【点评】本题主要考查数列通项公式和前n项和的求解,利用错位相减法的应用,考查计算能力.5.已知正项数列满足4Sn =an2+2an+1.(1)求数列{an}的通项公式;(2)设bn =,求数列{bn}的前n项和Tn.【分析】(1)由,可知当n≥2时,,两式作差可得an ﹣an﹣1=2(n≥2),再求出首项,代入等差数列的通项公式可得数列{an}的通项公式;(2)把数列{an }的通项公式代入bn=,再由裂项相消法求数列{bn}的前n项和Tn.【解答】解:(1)由,可知当n≥2时,,两式作差得an ﹣an﹣1=2(n≥2),又,得a1=1,∴an=2n﹣1;(2)由(1)知,,∴Tn =b1+b2+…+bn==.【点评】本题考查等差数列的通项公式,训练了利用裂项相消法求数列的前n项和,是中档题.6.已知等比数列{an }的公比q>0,a1a5=8a2,且3a4,28,a6成等差数列.(1)求数列{an}的通项公式;(2)记bn =,求数列{bn}的前n项和Tn.【分析】(1)利用等差数列以及等比数列的通项公式列出方程组,求出数列的首项与公比,然后求解数列的通项公式;(2)化简通项公式,利用错位相减法求解数列的和即可.【解答】解:(1)由a1a5=8a2得:a1q3=8,即a4=8,又∵3a4,28,a6成等差数列,∴3a4+a6=56,将a4=8代入得:a6=32.从而:a1=1,q=2.∴an=2n﹣1;(2)bn==2n•()n﹣1,Tn=2×()0+4×()1+6×()2+…+2(n﹣1)•()n﹣2+2n•()n﹣1……………………①Tn=2×()1+4×()2+6×()3+…+2(n﹣1)•()n﹣1+2n•()n……………………②①﹣②得:Tn=2×[()0+2()1+()2+…+()n﹣1]﹣2n•()n=2+2×﹣2n•()n=4﹣(n+2)•()n﹣1.∴Tn=8﹣(n+2)•()n﹣2.【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查转化首项以及计算能力,是中档题.7.在数列{an }中,a1=1,.(1)求a2,a3,a4,猜想an,无需证明;(2)若数列,求数列{an }的前n项和Sn.【分析】(1)利用已知条件通过递推关系式求解a2,a3,a4,猜想an;(2)化简数列,利用裂项消项法求数列{an }的前n项和Sn.【解答】解:(1)∵a1=1,an+1=,∴a2==,a3=═,a4=═.猜想:an=.(2)由(1)知:bn===2[﹣],从而sn =b1+b2+…+bn=2[(1﹣)+(﹣)+…+(﹣)]=2[1﹣]=.【点评】本题考查数列求和,数列的递推关系式的应用,考查计算能力.8.已知数列{an }的前n项和为Sn,a1=1,an+1=2an+2n.(1)证明数列{}是等差数列,并求出an;(2)求Sn;(3)令bn =,若对任意正整数n,不等式bn<恒成立,求实数m的取值范围.【分析】(1)两边同除以2n+1,结合等差数列的定义和通项公式,即可得到所求;(2)运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简可得所求和;(3)求得bn ==()n+(n﹣1)•()n,讨论bn的单调性,求得最大值,可得m2﹣m﹣6>0,解不等式即可得到所求范围.【解答】解:(1)证明:a1=1,an+1=2an+2n,可得=+,可得数列{}是首项和公差均为的等差数列,可得=n,即an=n•2n﹣1;(2)Sn=1•20+2•2+3•22+…+n•2n﹣1,2Sn=1•2+2•22+3•23+…+n•2n,相减可得﹣Sn=1+2+22+…+2n﹣1﹣n•2n,=﹣n•2n,化简可得Sn=1+(n﹣1)•2n;(3)bn==()n+(n﹣1)•()n,b n+1﹣bn=()n+1+n•()n+1﹣()n﹣(n﹣1)•()n=,当n=1时,b2﹣b1=;n=2时,b3﹣b2=;即b1<b2<b3,当n≥3时,bn+1﹣bn<0,即b3>b4>b5>…,则n=3时,bn 的最大值为b3=,不等式b<恒成立,可得n<,即为m2﹣m﹣6>0,解得m>3或m<﹣2.则m的取值范围是(﹣∞,﹣2)∪(3,+∞).【点评】本题考查等差数列的定义和通项公式、求和公式的运用,考查数列的求和方法:错位相减法,以及数列的单调性的运用:解不等式,考查化简整理的运算能力,属于中档题.。
2024届高考数学数列进阶训练——(4)数列求和
2024届高考数学数列进阶训练——(4)数列求和1.111133636936930++++=+++++++L L ()A.310 B.1033C.35D.20332.正整数数列{}n 的前n 项和为n S ,则数列1n S ⎧⎫⎨⎬⎩⎭的前100项和100T 为()A.10099B.99100C.200101D.1001013.已知数列{}n a 满足11(1)2n n n a a +++-=,则其前100项和为()A.250B.200C.150D.1004.已知数列{}n a 中,21311,,22na S n n ==-设11,n n n b a a +=则数列{}n b 的前n 项和为()A.31nn + B.331n n + C.132n n -- D.3332n n -+-5.数列21,12,122+++,…,23212222n -+++++L 的前n 项和为()A.21n n -- B.122n n +-- C.2nD.12n n+-6.数列{}2nn ⋅的前n 项和等于()A.222n n n ⋅-+B.11222n n n ++⋅-+ C.122n n n +⋅- D.1122n n n ++⋅-7.已知等比数列{}n a 的前n 项和为n S ,且122n n S +=-,则数列2211log log n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T =()A.2nn + B.1n n + C.12n n ++ D.12n n -+8.已知数列{}n a 的通项公式是1235nn a n ⎛⎫=- ⎪⎝⎭,则其前20项和为()A.1931380155⎛⎫-⨯- ⎪⎝⎭B.2031420145⎛⎫-⨯- ⎪⎝⎭C.2021400155⎛⎫-⨯- ⎪⎝⎭D.2041440155⎛⎫-⨯- ⎪⎝⎭9.已知()f x 是定义在R 上的奇函数,且满足对R x ∀∈,π(2)()1,()()cos2x f x f x g x f x +=+=+,则12875()()(219219219g g g ++= ()A.873B.874C.875D.87610.(多选)已知数列{}n a 满足11a =,()*123nn naa n a +=∈+N ,则下列结论正确的是()A.13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B.{}n a 的通项公式为1123n n a -=-C.{}n a 为递增数列D.1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--11.(多选)如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n 层有n a 个球,从上往下n 层球的总数为n S ,则()A.535S =B.1n n n a a +-=C.(1)2n n n a +=D.1231001111200101a a a a +++⋅⋅⋅+=12.(多选)已知正项数列{}n a 的首项为2,前n 项和为n S ,且()()111111,22n n n n n n n n n n a a a a S a S b a a ++++-+++=+=+-,数列{}n b 的前n 项和为n T ,若16n T <,则n 的值可以为()A.543B.542C.546D.54413.设()*1111122334(1)n S n n n =++++∈⨯⨯⨯+N ,且156n n S S +=,则n =____________.14.计算239111112392222⨯+⨯+⨯++⨯=L ____________.15.已知数列{}n a 满足212335(21)2n n a a a n a n +++++-=⋅ ,设(21)n n b n a =-,则{}n b 的前n 项和n T =_______.16.已知数列{}n a 的前n 项和为n S ,且13322n n S -=⋅-,则数列2(2)n a n n ⎧⎫+⎨⎬+⎩⎭的前n 项和n T =_____________.17.已知等比数列{}n a 的前n 项和为n S ,且21n n a S -=.(1)求n a 与n S ;(2)记21n nn b a -=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和为n S ,11a =,11nn S a n n+=--,*n ∈N .(1)求n S ;(2)令1112(1)n n n n n n n S Sb na a n a a ++++=-+,证明:12313n b b b b ++++< .19.已知n S 是等差数列{}n a 的前n 项和,315S =,127a a a ⋅=.(1)求n a ;(2)若2(1)na n n nb a =+-⋅,求数列{}n b 的前n 项和n T .20.已知{}n a 是一个公差大于0的等差数列,且满足362755,16a a a a =+=.(1)求数列{}n a 的通项公式;(2)若数列{}n a 和数列{}n b 满足等式:312232222n n nb b b ba =++++L (n 为正整数),求数列{}n b 的前n 项和n S .答案以及解析1.答案:D解析:由题意可设122113693(33)31n a n n n n n ⎛⎫===- ⎪++++++⎝⎭L ,则数列{}n a 的前10项的和10111121111336369369303223S ⎛=++++=⨯-+-+ +++++++⎝L L 11112120134101131133⎫⎛⎫-++-=⨯-=⎪ ⎪⎭⎝⎭L .故选D.2.答案:C解析:由题意,正整数数列{}n 的前n 项和1(1)2n S n n =+,12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭,则10012100111T S S S =+++= 1111112002121223100101101101⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,故选C.3.答案:D解析:当n 为奇数时,12n n a a ++=,则前100项和为()()()123499100250100a a a a a a ++++++=⨯= .4.答案:A解析:当2n 时2131,22n n n a S S n n -=-=--231(1)(1)3222n n n ⎡⎤---=-⎢⎥⎣⎦,当1n =时,11a =也成立,所以32n a n =-,则111(32)(31)n n n b a a n n +===-+11133231n n ⎛⎫- ⎪-+⎝⎭,设n T 为数列{}n b 的前n 项和,则111111344732n T n ⎛=-+-++- -⎝L 11113133131nn n n ⎫⎛⎫=-=⎪ ⎪+++⎭⎝⎭.5.答案:B解析:设此数列的第n 项为n a ,则2321121222222112nn n n n a ---=++++++==--L ,所以数列{}n a 的前n 项和为()121122122121212212n nn n a a a n n +-+++=-+-++-=-=---L L .故选B.6.答案:B解析:设{}2nn ⋅的前 n 项和为n S ,则1231222322n n S n =⨯+⨯+⨯++⋅L ,①所以23121222(1)22n n n S n n +=⨯+⨯++-+⋅L ,②①-②得()231121222222212n n n n n S n n ++--=++++-⋅=⋅-L ,所以11222n n n S n ++=⋅-+.故选B.7.答案:B解析:当1n =时,211222a S ==-=;当2n ≥时,()1122222n n nn n n a S S +-=-=---=,∴数列{}n a 是首项为2,公比为2的等比数列,且2n n a =,则122122log log log 2log 2(1)n n n n a a n n ++==+,1111223(1)n T n n ∴=+++=⨯⨯+ 11111122311n n n n -+-++-=++ ,故选B.8.答案:B解析:数列{}n a 的前20项和222012201112(1220)32555S a a a ⎡⎤⎛⎫⎛⎫=+++=⨯+++-⨯+++=⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦L L L 202011155(120)203134201124515⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥+⨯⎛⎫⎣⎦-⨯=-⨯- ⎪⎝⎭-.9.答案:B解析:由题意得,()()()21f x f x f x -=-=-+-⎡⎤⎣⎦,则()()21f x f x -++=,故()()2g x g x +-()()ππcos2cos π122x x f x f x ⎛⎫ =++⎝--⎪⎭+=.又()6(41)f x f x +=++()22f x =++()3f x =+()3f x =--+,()()63f x f x ∴-++=,()()6g x g x +-()()πcos6cos 3π322x x f x f x π=++-+-⎫ ⎪⎝⎭=⎛.令112437...219219219S g g ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭++⎝⎭⎝=⎭+,则14374361...219219219S g g g ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝=++⎭+,14371219219g g ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭Q ,124371S ∴=⨯,可得14372S =.令2439440875219219219S g g g =++⋯⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+,则2875874439...219219219S g g g ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4398753219219g g ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭Q ,224373S ∴=⨯,213112S ∴=.又()()2011f f =+=,()()22cos π0438219g g f ⎛⎫⎪∴==+⎭=⎝,故原式()1243713112087422S g S =++=++=,故选B.10.答案:AD 解析:123123n n n n a a a a ++==+,111323n n a a +⎛⎫∴+=+ ⎪⎝⎭,又11340a +=≠,13n a ⎧⎫∴+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n n a -+=⨯,1123n na +∴=-,1123n n a +∴=-,{}n a ∴为递减数列,1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()()2311223232322223n nn T n +=-+-++-=+++-= 21222323412nn n n +-⨯⨯-=---.故选AD.11.答案:ACD解析:依题意可知11n n a a n +-=+,B 错误.由11a =,2123a =+=,3336a =+=,46410a =+=,510515a =+=,得5136101535S =++++=,A 正确.由11n n a a n +-=+,1(2)n n a a n n --=≥,得()()()112211n n n n n a a a a a a a a ---=-+-++-+= (1)(1)212n n n n ++-+++= ,C 正确.由11121n a n n ⎛⎫=- ⎪+⎝⎭,得121001111111121223100101a a a ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦120021101101⎛⎫=-= ⎪⎝⎭,D 正确.故选ACD.12.答案:AB解析:本题考查数列的前n 项和与通项的关系、裂项相消法求和.依题意,()()11112n n n n n n n a a a a S a S +++-+++=+,则()221121n n n n a a a a ++-=-+,即()()221112n n a a +---=,故数列(){}21n a -是首项为()2111a -=,公差为2的等差数列,则()2121n a n -=-,则1n a =,所以11212122n n n b a a +==+-,则1111)22n T =-+-++= .令11)162<,解得33<,即544n <,故选AB.13.答案:10解析:111111111122334111n n S nn n n =-+-+-++-=-=+++ ,则1151226n n n n n S S n n n ++=⋅==+++,解得10n =.14.答案:1013512解析:令239111112392222S =⨯+⨯+⨯++⨯L ,①则2341011111123922222S =⨯+⨯+⨯++⨯L ,②①-②得239101111119222222S =++++-⨯=L 9109101011111111101322919112222102412⎛⎫- ⎪⎝⎭-⨯=--⨯=-=-,所以1013512S =.15.答案:22n n +⋅解析:当1n =时,18a =,当2n 时,21123123135(21)2,35(23)(1)2n n n n a a a n a n a a a n a n ++-++++-=⋅++++-=-⋅ ,相减得111(21)(1)2,221n n n n n n a n a n n +++-=+⋅∴=⋅-,当1n =时,18a =成立,1123112,(21)(1)2,2232(1)221n n n n n n n n a b n a n T n n ++++∴=⋅∴=-=+⋅∴=⨯+⨯+++⋅- ,34222232(1)2n n T n +=⨯+⨯+++⋅ ,两式相减得2341222222(1)2n n n T n ++-=⨯++++-+= 222,2n n n n T n ++-⋅∴=⋅.16.答案:1113212n n n -⋅--++解析:依题意,当1n =时,1132a S ==;当2n ≥时,213322n n S --=⋅-,故2132n n n n a S S --=-=⋅.综上所述,232n n a -=⋅.故2222113232(2)(2)2n n n a n n n n n n --+=+⋅=-+⋅+++.故123n nT b b b b =++++L ()1111113112232422n n n -⎛⎫⎛⎫⎛⎫=-+-++-++++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L 111111113211233412221n n n n n -⎛⎫⎛⎫=++++-++++++⨯⎪ ⎪++-⎝⎭⎝⎭L L ()3113212122n n n =--+⨯-++1113212n n n -=⋅--++.17.(1)答案:12n n a a -=;21nn S =-解析:由21,n n a S -=得12=n n S a -,当1n =时,11121a S a ==-,得11a =;当2n ≥时,()()112121n n n n n a S S a a --=-=---,得12n n a a -=,所以数列{}n a 是以1为首项,2为公比的等比数列,所以12n n a -=.所以2121nn n S a =-=-.(2)答案:12362n n n T -+=-解析:由(1)可得1212n n n b --=,则2113521111222n n n T --=++++=⨯+ 2111135(21)222n n -⨯+⨯++-⋅ ,2311111135(21)22222n n T n =⨯+⨯+⨯++-⋅ ,两式相减得23111111112(21)222222n n n T n -⎛⎫=+++++--⋅ ⎪⎝⎭ ,所以23111111124(21)22222n n n T n --⎛⎫=+++++--⋅ ⎪⎝⎭11112224(21)1212n n n --=+⋅--⋅-12362n n -+=-.18.答案:(1)2n S n =(2)见解析解析:(1)因为11n n n a S S ++=-,11nn S a n n+=--,所以()()111(1)n n n n S n a n n S S n n ++=--=--+,故1(1)(1)n n n S nS n n ++=-+,即111n nS S n n+-=+,所以n S n ⎧⎫⎨⎬⎩⎭是首项为11111S a ==,公差为1的等差数列,故1(1)nS n n n=+-=,则2n S n =.(2)因为2n S n =,()*12,n n n a S S n n -=-≥∈N ,所以()22*(1)212,n a n n n n n =--=-≥∈N .又11a =符合上式,所以()*21n a n n =-∈N .因为1112(1)n n n n n n n S S b na a n a a ++++=-+,所以22(1)(21)(21)(1)(21)(23)n n n b n n n n n n +=--++++1(21)(21)(21)(23)n n n n n n +=--+++144(1)4(21)(21)(21)(23)n n n n n n ⎡⎤+=-⎢⎥-+++⎣⎦11111421212123n n n n ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎢⎥-+++⎝⎭⎝⎭⎣⎦11142123n n ⎛⎫=- ⎪-+⎝⎭,所以123n b b b b ++++=1111111111111453759252123212123n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-++- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11111411114321234321233n n n n ⎛⎫⎛⎫=+--=--< ⎪ ⎪++++⎝⎭⎝⎭.19.答案:(1)21n a n =+(2)()()()()**8412,,3841221,.3n n nn n k k T n n k k ⎧-⎪+=∈⎪∴=⎨-⎪--=-∈⎪⎩N N 解析:(1)设等差数列{}n a 的公差为d ,由31232315S a a a a =++==,得25a =,又127a a a ⋅=,()2225a d a a d ∴-⋅=+,即5(5)55d d -=+,解得2d =.2(2)221n a a n n ∴=+-⨯=+.(2)由题意得212(1)(21)24(1)(21)n n n n n b n n +=+-⋅+=⨯+-⋅+,()1224443579(1)(21)n nn T n ⎡⎤∴=⨯++++-+-+-+-+=⎣⎦ ()8413579(1)(21)3n nn -⎡⎤+-+-+-+-+⎣⎦.令3579(1)(21)n n G n =-+-+-+-+ ,*n ∈N ,则当()*2n k k =∈N 时,22n n G n =⨯=,此时()8413n n T n -=+;当()*21n k k =-∈N 时,12(21)22n n G n n -=⨯-+=--,此时()84123n n T n -=--.()()()()**8412,,3841221,.3n n nn n k k T n n k k ⎧-⎪+=∈⎪∴=⎨-⎪--=-∈⎪⎩N N 20.答案:(1)设等差数列{}n a 的公差为d ,则依题设知0d >.由2716a a +=,得12716a d +=,①由3655a a =,得()()112555a d a d ++=,②由①得1782a d =-,将其代入②得(163)(163)220d d -+=.即22569220d -=,整理得24d =.又0,2d d >∴=.代入①得11,1(1)221n a a n n =∴=+-⋅=-,21n a n ∴=-.(2)令2n n nb c =,则12n n a c c c =+++L ,且1121n n a c c c ++=+++L ,两式相减得11n n n a a c ++-=,由(1)得111,2n n a a a +=-=,则12n c +=,即2(2)n c n =≥,即2n ≥时,12n n b +=.又当1n =时,1112,1,22,2, 2.n n n b a b n +=⎧==∴=⎨≥⎩当1n =时,112S b ==;当2n ≥时,3411232222n n n S b b b b +=++++=++++=L L ()12341222122222442621n n n +++-+++++-=-=--L ,即226n n S +=-.当1n =时也满足上式,226n n S +∴=-.。
高三数学数列求和试题答案及解析
高三数学数列求和试题答案及解析1.已知数列{an }满足a1=1,a2=-2,an+2=-,则该数列前26项的和为________.【答案】-10【解析】由于a1=1, a2=-2,an+2=-,所以a3=-1,a4=,a5=1,a6=-2,…,所以{an}是周期为4的数列,故S26=6×+1-2=-10.2.已知和均为给定的大于1的自然数,设集合,集合,(1)当时,用列举法表示集合A;(2)设其中证明:若则.【答案】(1) , (2) 详见解析.【解析】(1)本题实质是具体理解新定义,当时,,,再分别对取得到 (2)证明大小不等式,一般利用作差法.,根据新定义:,所以,即.解:当时,,,可得,证明:由及可得所以.【考点】新定义,作差证明不等式,等比数列求和3.已知数列{an }的前n项和为Sn,对任意的n∈N*有Sn=an-,且1<Sk<12,则k的值为()A.2B.2或4C.3或4D.6【答案】B【解析】本题考查等比数列的前n项和,考查考生对数列知识的综合运用能力,属于中档题.首先要根据Sn =an-,推出数列{an}是等比数列并求出其通项公式,然后用前n项和公式表达出Sn,再对选项中k的值逐一进行验证.∵a1=a1-,∴a1=-2.∵an+1=S n+1-S n=(a n+1-a n),∴a n+1=-2a n,数列{a n}是以-2为首项,-2为公比的等比数列,∴an =(-2)n,Sn=(-2)n-.逐一检验即可知k=4或2.4.设数列{an }的前n项和为Sn,点(n,)(n∈N*)均在函数y=x+的图象上,则a2014=()A.2014B.2013C.1012D.1011【答案】A【解析】由题意得=n+,即Sn =n2+n,当n≥2时,an=Sn-Sn-1=n2+n-[ (n-1)2+ (n-1)]=n;当n=1时,a1=S1=1.∴an=n,故a2014=2014,选A.5.对任意,函数满足,设,数列的前15项的和为,则.【答案】【解析】因为,所以即因此数列任意相邻两项和为因为,因此所以或,又由.【考点】数列求和6.已知数列{an }中,a1=1,an+1=(-1)n(an+1),记Sn为{an}前n项的和,则S2 013=________.【答案】-1 005【解析】由a1=1,an+1=(-1)n(an+1)可得该数列是周期为4的数列,且a1=1,a2=-2,a3=-1,a4=0.所以S2 013=503(a1+a2+a3+a4)+a2 013=503×(-2)+1=-1 005.7.数列的通项,其前n项和为.(1)求;(2)求数列{}的前n项和.【答案】(1);(2)【解析】(1)化简通项公式为,考虑到的值是周期性出现的,而且周期是3,故将数列三项并为一组为+++……+分别求和,进而求;(2)求,观察其特征选择相应的求和方法,通常求数列前n项和的方法有①裂项相消法,在求和过程中相互抵消的办法;②错位相减法,通项公式是等差数列乘以等比数列的形式;③分组求和法,将数列求和问题转化为等差数列求和或者等比数列求和问题;④奇偶并项求和法,考虑数列相邻两项或者相邻几项的特征,进而求和的方法,该题利用错位相减法求和. 试题解析:(1) 由于,,∴;(2)两式相减得:【考点】1、三角函数的周期性;2、数列求和;3、余弦的二倍角公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知,点在函数的图象上,其中(1)证明:数列是等比数列,并求数列的通项公式;(2)记,求数列的前项和.【答案】(1)证明详见解析; ;(2)【解析】(1)把点(an ,an+1)代入f(x)=x2+2x中,整理可得递推公式an+1+1=(an+1)2,两边取常用对数,整理可证是公比为2,a1=2的等比数列,然后由数列的通项公式可推出数列{an}的通项公式.(2)由已知递推公式an+1=an2+2an变形整理得,代入中,整理可得最后利用裂项法求数列的前n项和Sn.试题解析:(Ⅰ)由已知,,两边取对数得,即是公比为2的等比数列.(*)由(*)式得(2)又.【考点】1.数列的递推公式及等比数列的定义和通项公式;2.求数列的前n项和.10.设数列满足,,且对任意,函数满足(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.【答案】(Ⅰ) (Ⅱ)【解析】由所以,是等差数列.而(2)第(1)题,通过求导以及,能够判断出是等差数列是等差数列,由第(1)题的结论能够写出的通项公式,根据的特征,选择求和的方法,利用分组求和的方法即可求出.【考点】考查函数的求导法则和求导公式,等差、等比数列的性质和数列基本量的求解.并考查逻辑推理能力和运算能力.11.已知数列的各项都是正数,前项和是,且点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求.【答案】(Ⅰ);(Ⅱ)。
专题07 数列求和(解析版)-高考数学计算题型精练(新高考通用版)
数列求和的运算1.等比数列{}n a 的公比为2,且234,2,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)若()21log n n n n b a a a +=⋅+,求数列{}n b 的前n 项和n T .【答案】(1)*2,N n n a n =∈(2)n T 21222;n n n +=++-【详解】(1)已知等比数列{}n a 的公比为2,且234,2,a a a +成等差数列,()32422a a a ∴+=+,()11124228a a a ∴+=+,解得12a =,1*222,N ;n n n a n -∴=⨯=∈(2)()12122log 222log 22212n n n n n n n b n ++=⋅+=+=++,()()()()221221222221212n n n T n n n n -∴=++++++++=+++++- .21222;n n n +=++-2.正项数列{}n a 的前n 项和为n S ,已知221n n n a S a =+.(1)求证:数列{}2n S 为等差数列,并求出n S ,n a ;(2)若(1)nn nb a -=,求数列{}n b 的前2023项和2023T .【答案】(1)n S ;=n a (2)2023T =.【详解】(1)由221n n n a S a =+可得,221121S S =+,又因为n S 为正项数列{}n a 的前n 项和,所以111S a ==,因为1n n n a S S -=-,所以()()21121n n n n n S S S S S ---=-+,所以()22112n n S S n --=≥,数列{}2n S 为等差数列,所以2nS n =,n S ,())112n n a n ⎧==≥,所以n a(2)(1)(1)nn n nb a -==-,202311T =-+-⋅⋅⋅--3.已知数列{}n a 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4….即先取11a =,接着复制该项粘贴在后面作为2a ,并添加后继数2作为3a ;再复制所有项1,1,2并粘贴在后面作为4a ,5a ,6a ,并添加后继数3作为7a ,…依次继续下去.记n b 表示数列{}n a 中n 首次出现时对应的项数.(1)求数列{}n b 的通项公式;(2)求12363a a a a ++++ .【答案】(1)21nn b =-(2)120【详解】(1)由题意知:121n n b b +=+,即112(1)n n b b ++=+,且112b +=,所以数列{1}n b +是以112b +=为首项,2为公比的等比数列,所以12n n b +=,则21nn b =-.(2)由(1)可知,662163b =-=,所以6在前63项中出现1次,5在前63项中出现2次,4在前63项中出现224⨯=次,3在前63项中出现428⨯=次,2在前63项中出现8216⨯=次,1在前63项中出现16232⨯=次,所以1236313221638445261120a a a a ++++=⨯+⨯+⨯+⨯+⨯+⨯= .4.已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,(1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前2023项和.【答案】(1)n a n =(2)20232024【详解】(1)设公差为d ,由55a =,515S =,得1145545152a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11a d ==,所以n a n =.(2)由(1)可得()1111111n n n b a a n n n n +===-++,所以122320232024111a a a a a a +++ 1111112023112232023202420242024⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故数列{}n b 的前2023项和为20232024.5.已知{}n a 是首项为2,公差为3的等差数列,数列{}n b 满足114,321n n b b b n +==-+.(1)证明{}n b n -是等比数列,并求{}{},n n a b 的通项公式;(2)若数列{}n a 与{}n b 中有公共项,即存在*,N k m ∈,使得k m a b =成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作{}n c ,求12n c c c +++ .【答案】(1)证明见解析,()*31N n a n n =-∈,()*3Nn n b n n =+∈(2)()()927131262n n n -++()*N n ∈【详解】(1)由题意可得:()()*21331N n a n n n =+-⨯=-∈,而114,321n n b b b n +==-+,变形可得:()()111333,13n n n b n b n b n b +-+=-=--=,故{}n b n -是首项为3,公比为3的等比数列.从而3nn b n -=,即()*3N n n b n n =+∈.(2)由题意可得:313m k m -=+,*,N k m ∈,令31m n =-()*N n ∈,则()312231331331n n k n n ---=+-=+-,此时满足条件,即2,5,8,,31m n =⋯-时为公共项,所以122531n n c c c b b b -+++=+++ ()()()25319271313332531262n n n n n --+=+++++++-=+()*N n ∈.6.设数列{}n a 的前n 项和为n S ,已知()*12N n n S a n +=∈.(1)求{}n a 的通项公式;(2)设,21,2n n a n k b n n k=-⎧=⎨=⎩且*N k ∈,求数列{}n b 的前n 项和为n T .【答案】(1)12n n a -=(2)()12221,234211,2134n n n n n n k T n n k +⎧+-+=⎪⎪=⎨--⎪+=-⎪⎩,*N k ∈【详解】(1)当1n =时,11a =,当2n ≥时,111212n nn n S a S a --+=⎧⎨+=⎩12n n a a -⇒=,所以{}n a 是首项为1,公比为2的等比数列,则12n n a -=.(2)由题设知:12,21,2n n n k b n n k-⎧=-=⎨=⎩,*N k ∈,当n 为偶数时,13124()()n n n T b b b b b b -=+++++++ 022(222)(24)n n -=+++++++ 21(2)34n n n -+=+;当n 为奇数时,13241()()n n n T b b b b b b -=+++++++ 021(222)(241)n n -=+++++++- 1221134n n +--=+;综上,()12221,234211,2134n n n n n n k T n n k +⎧+-+=⎪⎪=⎨--⎪+=-⎪⎩,*N k ∈.7.已知数列{}n a 满足:12a =,且对任意的*n ∈N ,11,,222,.nnn n n a n a a n ++⎧⎪=⎨⎪+⎩是奇数是偶数(1)求2a ,3a 的值,并证明数列2123n a -⎧⎫+⎨⎬⎩⎭是等比数列;(2)设()21N *n n b a n -=∈,求数列{}n b 的前n 项和n T .【答案】(1)21a =,310a =,证明见解析(2)()824193n n T n =--【详解】(1)1212a a ==,3322210a a =+=.由题意得212121212212121288822244332333n n n n n n n n a a a a a ++-+---⎛⎫⎛⎫+=+=+=+=+ ⎪ ⎪⎝⎭⎝⎭,又128033a +=≠,所以数列2123n a -⎧⎫+⎨⎩⎭是等比数列.(2)由(1)知12182433n n n b a --==⋅-.运用分组求和,可得()0121828142444++4333143n n n T n n--=++⋅⋅⋅-=⋅--()824193n n =--.8.已知正项数列{}n a 的前n 项和为n T ,12a =且对任意2n ≥,11,,n n n n a T a a T -成等差数列,又正项等比数列{}n b 的前n 项和为n S ,23413,39S S ==.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满足2n n n c T b =⋅,是否存在正整数n ,使129n c c c +++> .若存在,求出n 的最大值;若不存在,请说明理由.【答案】(1)2n a =,n b =113n -⎛⎫⎪⎝⎭(2)不存在,理由见解析【详解】(1)设{}n b 的公比为q ,显然1q ≠,由23413,39S S ==,可得()()2131141311319b q qb q q⎧-⎪=-⎪⎨-⎪=⎪-⎩,解得13q =或14q =-(舍去),又11b =,所以n b =113n -⎛⎫⎪⎝⎭,又对任意2n ≥,11,,n n n n a T a a T -成等差数列,12a =,所以14n n n n a T a T -+=.因为()12n n n a T T n -=-≥,所以()()114n n n n T T T T ---+=,所以2214n n T T --=()2n ≥,故{}2n T 是以214T =为首项,公差4d =的等差数列,所以()24144n T n n =+-⨯=,又0n a >,所以0n T >,所以n T =当2n ≥时,142n n n a T T -==+,1n =时,12a =满足上式,故2n a =.(2)12143n n nn c T b n -⎛⎫=⋅=⨯ ⎪⎝⎭,设12n n K c c c =+++ ,121114812333n K ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1143n n -⎛⎫⨯ ⎪⎝⎭①,123111148123333n K ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11141433n nn n -⎛⎫⎛⎫+-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭②,①-②,得122114444333n K ⎛⎫⎛⎫=+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭3111144333n nn -⎛⎫⎛⎫⎛⎫++⨯- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭111341313n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎛⎫⎝⎭⎢⎥=- ⎪⎢⎥⎝⎭-⎢⎥⎣⎦331142233n n n ⎡⎤⎛⎫⎛⎫=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以()11119969329333nnn n K n n -⎛⎫⎛⎫=--=-+< ⎪ ⎪⎝⎭⎝⎭,故不存在正整数n ,使129n c c c +++> .9.已知各项均为正数的等比数列{}n a ,其前n 项和为n S ,满足226n n S a +=-,(1)求数列{}n a 的通项公式;(2)记m b 为数列{}n S 在区间()2,m m a a +中最大的项,求数列{}n b 的前n 项和n T .【答案】(1)132n n a -=⨯;(2)222313n n T n +--=⨯.【详解】(1)设{}n a 的公比为q ,则0q >,又226n n S a +=-,当1n =时,1326S a =-,当2n =时,2426S a =-,两式相减可得,2432a a a =-,所以22q q =-,所以2q =或1q =-(舍去),所以1312646S a a =-=-,即13a =,所以等比数列{}n a 的通项公式为132n n a -=⨯;(2)由132n n a -=⨯,226n n S a +=-,可得()()1211632632322n n n n S a ++=-=⨯-=⨯-,所以113n n n S a a ++=-<,又0n a >,所以n n S a ≥,当且仅当1n =时等号成立,所以122m m m m m a S S a S +++≤<<<,所以11323m m m b S ++==⨯-,所以()2341322223n n T n +++=+-+ 22233322212312n n n n ++-⨯⨯-==---.即222313n n T n +--=⨯.10.已知等差数列{}n a 的公差0d >,且满足11a =,1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22,1,n a n n n n b n a a+⎧⎪=⎨⎪⎩为奇数为偶数求数列{}n b 的前2n 项的和2n T .【答案】(1)n a n =(2)21221534412n n T n +=--+【详解】(1)因为1a ,2a ,4a 成等比数列,所以2214a a a =,即2(1)1(13)d d +=⨯+,解得0d =或1d =.因为0d >,所以1d =,所以11(1)n a n n =+⨯-=.(2)由(1)得()2,,1,,2n n n b n n n ⎧⎪=⎨⎪+⎩为奇数为偶数所以2,,111,22n n n b n n n ⎧⎪=⎨⎛⎫- ⎪⎪+⎝⎭⎩为奇数为偶数,所以21232121321242()()n n n n n T b b b b b b b b b b b --=+++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+13211111111(222)22446222n n n -⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦12122222111122222n n --⋅⎛⎫=+- ⎪-+⎝⎭,2121534412n n +=--+,所以数列{}n b 的前2n 项的和21221534412n n T n +=--+.11.设n S 是数列{}n a 的前n 项和,已知30a =,1(1)2n nn n a S ++-=.(1)求1a ,2a ;(2)令12n n n b a a +=+,求2462n b b b b ++++ .【答案】(1)121,3a a ==(2)2122n +-【详解】(1)由1(1)2n nn n a S ++-=得212,a a -=即212,a a =+23242a S +==,即1324a a a +=+,又30a =,所以121,3a a ==,(2)当2n k =时,22122kk k a S ++=,当21n k =-时,221212k k k a S --=-,两式相加可得22121221222k k k k k k a S a S +--=+-++,得221212222k k k k a a -++=+,由于12n n n b a a +=+,所以()()()()32547462622212222n n n b b b b a a a a a a a a +=++++++++++++ ()()()()21436522122222222n n -=++++++++ ()()24621352122222222n n -=+++++++++ ()()21414214221414n n n +--=+=---12.已知{}n a 是递增的等差数列,{}n b 是等比数列,且11a =,22b a =,35b a =,414b a =.(1)求数列{}n a 与{}n b 的通项公式;(2)n *∀∈N ,数列{}n c 满足1122313n n n c a c c b b b ++++⋅⋅⋅+=,求{}n c 的前n 项和n S .【答案】(1)21n a n =-,13n n b -=(2)3n n S =【详解】(1)解:由题意,设等差数列{}n a 的公差为()0d d >,则221b a d ==+,3514b a d ==+,414113b a d ==+,因为数列{}n b 为等比数列,则2324b b b =,即()()()2141113d d d +=++,因为0d >,解得2d =,()()1112121n a a n d n n ∴=+-=+-=-.又因为223b a ==,359==b a ,所以,等比数列{}n b 的公比为323b q b ==,因此,2123n n n b b q --==.(2)解:由1122313n n n c a c c b b b ++++⋅⋅⋅+=,①可得12213c a b ==,所以,13c =,当2n ≥时,112233n n n c a c c b b b -++⋅⋅⋅+=,②①-②得11233n n n n c a a b ++-==,所以,()1122323n n n c b n -+==⋅≥,13c =不满足()1232n n c n -=⋅≥,所以,13,123,2n n n c n -=⎧=⎨⋅≥⎩.当1n =时,113S c ==,当2n ≥时,()()1121613323333313n n n n S ---=+⨯+++=+=- ,13S =也满足()32n n S n =≥,综上所述,对任意的n *∈N ,3nn S =.13.已知数列{}n a 的前n 项和为n S ,且225n n S a n =+-.(1)求数列{}n a 的通项公式;(2)记()21log 2n n b a +=-,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和n T .【答案】(1)122n n a -=+(2)1n n +【详解】(1)当1n =时,111225S a a ==+-,解得13a =,当2n ≥时,()112215n n S a n --=+--.可得()112252215n n n n S S a n a n --⎡⎤-=+--+--⎣⎦,整理得:122n n a a -=-,从而()()12222n n a a n --=-≥,又121a -=,所以数列{}2n a -是首项为1,公比为2的等比数列;所以()1112222n n n a a ---=-⋅=,所以122n n a -=+,经检验,13a =满足122n n a -=+,综上,数列{}n a 的通项公式为122n n a -=+;(2)由(1)得122n n a --=,所以122nn a +-=,所以()21log 2n n b a n +=-=,()1111111n n b b n n n n +∴==-⋅++,所以12233411111n n n T b b b b b b b b +=++++ 11111111.1223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭ 1111nn n =-=++14.已知n S 为数列{}n a 的前n 项和,11a =,且2*,N n n na S n n n -=-∈.(1)求数列{}n a 的通项公式;(2)若()()122121nnn a n a a b +=--,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)21111321n n T +⎛⎫=- ⎪-⎝⎭【详解】(1)因为2n n na S n n -=-,所以211(1)(1)(1)(2)n n n a S n n n ----=---≥,两式相减得1(1)22n n n na n a a n ----=-,化简得12(2)n n a a n --=≥,所以数列{}n a 是以1为首项,2为公差的等差数列,所以1(1)221n a n n =+-⨯=-.(2)()()21212121212111321212121n n n n n n b --+-+⎛⎫==-⎪----⎝⎭,所以12n nT b b b =++¼+335212111111113212121212121n n -+⎛⎫=-+-+⋯+- ⎪------⎝⎭21111321n +⎛⎫=- ⎪-⎝⎭所以21111321n n T +⎛⎫=- ⎪-⎝⎭.15.已知函数{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)求证11n a ⎧⎫-⎨⎬⎩⎭为等比数列,并求n a .(2)对于实数x ,[]x 表示不超过x 的最大整数,求123100123100a a a a ⎡⎤++++⎢⎥⎣⎦ 的值.【答案】(1)证明见解析,332nn na =+(2)5051【详解】(1)因为135a =,1321n n n a a a +=+,所以0n a ≠,所以12113n n n a a a ++=2133n a =+,所以1111113n n a a +⎛⎫-=- ⎪⎝⎭.又因为11213a -=,所以数列11n a ⎧⎫-⎨⎬⎩⎭是首项为23,公比为13的等比数列,所以112112333nn n a -⎛⎫-=⨯⎪=⎝⎭,所以1213n n a =+,所以332n n na =+.(2)因为1213n n a =+,所以1210012310012310024200123100333a a a a +++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅+()1210010010011210023332⨯+⎛⎫=⨯++⋅⋅⋅++ ⎪⎝⎭.设1231001231003333T =+++⋅⋅⋅+,所以234101112310033333T =+++⋅⋅⋅+,所以2310010121111100333333T =+++⋅⋅⋅+-100101100101111100111003311323313⎛⎫⨯- ⎪⎛⎫⎝⎭=-=⨯-- ⎪⎝⎭-,所以1003203443T =-⨯,所以100123123100a a a a +++⋅⋅⋅+100100320320*********.522323=+-=-⨯⨯.因为100203013<<,所以10020310232<<⨯,所以10020350515051.55051.523<-<⨯,所以1001231231005051a a a a ⎡⎤+++⋅⋅⋅+=⎢⎥⎣⎦.16.已知各项均为正数的数列{n a }满足111,23n n a a a -==+(正整数2)n ≥(1)求证:数列{}3n a +是等比数列;(2)求数列{n a }的前n 项和n S .【答案】(1)证明见解析(2)2234n n S n +=--【详解】(1)证明:已知递推公式123n n a a -=+,两边同时加上3,得:()()13232n n a a n -+=+≥,因为0,30n n a a >+>,所以()13223n n a n a -+=≥+,又1340a +=≠,所以数列{}3n a +是以134a +=为首项、以2为公比的等比数列.(2)由(1)113=422n n n a -++⨯=,则()1*23N n n a n +=-∈,所以23112232323n n n S a a a +=++⋅⋅⋅+=-+-+⋅⋅⋅+-()2312223n n+=++⋅⋅⋅+-()2412323412nn n n +⋅-=-=---.17.已知在数列{}n a 中,112a =,且1n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)设1n n n n a b a a +=+,数列{}n b 的前n 项和为n T ,求使得425m T ≤的最大整数m 的值;(3)设12nn n na c a -=⋅,求数列{}n c 的前n 项和nQ 【答案】(1)11n a n =+(2)8(3)222n nn Q +=-【详解】(1)由112a =可知112a =,又1n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,所以12(1)11n n n a =+-⨯=+,故11n a n =+.(2)1111112112n n n n a n b a a n n n n ++=+=+=+-++++,121111111123341222n n T b b b n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=+++=+-+-++-=+- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭,则1142225m T m m =+-≤+,整理得210(2)99(2)100m m +-+-≤,解得18m ≤≤,故满足条件的最大整数m 的值为8.(3)由题得122n n nn n a nc a -==⋅,则2311111232222n n Q n =⨯+⨯+⨯++⨯ ,2311111112(1)22222n n n Q n n +=⨯+⨯++-⨯+⨯ ,两式相减得231111111111122222222n nn n n Q n n ++⎛⎫=++++-⨯=--⨯ ⎪⎝⎭,所以2222222n n n nn nQ +=--=-.18.已知数列{}n a 各项都不为0,前n 项和为n S ,且32n n a S -=,数列{}n b 满足11b =-,1n n b b n +=+.(1)求数列{}n a 和{}n b 的通项公式;(2)令21n nn a b c n =+,求数列{}n c 的前n 项和为nT 【答案】(1)132n n a -⎛⎫= ⎪⎝⎭;()()122nn n b +-=;(2)()138342n n T n -⎛⎫=+-⨯ ⎪⎝⎭【详解】(1)由32n n a S -=,可得()11322n n a S n ---=≥,两式相减得1133n n n n n a a S S a ---=-=,整理得132n n a a -=,因为数列{}n a 各项都不为0,所以数列{}n a 是以32为公比的等比数列.令1n =,则11132a S a -==,解得11a =,故132n n a -⎛⎫= ⎪⎝⎭.由题知1n n b b n +-=,所以()()()()11232211n n n n n b b b b b b b b b b ---=-+-++-+-+ ()()()()21221221122n n n n n n +---=-+-+++-==(2)由(1)得()123212n n n n a b c n n -⎛⎫==- ⎪+⎝⎭,所以()()01112333102222n n n T c c c n -⎛⎫⎛⎫⎛⎫=+++=-⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()()1233331022222nn T n ⎛⎫⎛⎫⎛⎫=-⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相减得()()1133122133312463222212n n n n T n n --⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦-=-+--⨯=-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,所以()138342n n T n -⎛⎫=+-⨯ ⎪⎝⎭.19.已知等比数列{}n a 的公比为2,数列{}n b 满足12b =,23b =,12n n n n n a b a b +-=.(1)求{}n a 和{}n b 的通项公式;(2)记n S 为数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和,证明:13n S ≤<.【答案】(1)2n n a =;1n b n =+(2)证明见解析【详解】(1)当1n =时,12112a b a b -=,又122,3b b ==,解得12a =.所以{}n a 是以2为首项,2为公比的等比数列,故1222n nn a -=⨯=.则1222n n nn n b b +-=,即11n n b b +=+.所以{}n b 是以2为首项,1为公差的等差数列,故()2111n b n n =+-⨯=+.(2)由(1)可得2n n a =,1n b n =+,所以12n n n b n a +=.则2323412222n n n S +=+++⋅⋅⋅+①,23411234122222n n n S ++=+++⋅⋅⋅+②,①-②可得122311111122111111331112222222212n n n n n n n n n S -+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+++⎢⎥⎛⎫⎣⎦=+++⋅⋅⋅+-+-=- ⎪⎝⎭-,所以3332n nn S +=-<.因为111432330222n n n n n n n n S S ++++++-=--+=>,所以{}n S 是递增数列.则113312n S S +≥=-=,故13n S ≤<.20.在数列{}n a 中,11a =-,()*12362,N n n a a n n n -=+-≥∈.(1)求证:数列{}3n a n +为等比数列,并求数列{}n a 的通项公式;(2)设n n b a n =+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析;23nn a n =-;(2)122(1)n n n +--+【详解】(1)()*12362,N n n a a n n n -=+-≥∈ ,∴当2n ≥时,()()11111333263133332233n n n n n n a n a n a n a n n n a n a -----+-+-+===+-++-+-,数列{}3n a n +是首项为132a +=,公比为2的等比数列,32n n a n ∴+=,23n n a n =-;(2)2322n nn n n b a n a n n n=+==-+=-数列{}n b 的前n 项和()()()()12312...222426...22n n n T b b b n =+++=-+-+-++-()()1212122222...2246...222(1)122n n n nn n n n +-+=+++-++++=-⨯=--+-.21.记n S 为数列{}n a 的前n 项和,已知{}11,2n na a =是公差为2的等差数列.(1)求{}n a 的通项公式;(2)证明:4n S <.【答案】(1)12n n na -=(2)证明见解析【详解】(1)因为11a =,所以122a =,因为{}2nn a 是公差为2的等差数列,所以()22212n n a n n =+-=,所以1222n n n n n a -==.(2)01211232222n n n S -++++=,①所以121112122222n n n n nS --=++++ ,②①-②则2111111122121222222212nn n n n n n n n S --+=++++-=-=-- ,所以12442n n n S -+=-<.22.已知数列{}n a 满足1224n n a a n -=-+(n ≥2,*n ∈N ),14a =.(1)求证:数列{}2-n a n 为等比数列,并求{}n a 的通项公式;(2)求数列(){}1nn a -的前n 项和n S .【答案】(1)证明见解析,22n n a n=+(2)1122,3325,33n n n n n S n n ++⎧+-⎪⎪=⎨⎪---⎪⎩为偶数为奇数【详解】(1)∵1224n n a a n -=-+,∴()112244221n n n a n a n a n ---=-+=--⎡⎤⎣⎦,所以()12221n n a na n --=--,又122a -=,∴{}2-n a n 是首项为2,公比为2的等比数列,∴22nn a n -=,∴22n n a n =+.(2)∵()()()1221n n nn a n -=-+-,∴()()()()12222212341n nn S n ⎡⎤=-+-++-+-+-+-+-⎣⎦,当n 为偶数时,()()()()()()11212222221234212123233nn n n n S n n n n ++⎡⎤----⎣⎦=+-++-+++-++--=+⨯=+-⎡⎤⎣⎦-- .当n 为奇数时,()()()()()()112122222123421121233nn n n S n n n n n ++⎡⎤-----⎣⎦=+-++-+++-++--=+--=-⎡⎤⎣⎦-- 53n --.综上1122,3325,33n n n n n S n n ++⎧+-⎪⎪=⎨⎪---⎪⎩为偶数为奇数.23.已知数列{}n a 是公差为()0d d ≠的等差数列,且满足111,2n n a a xa +==+.(1)求{}n a 的通项公式;(2)设14(1)nn n n nb a a +=-⋅,求数列{}n b 的前10项和10S .【答案】(1)21n a n =-(2)2021-【详解】(1)因为{}n a 是公差为()0d d ≠的等差数列,111,2n n a a xa +==+,所以当1n =时,2122a xa x =+=+,当2n =时,()23222222a xa x x x x =+=++=++,因为3221a a a a -=-,即21x x x +=+,解得1x =±,所以2d =或0d =(舍去),所以()12121n a n n =+-=-;(2)由(1)得,()()14411(1)(1)(1)21212121n n n n n n n n b a a n n n n +⎛⎫=-⋅=-⋅=-⋅+ ⎪-+-+⎝⎭.所以101111111120113355719212121S =--++--+++=-+=- .24.已知数列{}n a 的前n 项和为n S ,且24n n S a =-.(1)求{}n a 的通项公式;(2)求数列{}n nS 的前n 项和n T .【答案】(1)12n n a +=(2)3(1)22(1)8n n T n n n +=--++【详解】(1)因为24n n S a =-,所以当2n ≥时,1124n n S a --=-,两式相减,得1124(24)n n n n S S a a ---=---,整理得12n n a a -=,即2n ≥时,12n n a a -=,又当1n =时,11124S a a ==-,解得14a =,所以数列{}n a 是以4为首项,2为公比的等比数列,所以11422n n n a -+=⨯=.(2)由(1)知1222424n n n S ++=⨯-=-,所以224n n n n nS +=⋅-,令22,4n n n b n c n +=⋅=-,易知,12(1)42(1)2n n n c c c n n ++++=-⨯=-+ ,设数列{}n b 的前n 项和为n K ,则34521222322n n K n +=⨯+⨯+⨯++⋅ ①,456321222322n n K n +=⨯+⨯+⨯++⋅ ②,由①-②,得3456231222222n n n K n ++-=⨯+++++-⋅ ,即4133332(12)2222812n n n n n K n n -+++--=+-⋅=-⋅--,所以413332(12)22(1)2812n n n n K n n -++-=+-⋅=-⋅+-,所以32(1)(1)22(1)8n n n T K n n n n n +=-+=-⋅-++.25.已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n n b n a =⋅,求{}n b 的前n 项和n T .【答案】(1)13n n a -=;(2)()21314n nn T -+=.【详解】(1)设数列{}n a 的公比为()0q q >,则()2314321113923a q q q a q a q a q⎧++=⎪⎨=+⎪⎩,0q >,解得113a q =⎧⎨=⎩,所以13n n a -=,即{}n a 的通项公式为13n n a -=;(2)由题可知13n n b n -=⋅,则()12210132333133n n n T n n --=⨯+⨯+⨯++-⨯+⨯ ,()31123132333133n n n T n n -=⨯+⨯+⨯++-⨯+⨯ ,两式相减得:12312133333n nn T n --=+++++-⨯ ()1231133132n n nn n ---=-⨯=-,()21314n nn T -+∴=.26.已知数列{}n a 中,11a =,12n n n a a +=,*n ∈N .(1)求数列{}n a 的通项公式;(2)设22log 3n n b a n =+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S ,求证:34n S <.【答案】(1)(1)22n n na -=(2)证明见解析【详解】(1)解:因为11a =,*1()2n n na a n +=∈N ,所以*12()n n na n a +=∈N ,所以121121n n n n n aaaa a a a a ---=⋅⋅⋅⋅⋅⋅⋅()(1)1211212222122n n n n n -+++---=⋅⋅⋅⋅⋅⋅⋅== 当1n =时,11a =满足条件,所以(1)22n n na -=;(2)因为22log 3n n b a n =+(2)n n =+,所以11111()(2)2+2n b n n n n ==-+,所以111111=(1++)23242n S nn --⋅⋅⋅+-+11111311(1)()22122212n n n n =+--=--++++,所以34n S <.27.数列{}n a 满足2113,2,21n bn n n n a a a a a +=-==+.(1)求证:{}n b 是等比数列;(2)若1n nnc b =+,求{}n c 的前n 项和为n T .【答案】(1)证明见解析(2)22.2n nn T n +=+-【详解】(1)21221,log (1),log (31)2,n bn n n a b a b =+∴=+=+= 212,n n n a a a +=+ ()2211211,n n n n a a a a +∴+=++=+212log (1)2log (1),n n a a +∴+=+1212log (1)2,log (1)n n n n b a b a +++∴==+所以数列{}n b 是以2为首项,2为公比的等比数列.(2)由(1)可得,2nn b =,所以12n nnc =+,设,2n nnd =设其前n 项和为n S ,则12311231,22222n n nn n S --=+++++ ①234111231,222222n n n n nS +-=+++++ ②减②得111312111*********,12222222212nn n n n n n n n S -++⎡⎤⎛⎫-⎢⎥⎪⎝⎭+⎢⎥⎣⎦=++++-=-=-- 所以22,2n nn S +=-所以22.2n n nn T S n n +=+=+-28.已知正数数列{}n a ,11a =,且满足()()2211102n n n n a n a a na n -----=≥.(1)求数列{}n a 的通项公式;(2)设1n nn b a -=,求数列{}n b 的前n 项和n S .【答案】(1)!n a n =(2)11!n S n =-【详解】(1)∵()()2211102n n n n a n a a na n -----=≥,∴()()()1102n n n n a na a a n ---+=≥,又0n a >,∴1n n a na -=,即()12nn a n n a -=≥.又()231121123!2n n n a a aa a n n n a a a -=⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯=≥,且111!a ==,∴!n a n =(2)1!n n b n -=,∴10b =,()()1112!1!!n n b n n n n -==-≥-,1234n nS b b b b b ∴=++++⋅⋅⋅+()111111111011!2!2!3!3!4!1!!!n n n =+-+-+-+⋅⋅⋅+-=--又111101!S b ==-=,∴11!n S n =-.29.已知数列{}n a 、{}n b ,满足1100a =,21n n a a +=,lg n n b a =.(1)求数列{}n b 的通项公式;(2)若22122log log log n n n n c b b b +=+++ ,求数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)2nn b =(2)()231n n S n =+【详解】(1)解:因为21n n a a +=,11001a =>,则2211a a =>,2321a a =>,L ,以此类推可知,对任意的n *∈N ,1n a >,所以21lg lg n n a a +=,即1lg 2lg n n a a +=,12n n b b +=,又因为12b =,所以{}n b 是首项为2,公比为2的等比数列,所以{}n b 的通项公式为1222n nn b -=⨯=.(2)解:2log n b n =,则()()()()()123112222n n n n n n c n n n n +++=++++++==,所以,()122113131n c n n n n ⎛⎫==- ⎪++⎝⎭,故()211111112121132233413131n nS n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ .30.已知数列{}n a 中,11a =,n S 是数列{}n a 的前n 项和,数列2n n S a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)证明:121112nS S S +++< .【答案】(1)n a n =(2)证明见解析【详解】(1)因为数列2n n S a ⎧⎫⎨⎬⎩⎭是首项为2,公差为1的等差数列,所以()22111nnSn n a =+-⋅=+,则()21n n S n a =+,得112n n S na --=(2n ≥),两式相减得:()121n n n a n a na -=+-,则11n n a n a n -=-,121121121121n n n n n a a a n n a a n a a a n n ----=⋅⋅⋅⋅=⋅⋅⋅⋅=-- (2n ≥),又11a =适合上式,故n a n =.另解:由()121n n n a n a na -=+-得11n n a a n n -=-(2n ≥),故{}n an为常数列,则111n a a n ==,故n a n =.(2)由(1)得()12n n n S +=,所以()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则12111111111212221222311n S S S n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭ .31.已知在等差数列{}n a 中,14724a a a ++=-,25815a a a ++=-.(1)求数列{}n a 的通项公式;(2)求数列(){}1nn a -的前n 项和n T .【答案】(1)320n a n =-(2)3,22373,212n nn k T n n k ⎧=⎪⎪=⎨-⎪=-⎪⎩且*N k ∈【详解】(1)若等差数列公差为d ,则258147()()39a a a a a a d ++-++==,即3d =,由1474324a a a a ++==-,则48a =-,所以{}n a 的通项公式4(4)83(4)320n a a n d n n =+-=-+-=-.(2)由题设()12341nn n T a a a a a =-+-+-+- ,当n 为偶数,则()()()2143132n n n nT a a a a a a -=-+-++-=;当n 为奇数,则()()()()2143123137332022n n n n n nT a a a a a a a n ----=-+-++--=-+=;所以3,22373,212n nn k T n n k ⎧=⎪⎪=⎨-⎪=-⎪⎩且*N k ∈.32.记数列{}n a 的前n 项和为n S ,已知11,21,,2,n n n a n k a a t n k ++=-⎧=⎨+=⎩*k ∈N ,317S a =,423a a =+.(1)求1a ,t ;(2)求数列{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .【答案】(1)11a =,t =2(2)()*31,21,232,22n n n k a k n n k -⎧=-⎪⎪=∈⎨-⎪=⎪⎩N (3)()2*231,21,43,24n n n k S k n n k ⎧+=-⎪⎪=∈⎨⎪=⎪⎩N 【详解】(1)由11,21,,2,n n n a n k a a t n k ++=-⎧=⎨+=⎩(*N k ∈)可得,211a a =+,32a a t =+,431a a =+,又317S a =,423a a =+,则()()()111111117,213,a a a t a a t a ⎧+++++=⎪⎨++=++⎪⎩解得11a =,t =2.(2)由11,21,2,2,n n n a n k a a n k ++=-⎧=⎨+=⎩(*k ∈N )可得,当n 为奇数时,212123n n n n a a a a ++=+=++=+,所以数列{}n a 的奇数项是一个公差为3的等差数列,又11a =,则1131322n n n a a --=+⨯=;当n 为偶数时,211213n n n n a a a a ++=+=++=+,所以数列{}n a 的偶数项是一个公差为3的等差数列,又2112a a =+=,则2232322n n n a a --=+⨯=,则()*31,21,232,22n n n k a k n n k -⎧=-⎪⎪=∈⎨-⎪=⎪⎩N .(3)()()2135212462n n n S a a a a a a a a -=+++++++++ 2(1)(1)1323322n n n n n n n --⎡⎤⎡⎤⨯+⨯+⨯+⨯=⎢⎥⎢⎥⎣⎦⎣⎦=.()22*2,21,,2k k n k S a n k S k S n k -=-⎧=∈⎨=⎩N ,则()2*23223,21,23,2n k k n k S k k n k⨯-⎧-=-⎪=∈⎨⎪=⎩N ,即()2*231,21,43,24n n n k S k n n k ⎧+=-⎪⎪=∈⎨⎪=⎪⎩N .33.数列{}n a 中,11a =,且121n n a a n +=+-.(1)证明:数列{}n a n +为等比数列,并求出n a ;(2)记数列{}n b 的前n 项和为n S .若2n n n a b S +=,求11S .【答案】(1)证明见详解,2nn a n =-(2)1360【详解】(1)因为121n n a a n +=+-,则()()()()1212211n n n n n n a a n n a n a a nn n n a ++++++==-+++=+,且112a +=,所以数列{}n a n +是以首项为2,公比为2的等比数列,故1222n n n a n -+=⨯=,可得2n n a n =-.(2)因为22n n n n n S a b b n =+=+-,即22nn n S b n =+-,当1n =时,则1121b b =+,解得11b =;当2n ≥时,则111221n n n S b n ---=+-+,两式相减得:11221n n n n b b b --=-+-,整理得1121n n n b b --+=-;所以()()()111234511123451011S b b b b b b b b b b b b b =+++++⋅⋅⋅+=+++++⋅⋅⋅++()()()()241024681012121212222241360=+-+-+⋅⋅⋅+-=++++-=,即111360S =.34.已知数列{}n a 满足13a =,1121n n n a a a ++-=.(1)记11n n b a =-求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)32n b n =-(2)412nn-【详解】(1)1121n n n a a a ++-= ,112n na a +∴=-,又11n n b a =- ,11111111111221n n n n n n nb b a a a a a ++∴====-=-------,又111112b a ==-,所以数列{}n b 是以12为首项,1-为公差的等差数列,所以数列{}n b 的通项公式为13(1)22n b n n =--=-.(2)由(1)得111113113()()2222n n b b n n n n +==-----,所以数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为12233411111n n b b b b b b b b +++++ =11111111131313*********2222222n n -+-+-++--------- 1141312122nn n =-=---.35.已知等比数列{}n a 的前n 项和为n S ,且12n +,n S ,a 成等差数列.(1)求a 的值及数列{}n a 的通项公式;(2)若()21n n b n a =-求数列{}n b 的前n 项和nT 【答案】(1)2a =-,12n n a -=,*N n ∈;(2)()3232n n T n =+-⋅【详解】(1)12n + ,n S ,a 成等差数列,122n n S a +∴=+,即22n n a S =+,当1n =时,11224a S a ==+,即122a a =+,当2n ≥时,11122222nn n n n n a aa S S ---=-=+--=,{}n a 是等比数列,11a ∴=,则212a+=,得2a =-,∴数列{}n a 的通项公式为12n n a -=,*N n ∈;(2)()()121212n n n b n a n -=-=-⋅,则前n 项和0121123252(21)2n n T n -=⋅+⋅+⋅++-⋅ ,1232123252(21)2n n T n =⋅+⋅+⋅++-⋅ ,两式相减可得2112(222)(21)2n nn T n --=++++--⋅ 12(12)12(21)212n n n --=+⋅--⋅-,化简可得()3232nn T n =+-⋅.36.已知数列{}n a 和{}n b ,12a =,111n nb a -=,12n n a b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列n n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)221n n n a =-,1221n n n b +=-(2)2222n n n T n n +=+-+【详解】(1)由12a =,111n nb a -=,12n n a b +=得1211n n a a +-=,整理得1111112n n a a +⎛⎫-=- ⎪⎝⎭,而111102a -=-≠,所以数列11n a ⎧⎫-⎨⎬⎩⎭是以12-为首项,公比为12的等比数列,所以111111222n nn a -⎛⎫-=-=-⎪⎝⎭,221nn na ∴=-,1112221nn n n b a ++∴==-.(2)121222n nn n n nn n b +-=⋅=-,设212222n n n S =+++ ,则2311122222n n nS +=+++ ,两式相减得2111111111122211222222212n n n n n n n n n S +++⎛⎫- ⎪+⎝⎭=+++-=-=-- ,从而222n nn S +=-()2222222n n nn n n T S n n ++∴=-=+-+.37.等比数列{}n a 的前n 项和为n S ,已知11a =,且23331,,a a S -成等差数列.(1)求{}n a 的通项公式;(2)若12n n a bn a +=,数列{}n b 的前n 项和n T .【答案】(1)14n n a -=(2)13286994n n n T -+=-⨯【详解】(1)设等比数列{}n a 的公比为q ,因为23331,,a a S -成等差数列,所以32321323141a a S a a a =-+=-++,因为11a =,所以324a a =,即324a q a ==,所以1114n n n a a q --==.(2)由(1)得14nn a +=,因为12n n a bn a +=,所以2422n n a b n n ==,所以2n n a b n =,即1224n n n n n b a -==;101224644424n n n T -=+++ ,1231424424644n n n T =+++ ,两式相减可得12313222224442444nn n T n -=+++++- 1211211214444nn n -⎛⎫=++++- ⎪⎝⎭ 114212144n nn ⎛⎫- ⎪=-⎪ ⎪-⎝⎭8244833nnn =--⨯863483nn +=-⨯;所以13286994n n n T -+=-⨯.38.已知数列{}n a 的前n 项和为n S ,0n a >,且满足()241n n S a =+.(1)求数列{}n a 的通项公式;(2)设14nn n n S b a a +=的前n 项和为n T ,求n T .【答案】(1)21n a n =-(2)22221n n nT n +=+【详解】(1)因为()241n n S a =+,当2n ≥时,()21141n n S a --=+,两式作差得()()221121241212n n n n n n n a a a a a a a ---=+-=+--+,即221122n n n n a a a a --+=-,又0n a >,所以,当2n ≥时,12n n a a --=,又当1n =时,()21141a a =+,解得11a =,可知数列{}n a 是以首项为1,公差为2的等差数列,所以1(1)2n a n =+-⨯,即21n a n =-(2)由(1)知2(121)2n n n S n +-==,所以221444111111()(21)(21)(21)(21)22121n n n n S n n b a a n n n n n n +-+====+--+-+-+,22111111211(2131112)(1235)2112212n n n n n n T b b n n n n b =+++=-+-+-++=+-=+++-+ .39.已知数列{}n a 满足:()1113,2n n n a a a n n++==+.(1)证明:数列1n a n ⎧⎫+⎨⎬⎩⎭是等比数列;(2)设n n c a n =+,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析(2)()2124n n T n +=-+【详解】(1)设1n n a b n =+,则1111,41n n ab b n ++=+=+,且0n b ≠,因为121n n a a nn n ++=+,所以112121211n nn n nn a a b n n a a b nn+++++===++,即{}n b 是以4为首项,2为公比的等比数列,则数列1n a n ⎧⎫+⎨⎬⎩⎭是等比数列.(2)由(1)知11422n n n b -+=⨯=,则12n n a n n +=⋅-,即12n n c n +=⋅,则23112222n n T n +=⨯+⨯++⨯ ,()212222122n n n T n n ++=⨯++-⨯+⨯ ,两式相减得:()()1223224121242222212n n n n n n T n n n ++++-=-=----=+++-⨯⨯ ,所以()2124n n T n +=-+.40.已知正项等差数列{}n a 的前n 项和为n S ,其中24n n a a +-=,2224(1)(1)S a +=+.(1)求数列{}n a 的通项公式及n S ;(2)若134n n n b a -⎛⎫=⋅ ⎪⎝⎭,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =+,()2n S n n =+;(2)()3364294nn T n ⎛⎫=-+⋅ ⎪⎝⎭【详解】(1)设等差数列的首项为1a ,公差为d ,则224n n a a d +-==,则2d =,因为2224(1)(1)S a +=+,所以()()2114233a a +=+,。
高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)
6.4数列求和、数列的综合应用考点数列求和及数列的综合应用1.(2014课标Ⅱ文,5,5分)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =()A.n(n+1)B.n(n-1)C.or1)2D.ot1)2答案A ∵a 2,a 4,a 8成等比数列,∴42=a 2·a 8,即(a 1+3d)2=(a 1+d)(a 1+7d),将d=2代入上式,解得a 1=2,∴S n =2n+ot1)·22=n(n+1),故选A.2.(2012课标文,12,5分)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为()A.3690B.3660C.1845D.1830答案D 当n=2k 时,a 2k+1+a 2k =4k-1,当n=2k-1时,a 2k -a 2k-1=4k-3,∴a 2k+1+a 2k-1=2,∴a 2k+1+a 2k+3=2,∴a 2k-1=a 2k+3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1830.3.(2019浙江,10,4分)设a,b∈R,数列{a n }满足a 1=a,a n+1=2+b,n∈N *,则()A.当b=12时,a 10>10 B.当b=14时,a 10>10C.当b=-2时,a 10>10D.当b=-4时,a 10>10答案A 本题以已知递推关系式判断指定项范围为载体,考查学生挖掘事物本质以及推理运算能力;考查的核心素养为逻辑推理,数学运算;体现了函数与方程的思想,创新思维的应用.令a n+1=a n ,即2+b=a n ,即2-a n +b=0,若有解,则Δ=1-4b≥0,即b≤14,∴当b≤14时,a n *,即存在b≤14,且使数列{a n }为常数列,B 、C 、D 选项中,b≤14成立,故存在使a n*),排除B 、C 、D.对于A,∵b=12,∴a 2=12+12≥12,a 3=22+12≥+12=34,a4+12=1716,∴a5,a 6,…,a 10,=1=1+C 641×116+C 642+…=1+4+638+…>10.故a 10>10.4.(多选)(2020新高考Ⅰ,12,5分)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),∑=ni 1p i =1,定义X 的信息熵H (X )=-∑=ni 1p i log 2p i .()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p 1的增大而增大C.若p i =1(i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )答案AC 对于A ,若n =1,则p 1=1,∴H (X )=-1×log 21=0,A 正确.对于B ,若n =2,则p 1+p 2=1,∴H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),∵p 1+p 2=1,∴p 2=1-p 1,p 1∈(0,1),∴H (X )=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],令f (p 1)=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],∴f '(p 1)=-p 1·11·ln2+log 2p 1+(1-p 1)·−1(1−1)·ln2-log 2(1-p 1)=-[log 2p 1-log 2(1-p 1)]=log 21−11,令f '(p 1)>0,得0<p 1<12;令f '(p 1)<0,得12<p 1<1.∴y =f (p 1)在0,1上为减函数,∴H (X )随着p 1的增大先增大后减小,B 不正确.对于C ,由p i =1(i =1,2,…,n )可知,H (X )=-∑=ni 1pEog2B =−∑=ni 11log21=log 2n ,∴H (X )随着n 的增大而增大,C 正确对于D ,解法一(特例法):不妨设m =1,n =2,则H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),由于p 1+p 2=1,不妨设p 1=p2=12,则H (X )212+12log 22=1,H (Y )=-1×log 21=0,故H (X )>H (Y ),D 不正确.解法二:由P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),得P (Y =1)=p 1+p 2m ,P (Y =2)=p 2+p 2m -1,……,P (Y =m )=p m +p m +1,∴H (Y )=-∑=mj 1[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m -1)log 2(p 2+p 2m -1)+…+(p m +p m +1)log 2(p m +p m +1)],由n =2m ,得H (X )=-∑=mi 21p i log 2p i =-(p 1log 2p 1+p 2log 2p 2+…+p 2m log 2p 2m ),不妨设0<a <1,0<b <1,且0<a +b ≤1,则log 2a <log 2(a +b ),a log 2a <a log 2(a +b ),同理b log 2b <b log 2(a +b ),∴a log 2a +b log 2b <(a +b )log 2(a +b ),∴p 1log 2p 1+p 2m log 2p 2m <(p 1+p 2m )log 2(p 1+p 2m ),p 2log 2p 2+p 2m -1log 2p 2m -1<(p 2+p 2m -1)log 2(p 2+p 2m -1),……p m log 2p m +p m +1log 2p m +1<(p m +p m +1)log 2(p m +p m +1),∴∑=mi 21pEog2B <∑=mj 1(p j +p 2m +1-j )log 2(p j +p 2m +1-j ),∴H (X )>H (Y ),D 不正确.5.(2021新高考Ⅰ,16,5分)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么∑=nk 1S k =dm 2.答案5;240×3解析解法一:列举法+归纳法.由上图可知,对折n 次后,共可以得到(n +1)种不同规格的图形,故对折4次可以得到5种不同规格的图形.归纳上述结论可知,对折n次后得到不同规格的图形的面积之和为120(+K1dm 2(n ∈N *),故S k =120(+dm 2(k ∈N *),记T n =∑=nk 1(k +1,∴T n =220+321+422+…+2K2+r12K1,①12B =221+322+423+…+2K1+r12,②①-②得,122+12+122+…+12K1−r1221−12r12=3−r32,∴T n =6-r32K1,∴∑=nk 1S =120×6=240×32.解法二:对折3次可以得到208dm×12dm ,204dm ×122dm ,202dm ×124dm ,20dm×128dm ,共四种不同规格的图形,对折4次可以得到2016dm×12dm ,208dm ×122dm ,204dm ×124dm ,202dm ×128dm ,20dm×1216dm ,共五种不同规格的图形,由此可以归纳出对折n 次可得到(n +1)种不同规格的图形,每种规格的图形的面积均为20×122dm 2,∴∑=nk 1S k =20×12×12×2+14×3+18×4+…+12×(n +1)dm 2,记T n =22+34+…+r12,则12B =24+38+…+r12r1,∴T n -12B =12B =1+18+…−r12r1=32−12−r12r1=32−r32r1,∴T n =3-r32,∴∑=nk 1S =240×32.6.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N *},B={x|x=2n ,n∈N *}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为.答案27解析本题考查数列的插项问题.设A n =2n-1,B n =2n,n∈N *,当A k <B l <A k+1(k,l∈N *)时,2k-1<2l<2k+1,有k-12<2l-1<k+12,则k=2l-1,设T l =A 1+A 2+…+2t1+B 1+B 2+…+B l ,则共有k+l=2l-1+l 个数,即T l =2t1+l ,而A 1+A 2+…+2t1=2×1−1+2-12×2l-1=22l-2,B 1+B 2+…+B l =2(1−2)1−2=2l+1-2.则T l =22l-2+2l+1-2,则l,T l ,n,a n+1的对应关系为l T l n a n+112a n+1132336210456033079108494121720453182133396611503865780观察到l=5时,T l =S 21<12a 22,l=6,T l =S 38>12a 39,则n∈[22,38),n∈N *时,存在n,使S n ≥12a n+1,此时T 5=A 1+A 2+…+A 16+B 1+B 2+B 3+B 4+B 5,则当n∈[22,38),n∈N *时,S n =T 5+(t22+1)(22−5+t5)2=n 2-10n+87.a n+1=A n+1-5=A n-4,12a n+1=12[2(n-4)-1]=24n-108,S n -12a n+1=n 2-34n+195=(n-17)2-94,则n≥27时,S n -12a n+1>0,即n min =27.7.(2014安徽理,12,5分)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q=.答案1解析设{a n }的公差为d,则a 3+3=a 1+1+2d+2,a 5+5=a 1+1+4d+4,由题意可得(a 3+3)2=(a 1+1)(a 5+5).∴[(a 1+1)+2(d+1)]2=(a 1+1)[(a 1+1)+4(d+1)],∴(a 1+1)2+4(d+1)(a 1+1)+[2(d+1)]2=(a 1+1)2+4(a 1+1)(d+1),∴d=-1,∴a 3+3=a 1+1,∴公比q=3+31+1=1.8.(2020江苏,11,5分)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n-1(n∈N *),则d+q 的值是.答案4解析设数列{a n }的首项为a 1,数列{b n }的首项为b 1,易知q≠1,则{a n +b n }的前n 项和S n =na 1+ot1)2d+1(1-)1−=2n 2+1n-11−q n +11−=n 2-n+2n -1,∴2=1,q=2,则d=2,q=2,∴d+q=4.9.(2020课标Ⅰ文,16,5分)数列{a n }满足a n+2+(-1)na n =3n-1,前16项和为540,则a 1=.答案7解析令n=2k(k∈N *),则有a 2k+2+a 2k =6k-1(k∈N *),∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41,∴前16项的所有偶数项和S 偶=5+17+29+41=92,∴前16项的所有奇数项和S 奇=540-92=448,令n=2k-1(k∈N *),则有a 2k+1-a 2k-1=6k-4(k∈N *).∴a 2k+1-a 1=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2k+1-a 2k-1)=2+8+14+…+6k-4=o2+6t4)2=k(3k-1)(k∈N *),∴a 2k+1=k(3k-1)+a 1(k∈N *),∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1,a 15=140+a 1,∴前16项的所有奇数项和S 奇=a 1+a 3+…+a 15=8a 1+2+10+24+44+70+102+140=8a 1+392=448.∴a 1=7.10.(2015江苏理,11,5分)设数列{a n }满足a 1=1,且a n+1-a n =n+1(n∈N *),10项的和为.答案2011解析由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,……,a n -a n-1=n-1+1(n≥2),则有a n -a 1=1+2+3+…+n-1+(n-1)(n≥2),因为a 1=1,所以a n =1+2+3+…+n(n≥2),即a n =2+n2(n≥2),又当n=1时,a 1=1也适合上式,故a n =2+n 2(n∈N *),所以1=22+n=2从而11+12+13+…+110=2×11=2011.11.(2020新高考Ⅰ,14,5分)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为答案3n 2-2n审题指导:数列{2n -1}表示首项为1,公差为2的等差数列,各项均为正奇数,而数列{3n -2}表示首项为1,公差为3的等差数列,数列的项为交替出现的正奇数与正偶数,它们的公共项为数列{3n -2}中的奇数项,所以{a n }是首项为1,公差为6的等差数列.解题思路:∵数列{2n -1}的项为1,3,5,7,9,11,13,…,数列{3n -2}的项为1,4,7,10,13,…,∴数列{a n}是首项为1,公差为6的等差数列,∴a n=1+(n-1)×6=6n-5,∴数列{a n}的前n项和S n=(1+6K5)×2=3n2-2n.12.(2022新高考Ⅰ,17,10分)记S n为数列{a n}的前n项和,已知a1=113的等差数列.(1)求{a n}的通项公式;(2)证明:11+12+…+1<2.解析(1)解法一:依题意得,S1=a1=1.∴=11+(n-1)×13=r23.∴3S n=(n+2)a n,则3S n+1=(n+1+2)a n+1=(n+3)a n+1,∴3S n+1-3S n=(n+3)a n+1-(n+2)a n,即3a n+1=(n+3)a n+1-(n+2)a n,∴na n+1=(n+2)a n,即r1=r2,由累乘法得r11=(r1)(r2)1×2,又a1=1,∴a n+1=(r1)(r2)2,∴a n=or1)2(n≥2),又a1=1满足上式,∴a n=or1)2(n∈N*).解法二:同解法一求得na n+1=(n+2)a n,∴r1r2,即r1(r1)(r2)=or1),or1)是常数列,首项为12,∴or1)=12,∴a n=or1)2.(2)证明:由(1)知1=2or1)2∴11+12+…+1=2++…+=21=2−2r1<2. 13.(2021新高考Ⅰ,17,10分)已知数列{a n}满足a1=1,a n+1=+1,为奇数,+2,为偶数.(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.解题指导:(1)由已知条件求出{a n}的递推式,从而得出{b n}的递推式,再由已知条件求出b1,从而求出数列{b n}的通项公式.(2)根据题目条件把{a n}的前20项分成两组,并用其中偶数项的和表示前20项的和,再用数列{b n}的前10项的和表示,根据等差数列前n项和公式求出结果.解析(1)由题意得a2n+1=a2n+2,a2n+2=a2n+1+1,所以a2n+2=a2n+3,即b n+1=b n+3,且b1=a2=a1+1=2,所以数列{b n}是以2为首项,3为公差的等差数列,所以b1=2,b2=5,b n=2+(n-1)×3=3n-1.(2)当n为奇数时,a n=a n+1-1.设数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=[(a2-1)+(a4-1)+…+(a20-1)]+(a2+a4+…+a20)=2(a2+a4+…+a20)-10,由(1)可知a2+a4+…+a20=b1+b2+…+b10=10×2+10×92×3=155,故S20=2×155-10=300,即{a n}的前20项和为300.解题关键:一是对已知关系式进行转化,进而利用等差数列定义求得数列{b n}的通项公式;二是利用分组求和的方式对S20进行重组变形,结合a n与b n的关系求得结果.14.(2020课标Ⅲ理,17,12分)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.解析(1)a2=5,a3=7.猜想a n=2n+1.由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1.所以S n =(2n -1)2n +1+2.方法总结数列求和的5种方法解决数列的求和问题,首先要得到数列的通项公式,有了通项公式,再根据其特点选择相应的求和方法.数列求和的方法有以下几类:(1)公式法:等差或等比数列的求和用公式法;(2)裂项相消法:形如a n =1orp ,可裂项为a n =13)错位相减法:形如c n =a n ·b n ,其中{a n }是等差数列,{b n }是等比数列;(4)分组求和法:形如c n =a n +b n ,其中{a n }是等差数列,{b n }是等比数列;(5)并项求和法.15.(2017课标Ⅲ文,17,12分)设数列{a n }满足a 1+3a 2+…+(2n-1)a n =2n.(1)求{a n }的通项公式;(2)n 项和.解析(1)因为a 1+3a 2+…+(2n-1)a n =2n,故当n≥2时,a 1+3a 2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n =2.所以a n =22t1(n≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22t1(n∈N *).(2)n 项和为S n .由(1)知2r1=2(2r1)(2t1)=12t1-12r1.则S n =11-13+13-15+…+12t1-12r1=22r1.思路分析(1)条件a 1+3a 2+…+(2n-1)a n =2n 的实质就是数列{(2n-1)a n }的前n 项和,故可利用a n 与S n 的关系求解.(2)利用(1)求得的{a n }的通项公式,然后用裂项相消法求和.易错警示(1)要注意n=1时,是否符合所求得的通项公式;(2)裂项相消后,注意留下了哪些项,避免遗漏.16.(2016课标Ⅱ文,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析(1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3.解得a 1=1,d=25.(3分)所以{a n }的通项公式为a n =2r35.(5分)(2)由(1)知,b n 分)当n=1,2,3时,1≤2r35<2,b n =1;当n=4,5时,2≤2r35<3,b n =2;当n=6,7,8时,3≤2r35<4,b n =3;当n=9,10时,4≤2r35<5,b n =4.(10分)所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.(12分)评析本题考查了等差数列,同时对考生的创新能力进行了考查,充分理解[x]的意义是解题的关键.17.(2016浙江文,17,15分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n∈N *.(1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.解析(1)由题意得1+2=4,2=21+1,则1=1,2=3.又当n≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n ,得a n+1=3a n .所以,数列{a n }的通项公式为a n =3n-1,n∈N *.(2)设b n =|3n-1-n-2|,n∈N *,则b 1=2,b 2=1.当n≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n≥3时,T n =3+9(1−3t2)1−3-(r7)(t2)2=3-2-5n+112,所以T n =1,≥2,n ∈N *.易错警示(1)当n≥2时,得出a n+1=3a n ,要注意a 1与a 2是否满足此关系式.(2)在去掉绝对值时,要考虑n=1,2时的情形.在求和过程中,要注意项数,最后T n 要写成分段函数的形式.18.(2016北京文,15,13分)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解析(1)等比数列{b n }的公比q=32=93=3,(1分)所以b 1=2=1,b 4=b 3q=27.(3分)设等差数列{a n }的公差为d.因为a 1=b 1=1,a 14=b 4=27,所以1+13d=27,即d=2.(5分)所以a n =2n-1(n=1,2,3,…).(6分)(2)由(1)知,a n =2n-1,b n =3n-1.因此c n =a n +b n =2n-1+3n-1.(8分)从而数列{c n }的前n 项和S n =1+3+…+(2n-1)+1+3+…+3n-1=o1+2t1)2+1−31−3=n 2+3-12.(13分)规范解答要规范解答过程,分步书写,这样可按步得分.19.(2016山东,理18,文19,12分)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1.(1)求数列{b n }的通项公式;(2)令c n =(+1)r1(+2),求数列{c n }的前n 项和T n .解析(1)由题意知,当n≥2时,a n =S n -S n-1=6n+5.当n=1时,a 1=S 1=11,所以a n =6n+5.设数列{b n }的公差为d.由1=1+2,2=2+3,即11=21+d,17=21+3d,可解得b 1=4,d=3.所以b n =3n+1.(2)由(1)知c n =(6r6)r1(3r3)=3(n+1)·2n+1.又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n+1)×2n+1],2T n =3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n =3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×4+4(1−2)1−2-(n +1)×2r2=-3n·2n+2.所以T n =3n·2n+2.方法总结若某数列的通项是等差数列与等比数列的通项的积或商,则该数列的前n项和可以采用错位相减法求解,注意相减后的项数容易出错.评析本题主要考查了等差数列及前n项和,属中档题.20.(2016天津,18,13分)已知{an }是等比数列,前n项和为Sn(n∈N*),且11-12=23,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2a n和log2a n+1的等差中项,求数列{(-1)n2}的前2n项和.解析(1)设数列{a n}的公比为q.由已知,有11-11q=212,解得q=2,或q=-1.又由S6=a1·1−61−=63,知q≠-1,所以a1·1−261−2=63,得a1=1.所以a n=2n-1.(2)由题意,得bn=12(log2a n+log2a n+1)=12(log22n-1+log22n)=n-12,即{b n}是首项为12,公差为1的等差数列.设数列{(-1)n2}的前n项和为T n,则T2n=(-12+22)+(-32+42)+…+(-2t12+22)=b1+b2+b3+b4+…+b2n-1+b2n=2o1+2)2=2n2.评析本题主要考查等差数列、等比数列及其前n项和公式等基础知识,考查数列求和的基本方法和运算求解能力.21.(2015福建文,17,12分)等差数列{an }中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2-2+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{a n}的公差为d.由已知得1+d=4,(1+3d)+(1+6d)=15,解得1=3,=1.所以a n=a1+(n-1)d=n+2.(2)由(1)可得bn=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=2(1−210)1−2+(1+10)×102=(211-2)+55=211+53=2101.评析本小题主要考查等差数列、等比数列、数列求和等基础知识,考查运算求解能力.22.(2015课标Ⅰ理,17,12分)S n 为数列{a n }的前n 项和.已知a n >0,2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1r1,求数列{b n }的前n 项和.解析(1)由2+2a n =4S n +3,可知r12+2a n+1=4S n+1+3.可得r12-2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=r12-2=(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又12+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分)(2)由a n =2n+1可知b n =1r1=1(2r1)(2r3)=设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n++…+=3(2r3).(12分)23.(2015安徽文,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =r1r1,求数列{b n }的前n 项和T n .解析(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得1=1,4=8或1=8,4=1(舍去).由a 4=a 1q 3得公比为q=2,故a n =a 1q n-1=2n-1.(2)S n =1(1-)1−=2n -1,又b n =r1=r1-r1=1-1,所以T n =b 1+b 2+…+b n =11-1r1=1-12r1-1.评析本题考查等比数列通项公式及等比数列性质,等比数列求和.24.(2015天津理,18,13分)已知数列{a n }满足a n+2=qa n (q 为实数,且q≠1),n∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 222t1,n∈N *,求数列{b n }的前n 项和.解析(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q≠1,故a 3=a 2=2,由a 3=a 1·q,得q=2.当n=2k-1(k∈N *)时,a n =a 2k-1=2k-1=2t12;当n=2k(k∈N *)时,a n =a 2k =2k=22.所以,{a n }的通项公式为a n =2t12,n 为奇数,22为偶数.(2)由(1)得b n =log 222t1=2t1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12t2+n×12t1,12S n =1×121+2×122+3×123+…+(n-1)×12t1+n×12,上述两式相减,得12S n =1+12+122+…+12t1-2=1−121−12-2=2-22-2,整理得,S n =4-r22t1.所以,数列{b n }的前n 项和为4-r22t1,n∈N *.评析本题主要考查等比数列及其前n 项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.25.(2015山东文,19,12分)已知数列{a n }是首项为正数的等差数列,n 项和为2r1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2,求数列{b n }的前n 项和T n .解析(1)设数列{a n }的公差为d.令n=1,得112=13,所以a 1a 2=3.令n=2,得112+123=25,所以a 2a 3=15.解得a 1=1,d=2,所以a n =2n-1.(2)由(1)知b n =2n·22n-1=n·4n,所以T n =1·41+2·42+…+n·4n,所以4T n =1·42+2·43+…+n·4n+1,两式相减,得-3T n =41+42+ (4)-n·4n+1=4(1−4)1−4-n·4n+1=1−33×4n+1-43.所以T n =3t19×4n+1+49=4+(3t1)4r19.26.(2015浙江文,17,15分)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n∈N *),b 1+12b 2+13b 3+…+1b n =b n+1-1(n∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解析(1)由a 1=2,a n+1=2a n ,得a n =2n(n∈N *).由题意知:当n=1时,b 1=b 2-1,故b 2=2.当n≥2时,1b n =b n+1-b n ,整理得r1r1=,所以b n =n(n∈N *).(2)由(1)知a n b n =n·2n,因此T n =2+2·22+3·23+…+n·2n,2T n =22+2·23+3·24+…+n·2n+1,所以T n -2T n =2+22+23+ (2)-n·2n+1.故T n =(n-1)2n+1+2(n∈N *).评析本题主要考查数列的通项公式,等差和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力.27.(2015湖北文,19,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =,求数列{c n }的前n 项和T n .解析(1)由题意有,101+45d =100,1d =2,即21+9d =20,1d =2,解得1=1,=2,或1=9,=29.故=2n-1,=2t1,或=1979),=.(2)由d>1,知a n =2n-1,b n =2n-1,故c n =2t12t1,于是T n =1+32+522+723+924+…+2t12t1,①12T n =12+322+523+724+925+…+2t12.②①-②可得12T n =2+12+122+…+12t2-2t12=3-2r32,故T n =6-2r32t1.28.(2014湖南文,16,12分)已知数列{a n }的前n 项和S n =2+n2,n∈N *.(1)求数列{a n }的通项公式;(2)设b n =2+(-1)na n ,求数列{b n }的前2n 项和.解析(1)当n=1时,a 1=S 1=1;当n≥2时,a n =S n -S n-1=2+n 2-(t1)2+(n-1)2=n.故数列{a n }的通项公式为a n =n.(3)由(1)知,b n =2n+(-1)nn,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n).记A=21+22+ (22),B=-1+2-3+4-…+2n,则A=2(1−22)1−2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{b n }的前2n 项和T 2n =A+B=22n+1+n-2.评析本题考查数列的前n 项和与通项的关系,数列求和等知识,含有(-1)n的数列求和要注意运用分组求和的方法.29.(2014课标Ⅰ文,17,12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)n 项和.解析(1)方程x 2-5x+6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d,则a 4-a 2=2d,故d=12,从而a 1=32.所以{a n }的通项公式为a n =12n+1.(2)n 项和为S n ,由(1)知2=r22r1,则S n =322+423+…+r12+r22r1,12S n =323+424+…+r12r1+r22r2.两式相减得12S n =34+…-r22r2=34+-r22r2.所以S n =2-r42r1.评析本题考查等差数列及用错位相减法求数列的前n 项和,第(1)中由条件求首项、公差,进而求出结论是基本题型,第(2)问中,运算准确是关键.30.(2014安徽文,18,12分)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n∈N *.(1)证明:;(2)设b n =3n·,求数列{b n }的前n 项和S n .解析(1)证明:由已知可得r1r1=+1,即r1r1-=1.是以11=1为首项,1为公差的等差数列.(2)由(1)得=1+(n-1)·1=n,所以a n =n 2.从而b n =n·3n.S n =1·31+2·32+3·33+…+n·3n,①3S n =1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2S n =31+32+ (3)-n·3n+1=3·(1−3)1−3-n·3n+1=(1-2p ·3r1-32.所以S n =(2t1)·3r1+34.评析本题考查等差数列定义的应用,错位相减法求数列的前n项和,解题时利用题(1)提示对递推关系进行变形是关键.31.(2014山东文,19,12分)在等差数列{an }中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{an}的通项公式;(2)设bn=or1)2,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解析(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知bn=or1)2=n(n+1).所以T n=-1×2+2×3-3×4+…+(-1)n n×(n+1).因为b n+1-b n=2(n+1),所以当n为偶数时,T n =(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)=4+8+12+ (2)=2(4+2n)2=or2)2,当n为奇数时,T n =Tn-1+(-bn)=(t1)(r1)2-n(n+1)=-(r1)22.所以T n为奇数,为偶数.评析本题考查等比数列和等差数列的综合应用、等差数列的通项公式及数列的求和,分类讨论思想和逻辑推理能力.32.(2013课标Ⅰ文,17,12分)已知等差数列{an }的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)n 项和.解析(1)设{a n }的公差为d,则S n =na 1+ot1)2d.由已知可得31+3d =0,51+10d =−5.解得a 1=1,d=-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1=1(3-2p(1-2p =n 项和为121-1-11+11-13+…+12t3-12t1=1−2.评析本题考查等差数列的通项公式及前n 项和公式,考查了裂项求和的方法,考查了运算求解能力与方程思想.33.(2011课标理,17,12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,32=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,n 项和.解析(1)设数列{a n }的公比为q.由32=9a 2a 6得32=942,所以q 2=19.由条件可知q>0,故q=13.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=13.故数列{a n }的通项公式为a n =13.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n)=-or1)2.故1=-2or1)=-211+12+…+1=-2123=-2r1.n 项和为-2r1.评析本题主要考查等比数列的通项公式以及裂项求和的基本方法,属容易题.34.(2020课标Ⅲ文,17,12分)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8.(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m+1=S m+3,求m.解析(1)设{a n }的公比为q,则a n =a 1q n-1.由已知得1+1q =4,12-1=8.解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1.(2)由(1)知log 3a n =n-1.故S n =ot1)2.由S m +S m+1=S m+3得m(m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0.解得m=-1(舍去)或m=6.35.(2020浙江,20,15分)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n+1-a n ,c n+1=r2c n ,n∈N *.(1)若{b n }为等比数列,公比q>0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d>0,证明:c 1+c 2+c 3+…+c n <1+1,n∈N *.解析本题主要考查等差数列、等比数列等基础知识,同时考查数学运算和逻辑推理等素养.(1)由b 1+b 2=6b 3得1+q=6q 2,解得q=12.由c n+1=4c n 得c n =4n-1.由a n+1-a n =4n-1得a n =a 1+1+4+…+4n-2=4t1+23.(2)证明:由c n+1=c n 得c n =121=所以c 1+c 2+c 3+…+c n 由b 1=1,d>0得b n+1>0,因此c 1+c 2+c 3+…+c n <1+1,n∈N *.36.(2020江苏,20,16分)已知数列{a n }(n∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n,均有r11-1=λr11成立,则称此数列为“λ~k”数列.(1)若等差数列{a n }是“λ~1”数列,求λ的值;(2)若数列{a n }是数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ~3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.解析本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)因为等差数列{a n }是“λ~1”数列,则S n+1-S n =λa n+1,即a n+1=λa n+1,也即(λ-1)a n+1=0,此式对一切正整数n 均成立.若λ≠1,则a n+1=0恒成立,故a 3-a 2=0,而a 2-a 1=-1,这与{a n }是等差数列矛盾.所以λ=1.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列{a n }(n∈N *)是3数列,所以r1-=即r1-=因为a n >0,所以S n+1>S n >0,n ,则b n 即(b n -1)2=13(2-1)(b n >1).解得b n =2,也即r1=4,所以数列{S n }是公比为4的等比数列.因为S 1=a 1=1,所以S n =4n-1.则a n =1(=1),3×4t2(n ≥2).(3)设各项非负的数列{a n }(n∈N *)为“λ~3”数列,则r113-13=λr113,即3r1-3=λ3r1-.因为a n ≥0,而a 1=1,所以S n+1≥S n >0,n ,则c n -1=λ33-1(c n ≥1),即(c n -1)3=λ3(3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)②若λ>1,则(*)化为(c n -1)2+3+23-1+1=0,因为c n ≥1,所以2+3+23-1c n+1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则2+3+23-1c n+1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t).所以S n+1=S n 或S n+1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果,所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ~3”数列,λ的取值范围是0<λ<1.37.(2019课标Ⅱ文,18,12分)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解析本题主要考查等比数列的概念及运算、等差数列的求和;考查学生的运算求解能力;体现了数学运算的核心素养.(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0.解得q=-2(舍去)或q=4.因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2.38.(2019天津文,18,13分)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =1,为奇数,2为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n∈N *).解析本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力,体现了数学运算素养.满分13分.(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.依题意,得3=3+2s 32=15+4d,解得=3,=3,故a n =3+3(n-1)=3n,b n =3×3n-1=3n.所以,{a n }的通项公式为a n =3n,{b n }的通项公式为b n =3n.(2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n-1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=×3+ot1)2×6+(6×31+12×32+18×33+…+6n×3n )=3n 2+6(1×31+2×32+…+n×3n).记T n =1×31+2×32+…+n×3n,①则3T n =1×32+2×33+…+n×3n+1,②②-①得,2T n =-3-32-33-…-3n +n×3n+1=-3(1−3)1−3+n×3n+1=(2t1)3r1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2t1)3r1+32=(2t1)3r2+62+92(n∈N *).思路分析(1)利用等差、等比数列的通项公式求出公差d,公比q 即可.(2)利用{c n }的通项公式,进行分组求和,在计算差比数列时采用错位相减法求和.解题关键根据n 的奇偶性得数列{c n }的通项公式,从而选择合适的求和方法是求解的关键.39.(2019江苏,20,16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an }(n∈N*)满足:a2a4=a5,a3-4a2+4a1=0,求证:数列{an}为“M-数列”;(2)已知数列{bn }(n∈N*)满足:b1=1,1=2-2r1,其中S n为数列{b n}的前n项和.①求数列{bn}的通项公式;②设m为正整数,若存在“M-数列”{cn }(n∈N*),对任意正整数k,当k≤m时,都有ck≤bk≤ck+1成立,求m的最大值.解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)设等比数列{an }的公比为q,所以a1≠0,q≠0.由24=5,3-42+41=0,得124=14,12-41q+41=0,解得1=1,=2.因此数列{a n}为“M-数列”.(2)①因为1=2-2r1,所以b n≠0.由b1=1,S1=b1,得11=21-22,则b2=2.由1=2-2r1,得S n=r12(r1-),当n≥2时,由b n=S n-S n-1,得b n=r12(r1-)-t12(-t1),整理得b n+1+b n-1=2b n.所以数列{b n}是首项和公差均为1的等差数列.因此,数列{b n}的通项公式为b n=n(n∈N*).②由①知,bk=k,k∈N*.因为数列{c n}为“M-数列”,设公比为q,所以c1=1,q>0.因为c k≤b k≤c k+1,所以q k-1≤k≤q k,其中k=1,2,3,…,m.当k=1时,有q≥1;当k=2,3,…,m时,有ln≤lnq≤ln t1.设f(x)=ln(x>1),则f'(x)=1−ln2.令f'(x)=0,得x=e.列表如下:x(1,e)e(e,+∞) f'(x)+0-f(x)↗极大值↘因为ln22=ln86<ln96=ln33,所以f(k)max =f(3)=ln33.取q=33,当k=1,2,3,4,5时,ln≤lnq,即k≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.40.(2018北京文,15,13分)设{a n }是等差数列,且a 1=ln2,a 2+a 3=5ln2.(1)求{a n }的通项公式;(2)求e 1+e 2+…+e .解析(1)设{a n }的公差为d.因为a 2+a 3=5ln2,所以2a 1+3d=5ln2.又a 1=ln2,所以d=ln2.所以a n =a 1+(n-1)d=nln2.(2)因为e 1=e ln2=2,e e t1=e -t1=e ln2=2,所以{e }是首项为2,公比为2的等比数列.所以e 1+e 2+…+e =2×1−21−2=2(2n-1).41.(2018江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m∈N *,q∈(1,2],证明:存在d∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n =(n-1)d,b n =2n-1.因为|a n -b n |≤b 1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立.即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得73≤d≤52.因此,d (2)由条件知:a n =b 1+(n-1)d,b n =b 1q n-1.若存在d∈R,使得|a n -b n |≤b 1(n=2,3,…,m+1)均成立,即|b 1+(n-1)d-b 1q n-1|≤b 1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d 满足t1-2t1b 1≤d≤t1t1b 1.因为q∈(1,2],所以1<q n-1≤q m≤2,从而t1-2t1b 1≤0,t1t1b 1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n -b n |≤b 1对n=2,3,…,m+1均成立.(n=2,3,…,m+1).①当2≤n≤m 时,-2-t1-2t1=B --n t1+2ot1)=o -t1)-+2ot1),当1<q≤21时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,,的最大值为-2.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m 时,t1t1=ot1)≤因此,当2≤n≤m+1时,,的最小值为.因此,d 疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d 的范围,使得|a n -b n |≤b 1对n=2,3,…,m+1都成立,首先把d 分离出来,变成t1-2t1b 1≤d≤t1t1b 1,难点在于讨论t1-2t1b 1的最大值和t1t1b 1的最小值.可以通过作差讨论其单调性,要作商讨论单调性,∵t1t1=ot1)=q 1当2≤n≤m 时,1<q n ≤2,∴q 1−可以构造函数f(x)=2x (1-x),通过讨论f(x)在(0,+∞)上的单调性去证明得到数列,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断1的大小是难点,平时多积累,多思考,也是可以得到的.42.(2017课标Ⅱ文,17,12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解析本题考查了等差、等比数列.设{a n }的公差为d,{b n }的公比为q,则a n =-1+(n-1)d,b n =q n-1.由a 2+b 2=2得d+q=3.①(1)由a 3+b 3=5得2d+q 2=6.②联立①和②解得=3,=0(舍去),或=1,=2.因此{b n }的通项公式为b n =2n-1.(2)由b 1=1,T 3=21得q 2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S 3=21.当q=4时,由①得d=-1,则S 3=-6.43.(2017课标Ⅰ文,17,12分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.解析本题考查等差、等比数列.(1)设{a n }的公比为q,由题设可得1(1+q)=2,1(1+q +2)=-6.解得q=-2,a 1=-2.。
数列的求和-高考数学复习
研题型·通法悟道 举题说法
目标 3 错位相减法求和
3 (2023·全国甲卷)已知在数列{an}中,a2=1,设Sn为{an}的前n项和,2Sn= nan. (1)求数列{an}的通项公式;
【解答】 因为 2Sn=nan①,当 n=1 时,2S1=a1,解得 a1=0,当 n≥2 时,2Sn-1=(n -1)an-1②,①-②得 2an=nan-(n-1)an-1,所以(n-1)an-1=(n-2)an,当 n≥3 时, 可得aan-n1=nn- -12,所以 an=21×32×43×…×nn- -12×a2=n-1,又 a1=0,a2=1 也适合上 式,所以{an}的通项公式为 an=n-1.
总结 提炼
若数列{cn}的通项公式为 cn=abnn,,nn为为奇偶数数,,其中数列{an},{bn}是等比数列或等差数 列,可采用分组求和法求{cn}的前 n 项和.
研题型·通法悟道 举题说法
变式 (2023·马鞍山一模)已知数列{an}中,a1=3,a2=5,数列{bn}为等比数
列,满足bn+1=an+1bn-anbn,且b2,2a4,b5成等差数列. (1)求数列{an}和{bn}的通项公式;
点击对应数字即可跳转到对应题目
1
2
3
4
5
链教材·夯基固本 激活思维
4.已知函数 y=f(x)满足 f(x)+f(1-x)=1,若数列{an}满足 an=f(0)+f1n+f2n+…+
fn-n 1+f(1),则数列{an}的前 20 项和为
( D)
A.100
B.105
C.110
D.115
点击对应数字即可跳转到对应题目
研题型·通法悟道 举题说法
变式 (2023·韶关二模)设等比数列{an}的前n项和为Sn,已知an+1=Sn+1,
高三数学数列求和练习题
高三数学数列求和练习题假设有一位名叫小明的高三学生,他正在备战数学考试。
最近,他对数列的求和问题感到十分困惑,因此他向老师请教,老师给了他以下一些练习题。
下面,我们来一起解决这些题目,帮助小明理解数列求和的方法。
练习题一:等差数列求和已知等差数列的首项为a₁,公差为d,请计算这个等差数列的前n 项和Sn。
1. a₁ = 3,d = 2,n = 102. a₁ = -2,d = 4,n = 153. a₁ = 0,d = -3,n = 8解答:对于等差数列来说,可以使用求和公式Sn = n(a₁ + an)/2来计算前n项和。
其中,an表示等差数列的第n项。
1. a₁ = 3,d = 2,n = 10根据公式,代入数据计算得到:Sn = 10(3 + a₁ + 2(n-1))/2= 10(3 + 3 + 2(10-1))/2= 10(6 + 18)/2= 10(24)/2= 1202. a₁ = -2,d = 4,n = 15代入数据计算得到:Sn = 15(-2 + a₁ + 4(15-1))/2= 15(-2 + -2 + 4(14))/2= 15(-4 + 56)/2= 15(52)/2= 3903. a₁ = 0,d = -3,n = 8代入数据计算得到:Sn = 8(0 + a₁ + -3(8-1))/2= 8(0 + 0 + -3(7))/2= 8(0 - 21)/2= 8(-21)/2= -84练习题二:等比数列求和已知等比数列的首项为a₁,公比为q,请计算这个等比数列的前n 项和Sn。
2. a₁ = 4,q = -2,n = 63. a₁ = -6,q = 0.5,n = 7解答:对于等比数列来说,可以使用求和公式Sn = a₁(1 - q^n)/(1 - q)来计算前n项和。
1. a₁ = 2,q = 3,n = 5根据公式,代入数据计算得到:Sn = 2(1 - 3^5)/(1 - 3)= 2(1 - 243)/(-2)= 2(-242)/(-2)= 2422. a₁ = 4,q = -2,n = 6代入数据计算得到:Sn = 4(1 - (-2)^6)/(1 - (-2))= 4(1 - 64)/3= 4(-63)/3= -84代入数据计算得到:Sn = -6(1 - 0.5^7)/(1 - 0.5)= -6(1 - 0.0078125)/0.5= -6(0.9921875)/0.5= -11.859375通过解答以上练习题,我们可以得出结论:数列求和可以通过特定的公式来计算,对于等差数列可以使用Sn = n(a₁ + an)/2,对于等比数列可以使用Sn = a₁(1 - q^n)/(1 - q)。
专题32 数列求和(解析版)
【解析】由题意知数列{2n-1}为1,3,5,7,9,11,13,…,{3n-2}为1,4,7,10,13,16,19,…,所以数列
为1,7,13,19,…,即an=1+6(n-1)=6n-5,所以数列 的前n项和为 =3n2-2n.
8.(2020·全国卷Ⅱ文科·T14)记Sn为等差数列 的前n项和.若a1=-2,a2+a6=2,则S10=.
9.(2020·全国卷Ⅱ文科·T6)记Sn为等比数列{an}的前n项和.若a5-a3=12,a6-a4=24,则 =()
A.2n-1B.2-21-nC.2-2n-1D.21-n-1
【解析】选B.设等比数列的公比为q,由a5-a3=12,a6-a4=24可得: ⇒ ,
所以an=a1qn-1=2n-1,Sn= = =2n-1,因此 = =2-21-n.
答案:25
【解析】设等差数列 的公差为d.因为 是等差数列,且a1=-2,a2+a6=2,根据等差数列通项公式:an=a1+ d,可得a1+d+a1+5d=2,即-2+d+ +5d=2,整理可得:6d=6,解得:d=1.根据等差数列前n项和公式:Sn=na1+ d,n∈N*,可得:S10=10× + =-20+45=25,所以S10=25.
解析:(Ⅰ)当 时, ,因为 ,所以 =3,
当 时, = = ,即 ,因为 ,所以 =2,所以数列{ }是首项为3,公差为2的等差数列,所以 = ;
(Ⅱ)由(Ⅰ)知, = ,
所以数列{ }前n项和为 = = .
讲典例 备高考
类型一、公式法求和
基础知识:
(1)等差数列前n项和公式:Sn=na1+ d= .
2022届高考数学复习题:数列求和
2022届高考数学复习题:数列求和1.数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1D .n +2+2n解析:由题意得a n =1+2n -1, 所以S n =n +1-2n1-2=n +2n -1. 答案:C2.已知数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-15 解析:∵a n =(-1)n (3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15. 答案:A3.在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n+a n +1}的前10项和为( ) A .100 B .110 C .120D .130解析:{a n +a n +1}的前10项和为a 1+a 2+a 2+a 3+…+a 10+a 10+a 11=2(a 1+a 2+…+a 10)+a 11-a 1=2S 10+10×2=120,故选C. 答案:C4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和为( )A.100101 B.99101 C.99100D.101100解析:由S 5=5a 3及S 5=15得a 3=3,∴d =a 5-a 35-3=1,a 1=1,∴a n =n ,1a n a n +1=1n (n +1)=1n -1n +1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和T 100=1-12+12-13+…+1100-1101=1-1101=100101,故选A. 答案:A5.已知数列{a n }的通项公式是a n =2n -3⎝ ⎛⎭⎪⎫15n ,则其前20项和为( )A .380-35⎝ ⎛⎭⎪⎫1-1519B .400-25⎝ ⎛⎭⎪⎫1-1520C .420-34⎝ ⎛⎭⎪⎫1-1520D .440-45⎝ ⎛⎭⎪⎫1-1520解析:令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝ ⎛⎭⎪⎫15+152+…+1520=2×20×(20+1)2-3×15⎝ ⎛⎭⎪⎫1-15201-15=420-34⎝ ⎛⎭⎪⎫1-1520. 答案:C6.数列{a n }的通项公式是a n =1n + n +1,若前n 项和为10,则项数n 为( )A .120B .99C .11D .121解析:a n =1n + n +1=n +1-n ( n +1+ n )( n +1- n )=n +1- n ,所以a 1+a 2+…+a n =( 2-1)+( 3- 2)+…+(n +1- n )=n +1-1=10.即 n +1=11,所以n +1=121,n =120.答案:A7.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 解析:由a 1>0,a 10·a 11<0可知d <0,a 10>0, a 11<0,所以T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60. 答案:608.设函数f (x )=12+log 2x 1-x ,定义S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n ,其中n ∈N *,且n ≥2,则S n =________.解析:因为f (x )+f (1-x )=12+log 2x 1-x+12+log 21-x x=1+log 21=1,所以2S n =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n +⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫1n =n -1.所以S n =n -12. 答案:n -129.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解析:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 10.已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2.(1)求数列{a n }的通项公式; (2)记b n =2a n a n +1,设{b n }的前n 项和为S n ,求最小的正整数n ,使得S n >2 0162 017. 解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎨⎧2a 1+3d =8a 1+4d =3a 1+3d ,解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *. (2)因为b n =2a n a n +1=12n -1-12n +1, 所以S n =⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1,令1-12n +1>2 0162 017, 解得n >1 008,故取n =1 009. 11.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,若已知数列{a n }的前n 项的“均倒数”为15n ,又b n =a n 5,则1b 1b 2+1b 2b 3 +…+1b 10b 11=( ) A.817 B.919 C.1021D.1123解析:由定义可知a 1+a 2+…+a n =5n 2,a 1+a 2+…+a n +a n +1=5(n +1)2,可求得a n +1=10n +5,所以a n =10n -5,则b n =2n -1.又1b n b n +1=12⎝ ⎛⎭⎪⎫1b n -1b n +1,所以1b 1b 2+1b 2b 3+…+1b 10b 11=12⎝ ⎛⎭⎪⎫1b 1-1b 2+1b 2-…-1b 10+1b 10-1b 11=12⎝ ⎛⎭⎪⎫1b 1-1b 11=1021. 答案:C12.已知数列{a n }的通项公式为a n =(-1)n (2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 60=( ) A .-30 B .-60 C .90D .120解析:由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k -1=1;当n =4k (k ∈N *)时,a n =a 4k =8k .所以a 4k -3+a 4k -2+a 4k -1+a 4k =8,所以S 60=8×15=120. 答案:D 13.(2021·模拟)已知T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( ) A .1 026 B .1 025 C .1 024D .1 023解析:因为2n +12n =1+⎝ ⎛⎭⎪⎫12n,所以T n =n +1-12n ,所以T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013,所以整数m 的最小值为1 024.故选C. 答案:C14.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=________.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ①,∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1 ②,∵①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2 016=1-21 0081-2+2×(1-21 008)1-2=3×21 008-3.答案:3×21 008-315.已知数列2 017,2 018,1,-2 017,…,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 018项之和S 2 018=________. 解析:由题意可知, a n +1=a n +a n +2,a 1=2 017,a 2=2 018,所以a 3=1,a 4=-2 017,a 5=-2 018,a 6=-1,a 7=2017,…,所以a n +6=a n ,即数列{a n }是以6为周期的数列,又a 1+a 2+a 3+a 4+a 5+a 6=0,所以S 2 018=336(a 1+a 2+a 3+a 4+a 5+a 6)+(a 1+a 2)= 4 035. 答案:4 03516.数列{a n}的前n项和为S n,已知S n+1=S n+a n+2,a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)若数列{b n}满足b na n=( 2)1+a n,求数列{b n}的前n项和T n.解析:(1)因为S n+1=S n+a n+2,所以a n+1-a n=2,所以数列{a n}是公差为2的等差数列,因为a1,a2,a5成等比数列,所以a22=a1·a5,所以(a1+2)2=a1(a1+8),解得a1=1.所以a n=1+2(n-1)=2n-1.(2)因为数列{b n}满足b na n=( 2)1+a n,所以b n=(2n-1)( 2)1+(2n-1)=(2n-1)·2n.所以数列{b n}的前n项和T n=2+3×22+5×23+…+(2n-1)·2n,所以2T n=2×2+3×23+…+(2n-3)×2n+(2n-1)×2n+1,所以T n=6+(2n-3)×2n+1.。
高中数学高考题型数列求和题目以及答案
高中数学高考题型数列求和题目以及答案1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.方法一 分组转化法求和1.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. [解题技法]1.分组转化求和的通法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.分组转化法求和的常见类型[题组训练]2..已知数列{a n }的通项公式是a n =2n -⎝⎛⎭⎫12n,则其前20项和为( ) A .379+1220B .399+1220C .419+1220D .439+12203.(2019·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124方法二 裂项相消法求和考法(一) 形如a n =1n (n +k )型4.(2019·南宁摸底联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26. (1)求等差数列{a n }的通项公式; (2)设c n =1a n a n +1,n ∈N *,求数列{c n }的前n 项和T n . 考法(二) 形如a n =1n +k +n型5.已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 019=( )A. 2 018-1B. 2 019-1C. 2 020-1D. 2 020+1 [解题技法]1.用裂项法求和的裂项原则及消项规律哪些项,避免遗漏.2.常见的拆项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n ;(4)2n (2n -1)(2n +1-1)=12n -1-12n +1-1. [题组训练]6.在等差数列{a n }中,a 3+a 5+a 7=6,a 11=8,则数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为( ) A.n +1n +2 B.n n +2C.n n +1D.2n n +17.各项均为正数的等比数列{a n }中,a 1=8,且2a 1,a 3,3a 2成等差数列. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1n log 2a n,求{b n }的前n 项和S n .方法三 错位相减法求和8.(2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .[变透练清]9.(变结论)若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n .10.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *). [解题技法] 错位相减法求和的4个步骤[易误提醒](1)两式相减时最后一项因为没有对应项而忘记变号.(2)对相减后的和式的结构认识模糊,错把中间的n -1项和当作n 项和.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q =1和q ≠1两种情况求解.[课时跟踪检测]1.数列{a n }的通项公式为a n =1n +n -1,若该数列的前k 项之和等于9,则k =( )A .80B .81C .79D .822.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-153.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5C.3116D.1584.在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项之和S 100=( )A .-200B .-100C .200D .1005.已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A .1 026B .1 025C .1 024D .1 0236.已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为________. 7.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________.8.(2019·成都第一次诊断性检测)已知等差数列{a n }的前n 项和为S n ,a 2=3,S 4=16,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n . 9.(2018·南昌摸底调研)已知数列{a n }的前n 项和S n =2n +1-2,记b n =a n S n (n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和T n .参考答案:1.[解](1)当n=1时,a1=S1=1;当n≥2时,a n=S n-S n-1=n2+n2-(n-1)2+(n-1)2=n.又a1=1也满足a n=n,故数列{a n}的通项公式为a n=n.(2)由(1)知a n=n,故b n=2n+(-1)n n.记数列{b n}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).记A=21+22+…+22n,B=-1+2-3+4-…+2n,则A=2(1-22n)1-2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n. 故数列{b n}的前2n项和T2n=A+B=22n+1+n-2.2.解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+a 3+…+a 20=2(1+2+3+…+20)-⎝⎛⎭⎫12+122+123+…+1220=420-⎝⎛⎭⎫1-1220=419+1220. 3.解析:选C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.4.[解] (1)设等差数列的公差为d ,则由题意可得⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1. (2)因为c n =1a n a n +1=1(2n +1)(2n +3), 所以c n =12⎝⎛⎭⎫12n +1-12n +3,所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=n 6n +9. 5.[解析] 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12. ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 019=a 1+a 2+a 3+…+a 2 019=(2-1)+(3-2)+(4-3)+…+( 2 019-2 018)+( 2 020- 2 019)= 2 020-1. 6.解析:选C 因为a 3+a 5+a 7=6, 所以3a 5=6,a 5=2,又a 11=8, 所以等差数列{a n }的公差d =a 11-a 511-5=1, 所以a n =a 5+(n -5)d =n -3, 所以1a n +3·a n +4=1n (n +1)=1n -1n +1,因此数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,故选C.7.解:(1)设等比数列{a n }的公比为q (q >0). ∵2a 1,a 3,3a 2成等差数列,∴2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,∴2q 2-3q -2=0,解得q =2或q =-12(舍去),∴a n =8×2n -1=2n +2. (2)由(1)可得b n =1n log 22n +2=1n (n +2)=12⎝⎛⎭⎫1n -1n +2, ∴S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2 =34-2n +32(n +1)(n +2). 8.[解] (1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2, 所以a n =2n . (2)由题意知, S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1=32+1-⎝ ⎛⎭⎪⎫12n -1-2n +12n +1=52-2n +52n +1, 所以T n =5-2n +52n. 9.解:由本例解析知a n =2n ,b n =2n +1,故T n =3×21+5×22+7×23+…+(2n +1)×2n , 2T n =3×22+5×23+7×24+…+(2n +1)×2n +1,上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +1 =6+8(1-2n -1)1-2-(2n +1)2n +1=(1-2n )2n +1-2 得T n =(2n -1)×2n +1+2.10.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 因为q >0,解得q =2,所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8. ① 由S 11=11b 4,可得a 1+5d =16. ② 联立①②,解得a 1=1,d =3, 由此可得a n =3n -2.所以{a n }的通项公式为a n =3n -2,{b n }的通项公式为b n =2n . (2)设数列{a 2n b n }的前n 项和为T n ,由a 2n =6n -2,有 T n =4×2+10×22+16×23+…+(6n -2)×2n ,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1, 上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n -2)×2n +1 =12×(1-2n )1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16, 得T n =(3n -4)2n +2+16.所以数列{a 2n b n }的前n 项和为(3n -4)2n +2+16. 练习:1.解析:选B a n =1n +n -1=n -n -1,故S n =n ,令S k =k =9,解得k =81,故选B.2.解析:选A a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15,故选A.3.解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116. 4.解析:选D 设数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+3d =5,a 1+6d =11⇒⎩⎪⎨⎪⎧a 1=-1,d =2⇒a n=2n -3⇒b n =(-1)n (2n -3)⇒S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)=50×2=100,故选D.5.解析:选C ∵2n +12n =1+⎝⎛⎭⎫12n, ∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013, ∴整数m 的最小值为1 024. 6.解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1. 7.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,② 由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.8.解:(1)设数列{a n }的公差为d , ∵a 2=3,S 4=16, ∴a 1+d =3,4a 1+6d =16, 解得a 1=1,d =2. ∴a n =2n -1. (2)由题意知,b n =1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1 =n 2n +1. 9.解:(1)∵S n =2n +1-2,∴当n =1时,a 1=S 1=21+1-2=2; 当n ≥2时,a n =S n -S n -1=2n +1-2n =2n . 又a 1=2=21,∴a n =2n .(2)由(1)知,b n =a n S n =2·4n -2n +1,∴T n =b 1+b 2+b 3+…+b n =2(41+42+43+…+4n )-(22+23+…+2n +1)=2×4(1-4n )1-4-4(1-2n )1-2=23·4n +1-2n +2+43.。
高考数学数列求和选择题
高考数学数列求和选择题1. 已知数列{an}是等差数列,且a1=2,d=3,求前n项和Sn。
2. 已知数列{bn}是等比数列,且b1=2,q=3,求前n项和Tn。
3. 已知数列{cn}是等差数列,且c1=1,d=2,求前n项和Un。
4. 已知数列{dn}是等比数列,且d1=1,q=2,求前n项和Vn。
5. 已知数列{en}是等差数列,且e1=3,d=1,求前n项和Wn。
6. 已知数列{fn}是等比数列,且f1=3,q=1,求前n项和Xn。
7. 已知数列{gn}是等差数列,且g1=2,d=1,求前n项和Yn。
8. 已知数列{hn}是等比数列,且h1=2,q=1,求前n项和Zn。
9. 已知数列{in}是等差数列,且i1=3,d=2,求前n项和An。
10. 已知数列{jn}是等比数列,且j1=3,q=2,求前n项和Bn。
12. 已知数列{ln}是等比数列,且l1=1,q=2,求前n项和Dn。
13. 已知数列{mn}是等差数列,且m1=2,d=3,求前n项和En。
14. 已知数列{on}是等比数列,且o1=2,q=3,求前n项和Fn。
15. 已知数列{pn}是等差数列,且p1=1,d=3,求前n项和Gn。
16. 已知数列{qn}是等比数列,且q1=1,q=3,求前n项和Hn。
17. 已知数列{rn}是等差数列,且r1=2,d=1,求前n项和In。
18. 已知数列{sn}是等比数列,且s1=2,q=1,求前n项和Jn。
19. 已知数列{tn}是等差数列,且t1=3,d=2,求前n项和Kn。
20. 已知数列{un}是等比数列,且u1=3,q=2,求前n项和Ln。
21. 已知数列{vn}是等差数列,且v1=1,d=2,求前n项和Mn。
23. 已知数列{xn}是等差数列,且x1=2,d=3,求前n项和On。
24. 已知数列{yn}是等比数列,且y1=2,q=3,求前n项和Pn。
25. 已知数列{zn}是等差数列,且z1=1,d=3,求前n项和Qn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题考案(2)数列板块 第3课 数列的求和(时间:90分钟 满分:100分)题型示例已知y =f (x )是一次函数,且f (2),f (5),f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )(n ∈N x)的表达式.分析 要求和,关键要先求出f (n ).解 由y =f (x )是一次函数可设f (x )=ax +b ,则f (2)=2a +b ,f (5)=5a +b ,f (4)=4a +b ,∵f (2),f (5),f (4)成等比数列,∴(5a +b )2=(2a +b )(4a +b ).∴17a 2+4ab =0,又∵a ≠0.∴a =-174b ① 又∵f(8)=15,∴8a +b =15 ②联立方程①、②解得a =4,b =-17,∴f (x )=4x -17.∴f (1),f (2),…,f (n )可看作是首项为-13,公差为4的等差数列.由等差数列前n 项和公式可求得S n =-13n +2)1(-n n ×4=2n 2-15n . 点评 此题渗透了函数思想,解题时要注意知识的横向与纵向之间的联系.一、选择题(9×3′=27′)1.数列{a n }是等差数列的一个充要条件是 ( )A.S n =an +bB.S n =an 2+bn +cC.S n =an 2+bn (a ≠0)D.S n =an 2+bn2.设m =1×2+2×3+3×4+…+(n -1)·n ,则m 等于 ( ) A.3)1(2-n n B.21n (n +4) C.21n (n +5) D.21n (n +7) 3.若S n =1-2+3-4+…+(-1)n -1·n ,则S 17+S 33+S50等于 ( )A.1B.-1C.0D.24.阅读下列文字,然后回答问题:对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数.函数[x ]叫做“取整函数”,也叫高斯函数.它具有以下性质:x -1<[x ]≤x <[x +1].请回答:[log 21]+[log 22]+[log 23]+…+[log 21024]的值是( )A.1024B.8202C.8204D.92165.设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则{c n }的前10项和为 ( )A.978B.557C.467D.9796.1002-992+982-972+…+22-12的值是 ( )A.5000B.5050C.10100D.202007.若等比数列{a n }的前n 项和S n =2n +r ,则r 的值是 ( )A.2B.1C.0D.-18.已知S =1+ΛΛ++++22213121n,那么S 的范围是 ( ) A.(1,23) B.(23,2) C.(2,5) D.(5,+∞)9.已知数列{a n }的前n 项和S n =a ⎥⎦⎤⎢⎣⎡+--⎥⎦⎤⎢⎣⎡---11)21)(1(2)21(2n n n b (n =1,2,…),其中a ,b 是非零常数,则存在数列{x n }、{y n }使得 ( )A.a n =x n +y n ,其中{x n }为等差数列,{y n }为等比数列B.a n =x n +y n ,其中{x n }和{y n }都为等差数列C.a n =x n ·y n ,其中{x n }为等差数列,{y n }为等比数列D.a n =x n ·y n ,其中{x n }和{y n }都为等比数列二、填空题(4×3′=12′)10.一个有xx 项且各项非零的等差数列,其奇数项的和与偶数项的和之比为 .11.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .12.已知数列{a n }的前n 项和S n =n 2-4n +1,则|a 1|+|a 2|+…+|a 10|= .13.数列,32161,1665,825,49,23…的前n 项和S n = . 三、解答题(9′+3×10′+12′+10′=61′)14.求和:1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1. 15.求和:S n =)12)(12(7595343112+-++⨯+⨯+⨯n n n Λ. 16.已知数列{a n }的前n 项和S n =10n -n 2(n ∈N );数列{b n }的通项b n =|a n |,求数列{b n }的前n 项和T n .17.数列{a n }中,a 1=a ,前n 项和S n 构成公比为q 的等比数列.(q ≠1)(1)求证在{a n }中,从第2项开始成等比数列;(2)当a =250,q =21时,设b n =log 2|a n |,求|b 1|+|b 2|+…+|b n |. 18.已知数列{a n }的前n 项和S n 满足:S n =2an +(-1)n ,n ≥1.(1)求证数列{a n +32(-1)n }是等比数列; (2)求数列{a n }的通项公式; (3)证明:对任意的整数m >4,有.8711154<+++m a a a Λ 19.求包含在正整数m 与n 间(m <n )的分母为3的所有不可约分数之和.参考答案1.D S n =na 1+22)1(d d n n =-n 2+(a 1-2d )n ,d 可以为0,对照知选D. 2.A a n =n 2-n .3.A S n =⎪⎪⎩⎪⎪⎨⎧-+)(2)(21为偶为奇n n n n4.C [log 2N ]=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=<≤<≤<≤<≤101093222,1022,922,222,121,0N N N N N Λ故原式=0+1·(22-2)+2·(23-22)+…+9·(210-29)+10=9·210-(29+28+…+2)+10=8204,故选C.5.A 由题意可得a 1=1,设公比为q ,公差为d ,则⎩⎨⎧=+=+2212d q d q∴q 2-2q =0,∵q ≠0,∴q =2,∴a n =2n -1,b n =(n -1)(-1)=1-n,∴c n =2n -1+1-n,∴S n =978.6.B 并项求和,每两项合并,原式=(100+99)+(98+97)+…+(2+1)=5050.7.D r 等于2n 系数1的相反数-1,选D.8.B .12112312)1(132121111123)1(14313211n S n n n n S n n n S -<<+-⇒⎪⎪⎩⎪⎪⎨⎧-=-++•+•+<+-=+++•+•+>ΛΛ 9.C 由a n =S n -S n -1=a [2-(21)n -1]-b [2-(n +1)(21)n -1]-a [2-(21)n -2]+b [2-n ·(21)n -2] =-(21)n -1a +a ·(21)n -2+b (n +1)·(21)n -1-bn (21)n -2=a ·(21)n -2[-(21)+1]+bn (21)n -2(21-1)+b (21)n -1=(a+b)·(21)n -1-bn (21)n -1 =[a +b (1-n )](21)n -1=[a -(n -1)b ]·[21·(21)n -2] 而a 1=S 1=a [2-(21)0]-b [2-2·(21)0]=a ,因此也适合上式. ∴x n =a -(n -1)b ,y n =21(21)n -2.选C. 10.10001001 设此数列{a n },其中间项为a 1001, 则S 奇=a 1+a 3+a 5+…+a xx =1001·a 1001,S 偶=a 2+a 4+a 6+…+a xx =1000a 1001.11.61;21;31- 原式=.6326)12()1(23n n n n n n +-=-•- 12.67 .)2(52)1(2⎩⎨⎧≥-=-=n n n a n 13.)211(2)1(n n n -++ a n =n +n 21. 14.解 a k =k ·[(n +1)-k ]=(n +1)k -k 2,∴S n =[(n +1)·1-12]+[(n +1)·2-22]+…+[(n +1)·n -n 2]=(n +1)(1+2+…+n )-(12+22+…+n 2)=(n +1)·612)1(-+n n n (n +1)(2n +1) =6)2)(1(++n n n . 15.解 a k =)121121(8141)12)(12(414114)12)(12(222+--+=+-+=-=+-k k k k k k k k k , ∴S n =)12(2)1()1211(814++=+-++n n n n n . 16.解 可按如下三个层次进行:(1)由数列{a n }的前n 项和求a n .由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n得a n =11-2n (n ∈Nx ) (2)由a n 的正负确定{b n }的通项公式.易知,当n ≤5时,a n >0,则b n =a n ;当n ≥6时,a n <0,则b n =-a n∴b n =⎩⎨⎧≥-≤-)6(112)5(211n n n n (3)求数列{b n }的前n 项和T n当n ≤5时,因为b n =a n 所以T n =S n =10n -n 2;当n ≥6时,T n =a 1+a 2+a 3+…+a 5-(a 6+a 7+…+a n )=2S 5-S n =50-(10n -n 2)=n 2-10n +50.∴T n =.)6(5010)5(1022⎪⎩⎪⎨⎧≥+-≤-n n n n n n 点评 数列{a n }与数列{|a n |}很多题目都有涉及,关键是把握两者的实质联系,我们分了三个步骤以方便同学们理清思路.17.(1)证明 由已知S 1=a 1=a ,S n =aq n -1,∴S n -1=aq n -2,∴当n ≥2时,a n =S n -S n -1=a (q -1)q n -2.∵n n a a 1+=q ,∴{a n }是当n ≥2时公比为q 的等比数列.(2)解 a 2=S 2-S 1=a (q -1),∴a n =.)2()1().1(2⎩⎨⎧≥-=-n q q a a a n ∴当a =250,q =21时,b 1=log 2|a |=50,当n ≥2时,b n =log 2|a n |=log 2|250(21-1)(21)n -2|=51-n . ∴b n =51-n (n ∈N ).①当1≤n ≤51时,|b 1|+|b 2|+…+|b n |=(51-1)+(51-2)+…+(51-n )=51n -(1+2+…+n )=51n -.2)101(2)1(n n n n -=+ ②当n ≥52时,|b 1|+|b 2|+…+|b n |=(50+49+48+…+1)+[1+2+3+…+(n -51)]=2)101(2)50)(51(25150-=--+⨯n n n n 18.(1)证明 由已知得a n =S n -S n -1=2a n +(-1)n -2a n -1-(-1)n -1(n ≥2),化简得 a n =2a n -1+2(-1)n -1(n ≥2),上式可化为 a n +32(-1)n =2[a n -1+32(-1)n -1](n ≥2),∵a 1=1,∴a 1+32(-1)1=31. 故数列{a n +32(-1)n }是以31为首项,公比为2的等比数列. (2)解 由(1)可知a n +32(-1)n =321-n . ∴a n =31×2n -1-32(-1)n =32[2n -2-(-1)n ],故数列{a n }的通项公式为 a n =32[2n -2-(-1)n ]. (3)证明 由已知得ma a a 11154+++Λ =⎥⎦⎤⎢⎣⎡--++++++=⎥⎦⎤⎢⎣⎡--++++---m m m m )1(21631331151913123)1(21121121232232ΛΛ =)20110151311(21)21111151311(21ΛΛ+++++<+++++ =.871201051201041513)21(511513)21525234(21211)211(513421555=<=<⨯-=⨯-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---m m m 故)4(8711154><+++m a a a m Λ 19.解 方法1 这些分数是.313,323,,353,343,323,313--++++n n m m m m Λ 显然它既非等比数列也非等差数列,但如果在适当的位置上分别添上)(33,333,,333,33*-+n n m m Λ 即成为)(33,313,323,333,,333,323,313,33**---+++n n n n m m m m Λ (xx)是一个有3n -3m +1项的等差数列,公差为31,首项是m ,末项是n , 其和为S =21(3n -3m +1)(m +n )而(x)是一个有n -m +1项的等差数列,公差为1,首末项分别为m ,n 其和S ″=21(n -m +1)(m +n ). 故适合条件的分数和为S =S ′-S ″=n 2-m 2.方法2 设S =(m +31)+(m +32)+…+(n -32)+(n -31)注意到与首末两项等距离的两项和相等,于是把上式倒序相加得:2S =.,)()()(22)(2m n S n m n m n m m n -=∴++++++-4444434444421Λ个。