有机硅乳液培训
学习课件(有机硅)
05
有机硅的未来发展与挑战
有机硅的发展趋势
01
02
03
环保化
随着环保意识的提高,有 机硅行业将更加注重环保 生产,减少对环境的污染。
高性能化
有机硅材料不断向高性能 化发展,提高其耐温、耐 腐蚀、抗氧化等性能。
多元化
有机硅产品种类不断增多, 应用领域不断拓展,以满 足不同行业的需求。
有机硅面临的挑战与问题
有机硅在汽车制造领域的应用
总结词
提高汽车性能
详细描述
总结词
有机硅在汽车制造中主要用于 生产高性能的密封件、减震件 和涂层。这些产品可以提高汽 车的舒适性、稳定性和耐久性 ,并增强汽车的外观效果。
轻量化材料
详细描述
有机硅材料相对较轻,可以替 代部分金属材料,降低汽车的 整体重量。轻量化设计是汽车 节能减排的重要手段之一,有 利于提高汽车的燃油经济性和 排放性能。
学习课件(有机硅)
• 有机硅简介 • 有机硅的种类与合成 • 有机硅材料的性能与改性 • 有机硅在各领域的应用 • 有机硅的未来发展与挑战
01
有机硅简介
有机硅的定义
有机硅
是指含有硅元素的有机化合物, 也称为硅基有机化合物。
定义解释
有机硅由碳和硅两种元素组成, 其分子结构中碳-硅键的键能高, 使其具有独特的物理和化学性质 。
19世纪
有机硅化合物的研究开始起步。
20世纪40年代
出现商业化的有机硅产品,如 硅橡胶和硅树脂。
21世纪
有机硅材料在各领域的应用更 加广泛,成为现代工业和科技 发展的重要支撑材料之一。
02
有机硅的种类与合成
有机硅单体的合成
01
02
03
含硅乳液
含硅乳液合成与应用综述摘要:有机硅材料,各种含硅乳液产品已被广泛用于日常生活中。
本文介绍了了四种有机硅乳液:阴离子有机硅乳液、环氧基改性有机硅乳液、乙烯基有机硅乳液、硅氟乳液的制备,以及部分有机硅乳液的应用、缺陷进行了综述,重点介绍了含硅乳液的合成与应用,提出了含硅乳液的发展前景。
关键词:阴离子、环氧基改性、乙烯基、氟硅乳液引言硅是地壳中储量最丰富的元素之一,有机硅聚合物是特种高分子材料,具有耐高低温,高度的疏水性,良好的透气性,优越的耐寒性和防潮绝缘及生理惰性。
近年来,随着聚合物乳液理论和技术的发展,含硅乳液中有机硅乳液的研究和发展受到了国内外学者的重视[1]。
乳液聚合方法自1909年前后由Hofman、Gottlob、Dinsomore等人发现后,由于与其它聚合方法相比其独特的优点,使之逐渐发展成为高分子化合物的一种重要合成方法。
特别是近十几年来,随着乳液聚合理论和技术的不断研究和发展,各种新型的聚合物乳液正吸引着众多的研究者,有机硅乳液便是其中重要的一种[2]。
阴离子有机硅乳液[3]、环氧基改性有机硅乳液[4]、氟硅乳液[5]、乙烯基有机硅乳液[6]、高性能丙烯酸有机硅乳液[7]、自交联有机硅乳液[8]、聚醚[9]、氨基改性有机硅乳液[10]等的合成及失效有机硅乳液的裂解回收[11]。
随着含硅乳液的发展,使其在各行业中均得以大展拳脚。
有机硅乳液型建筑憎水剂[12]、有机硅乳液改性外墙乳胶漆防水性和透气[13]、水性丙烯酸有机硅乳液涂料[14]、医药用有机硅乳液消泡剂[15]、超稳定性有机硅乳液织物整理剂[16]、外墙涂料用高品质有机硅乳液[17]、含氟硅乳液膜有机硅乳液在金属清洗剂中的应用[18]、有机硅乳液在护发品中的应用[19]、氨基改性硅乳液在纺织整理中的应用等。
1.含硅乳液的合成1.1阴离子有机硅乳液的制备有关阳离子[20]、阴离子[21]乳液聚合制备有机硅乳液的条件、机理、产物结构及其表征等已有报道[22,23]。
有机硅树脂乳液制备及应用
拒水效果按照 GB 4745- 84《纺织织物表面抗湿性 测 定 方 法》在 淋 水 仪 上 进 行 测 试.拒 水 性 能 共 分 为 6 级,分别为 100 分、90 分、80 分、60 分、50 分和 0 分.其 中,100 分:表面无粘着水珠或被润湿现象;90 分:表面 轻度无规则粘着水珠或被润湿现象;80 分:表面在喷着 点处被润湿;70 分:整个表面受到部分润湿;50 分:整个 表面受到全部润湿;0 分:正反面均全部润湿. 1.4.2 折皱回复角
480
整理
70
135
165 91.33
362
由表 2 可以看出,织物经整理后产生拒水效果.由 于 硅 树 脂 结 构 中 含 有 反 应 性 基 团 (—OCH2CH3), 经 过 高 温 烘 焙 , 整 理 剂 能 够 与 纤 维 的 活 性 基 团 (如 —OH)反 应,在织物上形成一层疏水性的薄膜,从而具有一定 的拒水性能.整理前后织物白度基本不变,折皱回复 角减小.原因是整理过程中有机硅整理剂在织物表面 通过分子间及与纤维分子间相互交联形成网状结构, 使织物从形变中回复的能力降低.其中,涤纶织物整 理后折皱回复角减小得更多.
5
24.0
12
8
40
3∶4
60
4
20.0
13
10
10
3∶4
80
5
16.0
14
10
20
1∶2
70
4
12.0
15
10
30
2∶1
60
7
有机硅乳液的聚合方法
有机硅乳液的聚合方法有机硅乳液的聚合方法是一种制备有机硅乳液的关键步骤。
有机硅乳液是一种由有机硅聚合物作为主要成分的乳状液体,具有优异的性能和广泛的应用领域。
它在化妆品、涂料、建材等行业中得到广泛应用,掌握有机硅乳液的聚合方法对于生产高质量的有机硅乳液具有重要意义。
在研究有机硅乳液的聚合方法之前,我们首先需要了解有机硅聚合物的特性。
有机硅聚合物是由硅原子和有机基团通过硅氧键连接而成的聚合物。
这种特殊的结构使得有机硅聚合物具有许多优异的性能,例如耐高温、耐候性好、良好的耐化学性等。
有机硅乳液的聚合方法主要有乳化法和溶剂法两种。
一、乳化法乳化法是制备有机硅乳液最常用的方法之一。
乳化法是将有机硅前驱体溶解在水相中,并通过添加乳化剂和搅拌等步骤,使有机硅前驱体在水相中形成乳状液体。
通过一定的条件(例如加热、加压等)使有机硅前驱体发生聚合反应,最终得到有机硅乳液。
乳化法的主要优点是操作简单、反应时间短、产物纯度高等。
但是,乳化剂的选择和使用方法对于乳化法的成功与否至关重要。
乳化剂能够降低有机硅前驱体在水相中的表面张力,从而促进有机硅前驱体的分散和聚合反应。
选择合适的乳化剂,控制乳化剂的用量和聚合条件等因素对于乳化法的成功至关重要。
二、溶剂法溶剂法是另一种制备有机硅乳液的方法。
溶剂法是将有机硅前驱体溶解在有机溶剂中,并通过添加表面活性剂和搅拌等步骤,使有机硅前驱体在有机溶剂中形成乳状液体。
通过蒸发溶剂或其他方法,使有机溶剂从乳状液体中脱出,最终得到有机硅乳液。
溶剂法的主要优点是对有机硅前驱体的选择范围更广,可以使用一些在水相中难以溶解的有机硅前驱体。
溶剂法可以有效地控制有机硅聚合物的分子量和分子量分布,从而获得具有更多特定性能的有机硅乳液。
总结有机硅乳液的聚合方法主要包括乳化法和溶剂法。
乳化法通过在水相中形成乳状液体来实现有机硅的聚合反应,操作简单,适用范围广。
溶剂法通过在有机溶剂中形成乳状液体来实现有机硅的聚合反应,适用于一些在水相中难以溶解的有机硅前驱体,并可以控制聚合物的特定性能。
有机硅产品基础知识
02 章节 PART 有机硅的应用 Application of silicone
硅油产品的应用
硅油的定义和特性
硅油是一种不同聚合度链状结构的聚有机硅氧烷。 硅油一般是无色(或淡黄色),无味、无毒、不易挥发 的液体。具有卓越的耐热性、电绝缘性、耐候性、疏水 性、生理惰性和较小的表面张力,此外还具有低的粘温 系数、较高的抗压缩性,有的品种还具有耐辐射性能。
硅油乳液按照硅氧烷种类分类
非活性硅氧烷类
如:聚二甲基硅 氧烷等
活性硅氧烷类
如:聚甲基氢硅 氧烷乳液,羟基
硅油等
改性硅氧烷类
如:环氧改性硅 油、羟基改性硅 油、聚醚改性硅 油氨基改性硅油
纺织
造纸 皮革
化妆 品
作为纤维油剂、消泡剂、染色牢度增进剂、织物功能整理及风格改 进剂、熔融放置剂及缝纫平滑剂。
可作为防粘纸的防黏剂、纸张的防水剂等。在皮革中可作为润滑剂、 防水剂、抛光剂等。常用的是二甲基硅油乳液和氨基改性有机硅乳 液。
黏接剂:硅树脂型粘结剂有纯硅树脂和改性硅 树脂两种,主要起补强耐热作用。
塑料:主要用在耐热、绝缘、阻燃、抗电弧等 有机硅塑料、半导体组件外壳封包塑料等。
不粘涂料:表面能低,防污好,低毒或无毒硬 度高,耐磨好,光伏应用于纺织、印染、造纸 塑料加工等领域的辊筒、模具、管道、食品机 械内壁的防黏涂层,保险刀的防锈增滑涂层等。
国内品牌 之江 新安 星火 中原 硅宝 回天 白云 天山
在国内建筑领域,密封胶 是以国内品牌为主, 在工业领域,国内品牌开 始进入基础工业。
03 章节 PART 有机硅下游发展
有机硅下游-建筑密封胶
优 势
对目标 客户群
熟悉
竞争
化学乳化培训课程设计
化学乳化培训课程设计一、课程目标知识目标:1. 让学生理解乳化的基本概念,掌握乳化剂的作用原理;2. 了解乳液类型的分类及其特点;3. 掌握乳液稳定性的影响因素,学会分析实际生活中的乳化现象。
技能目标:1. 培养学生设计简单的乳化实验方案,并能够独立操作完成实验;2. 培养学生运用所学知识解决实际乳化问题的能力;3. 提高学生观察、分析、总结乳液现象的能力。
情感态度价值观目标:1. 培养学生对化学学科的兴趣,激发学习热情;2. 培养学生尊重实验事实,严谨求实的科学态度;3. 增强学生的环保意识,认识到乳化技术在环保方面的应用价值。
本课程针对学生年级特点,结合化学学科性质,注重理论与实践相结合,以培养学生的学习兴趣和实验操作能力为主。
课程目标具体、可衡量,旨在帮助学生掌握乳化相关知识,提高实验操作技能,培养学生独立思考、解决问题的能力,同时引导学生树立正确的价值观。
为实现课程目标,后续教学设计和评估将围绕具体学习成果展开。
二、教学内容本章节教学内容主要包括以下几部分:1. 乳化基本概念:乳化剂、乳化作用、乳液等基本概念的学习。
教材章节:第二章第四节“乳化作用及其应用”2. 乳液类型及特点:学习不同类型的乳液(如O/W型、W/O型等)及其稳定性特点。
教材章节:第二章第五节“乳液的类型和稳定性”3. 乳化剂的作用原理:探讨乳化剂在乳液形成过程中的作用机理。
教材章节:第二章第六节“乳化剂的作用原理”4. 乳液稳定性影响因素:分析影响乳液稳定性的各种因素,如乳化剂浓度、温度等。
教材章节:第二章第七节“影响乳液稳定性的因素”5. 实际生活中的乳化现象:观察和分析日常生活中的乳化现象,如洗涤剂、化妆品等。
教材章节:第二章第八节“乳化技术在生活中的应用”6. 乳化实验设计与操作:设计简单的乳化实验,学习实验操作步骤,并分析实验结果。
教材章节:实验部分“乳化实验”教学内容按照教学大纲安排,循序渐进地组织,确保学生能够系统地学习和掌握乳化相关知识。
有机硅改性丙烯酸乳液及其涂料性能及应用概述
有机硅改性丙烯酸乳液及其涂料性能及应用概述 一、 前言 乳胶涂料因具有轻质、安全、色彩丰富典雅,施工效率高,翻新、维修方便,VOC排放低,符合环保要求等优点,正成为建筑物外部装修的首选材料,近几年得到了迅猛发展。
目前正大量应用于中低层建筑物上的丙烯酸酯类乳胶涂料基本上可满足5年左右的使用要求。
随着建筑物越来越向大型化、高层化发展,其涂装周期一般至少要10年以上,现有的以苯乙烯-丙烯酸酯及纯丙烯酸酯共聚物乳液为基料制备的建筑涂料已难以满足这一要求。
由于Si-O键具有较高的键能,耐紫外光和耐氧化降解性好且硅树脂表面能低,因此用其制得的涂料性能优越,具有高耐候性、耐水性和抗沾污性及对水泥基材等较强的附着力,越来越受到人们的关注。
溶剂型有机硅改性丙烯酸树脂用于建筑物的外装修,尽管取得了比较好的效果,但由于环保问题,其作为建筑涂料大面积使用已受到限制。
因此,开发高性能、低污染的水性丙烯酸有机硅涂料已成为近几年涂料领域人们关注的一个新热点。
通常将有机硅氧烷对乳液聚合物进行改性的方法主要分为物理混合法、化学缩聚法和自由基聚合法等。
物理混合法首先是制备有机硅树脂或有机硅改性聚合物树脂,以水为分散介质,然后添加乳化剂,在高剪切力的作用下进行乳化,制成乳液,然后将其与普通乳液拼混。
这种方法只是物理混合,没有产生化学键合,而且这种聚合物后乳化工艺只有在分子量较小的情况下才可以制备成稳定的乳液,由于分子量小,因此涂膜性能稍差,不能满足建筑外墙涂料的高要求。
化学缩聚法是首先制备含羟基的聚合物乳液,在一定乳化剂和PH值范围内加入有机硅树脂,使乳液的羟基(-OH)和硅羟基(Si-OH)进行反应缩合,把有机硅引入到乳液系统中,由于使用了催化剂等,对乳液稳定性和耐候性带来不利影响。
该方法由于存在有机硅和丙烯酸酯缩合及有机硅之间的缩合两种竞争反应,生成的产品组成不稳定,而且还存在有机硅氧烷的水解、自缩聚等难以控制的技术难点,使得此种方法的应用开发受到局限。
有机硅基础知识
有机硅主要分为硅油、硅橡胶、硅树脂和硅烷偶联剂四大类。
分别介绍如下:一、硅油类产品介绍硅油是一种不同聚合度链状结构的聚有机硅氧烷。
它是由二甲基二氯硅烷加水水解制得初缩聚环体,环体经裂解、精馏制得低环体,然后把环体、封头剂、催化剂放在一起调聚就可得到各种不同聚合度的混合物,经减压蒸馏除去低沸物就可制得硅油。
最常用的硅油,有机基团全部为甲基,称甲基硅油。
有机基团也可以采用其它有机基团代替部分甲基基团,以改进硅油的某种性能和适用各种不同的用途。
常见的其它基团有氢、乙基、苯基、氯苯基、三氟丙基等。
近年来,有机改性硅油得到迅速发展,出现了许多具有特种性能的有机改性硅油。
硅油一般是无色(或淡黄色),无味、无毒、不易挥发的液体。
硅油不溶于水、甲醇、二醇和- 乙氧基乙醇,可与苯、二甲醚、甲基乙基酮、四氯化碳或煤油互溶,稍溶于丙酮、二恶烷、乙醇和了醇。
它具有很小的蒸汽压、较高的闪点和燃点、较低的凝固点。
随着链段数n的不同,分子量增大,粘度也增高,固此硅油可有各种不同的粘度,从0.65厘沲直到上百万厘沲。
如果要制得低粘度的硅油,可用酸性白土作为催化剂,并在180℃温度下进行调聚,或用硫酸作为催化剂,在低温度下进行调聚,生产高粘度硅油或粘稠物可用碱性催化剂。
硅油按化学结构来分有甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油、羟基含氢硅油、含氰硅油等;从用途来分,则有阻尼硅油、扩散泵硅油、液压油、绝缘油、热传递油、刹车油等。
硅油具有卓越的耐热性、电绝缘性、耐候性、疏水性、生理惰性和较小的表面张力,此外还具有低的粘温系数、较高的抗压缩性)有的品种还具有耐辐射的性能。
有机硅乳液有机硅乳液是硅油的一种形式。
下面从硅油织物柔软整理剂和硅油乳液型消泡剂两方面来介绍。
一.硅油织物柔软整理剂有机硅乳液主要是用作硅油织物柔软整理剂。
纳米颗粒协同稳定的硅油乳液制备及其应用性能
第31卷㊀第6期2023年11月现代纺织技术AdvancedTextileTechnologyVol.31ꎬNo.6Nov.2023DOI:10.19398∕j.att.202305026纳米颗粒协同稳定的硅油乳液制备及其应用性能熊春贤ꎬ章云菊ꎬ翁艳芳ꎬ余建华ꎬ刘作平ꎬ张建设(浙江科峰有机硅股份有限公司ꎬ浙江嘉兴㊀314423)㊀㊀摘㊀要:针对氨基硅油乳液存在的乳化剂用量高㊁分散稳定性差等问题ꎬ以丙烯酸异辛酯(EHA)和甲基丙烯酸甲酯(MMA)为主要单体ꎬ采用半连续种子乳液聚合法制备共聚物乳胶颗粒ꎬ并将其作为Pickering纳米颗粒ꎬ协同低剂量乳化剂构建 纳米颗粒∕乳化剂 Pickering乳化体系ꎬ以此提高乳液稳定性和降低乳化剂用量ꎬ并将不同稳定体系的硅油乳液用于织物后整理ꎮ对比了Pickering硅油乳液与乳化剂单独稳定的硅油乳液对整理残液化学需氧量(ChemicaloxygendemandꎬCOD)以及整理织物的性能影响ꎮ结果表明:Pickering乳化体系中(以P(EHA ̄MMA)颗粒为例)ꎬ纳米颗粒吸附在硅油液滴的表面ꎬ形成机械阻隔ꎬ提升了硅油乳液的分散稳定性ꎬ使乳化剂用量降低60%以上ꎻ浸轧整理织物时ꎬ相比乳化剂单独稳定的乳化体系ꎬPickering乳化体系的硅油乳液吸附织物效率更高ꎬ整理后残液COD值降低60%ꎬ整理织物的经纬向纰裂值别降低至5.18㊁5.26mmꎮ关键词:硅油乳液ꎻPickeringꎻCODꎻ稳定性ꎻ协同稳定ꎻ纰裂中图分类号:TS195.2㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄265X(2023)06 ̄0181 ̄07收稿日期:20230526㊀网络出版日期:20230807作者简介:熊春贤(1965 )ꎬ男ꎬ江西临州人ꎬ硕士ꎬ主要从事新型染整工程技术方面的研究ꎮ㊀㊀硅油是一类重要的化学品ꎬ广泛应用于纺织㊁皮革㊁涂料等行业[1]ꎮ在纺织行业中ꎬ硅油主要应用于纺织品的后整理ꎬ赋予织物柔软㊁光滑㊁蓬松等手感ꎮ在印染加工中ꎬ往往需要将硅油制成乳液使用ꎮ以常见的氨基硅油为例ꎬ一方面ꎬ柔软整理给织物带来滑爽㊁柔软的手感ꎬ但也会使织物出现严重的纰裂[2]ꎬ影响织物的使用寿命ꎻ另一方面ꎬ其高相对分子质量及高黏度的特性ꎬ导致乳液的分散稳定性差ꎮ为了避免因乳液破乳导致粘辊及面料出现 硅斑 等现象ꎬ乳液中乳化剂添加量有时甚至高达硅油质量的50%ꎮ高剂量的乳化剂不仅增加乳液生产成本[3]ꎬ而且其在油滴表面形成的厚亲水层ꎬ降低了硅油乳液的吸附效率ꎬ高浓度的助剂残留还会造成残液化学需氧量(ChemicaloxygendemandꎬCOD)增高[4]㊁污水处理负担加重等问题ꎮ因此开发新型高效硅油乳化剂至关重要ꎮ20世纪初ꎬRamsden[5]首次发现并描述了固体颗粒替代乳化剂来稳定乳液ꎬPickering[6]对其进行了系统的研究和改善ꎬ因而将此类乳液命名为 Pickeringemulsion (Pickering乳液)ꎮ在Pickering乳液中ꎬ固体颗粒不可逆地吸附在油水界面ꎬ充当了抑制液滴之间聚集的机械阻隔ꎬ对乳液起到稳定作用[7]ꎮ通过对固体颗粒粒径以及颗粒表面亲疏水性的调控ꎬ固体颗粒可在油水界面形成不可逆吸附ꎬ相较于乳化剂动态吸附稳定的传统乳液ꎬPickering乳液稳定性更强ꎬ不易受外界因素(如体系的pH值㊁温度等)的影响[8]ꎬ因此可以大大降低分散稳定剂的用量[9]ꎮ有研究[10]已证实胶体颗粒能够稳定有机硅乳液ꎮ研究中所用的Pickering颗粒多为二氧化硅(SiO2)㊁二氧化钛(TiO2)等ꎬ所获得的乳液平均粒径多在50μm以上ꎻ用于纺织品后整理时ꎬ大尺寸液滴容易在布面留下肉眼可见的油性 硅斑 ꎮ针对传统硅油乳液存在乳化剂用量高㊁分散稳定性差等问题ꎬ本文采用丙烯酸乙基己酯共聚物(PEHA)㊁甲基丙烯酸甲酯共聚物(PMMA)以及丙烯酸乙基己酯∕甲基丙烯酸甲酯共聚物P(EHA ̄MMA)纳米颗粒协同低剂量乳化剂构建 纳米颗粒∕乳化剂 Pickering乳化体系ꎬ进而将Pickering乳化体系稳定和乳化剂单独稳定的硅油乳液分别用于织物后整理ꎬ对比分析整理液COD的变化和整理织物的手感㊁表面摩擦系数㊁纰裂性能的变化ꎮ1㊀实㊀验1.1㊀实验材料与仪器实验材料:涤纶(经㊁纬纱线密度均为6.3texꎬ经㊁纬密分别为472㊁312根∕(10cm)ꎬ面密度为56g∕m2ꎬ厚度为0.08mm)ꎬ莱美科技股份有限公司ꎻ甲基丙烯酸甲酯(MMA)㊁丙烯酸 ̄2 ̄乙基己酯(2 ̄EHA)ꎬ卫星化学股份有限公司ꎻ十六烷基三甲基溴化铵(CTAB)㊁烷基糖苷(APG)和2ꎬ2ᶄ ̄偶氮双(2 ̄甲基丙基脒)二盐酸盐(AIBA)ꎬ山东豪耀新材料有限公司ꎻ氨基硅油KF ̄5102(动力黏度18000mPa sꎬ25ħꎬ有效含量98%)ꎬ浙江科峰有机硅有限公司ꎻ异构十三醇聚氧乙烯醚(TO ̄5)ꎬ广州市宝盛化工有限公司ꎻ二甲基丙烯酸乙二醇酯(EGDMA)㊁冰醋酸(HAc)ꎬ上海麦克林生化科技有限公司ꎻ去离子水ꎬ实验室自制ꎮ仪器:RW ̄20数显电动搅拌机(德国IKA集团)ꎻNano ̄ZS90粒度分析仪(英国马尔文仪器有限公司)ꎻLD25.504万能试验机(力试(上海)科学仪器有限公司)ꎻJUKIDDL缝纫机(上海重机缝纫机有限公司)ꎻCX40M正置金相显微镜(宁波舜宇仪器有限公司)ꎻP ̄BO卧式气动小轧车(宁波纺织仪器厂)ꎻR ̄3定型烘干机(宁波纺织仪器厂)ꎻDRB200消解仪㊁DR6000紫外 ̄可见光分光光度计(美国哈希水质分析仪器有限公司)ꎮ1.2㊀实验方法1.2.1㊀Pickering纳米颗粒的制备实验所需3种纳米颗粒制备方法相同ꎬ以制备PEHA胶乳颗粒为例ꎬ合成方法如下:a)采用半连续种子乳液聚合工艺ꎬ设计胶乳的固含量为32%ꎻ将0.06gAPG㊁0.09gCTAB溶于108gH2O中ꎬ搅拌均匀后得到打底液ꎻ将0.45gAPG和1.30gCTAB溶于236gH2O中ꎬ之后再加入160g2 ̄EHA与5gEGDMA混合形成的油相ꎬ搅拌均匀后得到单体乳液ꎮb)将打底液和9.5g的单体乳液ꎬ移入装有冷凝管㊁温度计㊁搅拌桨以及氮气进出口的四口烧瓶ꎬ并将烧瓶浸于水浴中ꎻ向四口烧瓶通氮气30minꎬ待瓶内打底液升温至90ħ时ꎬ将0.04gAIBA溶解于少量去离子水中ꎬ快速注入烧瓶ꎬ引发聚合ꎻ反应30min后ꎬ开始滴加剩余的单体乳液ꎬ滴加时长为3hꎬ并在滴加结束后继续反应30minꎮ反应完毕后降至室温ꎬ以150目细纱布过滤出料ꎬ得到用于稳定硅油乳液的PEHA颗粒ꎮ合成P(EHA ̄MMA)时ꎬ将160g2 ̄EHA单体换成80g2 ̄EHA和80gMMAꎬ以上述同样的操作进行制备ꎮ1.2.2㊀硅油乳液的制备本文 纳米颗粒∕乳化剂 Pickering乳化体系的硅油乳液制备方案见表1ꎬ分别以PEHA㊁P(EHA ̄MMA)和PMMA为Pickering纳米颗粒乳液制备Pickering硅油乳液ꎬ其中:纳米颗粒的干质量为硅油质量的6%ꎬ乳化剂占硅油质量的8%ꎮ硅油乳液制备方法如下:设计硅油乳液的固含量为30%ꎻ将28.57g硅油㊁2.29g乳化剂及0.50gHAc加入烧杯中ꎬ在机械搅拌下搅拌均匀后ꎬ采用蠕动泵向烧杯中缓慢滴加盛有5.36g纳米颗粒乳液与58.53gH2O混合形成的水相ꎻ搅拌机转速为1200r∕minꎬ滴加时间控制在1h左右ꎻ滴加结束后以150目细纱布过滤后出料ꎬ得到Pickering硅油乳液(水包油)ꎮ表1㊀硅油乳液的制备方案Tab.1㊀Emulsificationschemeofsiliconeoilemulsion颗粒种类颗粒用量∕g水∕g乳化剂(TO ̄5)∕g硅油∕gHAc∕gPEHA5.3658.532.2928.570.50PMMA5.3658.532.2928.570.50P(EHA ̄MMA)5.3658.532.2928.570.501.2.3㊀织物的整理工艺以水将硅油乳液稀释至10g∕Lꎬ搅拌均匀后待用ꎻ采用一浸一轧工艺整理面料(轧余率约为70%)ꎬ并在190ħ下焙烘90sꎬ得到整理的涤纶织物ꎮ1.3㊀测试方法COD值测试:参照HJ828 2017«水质化学需氧量的测定重铬酸盐法»进行ꎮ将整理前后工作液稀释200倍ꎬ取2mL加入到COD试剂管中ꎬ放于DRB200消解仪中进行消解ꎬ消解条件:150ħꎬ2hꎬ消解完成后ꎬ自然冷却至室温ꎬ放入DR6000紫外 ̄可见光分光光度计样品池中进行测试ꎬ读取COD数值(mg∕L)ꎬ读3次取平均值ꎮ贮存稳定性测试:将样品放置室温下ꎬ固定间隔天数ꎬ用光学显微镜观察硅油乳液的微观形貌ꎬ拍照ꎬ然后通过Nano ̄measure软件统计其粒径ꎮ281 现代纺织技术第31卷粒径和Zeta电位测试:将乳胶颗粒用去离子水稀释1000倍ꎬ然后用采用Nano ̄ZS90粒度分析仪在25ħ下测量其粒径和Zeta电位ꎮ接触角测试:将10μLPickering颗粒乳液滴在预先固定于匀胶机旋转台的载波片表面ꎬ开启匀胶机并将转速设定为3000r∕minꎬ旋涂时间30sꎻ将旋涂完毕的载波片置于烘箱中ꎬ于60ħ下烘干ꎻ以DSA20型视频接触角张力仪测试涂膜的静态水接触角ꎮ将体积为2μL的去离子水滴在试样表面ꎬ静置30sꎬ采用五点拟合法计算接触角ꎮ每个试样测试5个不同位点ꎬ取平均值ꎮ整理织物纱线滑移(纰裂性能)测试:参照GB∕T13772.2 2018«纺织品机织物接缝处纱线抗滑移的测定第2部分:定负荷法»进行测定ꎮ剪取试样尺寸为20cmˑ10cmꎬ沿着长度方向ꎬ将试样的正面朝内进行对折ꎬ试样在距折痕15mm处缝制一条直形缝迹ꎬ且缝迹线与折痕线平行ꎬ在距缝迹线9mm处剪开试样ꎬ剪切线与折痕线应保持平行ꎮ试样缝纫条件:缝线9.8tex涤纶包芯纱ꎻ机针11号ꎻ缝迹密度5针∕cmꎻ针迹为平缝(301)ꎮ该实验在标准大气压下进行ꎬ夹持试样的尺寸为25mmˑ25mmꎬ设定拉伸速度为50mm∕minꎬ夹持距离为10cmꎬ定负荷为60Nꎮ整理织物综合手感测试:具体由10位专业人士分组手感触摸评级ꎬ评级分1~5级ꎬ1级表示手感最差ꎬ5级表示手感优良ꎮ整理织物平滑性(表面摩擦系数)测试:参照GB∕T10006 2021«塑料薄膜和薄片摩擦系数的测定»进行ꎮ将待测样剪成长条状(15cmˑ10cm)与方块状(7cmˑ7cm)ꎻ将长条状试样测试面朝上ꎬ固定于仪器实验台上ꎻ将方块状试样测试面向下ꎬ包住滑块ꎻ将包裹试样的滑块缓慢放至在长条试样中央ꎬ启动设备ꎬ使两试样相对移动ꎬ记录实验数据ꎬ并保留两位有效数字ꎮ2㊀结果与讨论2.1㊀Pickering颗粒的粒径及Zeta电位图1示出了PEHA㊁P(EHA ̄MMA)和PMMA3种纳米颗粒的粒径及Zeta电位ꎮ由图1可知ꎬ3种纳米颗粒的平均粒径分别为178.8㊁167.8㊁151 9nmꎬPDI在0.077左右ꎬ粒径分布较窄ꎮZeta电位测试表明:3种纳米颗粒均带正电ꎬ且Zeta电位的绝对值均大于60mVꎬ远高于粒子稳定分散的临界值30mVꎬ即颗粒之间可通过静电斥力ꎬ从而使得纳米颗粒保持稳定分散[11]ꎮ㊀㊀㊀㊀图1㊀颗粒的粒径及Zeta电位Fig.1㊀ParticlesizeandZetapotential2.2㊀Pickering颗粒表面亲水性颗粒表面的亲∕疏水性对乳液的分散稳定性有很大影响ꎮ为此ꎬ将3种乳胶烘干成膜ꎬ通过测试胶乳膜的水接触角评价颗粒表面的亲疏水性ꎮ接触角测试结果如图2所示ꎬ从图2中可以看出:PEHA㊁P(EHA ̄MMA)和PMMA3种胶乳膜的水接触角分别为88.1ʎ㊁88.5ʎ㊁89.6ʎꎬ均接近90ʎꎮ由油∕水 界面上球形颗粒的吸附能[12]可知ꎬ3种颗粒均能够吸附在油水界面ꎬ形成了稳定的吸附层ꎬ使得Pickering硅油乳液分散稳定性提升ꎮ381第6期熊春贤等:纳米颗粒协同稳定的硅油乳液制备及其应用性能图2㊀乳胶膜的水接触角图Fig.2㊀Watercontactangleofthreelatexfilms2.3㊀Pickering乳化体系稳定的Pickering硅油乳液㊀㊀在室温条件下ꎬ通过改变乳化剂用量ꎬ并与PEHA㊁PMMA和P(EHA ̄MMA)构建Pickering乳化体系ꎬ制备了6种硅油乳液ꎬ其稳定性情况见表2ꎮ由表2可知:仅以乳化剂稳定时ꎬ硅油乳液的稳定性较差ꎬ乳化剂质量分数为8%和16%的乳液静置分别在14㊁33d发生失稳ꎬ仅当乳化剂质量分数高达24%时ꎬ才得到了稳定的乳液ꎮ与之相比ꎬ构建Pickering乳化体系时ꎬ乳化剂用量为硅油质量的8%ꎬ颗粒为硅油质量6%时ꎬ3种乳液(编号4㊁5和6)均可实现90d室温静置稳定ꎬ此时Pickering颗粒与乳化剂的质量和也仅为硅油的14%ꎬ远低于乳化剂单独稳定时的24%ꎬ乳化剂质量分数降低了66 66%ꎬ表明Pickering乳化体系具有更高的稳定效率ꎮ进一步对比还发现ꎬ与乳化剂单独稳定的体系相比ꎬPickering乳化体系的硅油乳液具有更高的正电性ꎬ其原因可能是ꎬPickering乳化体系中ꎬ吸附在油滴表面的颗粒带有正电性ꎬ提高了乳化硅油液滴的Zeta电位ꎮ测试了表2中3 6号乳化硅油静置90d内的粒径变化ꎬ结果如图3所示ꎮ由图3可知:随着贮存时间的延长ꎬ乳化剂单独稳定的硅油乳液平均粒径明显增长ꎬ贮存90d后的平均粒径增幅为2.21μmꎮ表2㊀纳米颗粒对硅油乳液静置稳定性的影响Tab.2㊀Effectofnano ̄particlesonthestoragestabilityofsiliconeoilemulsion编号颗粒质量分数∕%颗粒类型TO ̄5质量分数∕%静置稳定性Zeta电位∕mV18失稳+20.12216失稳+25.31324均一ꎬ稳定+30.2146PEHA8均一ꎬ稳定+53.1556P(EHA ̄MMA)8均一ꎬ稳定+55.6466PMMA8均一ꎬ稳定+57.35㊀㊀改以 纳米颗粒∕乳化剂 Pickering乳化体系后ꎬ虽然乳液Zeta电位均在+50mV以上ꎬ但乳液在静置期间ꎬ平均粒径也有增大的趋势ꎬ并在50d后趋于稳定ꎬ最终乳液粒径增大值分别为1.32μm(PEHA)㊁1.26μm(P(EHA ̄MMA))和1.08μm(PMMA)ꎬ略小于单一乳化剂稳定的体系ꎮ在高Zeta电位情况下ꎬ乳液粒径依然变化的原因可能是由于Pickering乳液的液滴粒径分布很宽ꎬZeta电位为所有颗粒的平均电位ꎬ但对应尺寸较小的油滴而言ꎬ其表面积小ꎬ因此所吸附的Pickering颗粒数目有限ꎬ对硅油液滴的Zeta电位提升有限ꎬ因此这些小油滴的Zeta电位可能并不高ꎬ因此在贮存过程中易发生聚集ꎬ导致复合稳定硅油乳液平均粒径增大ꎮ图3㊀稳定体系对硅油乳液室温贮存稳定性的影响Fig.3㊀Effectofthestabilizationsystemonthestoragestabilityofsiliconeoilemulsionatroomtemperature481 现代纺织技术第31卷2.4㊀硅油乳液的应用性能2.4.1㊀整理残液的COD值将硅油乳液配成织物整理液ꎬ对比了乳化剂单独稳定体系和 纳米颗粒∕乳化剂 Pickering乳化体系对整理残液COD的影响ꎬ结果如图4所示ꎮ其中编号1 6对应表2中的硅油乳液ꎬ工作液浓度均为10g∕Lꎮ由于硅油乳液均为新鲜配置ꎬ因此在应用中乳液尚未发生明显失稳ꎮ图4㊀稳定体系对整理前后工作液中COD的影响Fig.4㊀InfluenceofthestabilizationsystemonCODinworkingfluidbeforeandafterfinishing工作液整理前后COD数值如图4所示ꎬ相同硅油用量下ꎬ整理前工作液的COD值相近ꎬ约8.5ˑ104mg∕Lꎬ受稳定体系的影响很小ꎬ表明COD主要源于乳液中的硅油ꎮ然而ꎬ浸轧整理后ꎬ残余工作液的COD值受乳化体系的影响很大ꎮ从图4可以看出ꎬ采用乳化剂单独稳定的硅油乳液ꎬ残液的COD值随乳化剂用量的增高急剧增大ꎬ当乳化剂质量分数为24%时ꎬ残液COD高达57000mg∕Lꎬ相比整理前的工作液ꎬCOD值仅降低30%ꎬ残液COD是乳化剂质量分数8%时的1.8倍ꎮ高剂量的乳化剂降低了硅油对面料的吸附效率ꎬ导致大量硅油滞留在残液中ꎬ将浪费助剂并加重污水处理的负担ꎮ与之相比ꎬ改用Pickering乳化体系稳定后ꎬ稳定乳液所需的乳化剂用量明显降低ꎬ整理残液的COD值也降至较低水平ꎻ相较于整理前ꎬCOD降幅达60%ꎬPickering乳化体系样品是乳化剂质量分数24%样品降幅的2倍ꎬ表明Pickering乳化体系的硅油乳液吸附织物的效率更高ꎮ不仅如此ꎬ残液COD数值甚至略低于采用等量乳化剂的对比样品ꎬ其原因可能是:阳离子的纳米颗粒吸附在乳液液滴表面ꎬ增强了液滴的正电性(表2)ꎬ促进了液滴对带负电涤纶织物的吸附ꎮ2.4.2㊀稳定体系对整理织物性能影响将硅油乳液配成织物整理液ꎬ并用于织物后整理ꎬ考察了乳化稳定体系对整理织物表面摩擦系数㊁手感以及纰裂性能的影响ꎬ其结果见表3ꎮ由表3可知:原织物的表面静㊁动摩擦系数分别为0.73和0.70ꎬ手感评级为1级ꎮ经6种硅油整理后ꎬ整理织物的静㊁动摩擦系数均明显降低ꎬ手感评级均高于原织物ꎮ表3㊀稳定体系对整理织物手感及纰裂性能的影响Tab.3㊀Influenceofthestabilizationsystemonthehand ̄feelingandyarndispersistsoffinishedfabrics编号静摩擦系数动摩擦系数手感评级经向∕纬向纰裂值∕mm00.730.7014.53∕4.7510.530.5055.45∕5.5620.570.563~45.14∕5.2930.600.612~34.76∕4.9240.520.4955.26∕5.3850.540.524~55.18∕5.2660.580.573~45.17∕5.24㊀㊀注:编号0为原布ꎬ编号1 6为表1中1 6号硅油乳液整理后的织物ꎮ当采用乳化剂单独稳定的硅油乳液时ꎬ随着硅油中乳化剂用量的增高ꎬ织物的静㊁动摩擦系数均逐渐增大ꎮ如表3所示ꎬ动㊁静摩擦系数分别由乳化剂质量分数为8%时的0.53和0.50ꎬ升至24%乳化剂质量分数时的0.60和0.61ꎮ结合图4中COD数据可知:其原因在于高浓度的乳化剂抑制了硅油对织物的吸附ꎬ随着乳化剂用量的增加ꎬ整理织物的经向∕纬向纰裂值由 5 45∕5.54 mm逐渐增至 5 14∕5.29 mmꎬ最终达到 4.76∕4.92 mmꎮ这与整理织物表面摩擦系数增大的趋势相符(表3)ꎬ即增大的摩擦系数抑制了纱线间的滑移ꎬ抑制了整理织物的纰裂ꎮ换以Pickering乳化体系稳定的硅油乳液后ꎬ残液COD的测试数据表明ꎬ硅油吸附织物的效率较24%乳化剂质量分数(编号3)的效率有所提升ꎬ因此整理织物的静㊁动摩擦系数均低于3号布样ꎮ尽管4㊁5和6号布样整理时ꎬCOD测试表明硅油的吸附效率相同ꎬ但3块布样的动㊁静摩擦系数却不相581 第6期熊春贤等:纳米颗粒协同稳定的硅油乳液制备及其应用性能同ꎮ其中最软的PEHA为Pickering颗粒时(编号4)ꎬ摩擦系数最小ꎬ抗纰裂性能最差ꎻ硬度最大的PMMA为Pickering颗粒时(编号6)ꎬ摩擦系数最大ꎬ抗纰裂性能最优ꎮ这表明颗粒吸附在织物表面ꎬ可以抑制纱线的受力滑移ꎬ且随着颗粒硬度的增大ꎬ抑制滑移的能力也随之提升ꎮ将1号与5号对比后发现:样品5不仅摩擦系数低于1号ꎬ而且抗纰裂性能也较优ꎮ因此ꎬ采用Pickering乳化体系时ꎬ选用P(EHA ̄MMA)纳米颗粒ꎬ可有效的平衡织物平滑性与织物易纰裂的矛盾ꎮ对比表3中经纬向纰裂值还发现ꎬ纬向的纰裂值总是略高于径向ꎮ这是由于当织物经向紧度较大时ꎬ单位尺寸的纬线由于受到较大的经线阻力变得相对难以滑移[13]ꎮ反之ꎬ当织物纬向紧度较大时ꎬ经线就不易滑移ꎮ通常情况下ꎬ织物的经向紧度大于纬向紧度ꎬ即织物单位尺寸上经纱受到的阻力小于纬纱受到的阻力ꎬ因此纰裂现象多沿纬向发生ꎮ3㊀结㊀论针对硅油乳液乳化剂用量大和分散稳定性差的问题ꎬ本文研究制备了一种纳米颗粒协同乳化剂稳定的Pickering硅油乳液ꎬ并研究了Pickering硅油乳液作为平滑整理剂的应用性能ꎬ得到结论如下:a)采用半连续种子乳液聚合技术ꎬ可以得到用于稳定硅油乳液的Pickering颗粒ꎬ且颗粒涂膜与水的接触角接近90ʎꎬ表明制备的纳米颗粒适合用于制备 O∕W 的Pickering硅油乳液ꎬ且在油水界面上的解析能较高ꎮb)构建 纳米颗粒∕乳化剂 Pickering乳化体系能够大幅提升硅油乳液的分散稳定性ꎬ乳化剂质量分数由24%降低至8%ꎬ降低66.66%ꎬ将其用于织物整理时ꎬ与乳化剂单独稳定的体系相比ꎬPickering乳化体系稳定(以P(MMA ̄EHA)颗粒为例)的硅油乳液吸附织物的效率更高ꎬ乳液稳定时ꎬ整理残液中COD值由57000mg∕L(表面活性剂质量分数24%)降低至30870mg∕Lꎬ整理后的织物具有更低的表面摩擦系数(静㊁动摩擦系数分别为0.54㊁0.52)和更好的手感(4~5级)ꎬ并在兼顾手感的同时也提升了其耐纰裂性能ꎬ经纬向纰裂值分别为5.18㊁5.26mmꎮ参考文献:[1]曹政ꎬ王小花ꎬ蔡继权ꎬ等.新型表面活性剂在氨基硅油乳化中的应用[J].杭州化工ꎬ2015ꎬ45(2):33 ̄36.CAOZhengꎬWANGXiaohuaꎬCAIJiquanꎬetal.Applicationofnovelsurfactantsinemulsificationofaminosiliconeoil[J].HangzhouChemicalIndustryꎬ2015ꎬ45(2):33 ̄36.[2]罗胜利ꎬ张宇群ꎬ袁彬兰ꎬ等.柔软整理对织物纰裂性能的影响研究[J].质量技术监督研究ꎬ2015(6):2 ̄5.LUOShengliꎬZHANGYuqunꎬYUANBinlanꎬetal.Effectsofsoftfinishonthestitchslippingperformanceoffabric[J].QualityandTechnicalSupervisionResearchꎬ2015(6):2 ̄5.[3]王欣欣ꎬ吴霞ꎬ李德富ꎬ等.明胶纳米颗粒稳定的Pickering乳液的制备及表征[J].食品与发酵工业ꎬ2023ꎬ49(1):124 ̄131.WANGXinxinꎬWUXiaꎬLIDefuꎬetal.PreparationandcharacterizationofPickeringemulsionstabilizedbygelatinnanoparticles[J].FoodandFermentationIndustriesꎬ2023ꎬ49(1):124 ̄131.[4]余华东.氨基硅油微乳废水电化学预处理技术研究[D].杭州:浙江大学ꎬ2012:1 ̄2.YUHuadong.StudyonAminosiliconeMicroemulsionsWastewaterPretreatmentbyElectrochemicalTechnology[D].Hangzhou:ZhejiangUniversityꎬ2012:1 ̄2. [5]RAMSDENW.Separationofsolidsinthesurface ̄layersofsolutionsand'suspensions'(observationsonsurface ̄membranesꎬbubblesꎬemulsionsꎬandmechanicalcoagulation):Preliminaryaccount[J].ProceedingsoftheRoyalSocietyofLondonꎬ1904ꎬ72(4):156 ̄164.[6]PICKERINGSU.CXCVI. Emulsions[J].JournaloftheChemicalSocietyꎬ1907ꎬ91:2001 ̄2021. [7]陶钰恬ꎬ王晓波ꎬ王子旭ꎬ等.Pickering乳液的应用进展[J].广东化工ꎬ2020ꎬ47(12):83 ̄84.TAOYutianꎬWANGXiaoboꎬWANGZixuꎬetal.TheprogressofapplicationofPickeringemulsion[J].GuangdongChemicalIndustryꎬ2020ꎬ47(12):83 ̄84. [8]SUNZꎬYANXꎬXIAOYꎬetal.Pickeringemulsionsstabilizedbycolloidalsurfactants:Roleofsolidparticles[J].Particuologyꎬ2022ꎬ64:153 ̄163.[9]杨传玺ꎬ王小宁ꎬ杨诚.Pickering乳液稳定性研究进展[J].科技导报ꎬ2018ꎬ36(5):70 ̄76.YANGChuanxiꎬWANGXiaoningꎬYANGCheng.ResearchprogressonthestabilityofPickeringemulsion[J].Science&TechnologyReviewꎬ2018ꎬ36(5):70 ̄76.[10]KAWAGUCHIM.Siliconeoilemulsionsstabilizedbypolymersandsolidparticles[J].AdvancesinColloidandInterfaceScienceꎬ2016ꎬ233:186 ̄199.[11]袁婷婷ꎬ沈玲ꎬ王汉峰ꎬ等.可聚合乳化剂DNS ̄86对丙烯酸酯乳液稳定性的影响[J].粘接ꎬ2010ꎬ31(9):63 ̄66.681 现代纺织技术第31卷YUANTingtingꎬSHENLingꎬWANGHanfengꎬetal.InfluenceofpolymerizbleemulsifierDNS ̄86onwater ̄basedacrylicemulsionstability[J].Adhesionꎬ2010ꎬ31(9):63 ̄66.[12]BINKSBPꎬLUMSDONSO.Influenceofparticlewettabilityonthetypeandstabilityofsurfactant ̄freeemulsions[J].Langmuirꎬ2000ꎬ16(23):8622 ̄8631.[13]乔敏.涤纶长丝织物纰裂性能研究[D].上海:东华大学ꎬ2012:14 ̄15.QIAOMin.ResearchonSlippagePropertyofPolyesterFilamentFabrics[D].Shanghai:DonghuaUniversityꎬ2012:14 ̄15.PreparationandapplicationpropertiesofsiliconoilemulsionstabilizedwithnanoparticlesXIONGChunxianꎬZHANGYunjuꎬWENGYanfangꎬYUJianhuaꎬLIUZuopingꎬZHANGJianshe(ZhejiangKefengSiliconeCo.ꎬLtd.ꎬJiaxing314423ꎬChina)Abstract:Siliconeoiliswidelyusedintextile leather paintandotherindustries.Inthetextileindustry siliconeoilismainlyusedinthefinishingoftextiles givingfabricssoft smooth fluffyandotherfeel.Inprintinganddyeingprocessing itisoftennecessarytousesiliconeoilintheformofemulsion.Withthecommonaminosiliconeoilasanexample ontheonehand softfinishingwillnotonlybringsmoothandsoftfeeltothefabric butalsomakethefabricsufferseriousslipping affectingtheservicelifeofthefabric ontheotherhand duetoitshighrelativemolecularweightandhighviscositycharacteristics thedispersionstabilityoftheemulsionispoor.Inthispaper thecopolymeremulsionparticlesofisooctylacrylate EHA andmethylmethacrylate MMA werepreparedbysemi ̄continuousseedemulsionpolymerizationandusedasPickeringparticles.Pickeringsiliconeoilemulsionstabilizedwithnanoparticlesandemulsifierwaspreparedtoimprovethestabilityoftheemulsionandreducetheamountofemulsifier.Theresultingemulsionwasusedinfabricfinishing.TheeffectsofPickeringsiliconeoilemulsionandemulsifierstabilizedsiliconeoilemulsiononthechemicaloxygendemand COD andtheproperties feel stitch etc. offinishedfabricswereinvestigated.Firstly thehydrophilicityofPickeringgranulelatexwasevaluatedbytestingthewatercontactangleofthefilm.Theresultsareshowninthebarchart.ThecontactangletestshowsthatthewatercontactanglesofPEHAP EHA ̄MMA andPMMAare88.1ʎ 88.5ʎand89.6ʎ respectively whichareallcloseto90ʎ.Accordingtothefreeenergyformulaofallthreekindsofsphericalparticlesonthe"oil∕water"interface theycanbeadsorbedonthe"siliconeoil∕water"interfacetoformastableadsorptionlayer whichgivesPickeringsiliconeoilemulsionhighdispersionstability.Inordertoobtainastableemulsion whentheemulsifierisstabilizedalone theamountofemulsifierisashighas24%ofthemassofsiliconeoil Tab.2 .ItcanbeseenfromTab.2thatthesiliconeoilemulsioncanbestabilizedwhenonly8%emulsifierand6%nanoparticlesareusedinthecooperativestabilizationsystem indicatingthatthePickeringemulsionsystemhashighstabilizationefficiency.TheemulsificationsystemalsohassignificantinfluenceontheCODvalueoftheworkingliquidbeforeandafterfinishingandthefeelandstitchpropertyofthefinishedfabric.Whenemulsifierisusedalonetostabilizetheemulsion theCODvalueinthefinishedresidueincreasessharplywiththeincreaseoftheemulsifierdosage.Studieshaveshownthatthemethodofincreasingtheamountofemulsifiertoimprovethedispersionstabilityoftheemulsionwillleadtoalargeamountofsiliconeoilremainingintheresidualliquid whichwillnotonlycausethewasteofadditivesandtheburdenofsewagetreatment butalsoleadtothedeteriorationofthefeelofthefinishedfabric Tab.3 .ByreplacingtheemulsifierstabilizationsystemwiththePickeringemulsionsystem thesurfacefrictioncoefficientofthefabricislower thefeelratingis4 ̄5 andtheCODvalueinthefinishedresidueislower.P EHA ̄MMA nanoparticlesnotonlyguaranteethefeelofthefinishedfabric butalsoensurethegoodskidresistanceofthefabric.Keywords:siliconeoilemulsion Pickering COD stability synergisticstability slippage781 第6期熊春贤等:纳米颗粒协同稳定的硅油乳液制备及其应用性能。
水性有机硅高弹涂层胶FS-855K的合成及应用
化一遍,然后降温至 5~10 ℃,静置反应 48 h,然后经
由 10% 的碳酸钠水溶液调节 pH 为 7~8,得到水性有
机硅基础乳液;用增稠剂将基础乳液增稠至黏度为
3 500~4 000 mPa·s(25 ℃);得到水性有机硅高弹涂
层胶 FS-855K 产品。
and catalytic components are added to obtain a water-based organic silicon high elastic coating adhesive for fabrics. The ef⁃
fects of emulsifier dosage, coupling agent dosage, crosslinking and catalytic system on the elasticity, wrinkle resistance, and
摸比较手感,织物弹性由高到低分为 5 级,5 级最好。
公司),GZX-9076MBE 型电热鼓风干燥箱(上海博迅
痕回复性的测定 回复角法》进行测试。
PLU 型 S 超高纳米匀质机(上海励途超高压设备有限
实业有限公司),Y571S 型摩擦色牢度仪(南通宏大实
验仪器有限公司),NDJ-79 型黏度仪(余姚市银环流
第 46 卷 第 4 期
2024 年 4 月
Vol. 46 No. 4
Apr. 2024
染 整 技 术
Textile Dyeing and Finishing Journal
生产技术
水性有机硅高弹涂层胶 FS-855K 的合成及应用
鞠
镭
(辽宁恒星精细化工股份有限公司,辽宁丹东
有机硅讲座PPT学习教案
44% 24% 9% 10% 13%
第20页/共86页
第二部分 聚硅氧烷的裂解反应
2、质子酸引起的裂解
质子酸包括硫酸、硝酸、磺酸、氢卤酸、高氯酸等,它们可以使Si-O-Si键裂 解。
Si O Si
+ H2SO4
Si OSO3H + HO Si
随硫酸浓度的降低,其催化裂解活性大幅度降低。线型聚硅氧烷 (如硅橡胶)可被HCl裂解成低聚物。有机酸裂解硅氧烷要比无机酸困难 得多。如D4与草酸作用,只有在250℃时才裂解。
Si O Si + AlCl3
SiCl + Cl2AlO Si
Si O Si + RSiCl3
SiCl + Cl2RSi O Si
Si O Si
+ D4 SiCl4
+ FeCl3 Me2SiCl2
Me3SiCl + Cl
Me2SiCl2
+ D4 MeSiCl3
Me
Me
Si O Si Cl
Me
Me
Me Me
讲授内容第一部分二甲基二氯硅烷的水解一二甲基二氯硅烷的水解二氯硅烷水解反应机理及动力学第二部分聚硅氧烷的裂解反应一硅氧烷裂解反应类型二聚硅氧烷裂解反应机理与动力学三水解物油裂解制备环硅氧烷第三部分硅氢加成反应一硅氢加成反应及反应机理二硅氢加成反应实例三硅氢加成反应在硅橡胶硫化及硅树脂固化中的应用第四部分有机硅缩合反应一有机硅缩合反应类型二有机硅缩合反应在硅橡胶硫化及硅树脂固化中的应用第五部分有机硅化学的最新进展以及未来发展的方向第一部分二甲基二氯硅烷的水解氯硅烷是有机硅化学的最基本原料和最重要的2O
Cl(Me2SiO)2SiMe2Cl
a3
有机硅乳液制备过程
切作 用 下会 持 续 转 变成 水 包 油 的
乳液 。
相 关 专 利 对 照
本 发 明是关 于有 机硅 水 乳 液
在 这连 续 反 应过 程 中 ,混 合
器进 口的压 力 与 最后 构 成 乳 液 的 粒 径 有关 联 。制 得所 需 乳 液 的粒
种 混 合 材料 的有 机 硅水 乳 液 的 制 备 方 法 , 些材 料包 括 :I至少 一 这 () 种 聚 硅 氧烷 ,至 少 一 种能 与 聚 硅
氧 烷 进 行 反 应 扩 链 的 有 机 硅 材
有 机 硅 水乳 液 可 由乳 液 聚合 或者将 有 机 硅 聚合 物 与 表 面 活性 剂 、水在 机 械作 用 下 进 行 乳化 制 得 。由于有 机 硅有 高度 的疏 水性 , 单 靠机 械 作 用很 难 得 到 稳定 的乳
液 ,通 常情 况下 需 要 将 有机 硅 与
大 ,预 示难 以实 现转 化 形 成水 包 油 型乳 液 。供 料 线 的压 力 需要 持
续 监 测 ,如 果 观察 或 记 录 到压 力
料 , 以及 扩 链 用 的金 属 催 化 剂 ,
(I I)至 少一 种 表 面 活性 剂 和(I) I I 水 。E — 一 1 1 2描述 了一 种 制 P A 9 52
烷 胶 持 续 乳 化 的 方 法 。 J — 一 2 4 9描 述 了一 种 有 机 聚 P A 1—4
以内 , 以得 到 所需 的乳液 粒径 。我
性基 团。要 得 到 具 有期 望粒 径 的 乳 液 ,可 通过 监 控 高剪切 混 合 器 供料 线进 口的压 力得 以 实现 。
们相 信 混合 器 中 的最初 形 成 的不
有机硅改性丙烯酸酯系乳液的制备及性能
有机硅改性丙烯酸酯系乳液的制备及性能徐锦锦;邹栋;朱晓丽;孔祥正【摘要】通过半连续预乳化法,用八甲基环四硅氧烷(D4)和γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH570)对苯丙聚合物乳液进行改性.探讨D4开环聚合催化剂十二烷基苯磺酸(DBSA)的加入方式和引发剂、KH570、D4及丙烯酸羟乙酯(HEA)的用量对乳液性能的影响.当催化剂DBSA全部加入到底料中时,有利于稳定乳液的制备.确定了制备稳定的有机硅改性丙烯酸酯乳液的最佳组分,对乳胶膜的力学性能和耐水性进行了表征.【期刊名称】《济南大学学报(自然科学版)》【年(卷),期】2014(028)003【总页数】4页(P161-164)【关键词】预乳液;八甲基环四硅氧烷;有机硅改性;苯丙乳液【作者】徐锦锦;邹栋;朱晓丽;孔祥正【作者单位】济南大学化学化工学院,山东济南250022;上海保立佳化工有限公司,上海201405;济南大学化学化工学院,山东济南250022;济南大学化学化工学院,山东济南250022【正文语种】中文【中图分类】TQ638聚丙烯酸酯乳液具有良好的成膜性、黏结性及高强度等特点,但也有耐水性差及低温变脆、高温变黏失强等不足[1],这不可避免地限制了其更广泛的应用。
聚有机硅氧烷具有优异的耐高低温性能和突出的耐水性[2]。
有机硅改性丙烯酸酯聚合物的研究已引起人们的广泛关注,乳液聚合法是合成有机硅丙烯酸酯复合材料的重要手段之一[3]。
目前有机硅改性丙烯酸酯乳液的聚合方法主要有两种:一是用带烯键的硅氧烷进行改性[4-5];二是单独使用环体硅氧烷或者将其与含烯键硅氧烷同时使用制备改性丙烯酸酯乳液[6-10]。
在丙烯酸酯乳液中引入有机硅可以增强胶膜的耐水性[11-14]。
当用乙烯基硅氧烷和环体硅氧烷(D4)共同改性丙烯酸酯乳液时,常将催化剂十二烷基苯磺酸(DBSA)与乙烯基硅氧烷和D4混合预乳化[15-16],通过半连续法进行乳液聚合[17]。
DBSA 的存在使预乳液显酸性,可能会使部分硅氧烷在预乳液中即发生水解及缩合[18]。
有机硅基础知识培训
➢ 比重 Specific Gravity
• 比重也称相对密度,固体和液体的比重是该物质(完全密实状态)的密度与在标准大气压下 3.98℃时纯H2O下的密度(999.972 kg/m3)的比值。
• 比重是无量纲量,即比重是无单位的值,一般情形下随温度、压力而变。
• 硅胶的密度一般比水大,主要取决于硅胶的填料。
• 它们的测量原理完全相同,所不同的是测量针的尺寸不同。其中 A型的针尖直径为 0.79mm, 邵 A型硬度计用来测量软塑料、橡胶、合成橡胶、毡、皮革、D型的针尖直径为 0.2mm.即 半径为R0.1。邵D型硬度计用来测量硬塑料和硬橡胶的硬度,例如:地板材料,保龄 球等现场 测量硬度。C型的测针是一个圆球直径5mm。邵氏 C型硬度计用来测量泡沫材料和海绵等软 性材料。
• 备注:热硫化通常分两段进行,预硫化是在加压下进行,温度为150~160℃;后硫化是为了除去过氧 化物、添加剂分解产生的挥发成分,要在常压热空气中(200℃左右)硫化1~4H(二次硫化)。为使硫 化更稳定、物性更好,后硫化的时间可到12H或更长。
➢ 二次硫化 Post Curing
• 二次硫化又叫后硫化。常用于硅橡胶,氟橡胶和氟硅橡胶硫化。二次硫化的作用:硅橡胶采 用过氧化物硫化时,过氧化物分解引发高聚物反应后,生成了低分子化合物(如苯和苯甲酸 等)存在于橡胶中将影响橡胶机械性能。况且硅橡胶在第一阶段加热成型后,其交联密度不 够,要使其进一步硫化反应才能增加硅橡胶的密度. 拉升强度,回弹性,硬度,溶胀程度,密度,热 稳定性都比一次硫化有较大的改善。
➢ 定义
• 有机硅,主要指以硅氧键(-Si-O-Si-)为骨架组成的聚硅氧烷,是硅微粉与氯甲烷反应得到 的产物,是半无机、半有机结构的高分子化合物,在空间上呈现螺旋状结构。
硅油部内部培训
4、硅油及其衍生物
4.4、氨基改性硅油
氨基硅油分子式
OR RO CH3 O Si CH3 (CH2)3 (CH2)3 NH2 O OR Si OR
Si
m
特性及优势 • • • • •
NH2
赋予头发柔软、光泽、柔顺和飘逸的感觉; 减少湿、干梳理力,改善干湿梳理性; 具有抗静电性; 适于染烫发质用香波和护发产品,有锁色效果; 形成一层滑爽而牢固的膜,深层修护受损的头发。
4、硅油及其衍生物
4.1、环状聚硅氧烷
CH3 Si CH3 O
n
n=4、5、6
易溶于大部份无水醇类和许多化妆品成分 无毒、无味、透明、不粘腻、无刺激性 具有挥发性 涂用蒸发时没有冷的感觉,挥发后不留下残余物
4、硅油及其衍生物
4.2、甲基硅油
CH3 H3C CH3 O Si CH3 O CH3 Si CH3
2、二甲基硅油 Polydimethylsioxanes
2.4、产品参数
参数/25℃ 外观 比重 黏度 折光 表面张力 闪点 凝固点 达因/cm ℃ ℃ Cst 单位 DM5 无色透明液体 0.934 5.0 1.3989 20.0 ≥120 <-100 DM10 无色透明液体 0.934 10.0 1.3989 20.1 211 <-100
3.2、概念
3)黏度
viscosity
低粘度硅油呈液体状,具有良好的铺展性能和提供干爽、 抗水、不粘腻的效果; 中粘度硅油呈液体状,但流动性差,具有较好的铺展性 能,提供柔软、抗水及丝绸般的手感; 中高粘度硅油呈粘稠状,具有较好的铺展性能,提供良好 柔软、抗水及丝绸般的手感; 高粘度硅油呈半固体状,能提供更好的滑爽性、柔软和丝 绸般的手感,还具有防止头发开叉的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Condensation 缩合 SiOH + SiCl Si O Si + HCl
4 SILOXANE BOUND 硅氧烷键
CHLOROSILANES MONOFONCTIONNELS MONOFUNCTIONNAL CHLOROSILANES
8
CH 3 O
Si
H CH 3 H O
M, M ’ groups
Si
CH 3 O
Si
D, D ’ groups
Si
T groups
Si
FROM SAND TO sable aux GOODS le cheminement du FINISHED produits finis
Sand Silica Chlorosilanes Dichlorosilanes Hydrolysis dihydroxy
反应性,可与其他羟基反应或形成 氢键
12
CH3
CH3
What can be attached to an atom of silicon?
什么样的基团可以连接到硅上?
The vinyl group or CH=CH2
CH3
O Si O
乙烯基
CH3
Si O
CH3 H
Si C H C H
CH3
CH CH2
什么样的基团可以连接到硅上?
The methyl group or CH3
CH3
O Si O
甲基 Non-reactive, 非反应性 anti-adhesive effect, 防粘附效果 release coatings effect, 离型涂层效果 water repellent, 防水剂 antifoams 消泡剂
Non reactive Fume Silica 白炭黑 (二
All
Chlorosilanes
Co -hydrolysis Trihydroxy gums resins Elastomers dihydroxy
oils
Reactive reactive
oils
Emulsions, Antifoams Pastes and greases
CH3
Si C H H H
CH3
11
What can be attached to an atom of silicon?
什么样的基团可以连接到硅上?
The hydroxyl group or OH
CH3
O H Si O Si O
羟基
CH3
H
Reactive, able to attach to other OH groups whether by magnetic attraction or with water releasing
硅油 EMULSIONS 乳液 ANTIFOAMS 消泡剂 PASTES 硅膏 GREASES 硅脂
GUMS 硅胶
RTV
BICOMPOSANTS MONOCOMPOSANTS
双组份、单组份
RESINS
树脂
10
SOLID PRODUCTS 硬产品
What can be attached to an atom of silicon?
自然界不存在纯硅
Le Silicium
Can be obtained by chemical reduction from sand:但可以用化学还 原法从砂石中得到: SiO 2 + 2C 4,350 F
2
Si
+
2 CO
METHYLCHLOROSILANES SYNTHESIS 甲基氯硅烷合成
Reaction between methylene chloride and silica 氯甲烷与硅石 反应
可与乙烯基加成反应,形成网络。 在碱存在下将产生氢气:氢氧化钠、 三乙醇胺或氢氧化钾
14
CH3
CH3
CH3
Where can these groups be placed?
什么样的基团可以连接到硅上?
Vinyls/hydrogens links
乙烯基/氢基连接
Chain terminators
链端
18
1. 有机硅基础知识总结
有机硅基础化学 有机硅原料/产品 有机硅结构与性能
硅砂 单质硅 硅烷 硅烷的水解 硅烷的缩合 硅烷的加成
硅油 硅树脂
主侧链结构
硅橡胶
白炭黑 催化剂 主要性能
交联剂
19
2.乳液基础知识
Emulsion is a category of product form.
Silicone;(有机硅) Acrylic;(丙烯酸) Polyurethane;(聚氨酯) …
Silicone:(有机硅)
Non-reactive oil(不反应性的硅油): 47V, etc. Reactive oil(反应性的硅油): 48V, H68, 11367, etc.
CH3
It is the hook which opens in the presence of a catalyst during the application by the customer
用户使用时借助于催化剂可与含氢硅 氧烷反应
13
What can be attached to an atom of silicon?
Oil(油) 油滴被如乳化剂分子包 围并分散在水里 Water(水)
BEFORE(乳化前) Separated two phases(分层的两相)
AFTER: EMULSION人(乳化后) Compatible two phases 连续相和分散相在乳化剂作用下相容
21
2.乳液基础知识
Many products can be made into emulsions. (许多产品可以制成乳液)
单官能团硅烷
1 chlorine atom is hydrolysable R3SiCl + H2O 2R3SiOH
只有一个氯原子可水解
R3SiOH + HCl R3SiOSiR3 + H2O
Condensation cannot go further. These molecules can be used to block (end) polysiloxane chains.
(乳液是一种产品形态而非功能/用途)
In RSS we already have: RTV-使用工艺; Sealant-用途; AAP-用途; Emulsion-A aqueous form of silicones.(多种硅产品的水体 系)
20
2.乳液基础知识
Definition: it is a fine and stable dispersion of a liquid in one another, both liquids being non-miscible. 定义:两种不混溶的液体,其中一种以细小的形态而稳定地 分散在另一种中
RTV 1 RTV 2
HCR
9
LES GRANDES FAMILLES.... PRODUCT RANGE 有机硅系列产品 THE PRODUCTS 产品 产品 OILS
Si O Si O Si
形态
LIQUID PRODUCTS : MORE OR LESS VISCOUS 液态产品,多少有些粘稠 ELASTOMER PRODUCTS 弹性体产品
乳液培训大纲
1. 有机硅基础知识; 2. 乳液基础知识; 3. 有机硅乳液生产工艺; 4. 有机硅乳液测试方法;
5. 有机硅乳液HSE;
6. 有机硅乳液实验室讲解; 7. 有机硅乳液生产线讲解。
1
SILICON 硅元素
Most plentiful element on Earth (28%) after oxygen (46%)地球表层第二丰富的元素,仅次于氧 Does not exist pure in nature
乙烯基
Vinyls 乙烯基
Methyls
甲基
16
Methyls甲基 Hydrogens
氢基
Polyaddition:加成反应
Si H
Si
Pt
CH2 CH Si
CH2 CH2 Si
Temp - ECH
17
Properties of Polysiloxanes:有机硅氧烷的性能
Unlimited structural variations(不受限制的结构多样性) Between a mineral and a plastic(性能介于有机物和无机物之间) Stable, high performance polymers(稳定性好,高性能聚合物) Decisive properties: Thermal stability(-80~+250°C)热稳定性 Resisance to natural ageing(oxidation, UV)抗自然老化 Dielectric properties介电绝缘性能 Modular from release to adhesion 可调制的离型或粘附性能 Lubrication润滑性能 Exceptional harmless无害 …
R
6
R
CHLOROSILANES TRIFONCTIONNELS三官能团硅烷 TRIFUNCTIONNAL CHLOROSILANES
3 chlorine atoms RSiCl3 + 3H2O
are hydrolysable RSi (OH)3 R O O H O H +