第五章土的压缩性和土讲义体变形

合集下载

第五章 土的压缩性

第五章 土的压缩性
第五章 土的压缩性
主讲人:辛凌 单位:上海海事大学 电子邮箱:xinling19821003@

SHMU
外力作用下土体积缩小的特性称为土的压缩性。
• 土的压缩性主要有两个特点: • ①土的压缩主要是由于孔隙体积减少而引起的。 对于饱和土,土是由固体颗粒和水组成的,在工 程上一般的压力(100~600kPa)作用下,固体颗粒 和水本身的体积压缩量非常微小,可不予考虑, 但由于土中水具有流动性,在外力作用下会沿着 土中孔隙排出,从而引起土体积减少而发生压缩; • ②由于粘性土的透水性很差,土中水沿着孔隙排 出速度很慢。孔隙水的排出对于饱和粘性土来说 是需要时间的,土的压缩随时间增长的过程称为 土的固结。
特性。 我们可以用单位压力增量所引起 的孔隙比改变,即压缩曲线的割 线的坡度来表征土的压缩性高低。
压缩系数愈大,土的压缩性愈高。 4
•式中:a称为压缩系数,即割线 M1M2的坡度,以kPa-1或MPa-1计。e1, e2为p1,p2相对应的孔隙比。
5.2 固结试验及压缩性指标
习惯上采用100kPa和200kPa范围的压缩系数来衡量土的
压缩性高低。
当a1-2<0.1MPa-1时
当a1-2 ≥0.5MPa -1时
属低压缩性土
属高压缩性土
当0.1MPa -1 ≤ a1-2 <0.5MPa -1时 属中压缩性土
5
SHMU
5.2 固结试验及压缩性指标
试验原理简介:土样在天然状态下或经过人工饱 和后,进行逐级加压,测定各级压力pi作用下土 样竖向变形稳定后的孔隙比ei。并绘制出土的压 缩曲线。
5.2 固结试验及压缩性指标
二、压缩性指标 1. e~p 曲线及有关指标
(1)压缩系数a
压缩曲线反映了土受压后的压缩

第5章土的压缩性

第5章土的压缩性

A
e
C B
m
p
1 3 2
D
'(lg)19
§5 土的压缩性 应力历史对压缩性的影响
二、初始(原始)压缩曲线
应力历史对粘土的压缩性具有较大的影响,而 钻探取样获得土样经过扰动或应力释放,在实验 室内得到的压缩曲线已经不能代表地基中现场压 缩曲线,所以压缩曲线的起始段实际上是一条再 压缩曲线。因此必须对室内固结试验所得的压缩 曲线进行修正,得到符合原位土体压缩性的现场 压缩曲线,由此计算得到的地基沉降才会更符合 实际。
21
§5 土的压缩性 应力历史对压缩性的影响
二、初始(原始)压缩曲线
若pc=p1,则试样是正常固结土, 它的原始压缩曲线推求:
① 一般可假定取样过程中试样 不发生体积变化,即试样的初始 孔隙比e0就是它的原位孔隙比 ; ② 由e0 和 pc值,在e~logp坐标 上定出b点,此即试样在原始压 缩的起点; ③ 从纵轴坐标0.42 e0 处作一水 平线交室内压缩曲线于c点,连接 bc即为所求的原始压缩曲线。

Es
x z
μ可由土力学试验中的三轴试验测定 μ一般<0.5 ;∴β一般<1 ;即β=0~1 故 E0 < Es
29
§5 土的压缩性 土的变形模量
一、浅层平板载荷试验及变形模量
变形模量( E0 )与压缩模量( Es )的关系
μ也可根据土的侧压力系数K0(三轴试验确定)
进行计算。
K0
a e e1 e2 p p2 p1
式中:a — 土的压缩系数,MPa-1; p1 — 地基某深度处土中竖向自重应力,MPa; p2 — 地基某深度处土中自重应力与附加应力之和,MPa; e1 — 相应于p1作用下压缩稳定后的孔隙比; e2 — 相应于p2作用下压缩稳定后的孔隙比。

第5章 土的压缩性与固结理论

第5章 土的压缩性与固结理论


在压缩试验过程中。我们可以通过百分表测量出土样的高度 变化S(即土样的压缩量),如下图所示。 土样的初始高度 为h0,横截面面积为A,初始孔隙比为e0。在第i级竖向应力作
用下,变形稳定后的压缩量为si,土样高度变为h0 - si ,土样
的孔隙比从e0减小到ei,此时 变; 由于在试验过 程中土样不能侧向变形,所以压缩前后土样横截面积A保持不

使用;不均匀沉降则会造成路堤开裂、路面不平,对超静定结构桥梁产生较
大附加应力等工程问题,甚至影响其正常和安全使用。因此,为了确保路桥 工程的安全和正常使用,既需要确定地基土的最终沉降量,也需要了解和估
计沉降量随时间的发展及其趋于稳定的可能性。

在工程设计和施工中,如能事先预估并妥善考虑地基的变形而 加以控制或利用,是可以防止地基变形所带来的不利影响的。 如某高炉,地基上层是可压缩土层,下层为倾斜岩层,在基础
第五章 土的压缩性与固结理论
§5.1 概 述
一、土的压缩性


在外力作用下土体积缩小的特性称为土的压缩性。
土是三相体,土体受外力作用发生压缩变形包括三部分:(1) 土固体颗粒自身变形;(2)孔隙水的压缩变形;(3)土中 水和气从孔隙中被挤出从而使孔隙体积减小。 一般工程土体所受压力为100~600kPa,颗粒的体积变化不 及全部土体积变化的1/400,可不予考虑;水的压缩变形也很 小,可以忽略。所以,土的压缩变形,主要是由于孔隙体积 减小而引起的。因此,土的压缩过程可看成是孔隙体积减小 和孔隙水或气体被排出的过程。因此,土的压缩性包含了两 方面的内容:
(2)压缩指数Cc

室内侧限压缩试验结果分析中也可以采用
e lg
曲线。用这种形式表示试验结果的优点是在应力达到一定值后,

第5章 土的压缩性

第5章 土的压缩性
∆e e1 − e2 α = tan β = = ∆p p2 − p1
e – p 曲线 压缩曲线的绘制方式 e – lgp 曲线
e
1.0 0.9 0.8 0.7 0.6 0
∆e
∆p
100
∆e a=− ∆p
200 300 400
p(kP ) a
图5-4 e – p 曲线
1
e
0.9 0.8 0.7 0.6
施加荷载, 施加荷载,静置至变形稳定 逐级加大荷载 试验结果: 试验结果:
P
测定: 测定: 轴向应力 轴向变形 百分表 传压板
p2
p1
水槽
S
e0
e
t
e1 e2
环刀 内环 透水石
s3
s2
s1
e3
t
图5-1 固结仪的固结容器简图
试样
压缩试验中,土样的变化和计算方法:
受荷后土样的高度变化: 设初始高度H 受压后的高度 受压后的高度H 受荷后土样的高度变化 设初始高度 0,受压后的高度 i, 为每级荷载作用下的变形量. 则Hi=H0—△Hi, △Hi为每级荷载作用下的变形量 △ 求土样稳定后的孔隙比e 加荷前V 求土样稳定后的孔隙比 i: 加荷前 s=H0/(1+ e0)(设土样 设土样 横截面积为1),加荷后 横截面积为 加荷后Vs=Hi/(1+ei). 加荷后 试验过程中的两个基本条件:受压前后土粒体积不变和土 试验过程中的两个基本条件 受压前后土粒体积不变和土 样横截面面积不变。 样横截面面积不变。
5.2.2 土的压缩系数和压缩指数
土的压缩系数——土体在侧限条件下孔隙比减小量与有效 土体在侧限条件下孔隙比减小量与有效 土的压缩系数 应力增量的比值( 曲线中某一段的割线斜率。 应力增量的比值(MPa-1),即e-p曲线中某一段的割线斜率。 , 曲线中某一段的割线斜率 地基中压力段应取土的自重应力至土的自重应力与附加应力之 和的范围。曲线越陡,说明在同一压力段内, 和的范围。曲线越陡,说明在同一压力段内,土孔隙比的减小 越显著,因而土的压缩性越高。 越显著,因而土的压缩性越高。 图5-4,设压力由 1增加到 2,相应的孔隙比由 1减小到 2, ,设压力由p 增加到p 相应的孔隙比由e 减小到e 则与压力增量△ 相对应的孔隙比变化为△ 则与压力增量△p=p2-p1相对应的孔隙比变化为△e=e2-e1,则土 的压缩系数: 的压缩系数:

土力学 第5章 土的压缩与固结

土力学 第5章 土的压缩与固结

地下水 位
持力层
下卧层
工程事故——建筑物倾斜、严重下沉、墙体开裂和地基断裂
地基变形值——沉降量、沉降差、倾斜、局部倾斜 地基变形要求:地基变形值<规范允许值
土具有变形特性
荷载作用
荷载大小
地基发生沉降 一致沉降 (沉降量) 差异沉降 (沉降差)
土的压缩特性 地基厚度
建筑物上部结构产生附加应力
影响建筑物的安全和正常使用
a △ p s H 1 e1 △p s H Es
△e e1 e2 压缩系数 a △p △p
压缩模量 E S
1 e1 a
此三个公式都可以计算压缩量、沉降量
a △ p s H 1 e1
△p s H Es
F
填土
一层土的沉降量是这样 计算,
地下水位
黏土
多层土的总沉降量如何 计算呢?
工程实例 墨西哥某宫殿 存在问题: 沉降2.2米 ,且左右两 部分存在明 显的沉降差 。 地基:20多米厚的黏土
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起地面、阳台裂缝
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
47m
39
150 194 199 175 87
0.9 0.8 0.7 0.6 0
△e
△p
100
200 300 400
p (kPa)
为了便于应用和比较,通常采用压力间隔由 p1 100kPa 增加 到 p 2 200kPa 时所得的压缩系数 a12 来评价土的压缩性。
(课本第77页)
压缩模量——是土在无侧向变形条件下,竖向应力 与应变的比值。 土的压缩模量可根据下式计算:

土力学5-土的压缩性

土力学5-土的压缩性

e1e0H s10 1e0
式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即
e0 ds(1编w辑0p)pt w 1
《土力学》 第5章 土的压缩性
(3)压缩曲线(e-p曲线)的绘制
根据固结试验各级荷载pi相应的稳定 压缩量Si,可求得相应孔隙比ei
e0 e
孔隙
1
固体颗粒
eie0(1e0)S i/H 0
土卸压回弹,弹性变形可恢复,残余变形不能恢复;
△ 再压缩曲线cdf df段就像是ab段的延续;
e
原位压
A
缩曲线
在半对数曲线上存在同样 的现象。
回弹模量Ec:
土体在侧限条件下卸荷或再 加荷时竖向附加压应力与竖向 应变之比。
沉积过程
C
B
取样过程
压缩试 验
D
编辑ppt
p p(lg)
《土力学》 第5章 土的压缩性
土的固结:土体在外力作用下,压缩随时间增长的过程。 压缩性试验
室内试验方法——压缩试验 现场测试——荷载试验。
编辑ppt
《土力学》
第5章 土的压缩性
5.2 固结试验及压缩性指标
(一)固结试验及压缩曲线 (1)试验简介
变形测量 固结容器
透水石
试样
百分表 加压上盖 环刀 压缩 容器
护环
支架
备加 压 设章 土的压缩性
土的压缩性:土在压力作用下体积缩小的特性。
土的压缩可以只看做是土中水和气体从孔隙中被挤出; 土颗粒相应发生移动,重新排列,靠拢挤紧,土孔
隙体积减小; 饱和土则主要是孔隙水的挤出。
土的压缩变形的快慢与土的渗透性有关
透水性大的饱和无粘性上,完成压缩变形的过程短; 而透水性小的饱和粘性土,压缩变形稳定所需的时间长。

土力学 第5章 土的压缩性

土力学 第5章 土的压缩性

e - logp曲线后段直线段的斜率 e1 - e 2 Cc = lg p 2 - lg p1 压缩指数C c 越大, 土的压缩性越大。 C c < 0.2低压缩性土 C c > 0.4高压缩性土
Cc是无量纲系数,同压缩系数a一样,压缩指数Cc值越大,土的压缩性 越高。 虽然压缩系数a 和压缩指数C 都是反映土的压缩性指标, 越高 。 虽然压缩系数 a 和压缩指数 C c 都是反映土的压缩性指标 , 但两者有 所不同。 前者随所取的初始压力及压力增量的大小而异, 所不同 。 前者随所取的初始压力及压力增量的大小而异 , 而后者在较高的 13 压力范围内却是常量,不随压力而变。 压力范围内却是常量,不随压力而变。
压缩指数: 土的固结试验的结果也可以绘在半对数坐标上 , 即坐标横 压缩指数 : 土的固结试验的结果也可以绘在半对数坐标上, 用对数坐标, 而纵轴e 用普通坐标, 由此得到的压缩曲线称为e lgp曲 轴 p 用对数坐标 , 而纵轴 e 用普通坐标 , 由此得到的压缩曲线称为 e ~ lgp 曲 在较高的压力范围内, lgp曲线近似地为一直线 曲线近似地为一直线, 线 。 在较高的压力范围内 , e ~ lgp 曲线近似地为一直线 , 可用直线的坡度 ——压缩指数 来表示土的压缩性高低, ——压缩指数Cc来表示土的压缩性高低,即 压缩指数C
3
5.2
土的压缩特性
一、土的压缩与固结 在外力作用下,土颗粒重新排列,土体体积缩小的现象称为压缩。 在外力作用下,土颗粒重新排列,土体体积缩小的现象称为压缩。 压缩 通常,土粒本身和孔隙水的压缩量可以忽略不计,在研究土的压缩 通常,土粒本身和孔隙水的压缩量可以忽略不计, 时,均认为土体压缩完全是由于土中孔隙体积减小的结果。 均认为土体压缩完全是由于土中孔隙体积减小的结果。

土力学-第5章 土的压缩性可编辑全文

土力学-第5章 土的压缩性可编辑全文
以上理论关系,易受其他因素的影响:试样扰动、加荷速率、μ值精度
等。
变形模量和压缩模量的关系
第五章 土的压缩性——土的弹性模量
土的弹性模量定义是:在无侧限条件下瞬时压缩的应力应变模量
确定方法:
室内三轴仪进行的三轴压缩试验
无侧限压缩仪进行的单轴压缩试验
弹性模量>变形模量>压缩模量
土的弹性模量
高压缩性土
0.5
中压缩性土
0.1-0.5
低压缩性土
<0.1
第五章 土的压缩性——固结试验及压缩性指标
e -P曲线
单向压缩试验的各种参数的关系
指标
a
mv
Es
a
1
mv(1+e0)
(1+e0)/Es
mv
a/(1+e0)
1
1/Es
Es
(1+e0)/a
1/mv
1
指标
第五章 土的压缩性——固结试验及压缩性指标
即临塑压力。
第Ⅲ段为塑性变形阶段,pl为极限压力
旁压试验及变形模量
p0
pm pf
压力p(kPa)
pL
第五章 土的压缩性——土的变形模量
旁压模量:
旁压试验的适用范围:


700
V(cm3)
0 + Δ
= 2(1 + )( +
)
2
Δ

600
500
400
300
200
100
适用于碎石土、砂土、粉土、粘性土、
实,压缩性越小
沉积土的应力历史
第五章 土的压缩性——应力历史对压缩性的影响

土力学 第5章土的压缩性

土力学 第5章土的压缩性
E
固结沉降Sc :饱和与接近饱和的粘性土在荷载作用下,随着超静孔隙水 压力的消散,土中孔隙水的排出,土骨架产生变形所造成的沉降(固结压 密)。固结沉降速率取决于孔隙水的排出速率。
次固结沉降Ss:主固结过程(超静孔隙水压力消散过程)结束后,在有效 应力不变的情况下,土的骨架仍随时间继续发生变形。这种变形的速率 已与孔隙水排出的速率无关(土的体积变化速率),而是取决于土骨架 本身的蠕变性质。次固结沉降既包括剪应变,也包括体积变化。
缩性如下:
0.1 低压缩性
a12 / MPa 1 中压缩性
0.5 高压缩性
2.土的压缩指数
Cc

log
e1 e2 p2 log
p1

e / log(
p2
/
p1 )
Cc 是 无 量 纲 系 数 , 同 压
缩系数一样,压缩指数 越大,土的压缩性越高 。虽然压缩系数和压缩 指数都是反映土的压缩 性指标,但两者有所不 同。 前者随所取的初始压力 及压力增量的大小而异 ,而后者在较高的压力 范围内却是常量,不随 压力而变。
② 0.42e0时,土样不受到扰动影响。
e
e0 B
0.42e0
C
推定:
① 确定先期固结压力σp ② 过e0 作水平线与σp作用线交于B。由假定① 知,B点必然位于原状土的初始压缩曲线上;
③ 以0.42e0 在压缩曲线上确定C点,由假定② 知,C点也位于原状土的初始压缩曲线上;
④ 通过B、C两点的直线即为所求的原位压缩曲线 。
第二节 地基的最终沉降量
分层总和法 规范法 考虑不同变形阶段的地基沉降计算方法
可压缩层 不可压缩层
p
t
σz=p

土力学_柳厚祥_第五章土的压缩性与沉降计算

土力学_柳厚祥_第五章土的压缩性与沉降计算

第五章 土的压缩性与沉降计算§ 5.1 基本概念一、地基土在上部结构荷载作用下产生应力和变形⎩⎨⎧→→形状变形(剪破)体积变形(不破坏)zx yz xy z y x τττσσσ,,,,地基的竖直方向变形即为沉降三相土受力后的变形包括⎩⎨⎧排出土孔隙中的水和空气的,相互挤紧)土颗粒压缩(重新排列土体积减小的过程土体压缩性:指的是在压力作用下体积减小过程的特性,包括两个方面:1. 1. 压缩变形量的绝对大小(沉降量大) 2. 2. 压缩变形随时间的变化(固结问题)一、一、 工程意义地基的沉降有均匀沉降与不均匀沉降1. 1. 均匀沉降对路桥工程的上部结构危害较小,但过量的 均匀沉降也会导致路面标高的降低,桥下净空的减小而影响正常的使用。

2. 2. 不均匀沉降则会造成路堤的开裂,路面不平,超静定结构,桥梁产生较大的附加应力等工程问题,甚至影响其正常使用。

沉降计算是地基基础验算的重要内容,也是土力学的重要课题之一§5.2 研究土体压缩性的方法及变形指标一、一、 压缩试验与压缩性规律土体积的变小是孔隙体积变小的结果,研究土的压缩性大小及其特征的室内试验方法称为压缩试验。

对一般工程情况来说,或在压缩土层厚度比荷载面宽度小很多的情况下常用侧限压缩试验来研究土的压缩性。

试验室用以进行土的侧限压缩试验的仪器称为压缩仪(固结仪),如图5-1 所示 透水石以便土中水的排出传压活塞向土样施加压力。

由于环刀所限,增压或减压是土样只能在铅直方向产生压缩或回胀,而不可能产生侧向变形,故称为侧限压缩试验。

试验采用压缩仪进行压缩试验是研究土的压缩性最基本的方法,有上述已知,试样土粒本身体积是假定不变的,即()112211211,11,e h he e h e h v v s s +∆=∆+=+=,因此,试样在各级压力pi 作用下的变形,常用孔隙比e 的变化来表示。

(一)e-p 曲线的表示方法如右图所示е0a 曲线为压缩曲线 ab 曲线为减压曲线 ba’为才压缩曲线当在压的压力超过试样所曾经受过的最大压力后,其e-p 曲线很快就和压缩曲线的延长线重合如图a’c 所示。

土的压缩性.

土的压缩性.

规范法计算基础沉降量的步骤为:
(1) 计算基底附加压力p0; (2) 以天然土层作为分层面(即按Es分层); (3) 计算每层土的变形量
p0 si (z i i z i 1i 1 ) Esi
(4) 确定沉降计算深度Zn, (5) 确定经验系数ψs (6) 计算地基最终沉降量
Ai s ψ ( ziα i zi-1α i-1 ) Ψs s i 1 E si i 1 Esi p0
3.5
土的压缩性
体积变形 土体变形 形状变形
压缩系数 压缩模量
变形模量
土的压缩性是指土体在压力的作用下体积缩小的特性, 它反映的是土中孔隙的体积缩小
3.5.1压缩试验和压缩曲线
由于刚性护环所
百分表
限,试样只能在竖向 产生压缩,而不能产
传压板 水槽 环刀 护环
生侧向变形,故称为
侧限压缩试验。
2 压缩指数Cc
e
1.0 0.9 0.8 0.7 100
e1 e2 Cc lg p2 lg p1
1
Cc
lg
e p1 p p1
Cc<0.2:低压缩性土 Cc>0.4:高压缩性土
1000
e~lgp曲线
p(lg,kPa )
3 压缩模量Es :为土体在侧限条件下,竖向附加应力与竖 向应变之比(MPa)。
p1 p2 e~p曲线
p(kPa )
1 压缩系数a
e
1.0
《建筑地基基础设计规范》 (GB50007-2002)规定
土的类别 a1-2 (MPa-1)
e1 e2
0.9 0.8 0.7 0.6
e
p
p1
高压缩性土 中压缩性土 低压缩性土

土力学第五章-土的压缩性

土力学第五章-土的压缩性
指土体现在所受到的压力。 • 先期固结压力和现存上覆压力都按土体的自重应力计
算。注意地下水位以下用浮容重计算。
超固结比及土的分类
• 超固结比:指土体的先期固结压力与现存上覆压力之比。
OCR pc p0
• 土的分类:超固结土(OCR>1) 正常固结土(OCR=1) 欠固结土(OCR<1)
• 超固结土:指历史地面高于现在地面, • 正常固结土:指历史地面就是现在地面, • 欠固结土:指现在地面高于稳定地面。
先期固结压力的确定
• 土的先期固结压力可由e-lgp曲线确定。 • 方法:
1)在e-lgp曲线上,找到曲率最大点; 2)过最大点作水平线和切线; 3)作水平线和切线的角平分线; 4)反向延长e-lgp曲线的直线段; 5)直线段与角平分线的交点所对应的压力就是所求的 先期固结压力。
侧压力系数和侧膨胀系数
• 侧压力系数K0:指土体在有侧限条件下,水平方向的应 力与垂直方向应力之比。
• 侧膨胀系数: 指土体在无侧限条件下,水平方向的应变
与垂直方向应变之比。
K0
x z
y z
x y z z
• 关系:
K0 1
压缩模量及变形模量
• 压缩模量Es:指土体在有侧限条件下,垂直方向的应力 与垂直方向应变之比。
试验时,使土体受到4级不同垂直压力作用, 测定土体在各级垂直压力下达到压缩稳定时的变形量, 计算出相应的孔隙比。 • 不同土体达到压缩稳定的时间不同,粘性土达到压缩 稳定至少需要1天时间。
压缩曲线
• 土体压缩试验的结果用压缩曲线表示 • 压缩曲线:
就是反映孔隙比与垂直压力的关系曲线。 分为两种:e-p曲线和e-lgp曲线。 • 特性: 压缩曲线的陡缓程度反映了土体压缩性的大小。 压缩曲线越陡,土体的压缩性越大;

土力学课件(5土的压缩性)

土力学课件(5土的压缩性)

A e C m B 1 3 2 D σp
σ'(lg)
5 土的压缩性
5.3 应力历史对压缩性的影响
5.3.2 现场原始压缩曲线及压缩性指标 (详见P125-127) 详见P125-127) P125
自学
5 土的压缩性
5.4 土的变形模量
5.4.1 浅层平板载荷试验及变形模量 浅层平板载荷实验及变形模量 变形模量—土体在无侧限条件下 土体在无侧限条件下, 变形模量 土体在无侧限条件下,竖向应力与 竖向应变的比值。 竖向应变的比值。 试验设备 加荷稳定装置 反力装置 观测装置
第五章
土的压缩性
5 土的压缩性
5.1 概述
自重应力压缩稳定 附加应力导致地基土体变形
体积变形
本章讨论 重点
由正应力引起,会使土的体积缩小压密, 由正应力引起,会使土的体积缩小压密,不会导致土体破坏
形状变形
形状变形主要由剪应力引起,当剪应力超过一定限度时, 形状变形主要由剪应力引起,当剪应力超过一定限度时, 土体将产生剪切破坏,此时的变形将不断发展。 土体将产生剪切破坏,此时的变形将不断发展。通常在地 基中是不允许发生大范围剪切破坏的。 基中是不允许发生大范围剪切破坏的。
回弹指数c 回弹指数 e 回弹模量E 回弹模量 e
Ce << Cc ,一般Ce≈0.1-0.2Cc 一般
土的压缩变形由弹性变形和残余变形两部分组成,其 中以残余变形为主。
5 土的压缩性
5.3 应力历史对压缩性的影响 沉积土( 5.3.1 沉积土(层)的应力历史 先期固结压力: 指有效应力) 先期固结压力:历史上所经受到的最大压力σp(指有效应力) σs= γz:自重压力 : σp= σs:正常固结土 σp> σs:超固结土 σp< σs:欠固结土

第5章土的压缩性

第5章土的压缩性

§5.2 固结试验及压缩性指标
5.2.1 固结试验和压缩曲线 为了研究土的压缩特性,通常需要进行
试验
室内固结试验
现场原位试验(荷载试验、旁压试验)
室内固结试验与压缩曲线
室内试验测定土的压缩性指标, 常用不允许土样产生侧向变形, 即侧限条件的固结试验,非饱和 土只用于压缩,亦称压缩试验。
土的固结试验可以测定土的压缩 系数a、压缩模量Es等压缩性指标。
Cc>4.0:高 压缩性土
Cc<0.2:低 压缩性土
5.2.3 土的压缩模量和体积压缩系数
压缩模量Es
压缩模量Es :土体 侧限条件下竖向附 加应力与竖向应变 的比值,也称侧限 模量。其大小反映 了土体在单向压缩 条件下对压缩变形 的抵抗能力。
Es
Δp ΔH H1
1 e1 a
Es与a称反比——Es愈大,α 愈小,土体的压缩性愈低。
体积压缩系数 mv
体积压缩系数 m:v 土体在侧限条件下体积应变与竖向与 竖向应力增量的比,即单位应力增量作用下土体单位体 积的变化。mv1 Es源自a 1 e1初始孔隙比

mv
ΔH H1 Δp
e1 e2 (1 e1)Δp
mv愈大,土 的压缩性愈高
5.2.4 土的回弹再压缩曲线
土体的变形是由可恢复的弹性变形和不可恢 复的塑性变形组成。
e
e0
b
B
现场压缩曲线
A
1
3
2
0.42e0
C 先期固结应力Pc
p(lg)
现场压缩曲线的推求(超固结土ce)
e
b1 e0
b
A
B 1
现场再压缩曲 线
E F
3
现场压缩曲线

土力学_第5章(固结讲义与压缩)

土力学_第5章(固结讲义与压缩)
注意:土样在竖直压力作用下,由于 环刀和刚性护环的限制,只产生竖向 压缩,不产生侧向变形,所以叫侧限
透水石
传压板
水槽
环刀
试样
内环
侧限压缩试验成果--e-p曲线(压缩曲线)
•施加荷载 P,静置至变形稳定
P
•逐级加大荷载
p3 p2
•试验结果:p(σ')-s-e(压力-压缩量-孔隙比) p1
H1/(1+e)
1 e0
'
0.7
说明:土的压缩模量Es与土的的压缩系数a成
反比, Es愈大, a愈小,土的压缩性愈低。
0.6
0 100 200 300 400
另外,压缩模量Es的倒数称为体积压缩系数mv.
'(kPa)
体积压缩系数
mv
1 Es
ቤተ መጻሕፍቲ ባይዱ
a 1e0
MPa-1
侧限压缩试验结果--压缩性指标
(3)变形模量E0
土在无侧限条件下竖向压应力与竖向应变的比值,或称为变形模量
σ p> σ s,超固结土
C20砼 26000
较硬粘土 8~15
密实砂 50~80
密实砾、石 100~200
侧限压缩试验成果--e- lgσ′曲线(压缩曲线)
➢ e-σ′(p) 曲线缺点:不能反映土的应力历史
1
e
Cc
0.9
0.8 1 Ce
0.7
➢ e- lgσ′曲线优点:有一段较长的直线段,直线
的斜率称为土的压缩指数Cc
精品
土力学_第5章(固结与压缩)
1 土的压缩带来的危害 2 土的压缩性 3 地基沉降计算 4 饱和土体渗流固结理论 5 减少地基沉降造成危害的措施

土力学讲义第五章

土力学讲义第五章

e
交于D点;
e0
D
B
③ 过D点作斜率为Ce的直线, 与σp作用线交于B点,DB为原
④ 结果修正
S修=s S
土力学讲义第五章
二、粘土地基沉降计算的若干问题
研究表明:粘性土地基在基底压 力作用下的沉降量S由三种不同
的原因引起:
Si :初始瞬时沉降
t
SSdScSs
S
Sc:主固结沉降
n
S Si i 1
Ss: 次固结沉降
土力学讲义第五章
•初始沉降(瞬时沉降) Sd:有限范围的外荷载作用下 地基由于发生侧向位移(即剪切变形)引起的。
(2)与基底附加应力p0/f土k力的学大讲义小第五有章关
沉降计算总结:
① 准备资料
•建筑基础(形状、大小、重量、埋深) •地基各土层的压缩曲线 原状土压缩曲线 •计算断面和计算点
② 应力分布
•自重应力 •基底压力基底附加应力 •附加应力
土力学讲义第五章
③ 沉降计算
•确定计算深度 •确定分层界面 •计算各土层的szi,zi •计算各层沉降量 •地基总沉降量
先期固结压力σp的确定: Casagrande 法 A
e (a) 在e-lgσ’压缩试验曲
线上,找曲率最大点 m
C
(b) 作水平线m1 (c) 作m点切线m2
mB
(d) 作m1,m2 的角分线m3
(e) m3与试验曲线的直
线段交于点B
(f) B点对应于先期固结压
力p
土力学讲义第五章
p
1 3 2
D
lgP
本节主要内容:
一、地基最终沉降量分层总和法 二、粘土地基沉降计算的若干问题
土力学讲义第五章

第5章土的压缩性

第5章土的压缩性

Cc

e1 logp 2
e2 logp1
e2
压缩模量
Es

1 e1 a
p
p1
p2
体积压缩系数
mv

a 1 e1
总结:压缩性指标间的关系
压缩系数a、压缩指数Cc、压缩模量Es都是室内压 缩试验侧限条件下的压缩特性的反映。
变形模量E0是土在侧向自由膨胀条件下竖向应力 与竖向应变的比值,竖向应变中包含弹性应变和塑性 应变。
h1 h1 s 1 e1 1 e2
e2

Vv2 Vs

Ah v2 Ah s

hv1 s hs
hv1 hse2 s
hs

h1 s 1 e2
h2 h1 s hv1 hs s
e2

e1

s h1
(1 e1 )
e1

ds(1 w) 1 ρ
e
4. 绘制压缩曲线
S
c
式中,ω—刚性承压板系数,圆
形板取0.785; 方板取0.886。
注:1) 变形模量是指无侧限情况下的应力增量与应变增量的比 值,它与压缩模量不同;
2) 深层土的变形模量测定.
5.4.2 变形模量与压缩模量的关系
变形模量 E0 压缩模量Es
二者: 基本意义一样, 但受力状态不同
5.5 土的弹性模量 E: 土体在无侧限条件下瞬时压缩的应力应变模量。
10. 土的压缩性指标包括( A )。
(A) a, Cc, Es, E0 (C) a, Cc, E0, e
(B) a, Cc, Es, e (D) a, Cc, Es, St

高等土力学复习要点——土体的变形

高等土力学复习要点——土体的变形

土体的变形第一部分 影响因素一. 土的压缩性1.定义:土在压力作用下体积缩小的特性称为土的压缩性。

土的压缩——土中孔隙体积的减少,在这一过程中,颗粒间产生相对移动,重新排列并互相挤紧,同时,土中一部分孔隙水和气体被挤出。

土体完成压缩过程所需的时间与土的透水性有很大的关系。

土的固结——土的压缩随时间增长的过程,称为土的固结。

2.土的侧限压缩试验:不允许土样产生侧向变形(侧限条件)的室内压缩试验3.侧限条件:侧向限制不能变形,只有竖向单向压缩的条件。

侧限条件的适用性:自然界广阔土层上作用着大面积均布荷载的情况;土体的天然土的自重应力作用下的压缩性。

4.侧限压缩试验的方法:试验方法:加荷载,让土样在50、100、200和400kpa 压力作用下只可能发生竖向压缩,而无侧向变形。

测定各级压力作用下土样高度的稳定值,即压缩量。

将压缩量换算成每级荷载后土样的孔隙比e 。

则可整理的压缩试验的结果,压缩曲线e-p 、e-logp 。

)1(000e H s e e +-=5.侧限压缩性指标压缩系数——e-p 曲线上任一点的切线斜率a ,即 dp de a -= 物理意义:压缩系数a 越大,曲线愈陡,说明随着压力的增加,土孔隙比的减小愈显著,因而土的压缩性愈高。

为了便于应用和比较,通常采用压力间隔由p 1=100kpa 增加到p 2=200kpa 时所得的压缩系数a 1-2来评定土的压缩性如下:当 a 1-2 < 0.1Mpa -1时,属于低压缩性土0. 1≤a 1-2 < 0.5Mpa -1时,属于中压缩性土a 1-2 ≥ 0.5Mpa -1时,属于高压缩性土。

压缩指数——土的e-p 线改绘成半对教压缩曲线e-logp 曲线时,它的后段接近直线,其斜率Cc 称为土的压缩指数。

同压缩系数a 一样,压缩指数Cc 值越大,土的压缩性越高压缩模量(侧限压缩模量)——土在完全侧限条件下的竖向附加压应力σz 与相应的应变εz 之比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据自重应力、附加应力曲线、
e-p压缩曲线计算任一分层沉降量
地基沉降计算深度
σc线
σz线
si
e1i e2i 1e1i
hi
计算基础最终沉降量
n
s si i 1
第三节 规范法计算地基最终沉降量
由《建筑地基基础设计规范》(GB50007-2002)提出
分层总和法的另一种形式
沿用分层总和法的假设,并引入平均附加应力系数和地 基沉降计算经验系数
根据压缩曲线可以得到三个压缩性指标
1.压缩系数a
2.压缩模量Es 3.变形模量E
化学工业出版社
❖ 1.压缩系数
a 土体在侧限条件下孔隙比减少量与竖向压应力增量的比值
e
e0
e1 △e M1
e2
△p
斜a 率 e=e1e2 p p2p1
利用单位压力增量所引起 得孔隙比改变表征土的压
确定基础沉降计算深度
一般取附加应力与自重应力
的比值为20%处,即σz=0.2σc
处的深度作为沉降计算深度的 下限
对于软土,应该取σz=0.2σc处,
若沉降深度范围内存在基岩时, 计算至基岩表面为止
确定地基分层
1.不同土层的分界面与地下水位 面为天然层面
2.每层厚度hi ≤0.4b
计算各分层沉降量
A p0z
因此
s
p0
z Es
zi zi-1
zi-1
zi
地基沉降计算深度zn
1 b 56 第i层 34 第n层
p0
2
1
2
Ai
34
ip0
p0
1 5
Ai-16
变形模量与压缩 模量之间关系
其中
E0 Es
=1-12-2
土的泊松比, 一般0~0.5 之间
化学工业出版社

第二节 分层总和法计算地基最终沉降量
❖ 地基最终沉降量指地基变形稳定后基础底面的沉降量
1.基本假设
地基是均质、各向同性的半无限线性 变形体,可按弹性理论计算土中应力
4.单向压缩分层总和法计算步骤
1.绘制基础中心点下地基中自重应力和附加应力分布曲 线
2.确定地基沉降计算深度
3.确定沉降计算深度范围内的分层界面
4.计算各分层沉降量
5.计算基础最终沉降量
化学工业出版社
❖ 绘制基础中心点下地基中自 重应力和附加应力分布曲线 d
层量s土等的于压△s缩i的变总形和量△si,基础的平均沉降
i第i层土的
压缩应变
n
n
s si iHi
i1
i1
化学工业出版社
i土的压缩应变
i
e 1 ie2i 1e 1 i
a i(p 2ip 1 i) p i
1e 1 i
E si
e1i———由第i层的自重应力均值从土的压缩曲线上 得到的相应孔隙比 e2i———由第i层的自重应力均值与附加应力均值之 和从土的压缩曲线上得到的相应孔隙比
压缩稳定很快完成
粘性土 透水性差,水不易排出 压缩稳定需要很长一段时间
土的固结:土体在压力作用下,压缩量随时间增长的过程
❖ 一、压缩试验
研究土的压缩性大小及其特征的室内试验方法,亦称 固结试验
三联固结仪
❖ 1.压缩仪示意图
加压活塞 刚性护环
荷载 透水石 环刀
土样
注意:土样在竖直压 力作用下,由于环刀 和刚性护环的限制, 只产生竖向压缩,不 产生侧向变形
为了弥补假定 所引起误差,取 基底中心点下的
在压力作用下,地基土不产生侧向变 附加应力进行计
形,可采用侧限条件下的压缩性指标 算,以基底中点
2.单一压缩土层的沉降计算
的沉降代表基础 的平均沉降
在一定均匀厚度土层上施加连续均布
荷载,竖向应力增加,孔隙比相应减
小,土层产生压缩变形,没有侧向变
形。
化学工业出版社
缩性高低
M2
a de
dp
p1e-p曲线p2
p 在压缩曲线中,实际采 用割线斜率表示土的压
《规范》用p1=100kPa、 p2=200kPa 缩性
对应的压缩系数a1-2评价土的压缩性
a1-2<0.1MPa-1低压缩性土
ae=e1 e2 p p2 p1
0.1MPa-1≤a1-2<0.5MPa-1中压缩性土
透水石
底座
化学工业出版社
❖ 2.e-p曲线 研究土在不同压力作用下,孔隙比变化规律
p
s
Vv=e0 Vs=1
H1
Vv=e Vs=1
土样在压缩前后变 形量为s,整个过 程中土粒体积和底 Biblioteka 积不变H1/(1+e)
H0 H0/(1+e0)
土粒高度在受
H0 H1
压前后不变
1 e0 1 e
均质地基土,在侧限条件下,压缩模量Es不随深度而变,
从基底至深度z的压缩量为
szzd z 1 zd z A
0Es
Es 0 z
Es
深度z范围内的 附加应力面积
附加应力面积
z
z
A
0
z
dz
p0
Kdz
0
附加应力通 代入 式σz=K p0
引入平均附 加应力系数
z
0
Kdz
A
z
p0 z
因此附加应力 面积表示为
精品
第五章土的压缩性 和土体变形
第一节 土的压缩试验和指标
土的压缩性是指土在压力作用下体积缩小的特性
压缩量的组成
固体颗粒的压缩 土中水的压缩 空气的排出 水的排出
占总压缩量的1/400不到, 忽略不计
压缩量主要组成部分
说明:土的压缩被认为只是由于孔隙体积减小的结果
无粘性土
透水性好,水易于排出

△p

s
∞ 土层竖向应力由p1增加到p2, 引起孔隙比从e1减小到e2,
竖向应力增量为△p
可压缩土层
H1
H0
sH1H2
由于
e1e2 1e1
H1
ae=e1 e2
所以
p p2 p1
3.单向压缩分层总和法
s1 ae1(p2p1)H 1 E p s H 1
分别计算基础中心点下地基中各个分
化学工业出版社
a1-2≥0.5MPa-1高压缩性土

❖ 2.压缩模量Es
土在侧限条件下竖向压应力与竖向总应变的比值,或称为
侧限模量
Es
1 e1 a
说明:土的压缩模量Es与土的的压缩系数a成反比, Es愈大, a愈小,土的压缩性愈低
3.变形模量E0(补充教材内容)
土在无侧限条件下竖向压应力与竖向总应变的比值。
整理
ee0
s H0
(1e0)
根据其不中同压力pe作0=用Gs下(1,w 0达0)到w稳1定的孔隙比e,绘制e-p曲线,
为压缩曲线
e e0
曲线A
曲线B
曲线A压缩性>曲线B压缩性
e
p
p
❖ 二、压缩性指标
e-p曲线
压缩性不同的土,曲线形状不同,曲线愈陡,说明在相同压力 增量作用下,土的孔隙比减少得愈显著,土的压缩性愈高
相关文档
最新文档