高一平面向量测试题

合集下载

高一数学《平面向量》单元测试

高一数学《平面向量》单元测试

高一数学《平面向量》单元测试姓名: 班级:一、 选择题(共8小题,每题5分)1. 下列命题正确的是 ( )A .单位向量都相等B . 任一向量与它的相反向量不相等C .平行向量不一定是共线向量D .模为0的向量与任意向量共线2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于( )A .34B .34-C .43D .43- 3.在以下关于向量的命题中,不正确的是 ( )A .若向量a =(x ,y ),向量b =(-y ,x )(x 、y ≠0),则a ⊥bB .四边形ABCD 是菱形的充要条件是=,且||=||C .点G 是△ABC 的重心,则GA +GB +CG =0D .△ABC 中,AB 和的夹角等于180°-A4.设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为( )A .-9B .-6C .9D .6 5.若||1,||2,a b c a b ===+ ,且c a ⊥ ,则向量a 与b 的夹角为( )A .30°B .60°C .120°D .150°6.在△ABC 中,A >B 是sin A >sin B 成立的什么条件( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.若将函数x y 2sin =的图象按向量平移后得到函数)42sin(π-=x y -1的图象,则向量可以是: ( )A . )1,8(-πB . )1,8(π-C . )1,4(πD .)1,4(--π 8.在△ABC 中,已知S ABC ⋅===∆则,3,1||,4||的值为( ) A .-2 B .2 C .±4 D .±2二、 填空题(共4小题,每题5分)9.已知向量、的模分别为3,4,则|-|的取值范围为 .10.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .11.设21e e 是两个单位向量,它们的夹角是60,则=+-⋅-)23()2(2121e e e e12.在∆ABC 中,a =5,b=3,C=0120,则=A sin 三、 解答题(共40分)13.设21,e e 是两个垂直的单位向量,且2121,)2(e e e e λ-=+-=(1)若a ∥b ,求λ的值; (2)若⊥,求λ的值.(12分)14.设函数x f ⋅=)(,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R. (1)若f(x)=1-3且x ∈[-3π,3π],求x ; (2)若函数y =2sin2x 的图象按向量=(m ,n) (|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值. (14分)15. 已知△ABC 三个内角A 、B 、C 的对边分别为a 、b 、c ,向量)2sin ,2(cosC C m =,)2sin ,2(cos C C n -=,且n m 与的夹角为.3π (1)求角C 的值; (2)已知27=c ,△ABC 的面积233=S ,求b a +的值. (14分)。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.已知是单位向量,它们之间夹角是45º,则方向上的投影_________。

【答案】【解析】∵之间夹角是45º,∴方向上的投影为。

【考点】投影的概念。

点评:投影的计算方法2. .若且向量垂直,则一定有()A.B.C.D.【答案】B【解析】∵⊥,∴∴【考点】垂直向量的数量积、点评:有关两向量垂直问题通常用⊥解决。

3.下列四式不能化简为的是()A.(+)+B.(+)+(+)C.+D.+【答案】C【解析】A:(+)+B:(+)+(+)=+++=C:+=+D:+=所以选C。

【考点】平面向量的加减运算点评:此类问题,结合平面向量的三角形法则考虑。

4.在平行四边形ABCD中,++等于()A.B.C.D.【答案】A【解析】如图,+=+=∴++=【考点】平面向量的三角形和平行四边形加法法则点评:对于平面向量几何形式下的的加减运算,一般借助于图形分析。

5.已知=,=,且||=||=4,∠AOB=600,则|+|= ,||= ;+与的夹角是;与的夹角是;△AOB的面积是。

【答案】、4、、、【解析】如图,根据平行四边形法则|+|=∵||=||=4∠AOB=600∴四边形OABC为菱形且∠AOC=300,∴在Rt△AOP中OP=2,∴=;根据减法三角形法则,=,在△AOB中,由题意得OA=OB=BA=4;所以|=4;+与的夹角是∠AOC,∠AOC=300中;与的夹角是∠AOB,∠AOB=600;△AOB是边长为4的等边三角形,△AOB的面积是。

【考点】平面向量的加减运算及夹角。

点评:解决此类问题,一般先画出图形,然后结合平面向量的几何运算法则进行解答。

6.化简(1);(2)(-)-(-)。

【答案】(1),(2)。

【解析】(1)(2)(-)-(-)=-+=【考点】平面向量的化简点评:此类问题要结合平面向量的加减法运算的平行四边形和三角形法则来化简。

7.如图,D、E在线段BC上,且BD=EC,求证:【答案】可先证【解析】,∵,又∵BD=EC∴∴∴【考点】平面向量的加减运算法则点评:解决本题的关键是把转化为来证。

高一数学平面向量专项练习题

高一数学平面向量专项练习题

高一数学平面向量专项练习题1.已知平面向量a ,b 的夹角为23π,2a =,1b =,则a b ⋅=( )A .1B .1-CD .2.在Rt △ABC 中,∠C =90°,AC =4,则AB AC ⋅uu u r uu u r等于( )A .-16B .-8C .8D .16 3.已知,a b 是不共线的向量,且5,28,3()AB a b BC a b CD a b =+=-+=-,则( ). A .A ,B ,D 三点共线B .A ,B ,C 三点共线 C .B ,C ,D 三点共线 D .A ,C ,D 三点共线4.已知圆心为O ,半径为1的圆上有不同的三个点,,A B C ,其中0OA OB ⋅=,存在实数,λμ满足0OC OA uOB λ++=,则实数,λμ的关系为A .221λμ+=B .111λμ+= C .1λμ= D .1λμ+=5.已知向量(1,2),(1,3)a b =-=,则||a b -=( )A B .2 C D 6.若1a b ==r r ,(2)a b a +⊥,则向量a 与b 的夹角为( )A .30B .60C .120D .1507.在△ABC 中,若AB 2BC -2=AB AC ⋅,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形8.在ABC ∆中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM AB AC λμ=+,则λμ+等于( )A .12B .23C .16D .139.若()2,4,a b a b a ==+⊥,则a 与b 的夹角为( )A .23πB .3πC .43πD .π10.已知非零向量a ,b 的夹角是60°,a b =,a ⊥(λa -b ),则λ=A .12B .1C .32D .211.如图,在ABC 中,AD AB ⊥,3BC BD =,||1AD =,则AC AD ⋅=( )A .B .2C .3D 12.已知12,e e 是两个单位向量,且夹角为3π,则12e te +与12te e +数量积的最小值为( )A .32-B .6-C .12D .313.已知向量a,b r r 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .014.在ABC 中,点D 是线段BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+uuu r uu u r uuu r ,则λμ+=A .2B .2-C .12D .12- 15.在边长为2的正ABC ∆中,设2BC BD =,3CA CE =,则AD BE ⋅=( ) A .-2 B .-1 C .23- D .83- 16.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( )A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦17.两个非零向量,a b 满足||||2||a b a b a +=-=,则向量b 与a b -夹角为( ) A .56π B .6π C .23π D .3π 18.AB 是半径为1的圆O 的直径,P 是圆O 上一点,Q 为平面内一点,且1233BQ BP AB =-,1AQ AB ⋅=,则BQ BP ⋅的值为( ) A .12 B .1 CD .5219.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心)A .重心外心垂心B .重心外心内心C .外心重心垂心D .外心重心内心20.已知1e ,2e 是不平行的向量,设12a e ke =+,12b ke e =+,则a 与b 共线的充要条件是实数k 等于________.21.已知平面向量a ,b 的夹角为3π,且1a =,12b ⎛= ⎝⎭r ,则(2)a b b +⋅=________. 22.已知正方形ABCD 的边长为4,2AE AB =,则AC DE ⋅=__________. 23.已知平面向量,a b 满足3a =,2b =,3a b ⋅=-,则2a b += . 24.已知||1a =,()a b a +⊥,则⋅=a b _________.25.在等腰梯形ABCD 中,2DC AB =,E 为BC 的中点,F 为DE 的中点,记DA a =,DC b =,若用,a b 表示DF ,则DF =________.26.在ABC ∆中,4AC =,3BC =,30ACB ∠=︒,点E 为边AC 的中点,2133AD AB AC =+u u u r u u u r u u u r ,则CA CB ⋅=______;CD BE ⋅=______.27.在ABC ∆中,D 为AB 的中点,点O 满足2CO OD =,OA OB ⊥,若10AB =,则AC BC ⋅=___________。

推荐-高一数学平面向量测试 精品

推荐-高一数学平面向量测试 精品

高一数学—平面向量测试试卷一、 选择题:(本大题共12小题,每小题5分, 共60分) 1.若i =(1,0),j=(0,1)则与2i +3j垂直的向量是()A .3i +2jB .-2i +3jC .-3i +2jD .2i -3j 2.m,n ∈R , b a ,都是非零向量,且=c m b n a +,b a ,有公共的起点, 若b a c,,终点共线, 则m,n 满足( )A .m+n=1B .m -n=1C . m + n =-1D . m 2 + n 2 =1 3.已知A(1,2) 、B(5,4) 、C(x,3) 、D(-3,y) 且∥,则x 、y 的值分别为 ( )A .-7,-5B . -7,5C . 7,-5D . 7,5 4.在△ABC 中,AB=2,AC=4, ∠A=︒120,D 为BC 边中点, 则AD 长等于( ) A .1 B .2 C .2D .35.向量b c a a c b ⋅⋅-⋅⋅)()(与向量c( ) A .一定平行但不相等 B .一定垂直 C .一定平行且相等 D .无法判定6.己知q p q p,,3||,22||==的夹角为︒45,则以q p b q p a 3,25-=+=为邻边的平行四边形的对角线长为 ( )A .15B .15C .14D .167. 将函数y=f(x) 的图象按向量a=(2,-1) 平移得到y = x-3的图象, 则f(x) 的表达式为( )A .y = 3-(x+2)+1 B .y =1312-+xC .y = 132+-xD . y=132--x8. 己知P 1(2,-1) 、P 2(0,5) 且点P 在P 1P 2的延长线上,|2|21PP P P =, 则P 点坐标为( )A .(-2,11)B .()3,34C .(32,3) D .(2,-7) 9.已知A(0,3) 、B(2,0) 、C(-1,3) 与2+方向相反的单位向量是( )A .(0,1)B .(0,-1)C . (-1,1)D .(1,-1) 10.在△ABC 中,sinA :sinB :sinC = m :(m+1) :2m, 则m 的取值范围是( ) A .m >-21 B .m<0 C .m>21D .m>2 11.已知:),5,0(),1,3(=-=且AC ∥OB ,BC ⊥AB ,则点C 的坐标为( )A .(-3,-429) B .(-3,429) C . (3, 429) D .(3,-429) 12.在△ABC 中, 已知C=2B, 则BBsin 3sin 等于 ( )A .a cB .c aC .a bD .ba二、 填空题:(本大题共4个小题, 每小题6分, 共24分)13.己知)3,0(),1,0(==,把向量绕点A 逆时针旋转︒90,得到向量,则向量._______=14.32041||,5||,4||-=-==b a b a ,则b a,的夹角为_______.15.在△ABC 中, 若cosA=53,sinB=135,则cosC=_________.16.已知),2,1(,5||==b a若a ∥b 且方向相反, 则a 的坐标是________.三、解答题:(本大题共6个小题, 共66分)17.(本题10分)已知).1,2(),0,1(==b a① 求|3|b a+;②当k 为何实数时,k -a b 与b a3+平行, 平行时它们是同向还是反向?18.( 本题10分)已知,1||,2||==b aa 与b 的夹角为3π,若向量b k a +2与b a +垂直, 求k.19.( 本题12分)如果△ABC 的三边a 、b 、c 满足b 2 + c 2 = 5a 2,BE 、CF 分别为AC 边与AB 上的中线, 求证:BE ⊥CF.20.( 本题12分)甲船在A 处遇险,在甲船正西南10海里B 处的乙船收到甲船的报警后,测得甲船是沿着方位角118°的方向,以每小时9海里的速度向某岛靠近,如果乙船要在40分钟内追上甲船,则乙船应以多少速度、沿什么方向航行?21.( 本题12分)ΔABC 中,若已知三边为连续正整数,最大角是钝角.①求最大角;②求以它的最大角为内角,夹此角的两边之和为4的平行四边形的最大面积.22.(本题12分)已知三角形的三个顶点是A(4,1),B((7,5),C(-4,7),求ΔABC 的∠A 的平分线AD 的长.高一数学测试题—期中试卷三、 ABDB AAAAC BD四、 13. ( -2,1) 14.6π 15. -6516 16. (-5,-25)五、 17.①b a 3+= (1,0) + 3(2,1) = ( 7,3) , ∴|3|b a+= 2237+=58.②k -a b = k(1,0)-(2,1)=(k -2,-1). 设k -a b =λ(b a3+),即(k -2,-1)= λ(7,3),∴⎩⎨⎧=-=-λλ3172k ⎪⎩⎪⎨⎧-=-=⇒3131λk . 故k= 31-时, 它们反向平行.18.3cos ||||πb a b a =⋅=2×1×21=1. ∵b k a+2与b a +垂直,∴(b k a +2))(b a +⋅= 0 , ∴20222=++⋅+b k b a k b a a ⇒ k = - 5.,0)5(81)5(81)](21)(21)(21[41)(41)(21),(2122222222222222222=-+=-+=-+---++-+-=⋅--⋅+⋅-=⋅∴+=+=a c b CB CA BC BC AC AB AC BC BA BCAC AB BC BA CF BE CA CB CF BC BA BE∴BE ⊥CF , 即 BE ⊥CF .20. 以21海里/小时, 沿东偏北︒6647’ 航行.21. 解:①设a= n -1,b= n, c= n+1,n ∈N,且n>1. ∵C 为钝角,∴ cosC = abc b a 2222-+ = )1(24--n n <0. ∵1<n<4 , n ∈N, ∴ n= 2 或3.当n=2时, a=1,b=2,c=3,不能构成三角形. 当n= 3时,a= 2,b= 3,c= 4. cosC=-41, 由查表或计算器得最大角C=118°29'. ②设夹角C 的两边为x,y,则x+y=4, 则平行四边形的面积S= xysinC=x(4-x)×415, ∴ 当x = 2时, S max = 15. 注:余弦定理可以判断三角形中的角是锐角,钝角或直角. cosA>0,则∠A 为锐角,cosA<0,则∠A 为钝角,cosA=0,则∠A 为直角.22. 分析:要求AD 的长,关键在于求出D 点坐标,而由平面几何中三角形内角平分线性质定理有|AC|:|AB|=|CD|:|DB|可求出D 点分CB 所成的比,再由定比分点公式即可求出D 点坐标.解:∵||=5)15()47(22=-+-, ||=22)17()44(-+--又λ= =510= 2. ⎪⎩⎪⎨⎧=+⨯+==+⨯+-=∴317215273102172400y x 即D(310,317)因此 ||AD =2310)3171()3104(22=-+-注:在本例中还可以求出∠A 的外角平分线与CB 延长线的交点坐标等.。

(完整版)高一数学必修4《平面向量》测试卷(含答案),推荐文档

(完整版)高一数学必修4《平面向量》测试卷(含答案),推荐文档

A
B
《平面向量》答案解析
19.解:(1)由题意知则AB (3,5), AC (1,1),
一.选择题.(本大题共 12 小题,每小题 5 分,共 60 分)
AB AC (2, 6), AB AC (4, 4)
BDBAD BAADC AB
AB AC 2 10, AB AC 4 2
A. a b c d 0
B. a b c d 0
a b mq np .下列说法错误的是( )
C. a b c d 0
D. a b c d 0
A.若 a与b 共线,则 a b 0
B. a b b a
7.若 a (我2,3)去,b 人(4也,7) ,就则有b在a人方向!上为的投U影R为扼(腕入)站内信不存在向你偶同C.意R调, 都剖有 (沙a)龙b 课 (反a 倒b) 是龙卷风D.前(a 一b)2天 (a我b)2分 a页2 b符2 ZNBX吃噶十
16.已知正方形 ABCD 的边长为1,点 E 是 AB 边上的动点,则 DE CB 的值为
(3)若点 M 为直线 OD 上的一个动点,当 MA MB 取最小值时,求 OM 的坐标.
, DE DC 的最大值为
.
三.解答题.(本大题共 6 小题,其中 17 题 10 分,其余 5 个小题每题 12 分,共 70
AB AD
建议收藏下载本文,以便随时学习!
(2)设C则(由x, 得y), AD BC (3,3) (x 3, y 2)
x 0, y 5
C (0, 5)
(3)设M则(a,b), OM (a,b),OD (1, 4)
O, M , D三点共线
a b 1 4
b 4a
MA MB (2 a,1 b) (3 a, 2 b)

高一平面向量试题及答案

高一平面向量试题及答案

高一平面向量试题及答案一、选择题1. 若向量a和向量b不共线,则向量a+向量b与向量a-向量b也一定不共线。

()A. 正确B. 错误答案:B解析:向量a和向量b不共线,说明它们之间的角度不为0°或180°。

然而,向量a+向量b与向量a-向量b之间的角度可能为0°或180°,因此它们可能共线。

2. 若向量a=(3,-4),向量b=(x,y),且向量a·向量b=-5,则x+y的值为()。

A. 1B. 3C. 5D. 7答案:A解析:根据向量的数量积公式,向量a·向量b=3x-4y=-5。

由于向量a和向量b不共线,我们可以得出x=1,y=-2,因此x+y=1。

3. 若向量a=(1,2),向量b=(-2,4),则向量a+向量b的坐标为()。

A. (-1,6)B. (3,6)C. (-1,2)D. (3,2)答案:A解析:向量a+向量b的坐标可以通过对应分量相加得到,即(1-2,2+4)=(-1,6)。

二、填空题4. 若向量a=(2,3),向量b=(-1,λ),且向量a与向量b 垂直,则λ的值为______。

答案:-3解析:向量a与向量b垂直,说明它们的数量积为0,即2*(-1)+3*λ=0,解得λ=-3。

5. 若向量a=(x,y),向量b=(1,2),且|向量a|=|向量b|,则x和y的值分别为______。

答案:1,2 或 -1,-2解析:由于|向量a|=|向量b|,我们有√(x²+y²)=√(1²+2²),即x²+y²=5。

这个方程有两个解:x=1,y=2 或 x=-1,y=-2。

三、解答题6. 已知向量a=(3,-4),向量b=(6,8),求向量a和向量b的夹角θ。

答案:首先,计算向量a和向量b的数量积:向量a·向量b=3*6+(-4)*8=18-32=-14。

接着,计算向量a和向量b的模:|向量a|=√(3²+(-4)²)=5,|向量b|=√(6²+8²)=10。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.正六边形中,()A.B.C.D.【答案】D【解析】故选D2.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略3.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.4.(本小题满分10分)已知向量,,且,(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.【答案】(1),;(2)【解析】(1)首先根据向量积的坐标表示,然后再根据两角和的余弦公式进行化简,求向量的模,根据公式,展开公式,然后按照向量数量积的坐标表示和二倍角公式进行化简;(2),第一步先按二倍角公式展开,转化为关于的二次函数求最值,第二步,进行换元,配方,所以讨论,,三种情况,得到最小值,确定参数的取值.试题解析:(1),(2分)|,因为所以.(2)令因为,.∴原函数可化为①当,,即(不合题意,舍去).②当时,,即或(不合题意,舍去).③当时,矛盾.综上所述.【考点】1.向量数量积的坐标表示;2.三角函数的化简;3.二次函数求最值.5.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.6.已知屏幕上三点满足,则的形状是()A.等腰三角形B.对边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】设的中点为,则,为等腰三角形.故选A.【考点】(1)三角形的形状判断;(2)平面向量数量积的运算.7.在中,设,若点满足,则A.B.C.D.【答案】A【解析】由得,,答案选A.【考点】向量的线性运算8.已知,,若与垂直,则等于()A.1B.C.2D.4【答案】C【解析】,因为与垂直,则,【考点】(1)平面向量的数量积(2)向量的模9.如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.【答案】(1);(2);【解析】(1)根据中点坐标公式求出B点坐标,再利用向量数量积坐标式表示出即可;(2)结合已知图形,求出B点坐标,再求出C点坐标,然后写出OC所在直线方程,最后根据点到直线距离公式即可求出点A到OC的距离.试题解析:(1)点在轴正半轴上,,又点是线段的中点,,,;(2),,由点是线段的中点,,直线的方程为,即,点到直线的距离.【考点】1.中点坐标公式;2.向量数量积的坐标式;3.点到直线距离;10.(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值;(Ⅱ)若向量与的夹角为锐角,求的取值范围【答案】(1)(2)且【解析】(1)本题考察的是两向量的平行,可以先根据条件写出两个向量与的坐标,利用平行向量的条件,即可求出的值.(2)因为向量与的夹角为锐角,则向量的数量积大于0且不共线,根据条件代入公式即可求出的取值范围.试题解析:(Ⅰ)依题意得-------2分∵向量与平行∴,解得(Ⅱ)由(2)得∵向量与的夹角为锐角∴,且∴且【考点】平面向量的综合题11.若,则向量的夹角为()A.B.C.D.【答案】C【解析】因为,设与的夹角为,,则,故选C.【考点】数量积表示两个向量的夹角12.已知向量,,若,则代数式的值是()A.B.C.D.【答案】C【解析】因为向量,,,所以,解得,而=,故选择C【考点】1.共线向量的坐标表示;2.同角函数基本关系式13.如图,在正方形中,,点为的中点,点在边上.若,则.【答案】【解析】以A为坐标原点,AB为x轴,AD为y轴建立直角坐标系,则,可得,即,所以【考点】向量坐线性运算14.已知向量,,若⊥,则实数的值为()A.B.C.-D.2【答案】A【解析】两向量垂直,所以数量积为0,代入公式,解得,故选A.【考点】向量数量积的坐标表示15.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.【答案】(1)2 (2)【解析】(1)由两向量垂直得到数量积为零,代入向量的坐标可得到关于的关系式,将其整理可得到的值;(2)将转化为用角的三角函数表示,求向量的模的最大值转化为求函数最大值问题,求解时要注意正余弦值的范围试题解析:(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),又a与b-2c垂直,∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,∴4sin(α+β)-8cos(α+β)=0,得tan(α+β)=2.(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),∴|b+c|=当sin2β=-1时,|b+c|==4.max【考点】1.向量的坐标运算;2.向量的模;3.三角函数化简16.设为所在平面内一点,,则()A.B.C.D.【答案】A【解析】,.故A正确.【考点】平面向量的加减法.17.已知向量,且∥,则的最小值等于A.B.C.D.【答案】B【解析】由知,即,则.【考点】平面向量的坐标运算及用基本不等式求最值.18.已知的夹角为,则【答案】【解析】.【考点】1.向量的模;2.向量的内积.19.平面向量与的夹角为60°,=(2,0),=1,则|+2|等于()A.B.C.4D.12【答案】B【解析】【考点】向量的模与向量运算20.(本小题满分12分)已知平面向量,.(1)若,求的值;(2)若,求|-|.【答案】(1)(2)【解析】(1)由得到坐标关系式,代入相应坐标即可得到的值;(2)由直线平行得到坐标满足的的关系式,求得x值后,将向量用坐标表示,利用坐标求向量的模试题解析:(1)即(2)即当时,当时,【考点】1.向量平行垂直的判定;2.向量的模21.(本题满分15分)已知,,是同一平面上不共线的三点,且.(1)求证:;(2)若,求,两点之间的距离.【答案】(1)详见解析;(2).【解析】(1)将条件当中的式子变形,利用向量数量积的定义证明是等腰三角形即可;(2)根据(1)中所证再结合等腰三角形的性质,可将转化为与有关的方程,从而求解.试题解析:(1)由得,设为的中点,则,从而有,即,由于为的中点,且,因此由“三线合一”性质可知;(2)由(1)可知,,故,即,两点之间的距离为.【考点】1.等腰三角形的性质;2.平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.22.已知为非零向量,且,,则下列说法正确的个数为()(1)若,则;(2)若,则;(3)若,则;(4)若,则.A.1B.2C.3D.4【答案】D【解析】(1)因为,,,均为非零向量,且,所以,必不共线,则,表示以是,为邻边的平行四边形的两条对角线,且该平行四边形为菱形,所以,,故(1)正确;(2),所以,故(2)正确;(3)若,则必不共线,所以以为邻边的平行四边形是矩形,所以,故(3)正确;(4)若非零向量满足,即,则以为邻边的平行四边形是矩形,所以,故(4)正确.【考点】向量加法、减法的几何意义,数量积的运算性质和向量垂直的条件.23.(2015秋•大兴安岭校级期末)已知向量=(1,2),=(2,2).(1)求(2﹣)•(2+);(2)设=(﹣3,λ),若与夹角为钝角,求λ的值.【答案】(1)12;(2)λ>﹣,且λ≠6.【解析】(1)向量的坐标运算和向量的数量积的坐标运算计算即可,(2)若与夹角为钝角,则则•<0,问题得以解决.解:(1)∵=(1,2),=(2,2),∴2﹣=(2﹣2,4﹣2)=(0,2),2+=(2+2,4+2)=(4,6),∴(2﹣)•(2+)=0×4+2×6=12;(2)若与夹角为钝角,则•<0,•=(﹣3,λ)•(1,﹣2)=﹣3﹣2λ<0,即λ>﹣,且与不能方向,即﹣3×(﹣2)﹣λ≠0,解得λ≠6,故λ的范围为λ>﹣,且λ≠6.【考点】平面向量数量积的运算;平面向量的坐标运算.24.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.25.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-B.C.D.【答案】C【解析】,所以设与的夹角为.,,.故C正确.【考点】1向量的数量积;2向量的模长.【易错点睛】本题主要考查向量的数量积和模长问题,难度一般.先由向量的数量积公式求得夹角的余弦值,由余弦值可求得角的大小.但应注意两向量的夹角范围为,若忽略角的范围容易出错.26. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.27.已知,,,且与垂直,则实数λ的值为()A.B.C.D.1【答案】C【解析】由,所以,然后根据与垂直,展开后由其数量积等于0可求解λ的值.解:因为,所以,又,,且与垂直,所以==12λ﹣18=0,所以.故选C.【考点】数量积判断两个平面向量的垂直关系.28.(2015秋•嘉兴期末)已知向量是同一平面内的三个向量,其中.(1)若,且向量与向量反向,求的坐标;(2)若,且,求与的夹角θ.【答案】(1).(2).【解析】(1)令,根据模长关系列方程解出λ;(2)将展开求出,代入夹角公式计算.解:(1)设∵∴,∴.(2)∵||=,,∴2=5,2=.∵,∴22+3﹣22=+3=,∴.∴,∴.【考点】平面向量数量积的运算;平面向量的坐标运算.29.已知向量.(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.【答案】(1)3y﹣x≠1(2)或【解析】(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值解:(1)若点A,B,C能构成三角形,则这三点不共线,∵∴=(3,1),=(2﹣x,1﹣y),又与不共线∴3(1﹣y)≠2﹣x,∴x,y满足的条件为3y﹣x≠1(2)∵=(3,1),=(﹣x﹣1,﹣y),若∠B为直角,则AB⊥BC,∴3(﹣x﹣1)﹣y=0,又|AB|=|BC|,∴(x+1)2+y2=10,再由3(﹣x﹣1)﹣y=0,解得或.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.30.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6B.6C.3D.﹣3【答案】B【解析】根据与垂直的条件,得到数量积等于0,求变量K的值,展开运算时,用到|a|=|b|=1,a与b夹角是90°代入求解.解:∵×=(2+3)×(k﹣4)=2k+(3k﹣8)×﹣12=0,又∵×=0.∴2k﹣12=0,k=6.故选B【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.31.已知.(1)若,求的坐标;(2)设,若,求点的坐标.【答案】(1);(2).【解析】(1)由可求得的坐标,再利用向量的运算用表示出,从而求得的坐标;(2)可假设,能求的的坐标,由可得关系式,,将此关系式转化成关于的方程,求出,从而得到点的坐标.试题解析:(1)(2)设则,,解得因此,点的坐标为【考点】向量的运算.32.在中,,,,下列推导不正确的是()A.若,则为钝角三角形B.,则ΔABC为直角三角形C.,则为等腰三角形D.,则为正三角形【答案】D【解析】A中,由可知,,得为钝角三角形;B中,由可知,,得为直角三角形;C中,由知得,,,,则为等腰三角形;D中,,总是成立,不能得到为正三角形.故选D.【考点】平面向量的数量积.33.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1B.1:2C.1:3D.1:4【答案】B【解析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.【考点】向量的加法及其几何意义.34.如图,已知:,为的中点,为以为直径的圆上一动点,则的最大值是()A.B.C.D.【答案】A【解析】以直线为轴,圆心为坐标原点建立如图所示的直角坐标系,则,所以,,设,则,,其中(,),所以的最大值为.故选A.【考点】平面向量的线性运算,平面向量的数量积.【名师】本题考查平面向量的数量积,解题的关键是建立适当的直角坐标系,把向量用坐标表示出来.本题中建立如解析中所示的坐标系后,可以把表示出来了,引入圆的参数方程表示法,可以把向量用参数表示,这样就可两向量的数量积表示为的函数:,由三角函数的性质可求得最大值.35.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于 ( ) A.B.C.-D.-【答案】A【解析】,而,代入原式得到,整理为,即为,所以,故选A.【考点】向量36.设是平行四边形的对角线的交点,为平面上任意一点,则= A.B.C.D.【答案】D【解析】由已知得,,,,,而,,所以.故选D.【考点】平面向量的加法;相反向量.37.已知的三个顶点及所在平面内一点,若,若实数满足,则()A.B.3C.-1D.2【答案】B【解析】根据向量减法的运算法则可得所以,又因为,所以,故选B.【考点】平面向量的线性运算.38.在四边形中,设且,,则四边形的形状是()A.梯形B.矩形C.菱形D.正方形【答案】B【解析】,,故四边形为平行四边形,又因为,,,故平行四边形为矩形.【考点】向量加法、减法的几何意义.39.已知向量,,,若∥,则= .【答案】 5;【解析】由题:,, ,∥,则:【考点】向量的坐标运算及平行的性质.40.已知非零向量、,且,,,则一定共线的三点是()A.、B.、C.、、D.、【答案】A【解析】根据三点共线的性质,、;、、皆不可能共线,只有、,、有可能共线,假设、共线,,令,可求得,、共线成立,假设、共线,,令,无解,假设不成立,故本题的正确选项为A.【考点】三点共线的证明.【方法点睛】证明三点共线的方法有多种,有向量法,因为共线的三点中任意连接两点所成向量必共线,而由共线向量的性质可知,当两向量共线时(两向量均不为零向量),其对应坐标成比例或者满足,以此来判断三点是否共线;也可建立坐标系,由其中两点确定一条直线,再将第三点代入直线方程,看其是否在直线上;三点钟任意连接两点,可形成三个向量,通过三个向量的模长的关系也可判断三点是否共线.41.已知,点是线段上的点,,则点的坐标为()A.B.C.D.【答案】D【解析】假设,则有,所以有,可求得,故本题的正确选项为D.【考点】三点共线的性质.42.设和是两个单位向量,夹角是,试求向量和的夹角.【答案】.【解析】本题考查的知识点是数量积表示两个向量的夹角,由和是两个单位向量,夹角是,我们易得,,进而我们可以求出,,,然后代入,即可求出答案.试题解析:,,,.,,故.【考点】数量积表示两向量的夹角.43.已知点,,,,则向量在方向上的投影为【答案】【解析】,,则向量在方向上的投影为.【考点】向量数量积的几何意义.44.下列四个式子中可以化简为的是()①②③④A.①④B.①②C.②③D.③④【答案】A【解析】由向量加法三角形法则可知①正确,由向量减法的三角形法则可知④正确,故选A.【考点】向量加法、减法的三角形法则.45.已知向量满足:(1)求向量与的夹角(2)求【答案】(1)(2)【解析】(1)设向量的夹角为θ,求出,展开,代入后求得θ值;(2)利用,展开后求得答案试题解析:(1)设向量与的夹角为,,,得,(2)【考点】平面向量数量积的运算46.在菱形中,若,则等于()A.2B.-2C.D.与菱形的边长有关【答案】B【解析】由题在菱形中,若,由,【考点】向量的运算及几何意义.47.已知是两个单位向量.(1)若,试求的值;(2)若的夹角为,试求向量与的夹角【答案】(1)(2)【解析】(1)由题为单位向量,且,可利用向量乘法运算的性质;,化为向量的乘法运算,求出,进而可求得(2)由的夹角为,可利用向量乘法的性质,分别先求出的值,再利用可得.试题解析:(1),是两个单位向量,,又,,即.(2),,,夹角 .【考点】向量的乘法运算及性质.48.设向量,若,则.【答案】【解析】由题//,可得:【考点】向量平行的性质.49.已知向量=(3,x),=(﹣2,2)(1)若向量⊥,求实数x的值;(2)若向量﹣与3+2共线,求实数x的值.【答案】(1)x=3(2)x=﹣3【解析】解:(1)∵⊥,∴•=﹣6+2x=0,解得x=3.(2)﹣=(﹣5,2﹣x),3+2=(7,3x+2).∵﹣与3+2共线,∴7(2﹣x)+5(3x+2)=0,解得x=﹣3.【点评】本题考查了向量坐标运算性质、向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.50.若,且,则向量与的夹角为A.30°B.60°C.120°D.150°【答案】C【解析】由,则;,得:与的夹角为120°。

(完整版)平面向量测试题(含答案)一

(完整版)平面向量测试题(含答案)一

必修 4 第二章平面向量教学质量检测一.选择题( 5 分× 12=60 分) :1.以下说法错误的是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是()A .(AB+CD)+BC;B .(AD+MB)+(BC+CM);C.MB+AD-BM; D .OC-OA+CD;3.已知a =( 3, 4),b =( 5, 12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、 b 均为单位向量 ,它们的夹角为60°,那么 |a+ 3b| =()A .7B.10C.13D. 45.已知 ABCDEF 是正六边形,且AB = a , AE = b ,则BC=()( A )12( a b) (B)12(b a ) (C) a +12b(D)12(a b)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5 a- 3 b , 则下列关系式中正确的是()(A)AD=BC(B)AD=2BC(C)AD=-BC(D)AD=-2BC7.设e1与e2是不共线的非零向量,且k e1+e2与e1+ k e2共线,则 k 的值是()( A) 1(B)-1(C)1(D)任意不为零的实数8.在四边形ABCD中,AB=DC,且AC·BD= 0,则四边形ABCD是()( A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知 M (- 2, 7)、 N( 10,- 2),点 P 是线段 MN 上的点,且PN =-2PM,则P点的坐标为()( A )(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知a=( 1,2),b=(- 2,3),且 k a + b与a- k b垂直,则k=()(A)12(B) 21(C) 2 3(D) 32r r(2 x 3, x) 互相平行,其中r r)11、若平面向量a(1, x) 和 b x R .则a b (A.2或0;B.25;C.2或2 5;D. 2或10.12、下面给出的关系式中正确的个数是()① 0 a0 ② a b b a ③a2 a 2④(a b )c a (b c)⑤a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 (5 分× 5=25 分 ):13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3, 4), b (2,3) ,则 2 | a | 3a b.15、已知向量 a 3, b (1,2) ,且a b ,则a的坐标是_________________。

(完整版)高一数学平面向量期末练习题及答案

(完整版)高一数学平面向量期末练习题及答案

平面向量一、选择题:本大题共10 小题,每题 5 分,共 50 分。

1、以下向量组中能作为表示它们所在平面内全部向量的基底的是()A.a(0,0)b(1,2)B.a(1,2)b( 2,4)C.a(3,5)b( 6,10)D.a(2, 3)b(6,9)2、若 ABCD是正方形, E 是 CD 的中点,且AB a , AD b ,则 BE =()A.b 1B.b1C. a11ba a bD. a2222r r r r r rr r rr r3 、若向量(a a)ba 与b 不共线, a b0 ,且c a r r,则向量 a 与 c 的夹角为a b()A.πB.πC.πD. 02634 、设i,j是相互垂直的单位向量,向量a(m1)i 3 j , b i(m 1) j ,(a b) ( a b),则实数m为()A. -2B. 2C.1D.不存在25、在四边形 ABCD中,AB a 2b ,BC4a b ,CD5a3b ,则四边形ABCD的形状是()A.长方形B.平行四边形C.菱形D.梯形6、下列说法正确的个数为()(( a) b(a b) a ( b)| a b | | a | | b |( a b) c a c b c 1);( 2);( 3)(4)( a b) c a (b c)5a, b,c为同一平面内三个向量,且 c 为非零向量,;()设a, b不共线,则 (b c)a (c a)b 与c垂直。

A. 2 B. 3 C. 4 D. 57、在边长为 1 的等边三角形ABC 中,设,,,则a b b c c aBC a CA b AB c的值为(3B.3C. 0D. 3A.228、向量a =( -1,1),且a与a +2 b方向同样,则a b 的范围是()A.( 1, +∞)B.( -1,1)C.( -1,+∞)D.( -∞, 1)9、在△ OAB 中,OA =( 2cosα, 2sinα),OB =(5cosβ, 5sinβ),若OA OB =-5,则 S△OAB=()A.3B.3353C. 5D.2 210、若非零向量a、b知足| a b | | b |,则()A. | 2b | | a2b |B. | 2b | | a 2b |C.| 2a | | 2a b |D. | 2a | | 2a b |二、填空题:本大题共 4 小题,每题 5 分,共20 分。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是;【答案】【解析】略2.已知平面向量,且∥,则()A.-3B.-9C.9D.1【答案】B【解析】由两向量平行坐标间的关系可知【考点】向量平行的性质3.(12分)已知向量,令且的周期为.(1)求函数的解析式;(2)若时,求实数的取值范围.【答案】(1)(2).【解析】(1)本题考察的是求函数解析式,本题中根据平面向量的数量积,再结合辅助角公式进行化简,又的周期为,可以求出从而求出的解析式.(2)本题考察的是求参数的取值范围问题,本题中根据所给的定义域求出的值域,再根据不等式恒成立问题即可求出参数的取值范围.试题解析:(1)∵的周期为∴(2),则【考点】(1)辅助角公式(2)三角函数的值域4.在边长为的正三角形中,设,,若,则的值为A.B.C.D.【答案】D【解析】由已知可得:D为BC中点,,又因为在边长为的正三角形中,所以,故解得,故选择D【考点】平面向量的线性运算5.若向量满足:,,,则 .【答案】【解析】【考点】向量垂直与向量的坐标运算6.设,向量,,且,∥,则______________.【答案】【解析】因为,∥,所以有即,,所以【考点】向量坐标运算7.向量a=,b=,则A.a∥bB.C.a与b的夹角为60°D.a与b的夹角为30°【答案】B【解析】根据两向量平行坐标表示公式“”可得A错误;根据两向量垂直的坐标表示公式“”可得B正确;根据B可知两向量夹角为,所以C,D错误,故选择B【考点】向量线性关系8.如图所示,D是△ABC的边AB上的中点,则向量A.B.C.D.【答案】A【解析】因为,故选择A【考点】向量的加减法运算9.设是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,,则动点P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【答案】D【解析】,,,,则动点的轨迹一定通过的垂心.故C正确.【考点】1向量的加减法;2数量积;3向量垂直.10.已知向量则x=【答案】6【解析】由题意可得,解得.【考点】向量共线.11.(2015秋•友谊县校级期末)已知△ABC和点M满足+=﹣,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】作出图象,由向量加法的平行四边形法则可知M是△ABC的重心,故,代入m+m=可解出m.解:以MB,MC为邻边作平行四边形MBEC,连结ME交BC于D,如图.则,∵+=﹣,∴M在线段AD上,且|MA|=2|MD|,∵D是BC中点,∴=2=3,∵m+m=,∴3m=,∴m=.故选C.【考点】平面向量的基本定理及其意义.12.已知点(1)求证:恒为锐角;(2)若四边形为菱形,求的值【答案】(1)证明见解析(2)2【解析】(1)只需证明且三点不在一条直线上即可;(2)利用菱形的定义可求得坐标,进而求出所求的值.试题解析:(1)∵点∴∴.若A,P,B三点在一条直线上,则,得到,此方程无解,∴∴∠APB恒为锐角.(2)∵四边形ABPQ为菱形,∴,即,化简得到解得设Q(a,b),∵,∴,∴【考点】平面向量数量积的运算13.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.14. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.15.已知,,,则=()A.﹣8B.﹣10C.10D.8【答案】B【解析】向量的数量积的运算和向量的模即可求出.解:,,,∴=+|+2=16+25+2=21,∴=﹣10,故选:B.【考点】平面向量数量积的运算.16.已知||=1,||=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设=m+n,则=()A.B.2C.D.1【答案】B【解析】可画出图形,由可得到,根据条件进行数量积的运算便可得到,从而便可得出关于m,n的等式,从而可以求出.解:如图,由的两边分别乘以得:;∴;∴得:;∴;∴.故选:B.【考点】向量在几何中的应用.17.已知正方形的边长为2,点是边上的中点,则的值为()A.1B.2C.4D.6【答案】B【解析】以为原点,所在直线为轴建立直角坐标系,则,.【考点】向量数量积的坐标表示.18.=(2,3),=(﹣3,5),则在方向上的投影为.【答案】【解析】由已知向量的坐标求出与,代入投影公式得答案.解:∵=(2,3),=(﹣3,5),∴,,则=.故答案为:.【考点】平面向量数量积的运算.19.已知向量,满足||=1,||=2,与的夹角为120°.(1) 求及+;(2)设向量+与-的夹角为θ,求cosθ的值.【答案】(1);;(2).【解析】(1)根据向量的数量积的运算公式;以及;(2)根据公式,根据数量积公式,再根据公式试题解析:解析:(1)=||||cos 120°θ=1×2×(-)=-1,所以|+|2=(+)2=2+2+2=12+22+2×(-1)=3.所以|+|=(2)同理可求得|-|=.因为(+)(-)=2-2=12-22=-3,所以cosθ===-.所以向量+与-的夹角的余弦值为-.【考点】向量数量积20.(1)在直角坐标系中,已知三点,当为何值时,向量与共线?(2)在直角坐标系中,已知为坐标原点,,,当为何值时,向量与垂直?【答案】(1);(2).【解析】首先根据向量减法的线性运算得到向量与的坐标,当与共线时坐标交叉积的差等于零,当与垂直是数量积等于零,从而列出的方程,即可求得满足条件的的值.试题解析:(1)∵,又向量与共线,∴,解得(2),当向量与垂直时,,即,解得【考点】向量的线性运算及平行与垂直的坐标表示.21.已知a,b为非零向量,且|a+b|=|a|+|b|,则一定有()A.a=b B.a∥b,且a,b方向相同C.a=-b D.a∥b,且a,b方向相反【答案】B【解析】根据向量加法的几何意义, a,b方向相同,方向相同即是共线向量.【考点】向量加法的几何意义.22.已知向量.(1)若点三点共线,求的值;(2)若为直角三角形,且为直角,求的值.【答案】(Ⅰ)-19;(Ⅱ)1.【解析】(Ⅰ)根据向量的减法运算和向量平行的充要条件即可解得;(Ⅱ)根据向量的减法运算和向量垂直的充要条件即可解得.试题解析:解:(Ⅰ)∴,.(Ⅱ),则,∴,【考点】向量的减法运算;向量平行和垂直的充要条件.23.平面内有一个和一点,线段的中点分别为的中点分别为,设.(1)试用表示向量;(2)证明线段交于一点且互相平分.【答案】(1),,;(2)证明见解析.【解析】(1)根据向量的加法、数乘的几何意义,以及向量加法的平行四边形法则,并进行向量的数乘运算便可得到,从而同理可以用分别表示出;(2)设线段、的中点分别为,用分别表示出,从而可得,即证得线段交于一点且互相平分.试题解析:(1),.(2)证明:设线段的中点为,则,设中点分别为,同理:,,∴,即其交于一点且互相平分.【考点】1、向量的三角形法则;2、向量的线性运算.【方法点睛】本题考查向量加法、数乘的几何意义,向量加法的平行四边形法则,以及向量的数乘运算,三角形中位线的性质,平行四边形的判定,平行四边形的对角线相交于一点且互相平分,考查学生逻辑推理能力,属于中档题.另一种解法:(1);同理,;(2)证明:如图,连接,则,且,,且,∴,且,∴四边形为平行四边形,∴线段交于一点且互相平分,同理,线段交于一点且互相平分,∴线段交于一点且互相平分.24.已知是两个非零向量,当的模取最小值时.①求的值;②已知与共线且同向,求证:与垂直.【答案】①;②证明见解析.【解析】(1)设出两个向量的夹角,表示出两个向量的模长,对于模长形式,通常两边平方,得到与已知条件有关的运算,整理成平方形式,当底数为零时,结果最小;(2)本题要证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,求两个向量数量积,根据上一问做出的结果,代入数量积的式子,合并同类项,得到数量积为零.得到垂直.试题解析:①令,则.当时,.②证明:与共线且同向,,,,.【考点】(1)向量的模;(2)数量积判断两个向量的垂直关系.【方法点晴】本题主要考查模长形式,通常两边平方以及证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,因为在本题中主要是数学符号的运算,所以对学生的运算能力要求较高,属于难题.启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.25.已知,在方向上的投影为,则()A.3B.C.2D.【答案】B【解析】由在方向上的投影为,则,所以,故选B.【考点】向量的数量积及向量的投影的应用.26.给出下列命题:(1)若,则;(2)向量不可以比较大小;(3)若则;(4).其中真命题的个数为()A.1B.2C.3D.4【答案】B【解析】由题意得,(1)中,例如,此时,但,所以不正确;(2)中,向量是既有大小又有方向的量,所示向量不能比较大小,所以(2)是正确的;(3)中,根据相等向量的概念,可得“若则”是正确的;(4)中,由,则是成立的,但由,则与是相等向量或相反向量,所以不正确,综上所述,正确命题的个数为个,故选B.【考点】向量的基本概念.【方法点晴】本题主要考查了平面向量的基本的概念——向量的模、相等向量、向量的概念、共线向量及相反向量的概念,其中牢记平面向量的基本概念是判断此类问题的关键,试题很容易出错,属于易错题,本题的解答中,(4)中,,容易忽视相反向量的概念,造成错解,应牢记向量是既有大小又有方向的量这一基本概念,防止出错.27.已知向量,若,则=()A.B.C.D.【答案】A【解析】,.故选A.【考点】数量积的坐标运算.28.已知向量,.(1)若四边形ABCD是平行四边形,求的值;(2)若为等腰直角三角形,且为直角,求的值.【答案】(1);(2)或.【解析】(1)根据四边形为平行四边形,利用,即可求解的值;(2)利用为等腰直角三角形,且为直角,则且,列出方程,即可求解的值.试题解析:(1),,由得x=-2,y=-5.(2),若为直角,则,∴,又,∴,再由,解得或.【考点】向量的运算及向量的垂直关系的应用.29.(1)已知,,且与的夹角为60°,求的值;(2)在矩形中,,点为的中点,点在边上,若,求的值.【答案】(1);(2).【解析】(1)利用向量模的平方等于向量的平方,即可化简,即可求解的值;(2)设,利用,求得的值,又由,,即可运算的值.试题解析:(1) =169,得;(2)矩形ABCD中,∵点F在边CD上,∴设,,本小题也可建坐标系,用平面向量坐标运算解决.【考点】向量的模的计算及向量数量积的运算.30.已知三角形△ABC中,角A,B,C的对边分别为,若,则 =()A.B.C.D.【答案】C【解析】【考点】向量的坐标运算31.已知向量与的夹角为,||=2,||=3,记,(1)若,求实数k的值。

高一平面向量练习题

高一平面向量练习题

高一平面向量测试题一、选择题:1.下列向量组中能作为表示它们所在平面内所有向量的基底的是 ( ) A .)0,0(=a)2,1(-=bB .)2,1(-=a)4,2(-=bC .)5,3(=a )10,6(=bD .)3,2(-=a)9,6(=b2.已知向量)3,2(=→a ,)2,1(-=→b ,若→→+b n a m 与 →→-b a 2共线,则nm等于( ) A .21-; B .21; C .2-;D .2;3.已知两个非零向量22),2,3(),6,3(,b a b a b a b a --=--=+则与=( )A .-3B .-24C .21D .12。

4. 在四边形ABCD 中,2+=,--=4,35--=,则四边形ABCD的形状是( )A .长方形 B .平行四边形 C.菱形 D.梯形 5.已知向量a =(x ,y), b =( -1,2 ),且a +b =(1,3),则a 等于( ) A . 2 B . 3 C. 5 D. 106.已知向量a = (-3 ,2 ) , b =(x, -4) , 若a//b ,则x=( )A 4B 5C 6D 77.下列式子中(其中的a 、b 、c 为平面向量),正确的是( )A.=-B.a (b ·c )= (a ·b )cC.()()(,)a a λμλμλμ=∈R D .00=⋅ 8. 已知向量b a b a b a b a 与则满足,37|2|,3||,2||,=+==的夹角为( )A .30°B .45°C .60°D .90°9.已知向量等于则垂直与若a b a n b n a,),,1(),,1(-==( )A .1B .2C .2D .4 10.(2,1),(3,4)a b →→==,则向量a b →→在向量方向上的投影为 ( )A. B . 2C .D .1011.,,3AB a AC b BD DC ===,用,a b 表示AD ,则AD = ( ) A .34a b + B .1344a b + C .1144a b + D .3144a b +12.若平面向量b 与向量a =(1,-2)的夹角是180, 且b 3=, 则b 等于( ).A. (3,6)-B. (3,6)-C. (6,3)-D. (6,3)-AB CD12.已知→a =2,→b =3,→→-b a =7,则向量→a 与向量→b 的夹角是( )A .6πB .4πC .3π D .2π 13.已知非零单位向量a 、b 满足a b a b +=-,则a 与b a -的夹角是( )A .3π4B .π3C .π4D .π614.已知)1,6(),2,3(-==,而)()(λλ-⊥+,则λ等于( )A .1或2B .2或-12C . 2D .以上都不对15.21,e e 是平面内不共线两向量,已知2121213,2,e e e e e k e -=+=-=,若D B A ,,三点共线,则k 的值是( ) A .2 B .3- C .2- D .316.已知向量(2,2),(5,)a b k =-=,若a b +不超过5,则k 的取值范围是( ) A .[-4,6] B. [-6,4] C. [-6,2] D. [-2,6]17.设、是非零向量,)()()(,b x a b a x x f R x -⋅+=∈若函数的图象是一条直线,则 必有( ) A .⊥ B .//C .||||=D .||||≠18.在△ABC 中,已知D 是AB 边上一点,若λλ则则,31,2CB CA CD DB AD +===( )A .32B .31 C .-31 D .-32二、填空题:1.已知i 与j 为互相垂直的单位向量,2a i j =-,b i j λ=+且a 与b 的夹角为锐角,则实数λ的取值范围是2.设向量a 与b 的模分别为6和5,夹角为120°,则||a b +等于 3 已知向量1(3,2),(5,1),2OM ON MN =-=--则等于4 已知平面内三点(2,2),(1,3),(7,)A B C x BA AC ⊥满足,则x 的值为5 设12e e 、是两个单位向量,它们的夹角是60,则1212(2)(32)e e e e -⋅-+=6.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线, 则k = .7.若向量)4,3(-=a ,则与a平行的单位向量为________________ , 与a垂直的单位向量为______________________。

高一平面向量综合练习题及答案

高一平面向量综合练习题及答案

平面向量练习题一、选择题(本题有8个小题,每小题5分,共40分)1.已知a =(1,-2),b =(1,x),若a ⊥b ,则x 等于 ( )A .21 B. 21- C. 2 D. -2 2.已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为A .17B .18C .19D .20 3.已知向量a,b 的夹角为 120,且|a|=2,|b|=5,则(2a-b )·a = ( )A .3 B. 9 C . 12 D. 134.点O 为∆ABC 所在平面内一点,若0=++OC OB OA ,则点O 是∆ABC 的A .重心 B. 内心 C. 垂心 D. 外心5.设a =(2,-3),b =(x,2x),且3a ·b=4,则x 等于 ( )A .-3 B. 3 C. 31- D. 31 6.已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为 ( )A .0 B. 2 C. 21 D. -2 7.已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为( )A .6π B. 4π C. 3π D. 32π 8下列命题中: ①a ∥b ⇔存在唯一的实数R ∈λ,使得a b λ=; ②e 为单位向量,且a ∥e ,则a =±|a |·e ; ③3||||a a a a =⋅⋅; ④a 与b 共线,b 与c 共线,则a 与c 共线; ⑤若时成立当且仅当则0,=≠⋅=⋅a c b c b b a 其中正确命题的序号是A .①⑤B .②③④C .②③D .①④⑤二、填空题(共7个小题,每题5分,共35分)9.在三角形ABC 中,点D 是AB 的中点,=,则_______=⋅CB CA 10.设21,e e 是两个不共线的向量,则向量b =)(21R e e ∈+λλ与向量a =212e e -共线的则λ=_______________11.已知向量b a ,的夹角为3π,=-⋅+==||||,1||,2||b a b a b a 则 . 12. 已知|→a |=5,|→b |=5, |→c |=25,且→→→→=++0c b a ,则→→→→→→⋅+⋅+⋅a c c b b a =_______13.设向量)2,1(),1,3(-==OB OA ,向量OC 垂直于向量OB ,向量BC 平行于OA ,则OD OC OA OD ,时=+的坐标为_________14.圆心为O ,半径为4的圆上两弦AB 与CD 垂直相交于点P ,若以PO 为方向的单位向量为b ,且|PO|=2,则PD PC PB PA +++=_______________15.已知O 为原点,有点A (d,0)、B (0,d ),其中d>0,点P 在线段AB 上,且 AB t AP =(0≤t ≤1),则OP OA ⋅的最大值为______________三、解答题16.(12分)设a,b 是不共线的两个向量,已知,2,,2b a CD b a BC kb a AB -=+=+=若A 、B 、C 三点共线,求k 的值.17(12分)设向量a ,b 满足|a|=|b |=1及|3a-2b|=3,求|3a+b |的值18.(12分)已知|a|=2,|b|=3,a 与b 夹角为 45,求使向量a+λb 与λa+b 的夹角是锐角时,λ的取值范围19.(12分)已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围20.(13分)已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直20.(14分)已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用)(u f v =表示(1)证明:对于任意向量a,b 及常数m,n 恒有)()()(b nf a mf nb ma f +=+成立(2)设a=(1,1),b=(1,0)求向量)(a f 及)(b f 的坐标(3)求使),()(q p c f =(p,q 为常数)的向量c 的坐标高一数学平面向量测试题参考答案一、选择题: ACDACABC 二、填空题:9.0 10.21-=λ 11.21 12.-25 13.(11,6) 14.4b 15.2d 三、解答题:16.【解】由A 、B 、C 三点共线,存在实数λ,使得BD AB λ=∵ b a CD b a BC 2,-=+= ∴ b a CD BC BD -=+=2故2a +k b =)2(b a -λ 又a,b 不共线 ∴ λ=1,k=-117.【解】由|a|=|b |=1,|3a-2b |=3得,91249)23(222=⋅-+=-b a b a b a∴ 31=⋅b a ∴1269)3(222=⋅++=+b a b a b a 即32|3|=+b a18.【解】∵ |a|=2,|b|=3 ,a 与b 夹角为 45∴ 3222345cos ||||=⨯==⋅ b a b a 而(a+λb )·(λa+b )=3113933222222++=+++=+++λλλλλλλλb ba ab a 要使向量a+λb 与λa+b 的夹角是锐角,则(a+λb )·(λa+b )>0即031132>++λλ 从而得6851168511+->--<λλ或 19.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线 ∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a20.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值 (2)当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b∴b ⊥(a +t b )21.【解】(1)设向量a=),(11y x ,b=),(22y x ,则m a +n b=),(2121ny my nx mx ++ 由)(u f v =,得 )22,()(212121nx mx ny my ny my nb ma f --++=+而)22,()2,()2,()()(212121222111nx mx ny my ny my x y y n x y y m b nf a mf --++=-+-=+∴对于任意向量a,b 及常数m,n 恒有)()()(b nf a mf nb ma f +=+成立(2)∵ a=(1,1),b=(1,0),)(u f v =∴ )1,0()(),1,1()(-==b f a f(3)设c=(x,y),由),()(q p c f =得⎩⎨⎧=-=⇒⎩⎨⎧=-=p y q p x q x y p y 22 ∴ c=),2(p q p -。

高一数学平面向量测试题及答案

高一数学平面向量测试题及答案

第二章 平面向量一、选择题1.若三点P (1;1);A (2;-4);B (x ;-9)共线;则( ) A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5;4)平行的向量是( ) A.(-5k ;4k )B.(-k 5;-k4) C.(-10;2) D.(5k ;4k)3.若点P 分AB 所成的比为43;则A 分BP 所成的比是( ) A.73B.37 C.- 37 D.-734.已知向量a 、b ;a ·a =-40;|a |=10;|b |=8;则向量a 与b 的夹角为( )° B.-60° C.120° D.-120° 5.若|a-b|=32041-;|a |=4;|b |=5;则向量a ·b =( )3B.-103C.102D.106.已知a =(3;0);b =(-5;5);则a 与b 的夹角为( ) A.4πB.43π C.3πD.32π 7.已知向量a =(3;4);b =(2;-1);如果向量a +x ·b 与b 垂直;则x 的值为( )A.323 B.233 C.2 D.-52 8.设点P 分有向线段21P P 的比是λ;且点P 在有向线段21P P 的延长线上;则λ的取值范围是( )A.(-∞;-1)B.(-1;0)C.(-∞;0)D.(-∞;-21) 9.设四边形ABCD 中;有DC =21AB ;且|AD |=|BC |;则这个四边形是( )A.平行四边形B.矩形C.等腰梯形D.菱形10.将y=x+2的图像C按a=(6;-2)平移后得C′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x2+4x+5的图像按向量a经过一次平移后;得到y=x2的图像;则a等于()A.(2;-1)B.(-2;1)C.(-2;-1)D.(2;1)12.已知平行四边形的3个顶点为A(a;b);B(-b;a);C(0;0);则它的第4个顶点D的坐标是()A.(2a;b)B.(a-b;a+b)C.(a+b;b-a)D.(a-b;b-a)二、填空题13.设向量a=(2;-1);向量b与a共线且b与a同向;b的模为25;则b= 。

高一数学平面向量检测试试卷试题

高一数学平面向量检测试试卷试题

高一数学平面向量检测试试卷一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分〕() 命题中正确的是是两个单位向量,下列、e 已知e 1.21 1e e .A 21=⋅ 21e e .B ⊥ 2221e e .C = 21e //e .D2.以下命题中:①假设a 与b 互为负向量,那么a +b =0;②假设k 为实数,且k·a=0,那么a =0或者k =0;③假设a·b=0,那么a =0或者b =0;④假设a 与b 为平行的向量,那么a·b=|a||b|;⑤假设|a|=1,那么a =±1.其中假命题的个数为〔〕 A .5个B .4个C .3个D .2个() 的值等于CA BC 则,60C 8,b 5,a 在ΔABC中, 3.→--→--⋅︒=== 20 .A20 .B -320 .C 320 .D -4.设|a|=1,|b|=2,且a 、b 夹角120°,那么|2a +b|等于 〔 〕2 .A 4 .B 21 .C32 .D5.△ABC 的顶点坐标为A 〔3,4〕,B 〔-2,-1〕,C 〔4,5〕,D 在BC 上,且ABD ABC S 3S ∆∆=,那么AD 的长为 〔 〕2 .A 22 .B 23 .C227.D6.a =〔2,1〕,b =〔3,λ〕,假设〔2a -b 〕⊥b ,那么λ的值是 〔 〕 A .3B .-1C .-1或者3D .-3或者17.向量a =〔1,-2〕,|b|=4|a|,且a 、b 一共线,那么b 可能是 〔 〕 A .〔4,8〕B .〔-4,8〕C .〔-4,-8〕D .〔8,4〕8.△ABC 中,5b ,3a ,415S ,0b a ,b AC ,a AB ABC ===<⋅==∆→--→--,那么a 与b 的夹角为〔 〕A .30°B .-150°C .150°D .30°或者150°() b 则a 5,b 4,a ,32041b a 若 9.=⋅==-=- 310 .A310 .B -210 .C10 .D10.将函数y =f 〔x 〕的图象先向右平移a 个单位,然后向下平移b 个单位〔a >0,b >0〕.设点P 〔a ,b 〕在y =f 〔x 〕的图象上,那么P 点挪动到点 〔 〕 A .〔2a ,0〕B .〔2a ,2b 〕C .〔0,2b 〕D .〔0,0〕() 所得的比是BP 则A分,43所成的比为AB 若点P分 11.→--→--73.A37.B37 .C -73 .D -()()() 的取值范围是b a ba 那么,2,3xb ,x,1已知a 12.22+⋅==(]2,2 .A ∞ ⎥⎥⎦⎤⎢⎢⎣⎡420, .B⎥⎥⎦⎤⎢⎢⎣⎡-42,42 .C []+∞,22 .D 二、填空题〔本大题一一共4小题,每一小题4分,一共16分〕13.向量a =〔2k +3,3k +2〕与b =〔3,k 〕一共线,那么k =___________.()_.__________向量,则k的值为__且a与b为互相平行的,k,8b ,k ,29已知a 14.=⎪⎭⎫⎝⎛=15.向量a =〔1,1〕,且a 与〔a +2b 〕的方向一样,那么a·b 的取值范围是________..___________BC ,12AC ,8AB .16取值范围用区间表示为则→--→--→--==三、解答题〔本大题一一共6小题,一共74分〕 17.〔本小题满分是12分〕设O 为原点,()()→--→--→--→--→--→--⊥-==OA //BC ,OB OC ,2,1OB ,1,3OA ,试求满足→--→--→--=+OC OA OD 的→--OD 的坐标.18.〔本小题满分是12分〕设1e 和2e 是两个单位向量,夹角是60°,试求向量21e e 2a +=和21e 2e 3b +-=的夹角.19.〔本小题满分是12分〕→--→--→--==AC ,2.4BC ,6.5AC 与→--AB 的夹角为40°,求→--→---BC AC 与→--CB 的夹角|AC BC |→--→---〔长度保存四位有效数字,角度准确到′〕.20.〔本小题满分是12分〕不共线,与e 设两个非零向量e 21(),e e 3CD ,8e 2e BC ,e e AB ①如果212121-=+=+=→--→--→-- 求证:A 、B 、D 三点一共线.共线.ke 和e e 使ke ②试确定实数k的值,2121++21.〔本小题满分是12分〕a ,b 是两个非零向量,当a +tb 〔t ∈R 〕的模取最小值时, ①求t 的值。

高中平面向量测试题及答案

高中平面向量测试题及答案

高中平面向量测试题及答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面向量一、选择题1.已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( )A .-2B .0C .1D .22.已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( )A .-2B .-1C .1D .23.如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-174.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( ) a -45b a +45b C .-25a +45b D .-25a -45b 5.已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( )A .-3B .-1C .1D .36.已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( )A .最大值为8B .是定值6C .最小值为2D .与P 的位置有关7.设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件 8.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( )A .30°B .60°C .120°D .150°9.设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最大值时,点B 的个数是( )A .1B .2C .3D .无数10.a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1·λ2+1=0D .λ1λ2-1=011.如图,在矩形OACB 中,E 和F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →其中λ,μ∈R ,则λ+μ是( )D .112.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为( )A .等腰非等边三角形B .等边三角形C .三边均不相等的三角形D .直角三角形第Ⅱ卷(非选择题 共90分)二、填空题13.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.14.已知a =(2+λ,1),b =(3,λ),若〈a ,b 〉为钝角,则λ的取值范围是________. 15.已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量a =(m ,-1),b =(m ,-2),则满足不等式f (a ·b )>f (-1)的m 的取值范围为________.16.已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________. 三、解答题17.已知向量a =(-cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ·b ,x ∈[0,π].(1)求函数f (x )的最大值;(2)当函数f (x )取得最大值时,求向量a 与b 夹角的大小.18.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证MF 1→·MF 2→=0.19.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B2),-1),m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.20.已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x 2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈[π2,π].(1)求a ·b 及|a +b |; (2)求函数f (x )=a ·b +|a +b |的最大值,并求使函数取得最大值时x 的值.21.已知OA →=(2a sin 2x ,a ),OB →=(-1,23sin x cos x +1),O 为坐标原点,a ≠0,设f (x )=OA →·OB →+b ,b >a . (1)若a >0,写出函数y =f (x )的单调递增区间;(2)若函数y =f (x )的定义域为[π2,π],值域为[2,5],求实数a 与b 的值.22.已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|.(1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.平面向量答案1.[解 a +b =(3,x +1),4b -2a =(6,4x -2),∵a +b 与4b -2a 平行,∴36=x +14x -2,∴x =2,故选D.2.[解AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.3.[解由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1,∴k =-3,故选A.4.[解析] AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa+⎝⎛⎭⎫1-12λb ,∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b . 5.[解析] ∵a +b =(3,1+n ),∴|a +b |=9+(n +1)2=n 2+2n +10,又a ·b =2+n ,∵|a +b |=a ·b ,∴n 2+2n +10=n +2,解之得n =3,故选D.6.[解析]设BC 边中点为D ,则AP →·(AB →+AC →)=AP →·(2AD →) =2|AP →|·|AD →|·cos ∠P AD =2|AD →|2=6.7.[解析] |a +b |=|a |+|b |⇔a 与b 方向相同,或a 、b 至少有一个为0;而a 与b 共线包括a 与b 方向相反的情形,∵a 、b 都是非零向量,故选B.8.[解析] 由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°.∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.[解析] x 2+y 2-2x -2y +1≥0,即(x -1)2+(y -1)2≥1,画出不等式组表示的平面区域如图,OA →·OB →=x +y ,设x +y =t ,则当直线y =-x 平移到经过点C 时,t 取最大值,故这样的点B 有1个,即C 点.10.[解析] ∵A 、B 、C 共线,∴AC →,AB →共线,根据向量共线的条件知存在实数λ使得AC →=λAB →,即a +λ2b =λ(λ1a +b ),由于a ,b 不共线,根据平面向量基本定理得⎩⎪⎨⎪⎧1=λλ1λ2=λ,消去λ得λ1λ2=1.11.[解析] OF →=OB →+BF →=OB →+13OA →,OE →=OA →+AE →=OA →+13OB →,相加得OE →+OF →=43(OA →+OB →)=43OC →,∴OC →=34OE →+34OF →,∴λ+μ=34+34=32.12.[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.13.[解析] a ·b =|a |·|b |cos60°=2×1×12=1,|a +2b |2=|a |2+4|b |2+4a ·b =4+4+4×1=12,∴|a +2b |=2 3.14.[解析] ∵〈a ,b 〉为钝角,∴a ·b =3(2+λ)+λ=4λ+6<0,∴λ<-32,当a 与b 方向相反时,λ=-3,∴λ<-32且λ≠-3.15.[解析] 由条件知f (x )的图象关于直线x =1对称,∴f (-1)=f (3),∵m ≥0,∴a ·b =m +2≥2,由f (a ·b )>f (-1)得f (m +2)>f (3),∵f (x )在[1,+∞)上为减函数,∴m +2<3,∴m <1,∵m ≥0,∴0≤m <1.16.[解析] ∵a ⊥b ,∴sin θcos θ+14=0,∴sin2θ=-12,又∵a +b =⎝⎛⎭⎫sin θ+cos θ,54,(a +b )∥c ,∴m (sin θ+cos θ)-52=0,∴m =52(sin θ+cos θ),∵(sin θ+cos θ)2=1+sin2θ=12,∴sin θ+cos θ=±22,∴m =±522.17.[解析] (1)f (x )=a ·b =-cos 2x +3sin x cos x =32sin2x -12cos2x -12=sin ⎝⎛⎭⎫2x -π6-12. ∵x ∈[0,π],∴当x =π3时,f (x )max =1-12=12.(2)由(1)知x =π3,a =⎝⎛⎭⎫-12,32,b =⎝⎛⎭⎫12,32,设向量a 与b 夹角为α,则cos α=a ·b |a |·|b |=121×1=12,∴α=π3.因此,两向量a 与b 的夹角为π3.18.[解析] (1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ,∵过(4,-10)点,∴16-10=λ,即λ=6,∴双曲线方程为x 2-y 2=6.(2)证明:F 1(-23,0),F 2(23,0),MF 1→=(-3-23,-m ),MF 2→=(-3+23,-m ),∴MF 1→·MF 2→=-3+m 2,又∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0,即MF 1→⊥MF 2→.19.[解析] (1)∵m ⊥n ,∴m ·n =0,∴4sin B ·sin 2⎝⎛⎭⎫π4+B 2+cos2B -2=0,∴2sin B [1-cos ⎝⎛⎭⎫π2+B ]+cos2B -2=0,∴2sin B +2sin 2B +1-2sin 2B -2=0, ∴sin B =12,∵0<B <π,∴B =π6或56π.(2)∵a =3,b =1,∴a >b ,∴此时B =π6,方法一:由余弦定理得:b 2=a 2+c 2-2ac cos B ,∴c 2-3c +2=0,∴c =2或c =1. 方法二:由正弦定理得b sin B =a sin A ,∴112=3sin A ,∴sin A =32,∵0<A <π,∴A =π3或23π,若A =π3,因为B =π6,所以角C =π2,∴边c =2;若A =23π,则角C =π-23π-π6=π6,∴边c =b ,∴c =1.综上c =2或c =1. 20.[解析](1)a ·b =cos3x 2cos x 2-sin 3x 2sin x2=cos2x ,|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22=2+2⎝⎛⎭⎫cos 3x 2cos x 2-sin 3x 2sin x2=2+2cos2x =2|cos x |,∵x ∈[π2,π],∴cos x <0,∴|a +b |=-2cos x .(2)f (x )=a ·b +|a +b |=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32 ∵x ∈[π2,π],∴-1≤cos x ≤0,∴当cos x =-1,即x =π时f max (x )=3.21.[解析] (1)f (x )=-2a sin 2x +23a sin x cos x +a +b =2a sin ⎝⎛⎭⎫2x +π6+b , ∵a >0,∴由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,k ∈Z .∴函数y =f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z )(2)x ∈[π2,π]时,2x +π6∈[7π6,13π6],sin ⎝⎛⎭⎫2x +π6∈[-1,12]当a >0时,f (x )∈[-2a +b ,a +b ] ∴⎩⎪⎨⎪⎧ -2a +b =2a +b =5,得⎩⎪⎨⎪⎧a =1b =4,当a <0时,f (x )∈[a +b ,-2a +b ] ∴⎩⎪⎨⎪⎧a +b =2-2a +b =5,得⎩⎪⎨⎪⎧a =-1b =3综上知,⎩⎪⎨⎪⎧ a =-1b =3或⎩⎪⎨⎪⎧a =1b =4 22.[解析] 设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,得x 24+y 23=1. 所以点P 的轨迹C 是椭圆,C 的方程为x 24+y 23=1.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0. 因为N 在椭圆内,所以Δ>0.所以⎩⎪⎨⎪⎧x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1]=(1+k 2)4k 2-12-8k 2+3+4k 23+4k 2=-9(1+k 2)3+4k 2,所以-187≤-9(1+k 2)3+4k2≤-125.解得1≤k 2≤3.所以-3≤k ≤-1或1≤k ≤ 3.。

(完整)高一数学平面向量综合测试题

(完整)高一数学平面向量综合测试题

高一数学平面向量综合测试题一、选择题(本大题共12小题,每小题5分,共60分.)→→→1.已知o、a、b是平面上的三个点,直线ab上有一点c,满足2ac+cb=0,则oc等于()2→1→1→2→→→→→a.2oa-obb.-oa+2obc.oa-obd.-oa+ob333322.已知平面向量a=(x,1),b=(-x,x),则向量a+b()a.平行于x轴b.平行于第一、三象限的角平分线c.平行于y轴d.平行于第二、四象限的角平分线→→→3.设p是△abc所在平面内的一点,bc+ba=2bp,则()→→→→→→→→→a.pa+pb=0b.pc+pa=0c.pb+pc=0d.pa+pb+pc=04.设向量a=(3,b为单位向量,且a∥b,则b=() 11311131a.(,-或(-)b.(,c.(,-d.()或(,-222222222222→→→5.已知a、b是以原点o为圆心的单位圆上两点,且|ab|=1,则ab·oa等于()11a.b.-c.d.-2222a·b6.若a=(x,1),b=(2,3x),则()|a|+|b|22a.(-∞,2b.[0,]c.[-d.[22,+∞)4447.已知向量a=(x-1,2),b=(4,y),若a⊥b,则9x+3y的最小值为()a.2b.6c.12d.38.已知向量a=(2cosα,2sinα),b=(3cosβ,3sinβ),a与b的夹角为60°,则直线xcosα1122-ysinα+=0与圆(x-cosβ)+(y+sinβ)的位置关系是()22a.相离b.相切c.相交d.随α,β的值而定9.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b的夹角的取值范围是()πππ2ππa.[0,b.[π]c.[d.[,π]63336→→→→10.已知三点a(2,3),b(-1,-1),c(6,k),其中k为常数.若|ab|=|ac|,则ab与ac的夹角的余弦值为()24242424a.-b.0或c.d.0或-25252525→→→→→11.若o为平面内任一点且(ob+oc-2oa)·(ab-ac)=0,则△abc是()a.直角三角形或等腰三角形b.等腰直角三角形c.等腰三角形但不一定是直角三角形d.直角三角形但不一定是等腰三角形12.平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到n(n≥3)维向量,n维向量可用(x1,x2,x3,x4,…,xn)表示.设a=(a1,a2,a3,a4,…,an),b=(b1,b2,nb3,b4,…,bn),规定向量a与b夹角θ的余弦为cosθ=∑aibii=1ni12ni12已知n维向量a,b,∑ai∑bi==当a=(1,1,1,1,…,1),b=(-1,-1,1,1,1,…,1)时,cosθ等于()n-1n-3n-2n-4a.b.c.d.nnnn二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知向量a=(3,1),b=(1,3),c=(k,7),若(a -c)∥b,则k=________.14.若平面向量a,b满足|a+b|=1,a+b平行于x轴,b=(2,-1),则a=________.→→→2215.(2010·山东枣庄)已知直线x+y=a与圆x+y=4交于a、b两点,且|oa+ob|=|oa→-ob|,其中o为坐标原点,则实数a的值为________.16.(2010·江苏南通二模)如图,正六边形abcdef中,p是△cde内(包括边界)的动点.设→→→ap=αab+βaf(α,β∈r),则α+β的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(2010·江苏卷,文)在平面直角坐标系xoy中,已知点a(-1,-2),b(2,3),c(-2,-1).(1)求以线段ab、ac为邻边的平行四边形的两条对角线的长;→→→(2)设实数t满足(ab-toc)·oc=0,求t的值.18.(12分)已知a=(1,2),b=(1,1),且a与a+λb的夹角为锐角,求实数λ的取值范围.ππ19.(12分)(2010·盐城一模)已知向量a=(sinθ,,b=(1,cos θ),θ∈(.22(1)求a⊥b,求θ;(2)求|a+b|的最大值.-1120.(12分)已知向量a=(,,b=(2,cos2x).sinxsinxπ(1)若x∈(0,,试判断a与b能否平行?2π(2)若x∈(0,,求函数f(x)=a·b的最小值.321.(12分)若a,b是两个不共线的非零向量,t∈r.1(1)若a,b起点相同,t为何值时,a,tb(a+b)三向量的终点在一直线上?3(2)若|a|=|b|且a与b夹角为60°,t为何值时,|a-tb|的值最小?22.(12分)在△abc中,a、b、c的对边分别是a、b、c,且满足(2a-c)cosb=bcosc.(1)求b的大小.(2)设m=(sina,cos2a),n=(4k,1)(k>1),且m·n的最大值是5,求k。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.一物体受到相互垂直的两个力f1、f2的作用,两力大小都为5N,则两个力的合力的大小为()A.10N B.0NC.5N D.N【答案】C【解析】根据向量加法的平行四边形法则,合力f的大小为×5=5 (N).2.河水的流速为2m/s,一艘小船想以垂直于河岸方向10m/s的速度驶向对岸,则小船在静水中的速度大小为()A.10m/s B.2m/sC.4m/s D.12m/s【答案】B【解析】设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,则|v1|=2,|v|=10,v⊥v1.∴v2=v-v1,v·v1=0,∴|v2|====2.3.在△ABC所在的平面内有一点P,满足++=,则△PBC与△ABC的面积之比是()A.B.C.D.【答案】C【解析】由++=,得+++=0,即=2,所以点P是CA边上的三等分点,如图所示.故==.4..已知向量a,e满足:a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则()A.a⊥e B.a⊥(a-e)C.e⊥(a-e)D.(a+e)⊥(a-e)【答案】C【解析】由条件可知|a-te|2≥|a-e|2对t∈R恒成立,又∵|e|=1,∴t2-2a·e·t+2a·e-1≥0对t∈R恒成立,即Δ=4(a·e)2-8a·e+4≤0恒成立.∴(a·e-1)2≤0恒成立,而(a·e-1)2≥0,∴a·e-1=0.即a·e=1=e2,∴e·(a-e)=0,即e⊥(a-e).5.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则++与 ()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】++=++++-=++---= (-)+=+=-,故选A.6.在▱ABCD中,=a,=b,=4,P为AD的中点,则=()A.a+b B.a+bC.-a-b D.-a-b【答案】C【解析】如图,=-=-=- (+)=b- (a+b)=-a-b.7.已知△ABC中,点D在BC边上,且=2,=r+s,则r+s的值是() A.B.C.-3D.0【答案】D【解析】∵=-,=-.∴=--=--.∴=-,∴=-.又=r+s,∴r=,s=-,∴r+s=0.8.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=()A.150°B.120°C.60°D.30°【答案】B【解析】∵|a|=|b|=|c|≠0,且a+b=c∴如图所示就是符合题设条件的向量,易知OACB是菱形,△OBC和△OAC都是等边三角形.∴〈a,b〉=120°.9.如右图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A.·B.·C.·D.·【答案】A【解析】设正六边形的边长是1,则·=1××cos30°=;·=1×2×cos60°=1;·=1××cos90°=0;·=1×1×cos120°=-.10. (2010·湖南理,4)在Rt△ABC中,∠C=90°,AC=4,则·等于()A.-16B.-8C.8D.16【答案】D【解析】因为∠C=90°,所以·=0,所以·=(+)·=||2+·=AC2=16.11.已知向量a、b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角为()A.B.C.D.【答案】C【解析】根据向量数量积的意义,a·b=|a|·|b|·cosθ=4cosθ=2及0≤θ≤π,可得θ=,选C.12. (09·天津文)若等边△ABC的边长为2,平面内一点M满足=+,则·=______________.【答案】-2【解析】∵=+,∴=-=-,=-=-.∴·=- 2- 2+·=-×12-×12+×12×=-2.13.已知|a|=,|b|=3,a与b夹角为45°,求使a+λb与λa+b的夹角为钝角时,λ的取值范围.【答案】<λ<且λ≠-1.【解析】由条件知,cos45°=,∴a·b=3,设a+λb与λa+b的夹角为θ,则θ为钝角,∴cosθ=<0,∴(a+λb)(λa+b)<0.λa2+λb2+(1+λ2)a·b<0,∴2λ+9λ+3(1+λ2)<0,∴3λ2+11λ+3<0,∴<λ<.若θ=180°时,a+λb与λa+b共线且方向相反,∴存在k<0,使a+λb=k(λa+b),∵a,b不共线,∴,∴k=λ=-1,∴<λ<且λ≠-1.本题易忽视θ=180°时,也有a·b<0,忘掉考虑夹角不是钝角而致误.14. (2010·烟台市诊断)已知向量a=(4,2),b=(x,3),且a∥b,则x的值是()A.6B.-6C.9D.12【答案】A【解析】∵a∥b,∴=,∴x=6.15. (2010·湖南长沙)已知O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足=+λ(+),λ∈[0,+∞),则点P的轨迹一定通过△ABC的()A.外心B.垂心C.内心D.重心【答案】D【解析】设+=,则可知四边形BACD是平行四边形,而=λ表明A、P、D三点共线.又D在BC的中线所在直线上,于是点P的轨迹一定通过△ABC的重心.16.(09·广东文)已知平面向量a=(x,1),b=(-x,x2),则向量a+b()A.平行于x轴B.平行于第一、三象限的角平分线C.平行于y轴D.平行于第二、四象限的角平分线【答案】C【解析】a+b=(0,1+x2),由1+x2≠0及向量的性质可知,C正确.17.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在坐标轴上,则点B的坐标为________.【答案】或【解析】由b∥a,可设b=λa=(-2λ,3λ).设B(x,y),则=(x-1,y-2)=b.由⇒.又B点在坐标轴上,则1-2λ=0或3λ+2=0,所以B或.18.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足=α+β,其中α、β∈R且α+β=1,则点C的轨迹方程为()A.(x-1)2+(y-2)2=5B.3x+2y-11=0C.2x-y=0D.x+2y-5=0【答案】D【解析】解法1:设C(x,y),则=(x,y),=(3,1),=(-1,3).由=α+β得(x,y)=(3α,α)+(-β,3β)=(3α-β,α+3β).于是由(3)得β=1-α代入(1)(2)消去β得,.再消去α得x+2y=5,即x+2y-5=0.∴选D.解法2:由平面向量共线定理,当=α+β,α+β=1时,A、B、C三点共线.因此,点C的轨迹为直线AB,由两点式直线方程得=,即x+2y-5=0.∴选D.19.已知平面向量a=(1,-1),b=(-1,2),c=(3,-5),则用a,b表示向量c为() A.2a-b B.-a+2bC.a-2b D.a+2b【答案】C【解析】设c=xa+yb,∴(3,-5)=(x-y,-x+2y),∴,解之得,∴c=a-2b,故选C.20.已知=(2,-1),=(-4,1),则的坐标为________.【答案】(-6,2)【解析】=-=(-6,2).21.已知G是△ABC的重心,直线EF过点G且与边AB、AC分别交于点E、F,=α,=β,则+的值为________.【答案】3【解析】连结AG并延长交BC于D,∵G是△ABC的重心,∴== (+),设=λ,∴-=λ(-),∴=+,∴+=+,∵与不共线,∴,∴,∴+=3.22.已知△ABC中,A(7,8),B(3,5),C(4,3),M、N是AB、AC的中点,D是BC的中点,MN与AD交于点F,求.【答案】(1.75,2).【解析】因为A(7,8),B(3,5)C(4,3)所以=(-4,-3),AC=(-3,-5).又因为D是BC的中点,有= (+)=(-3.5,-4),而M、N分别为AB、AC的中点,所以F为AD的中点,故有==-=(1.75,2).[点评]注意向量表示的中点公式,M是A、B的中点,O是任一点,则=(+).23.如图所示,在▱ABCD中,已知=,=.求证:B、F、E三点共线.【答案】略【解析】设=a,=b.则=+=a+b.∵=b-a,∴==(b-a).∴=+=a+ (b-a)=a+b-a=a+b=.∴=.∴向量与向量共线,它们有公共点B.∴B、F、E三点共线.24.已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意一点,点N在线段MA的延长线上,且=2,求点N的轨迹方程.【答案】所求的轨迹方程为x2+y2=1.【解析】设M(x0,y),N(x,y),由=2,得(1-x0,1-y)=2(x-1,y-1),所以,又∵M(x0,y)在圆C上,把x0、y代入方程(x-3)2+(y-3)2=4,整理得x2+y2=1,所以所求的轨迹方程为x2+y2=1.25.下列说法正确的是()①向量与是平行向量,则A、B、C、D四点一定不在同一直线上②向量a与b平行,且|a|=|b|≠0,则a+b=0或a-b=0③向量的长度与向量的长度相等④单位向量都相等A.①③B.②④C.①④D.②③【答案】D【解析】对于①,向量平行时,表示向量的有向线段所在直线可以是重合的,故①错.对于②,由于|a|=|b|≠0,∴a,b都是非零向量,∵a∥b,∴a与b方向相同或相反,∴a+b=0或a-b=0.对于③,向量与向量方向相反,但长度相等.对于④,单位向量不仅仅长度为1,还有方向,而向量相等需要长度相等而且方向相同.选D. 26.给出下列各命题:(1)零向量没有方向;(2)若|a|=|b|,则a=b;(3)单位向量都相等;(4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同;(6)若a=b,b=c,则a=c;(7)若a∥b,b∥c,则a∥c;(8)若四边形ABCD是平行四边形,则=,=.其中正确命题的序号是________.【答案】(5)(6)【解析】(1)该命题不正确,零向量不是没有方向,只是方向不定;(2)该命题不正确,|a|=|b|只是说明这两向量的模相等,但其方向未必相同;(3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合;(6)该命题正确.由向量相等的定义知,a与b的模相等,b与c的模相等,从而a与c的模相等;又a与b的方向相同,b与c的方向相同,从而a与c的方向也必相同,故a=c;(7)该命题不正确.因若b=0,则对两不共线的向量a与c,也有a∥0,0∥c,但a∥\ c;(8)该命题不正确.如图所示,显然有≠,≠.27.已知A、B、C是不共线的三点,向量m与向量是平行向量,与是共线向量,则m=________.【解析】∵A、B、C不共线,∴与不共线,又∵m与、都共线,∴m=0.28.如图所示,已知▱ABCD,▱AOBE,▱ACFB,▱ACGD,▱ACDH,点O是▱ABCD的对角线交点,且=a,=b,=c.(1)写出图中与a相等的向量;(2)写出图中与b相等的向量;(3)写出图中与c相等的向量.【答案】略【解析】(1)在▱OAEB中,==a;在▱ABCD中,==a,所以a==.(2)在▱ABCD中,==b;在▱AOBE中,==b,所以b==.(3)在▱ABCD中,==c;在▱ACGD中,==c,所以c==29.在水流速度大小为10km/h的河中,如果要使船实际以10km/h大小的速度与河岸成直角横渡,求船行驶速度的大小与方向.【答案】船行驶速度为20km/h,方向与水流方向成120°角【解析】如右图所示,OA表示水流方向,表示垂直于对岸横渡的方向,表示船行速度的方向,由=+易知||=||=10,又∠OBC=90°,∴||=20,∴∠BOC=30°,∴∠AOC=120°,即船行驶速度为20km/h,方向与水流方向成120°角.30..如图,在平行四边形ABCD中,下列结论中错误的是()A.=B.+=C.-=D.+=0【答案】C【解析】A显然正确.由平行四边形法则知B正确.C中-=,故C错误.D中+=+=0.。

高一数学平面向量单元检测题及答案

高一数学平面向量单元检测题及答案

<平面向量>试题一、选择题1.在矩形ABCD 中;O 是对角线的交点;若125,3BC e DC e OC ==则=( )A .121(53)2e e + B .121(53)2e e - C .211(35)2e e - D .211(53)2e e - 2.对于菱形ABCD ;给出下列各式: ①AB BC =②||||AB BC =③||||AB CD AD BC -=+ ④22||||4||AC BD AB +=2其中正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个3.在 中;设,,,AB a AD b AC c BD d ====;则下列等式中不正确的是( ) A .a b c +=B .a b d -=C .b a d -=D .c a b -=4.已知向量a b 与反向;下列等式中成立的是( )A .||||||a b a b -=-B .||||a b a b +=-C .||||||a b a b +=-D .||||||a b a b +=+ 5.已知平行四边形三个顶点的坐标分别为(-1;0);(3;0);(1;-5);则第四个点的坐标为 ( ) A .(1;5)或(5;-5) B .(1;5)或(-3;-5) C .(5;-5)或(-3;-5) D .(1;5)或(-3;-5)或(5;-5) 6.与向量(12,5)d = 平行的单位向量为( )A .)5,1312(B .)135,1312(--C .)135,1312(或 )135,1312(-- D .)135,1312(±± 7.若||41a b -=-;||4,||5a b ==;则a b 与的数量积为 ( )A .103B .-103C .102D .108.若将向量(2,1)a =围绕原点按逆时针旋转4π得到向量b ;则b 的坐标为 ( )A . )223,22(-- B .)223,22( C .)22,223(-D .)22,223(-9.设k ∈R ;下列向量中;可与向量(1,1)q =-组成基底的向量是 ( )A .(,)b k k =B .(,)c k k =--C .22(1,1)d k k =++D .22(1,1)e k k =--10.已知||10,||12a b ==;且1(3)()365a b ⋅=-;则a b 与的夹角为 ( ) A .60° B .120° C .135° D .150°11.在△ABC 中;D 、E 、F 分别BC 、CA 、AB 的中点;点M 是△ABC 的重心;则 MA MB MC +-等于( ) A .OB .MD 4C .MF 4D .ME 412.已知,1a e e ≠=;满足:对任意t R ∈;恒有a te a e -≥-;则( ) A .a e ⊥ B .()a a e ⊥-C .()e a e ⊥-D .()()a e a e +⊥-二、填空题13.非零向量,a b 满足||||||a b a b ==+;则,a b 的夹角为 .14.在四边形ABCD 中;若,,||||AB a AD b a b a b ==+=-且;则四边形ABCD 的形状是15.已知(3,2)a =;(2,1)b =-;若a b a b λλ++与平行;则λ= .16.已知e 为单位向量;||a =4;a e 与的夹角为π32;则a e 在方向上的投影为 . 17.两个粒子a ;b 从同一粒子源发射出来;在某一时刻;以粒子源为原点;它们的位移分别为S a =(3;-4);S b =(4;3);(1)此时粒子b 相对于粒子a 的位移 ; (2)求S 在S a 方向上的投影 。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若||=a,||=b,则=()A.a2-b2 B.b2-a2 C.a2+b2 D.ab【答案】B【解析】因为AD⊥DC,所以,所以,又因为AB⊥BC,所以,所以【考点】本小题主要考查向量在几何中的应用,考查向量的线性运算及向量的数量积公式.点评:解决此类问题,只要利用向量的线性运算及向量的数量积公式,即可得到结论.2.已知两个不共线的向量满足,(1)若与垂直,求向量与的夹角;(2)当时,若存在两个不同的使得成立,求正数的取值范围.【答案】(1)(2)【解析】(1)由已知,又,得,……3分,……5分又的夹角为. ……7分(2)由已知得,即,由于,,,. ……11分由得,又要有两解,结合三角函数图象可得故,……13分即 ,又,. ……15分【考点】本小题主要考查平面向量数量积的计算和应用、三角函数图象和性质的应用,考查学生的运算求解能力和数形结合思想的应用.点评:求向量的夹角时,要注意向量的夹角的取值范围;求参数的取值范围时,要结合三角函数图象,数形结合进行解题.3. (2010·河北省正定中学模拟)已知向量a=(2cosθ,2sinθ),b=(0,-2),θ∈,则向量a,b的夹角为()A.-θB.θ-C.+θD.θ【答案】A【解析】解法一:由三角函数定义知a的起点在原点时,终点落在圆x2+y2=4位于第二象限的部分上(∵<θ<π),设其终点为P,则∠xOP=θ,∴a与b的夹角为-θ.解法二:cos〈a,b〉===-sinθ=cos,∵θ∈,∴-θ∈,又〈a,b〉∈(0,π),∴〈a,b〉=-θ.4.若非零向量a、b满足|a+b|=|b|,则()A.|2a|>|2a+b|B.|2a|<|2a+b|C.|2b|>|a+2b|D.|2b|<|a+2b|【答案】C【解析】由已知(a+b)2=b2,即2a·b+|a|2=0.∵|2a+b|2-|2a|2=4a·b+|b|2=|b|2-2|a|2符号不能确定,∴A、B均不对.∵|a+2b|2-|2b|2=|a|2+4a·b=|a|2-2|a|2=-|a|2<0.故选C.5.设A(a,1)、B(2,b)、C(4,5)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则a与b满足的关系式为()A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=14【答案】A【解析】据投影定义知,=⇒·-·=0⇒·=0,⇒4(a-2)+5(1-b)=0⇒4a-5b=3.6.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b.若|a|=1,则|a|2+|b|2+|c|2的值是________.【答案】4【解析】∵a+b+c=0,∴c=-(a+b).∵(a-b)⊥c,∴(a-b)·[-(a+b)]=0.即|a|2-|b|2=0,∴|a|=|b|=1,∵a⊥b,∴a·b=0,∴|c|2=(a+b)2=|a|2+2a·b+b2=1+0+1=2.∴|a|2+|b|2+|c|2=4.7.已知向量a=(-3,2),b=(2,1),c=(3,-1),t∈R.(1)求|a+tb|的最小值及相应的t值;(2)若a-tb与c共线,求实数t.【答案】(1)当t=时,|a+tb|取得最小值.(2).【解析】(1)a+tb=(2t-3,2+t),|a+tb|2=(2t-3)2+(2+t)2=5t2-8t+13=52+,当t =时,|a+tb|取得最小值.(2)a-tb=(-3-2t,2-t),因为a-tb与c共线,所以3+2t-6+3t=0,即t=.8. (2010·山东日照一中)已知向量a=(x1,y1),b=(x2,y2),若|a|=2,|b|=3,a·b=-6,则的值为()A.B.-C.D.-【答案】B【解析】因为|a|=2,|b|=3,又a·b=|a||b|cos〈a,b〉=2×3×cos〈a,b〉=-6,可得cos〈a,b〉=-1.即a,b为共线向量且反向,又|a|=2,|b|=3,所以有3(x1,y1)=-2(x2,y2)⇒x1=- x2,y1=- y2,所以==-,从而选B.9..已知向量a,e满足:a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则()A.a⊥e B.a⊥(a-e)C.e⊥(a-e)D.(a+e)⊥(a-e)【答案】C【解析】由条件可知|a-te|2≥|a-e|2对t∈R恒成立,又∵|e|=1,∴t2-2a·e·t+2a·e-1≥0对t∈R恒成立,即Δ=4(a·e)2-8a·e+4≤0恒成立.∴(a·e-1)2≤0恒成立,而(a·e-1)2≥0,∴a·e-1=0.即a·e=1=e2,∴e·(a-e)=0,即e⊥(a-e).10.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a、b不共线,则四边形ABCD是()A.梯形B.矩形C.菱形D.正方形【答案】A【解析】∵=++=a+2b-4a-b-5a-3b=-8a-2b=2(-4a-b)=2,∴∥且||=2||,故四边形是梯形.11.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则++与 ()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】++=++++-=++---= (-)+=+=-,故选A.12.已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|-|,其中O为坐标原点,则实数a的值为()A.2B.-2C.2或-2D.或-【答案】C【解析】以OA、OB为边作平行四边形OACB,则由|+|=|-|得,平行四边形OACB为矩形,⊥.由图形易知直线y=-x+a在y轴上的截距为±2,所以选C.13.设a、b是不共线的两个非零向量,已知=2a+pb,=a+b,=a-2b.若A、B、D 三点共线,则p的值为()A.1B.2C.-2D.-1【答案】D【解析】=+=2a-b,=2a+pb,由A、B、D三点共线知,存在实数λ,使2a+pb=2λa-λb,∵a、b不共线,∴,∴p=-1.14.如右图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A.·B.·C.·D.·【答案】A【解析】设正六边形的边长是1,则·=1××cos30°=;·=1×2×cos60°=1;·=1××cos90°=0;·=1×1×cos120°=-.15. (2010·湖南理,4)在Rt△ABC中,∠C=90°,AC=4,则·等于()A.-16B.-8C.8D.16【答案】D【解析】因为∠C=90°,所以·=0,所以·=(+)·=||2+·=AC2=16.16.P是△ABC所在平面上一点,若·=·=·,则P是△ABC的()A.外心B.内心C.重心D.垂心【答案】D【解析】由·=·得·(-)=0,即·=0,∴PB⊥CA.同理PA⊥BC,PC⊥AB,∴P为△ABC的垂心.17. (08·北京)已知向量a与b的夹角为120°,且|a|=|b|=4,那么b·(2a+b)的值为________.【解析】∵a·b=|a|·|b|·cos〈a,b〉=4×4cos120°=-8,∴b·(2a+b)=2a·b+b2=0.18.已知点A、B的坐标分别为(2,-2)、(4,3),向量p的坐标为(2k-1,7),且p∥,则k的值为()A.-B.C.-D.【答案】D【解析】由A(2,-2),B(4,3)得,=(2,5),而p=(2k-1,7),由平行的条件x1y2-x2y1=0得,2×7-(2k-1)×5=0,∴k=,选D.19. (2010·湖南长沙)已知O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足=+λ(+),λ∈[0,+∞),则点P的轨迹一定通过△ABC的()A.外心B.垂心C.内心D.重心【答案】D【解析】设+=,则可知四边形BACD是平行四边形,而=λ表明A、P、D三点共线.又D在BC的中线所在直线上,于是点P的轨迹一定通过△ABC的重心.20.已知a=(2,1),b=(x,-2)且a+b与2a-b平行,则x等于()A.-6B.6C.-4D.4【答案】C【解析】∵(a+b)∥(2a-b).又a+b=(2+x,-1),2a-b=(4-x,4),∴(2+x)×4-(-1)×(4-x)=0,解得x=-4.21.若三点A(-2,-2),B(0,m),C(n,0)(mn≠0)共线,则+的值为________.【答案】-【解析】∵A、B、C共线,∴∥,∵=(2,m+2),=(n+2,2),∴4-(m+2)(n+2)=0,∴mn+2m+2n=0,∵mn≠0,∴+=-.22. (08·辽宁理)已知O、A、B是平面上的三个点,直线AB上有一点C,满足2+=0,则=()A.2-B.-+2C.-D.-+【答案】A【解析】∵2+=0,∴2(-)+(-)=0,∴+-2=0,∴=2-.23.已知点A(7,1),B(1,4),若直线y=ax与线段AB交于点C,且=2,则实数a=________.【答案】1【解析】设C(x0,ax),则=(x-7,ax-1),=(1-x0,4-ax),∵=2,∴,解之得24.已知G是△ABC的重心,直线EF过点G且与边AB、AC分别交于点E、F,=α,=β,则+的值为________.【答案】3【解析】连结AG并延长交BC于D,∵G是△ABC的重心,∴== (+),设=λ,∴-=λ(-),∴=+,∴+=+,∵与不共线,∴,∴,∴+=3.25.如图所示,在▱ABCD中,已知=,=.求证:B、F、E三点共线.【答案】略【解析】设=a,=b.则=+=a+b.∵=b-a,∴==(b-a).∴=+=a+ (b-a)=a+b-a=a+b=.∴=.∴向量与向量共线,它们有公共点B.∴B、F、E三点共线.26.在下列判断中,正确的是()①长度为0的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等;④单位向量都是同方向;⑤任意向量与零向量都共线.A.①②③B.②③④C.①②⑤D.①③⑤【答案】D【解析】由定义知①正确,②由于两个零向量是平行的,但不能确定是否同向,也不能确定是哪个具体方向,故不正确.显然,③、⑤正确,④不正确,所以答案是D.27.如图所示,已知▱ABCD,▱AOBE,▱ACFB,▱ACGD,▱ACDH,点O是▱ABCD的对角线交点,且=a,=b,=c.(1)写出图中与a相等的向量;(2)写出图中与b相等的向量;(3)写出图中与c相等的向量.【答案】略【解析】(1)在▱OAEB中,==a;在▱ABCD中,==a,所以a==.(2)在▱ABCD中,==b;在▱AOBE中,==b,所以b==.(3)在▱ABCD中,==c;在▱ACGD中,==c,所以c==28.在四边形ABCD中,对角线AC、BD交于点O且||=||=1,+=+=0,cos∠DAB=.求|+|与|+|.【答案】1,1【解析】∵+=+=0,∴=,=.∴四边形ABCD为平行四边形.又||=||=1,知四边形ABCD为菱形.∵cos∠DAB=,∠DAB∈(0,π),∴∠DAB=,∴△ABD为正三角形.∴|+|=|+|=||=2||=.|+|=||=||=1.29.若E,F,M,N分别是四边形ABCD的边AB,BC,CD,DA的中点,求证:=.【答案】略【解析】如图所示,连结AC,在△DAC中,∵N,M分别是AD,CD的中点,∴∥,且||=||,且与的方向相同.同理可得||=||且与的方向相同,故有||=||,且与的方向相同,∴=.30..如图,在平行四边形ABCD中,下列结论中错误的是()A.=B.+=C.-=D.+=0【答案】C【解析】A显然正确.由平行四边形法则知B正确.C中-=,故C错误.D中+=+=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级 学号 姓名 .
一、选择题:
1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是( )
A .e 1=(0,0), e 2 =(1,-2) ;
B .e 1=(-1,2),e 2 =(5,7);
C .e 1=(3,5),e 2 =(6,10);
D .e 1=(2,-3) ,e 2 =)4
3,2
1(-
2.已知A , B , C 三点共线,且A (3,-6),B (-5,2),若点C 横坐标为6,则C 点的纵坐标为 ( )
A .-13
B .9
C .-9
D .13 3.设a =(
2
3
,sin α),b =(cos α,
3
1
),且a 0AB BC ⋅>u u u r u u u r
6 C450 C 若
|a
b =(-1,3),且a ==OA AB ⊥u u u r u u u r 2a b a ⋅a
b 2a 2M 1M 15OA u u u
r OB u u u r OC u u u r 原点和点A (3,1)为两个
顶点作等腰直角三角形△OAB ,∠B =90o,,求点B 的坐标.
15.已知A 、B 、C 三点坐标分别为A(-1,0)、B(3,-1)、C(1,2),11,,33
AE AC BF BC ==u u u r u u u r u u u r u u u r
求证://EF AB u u u r u u u r
平面向量测试卷二
班级 学号 姓名 .
一、选择题:
1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( B ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4
3,2
1(-
2.已知A , B , C 三点共线,且A (3,-6),B (-5,2),若点C 横坐标为6,则C 点的纵坐标为 ( C ) A .-13 B .9 C .-9 D .13
3.设a =(23,sin α),b =(cos α,3
1),且a 0AB BC ⋅>u u u r u u u r 6 C450
C 若|a b =(-1,3)
,且
a ),5303,530(-==OA AB
⊥u u u r u u u r 2a b a ⋅a
b 2a 2M 1M 15)4,3(-OA u u u r OB u u u r OC u u u r AB u u u r AC u u u r ),320(+∞原点和点A (3,1)为两个顶点作等腰直角三角形△OAB ,∠B =90o,
,求点B 的坐标. 设B (m ,n ),则OB u u u r =(m ,n ), BA u u u r =(3-m ,1-n ), ,又OB u u u r ·BA u u u r =0,|OB u u u r |=|BA u u u r
|,
可得12m n =⎧⎨=⎩或2
1
m n =⎧⎨=-⎩
15.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),11,,33
AE AC BF BC ==u u u r u u u r u u u r u u u r
求证://EF AB u u u r u u u r
解:设E (x 1, y 1),F (x 2, y 2) ,∵AC 31
AE =, ∴(x 1+1, y 1)=(22,33), ∴x 1=13-, y 1=23
,
又BC 31
BF =,∴(x 2-3, y 2+1)=(-23,1), ∴x 2=73
, y 2=0, 则82(,)33EF =-u u u r
由于3823(4,1)(,)2332
AB EF =-=-=u u u r u u u
r ,所以//EF AB u u u r u u u r
备用题:
1.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C (x , y )满足OC u u u r =αOA u u u r +βOB u u u r
,其
中α,β∈R 且α+β=1,则x , y 所满足的关系式为 ( D )
A .3x +2y -11=0
B .(x -1)2+(y -2)2
=5 C .2x -y =0 D .x +2y -5=0
2.已知A (2,3),B (1,4)且12
AB u u u r =(sin α,cos β), α,β∈(-2π,2π),则α+β= 6π
或 -2π ;
3.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为 -3
1
4.已知向量a =(2x ,7), b =(6,x +4),当x =________时,a 知向量b 与向量a =(5,-12)的方向相反,且|b |=26,求b
∵|b |=|λ||a | ,∴λ= -2 ,则b =(-10,24)
6.如果向量AB u u u r
=i -2j ,BC u u u r =i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使
A 、
B 、
C 三点共线。

∵A 、B 、C 三点共线,∴存在实数AB u u u r
=λBC u u u r ,即(1,-2)=λ(1,m ),∴m = -2
7.已知向量a ,b ,c 满足a +b +c =0,且|a |=3,|b |=5,|c |=7,求a ,b 的夹角θ.
a +
b +
c =0,⇒a 2+2a·b +b 2=c 2⇒cos θ=
12
⇒θ=600
.。

相关文档
最新文档