面板数据分析方法步骤

合集下载

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)(2)

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)(2)

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。

Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。

Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。

面板数据分析步骤

面板数据分析步骤

面板数据分析方法步骤全解面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。

面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。

步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的 R 平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin and Lin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC法。

Levin et al.(2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250之间,截面数介于10~250之间)的面板单位根检验。

面板数据协整分析

面板数据协整分析

面板数据协整分析面板数据协整分析在计量经济学中被广泛应用于研究变量之间的长期均衡关系。

该方法结合了面板数据的特点和协整分析的思想,对于探讨变量之间的长期关系具有重要意义。

本文将以面板数据协整分析为题,探讨其基本原理、应用场景及操作步骤。

一、基本原理面板数据协整分析基于协整理论,该理论由格兰杰(Granger)和约翰森(Johansen)提出。

协整分析强调变量之间的长期均衡关系,即在长期内,变量之间的差异会被一组线性关系所消除,使得变量之间呈现出稳定的关系。

面板数据是经济学研究中常用的数据格式,具有个体和时间两个维度。

相比于截面数据或时间序列数据,面板数据包含了更多的信息,能够更好地捕捉个体和时间的异质性。

因此,面板数据协整分析更适用于考察个体之间的关系和长期的动态变化。

二、应用场景面板数据协整分析可以应用于多个领域,如经济学、金融学、环境科学等。

以下是一些典型的应用场景:1. 经济增长与贸易关系分析面板数据协整分析可以用于研究不同国家之间的贸易关系和经济增长的关联性。

通过分析面板数据,可以确定是否存在长期均衡关系,以及对经济增长的贡献度。

2. 教育投资与经济发展的影响面板数据协整分析可以帮助研究者探究教育投资对经济发展的影响。

通过分析面板数据,可以建立教育投资与经济发展之间的长期关系模型,从而评估教育政策的效果。

3. 环境污染与经济增长的关系研究面板数据协整分析可以帮助研究者了解环境污染与经济增长之间的关联性。

通过分析面板数据,可以估计环境污染对经济增长的影响,并提出相关政策建议。

三、操作步骤进行面板数据协整分析需要以下几个基本步骤:1. 数据准备首先,需要收集相关面板数据,并对数据进行清洗和整理,确保数据的可靠性和一致性。

同时,还需要进行面板数据的单位根检验,以判断是否需要进行协整分析。

2. 变量选择在进行面板数据协整分析时,需要选择适当的变量作为分析对象。

变量选择应基于理论基础和实际需求,并考虑到变量之间的相关性。

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。

Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。

5分钟搞定Stata面板数据分析

5分钟搞定Stata面板数据分析

【原创】5分钟搞定Stata面板数据分析简易教程ver2.0作者:张达5分钟搞定Stata面板数据分析简易教程步骤一:导入数据原始表如下,数据请以时间(1998 ,1999,2000, 2001 ??)为横轴,样本名(北京,天津,河北??) 为纵轴1 裁*■■別1A I11 ■u 9K ILEXxl-V,j si aoLL B-iic190 ..1( HJ曲1 1g力«r4 々■l* Mfl 1KM J| JgRi MM3icm*w II7QQ-HQ Siq<XM3 7>D tuff 1'C4 3 4 IftJV-mi KH>loogi liW(0M 3M9WH jaii I MOKai W w ■齐itmxm fill OTI MiltaiK ■5W»U|JTXE HH sia心«9 f Id 叼m in a*ft I*■JtaC如M~4 気HiA|$A rm inoo IM? livra.wvtatr1IJMj X#*4>t1|筑・BF7 ■«|!N I9*V1IRV gw1W1VJ I-J H itW Ml «稠申审砂y li>M l>R Mdw VIM e> mu IM HM 內)944w 命■ n I L BII i mi 靜Ml hw w3K:1ST? *7^ FJE inm ifini uni4 5w 心HtJ TW JTfl 9MI*HAS■ilJto KO >4*461/M31 <141*11诃却4LJt 4ktt VM匸F<MO 4dN,■M I!Wi・】•\ 4 ■R- 呵鬥1皑用MA■J广*»i g Ml* <KM11*K=« 1 31 1MM I“tlM韓!1fi >w g ivt E4M laM■ii T PD w im W i.JV 1P w L*l 1tiZF MM7 <1 H1! liyi将中文地名替换为数字。

面板数据分析方法步骤全解

面板数据分析方法步骤全解

面板数据分析方法步骤全解面板数据分析是一种常用的统计方法,可用于研究面板数据。

面板数据是指在一定时间内,对多个个体或单位进行反复观测的数据。

面板数据的特点是具有跨个体和跨时间的变异性,可以更好地捕捉个体变量和时间变量的相关性。

本文将详细介绍面板数据分析的方法步骤。

步骤一:数据准备面板数据分析的第一步是准备数据。

首先,需要收集面板数据,包括个体的观测值和时间变量。

然后,对数据进行清洗和整理,包括处理缺失值、异常值和重复值。

此外,还要对变量进行命名和编码,以便后续分析使用。

步骤二:面板数据的描述性统计分析在进行面板数据分析之前,通常需要对数据进行描述性统计分析。

这可以帮助我们了解数据的基本特征和变化趋势。

常用的描述性统计方法包括计算平均数、标准差、最大值、最小值和分位数等。

此外,还可以使用图表和图表来可视化数据的分布和变化情况。

步骤三:面板数据的平稳性检验面板数据在进行进一步分析之前,需要进行平稳性检验。

平稳性是指面板数据的统计特性在时间和个体之间保持不变。

常用的平稳性检验方法包括单位根检验和平稳均值假设检验。

如果数据不平稳,可以通过差分或其他方法进行处理,以实现平稳性。

步骤四:面板数据的固定效应模型估计面板数据分析的核心是建立面板数据模型并进行参数估计。

其中,固定效应模型是最常用的面板数据模型之一。

固定效应模型假设个体效应是固定的,与个体的观测值无关。

通过固定效应模型,可以估计个体效应和其他变量的影响。

常用的估计方法包括最小二乘法、广义最小二乘法和联合估计法等。

步骤五:面板数据的随机效应模型估计除了固定效应模型外,还可以使用随机效应模型进行面板数据分析。

随机效应模型假设个体效应是随机的,与个体的观测值相关。

通过随机效应模型,可以同时估计个体效应和其他变量的影响。

常用的估计方法包括广义最小二乘法和极大似然估计法等。

步骤六:面板数据的混合效应模型估计混合效应模型是固定效应模型和随机效应模型的组合,既考虑了个体效应的固定性,又考虑了个体效应的随机性。

面板数据分析

面板数据分析

面板数据分析面板数据分析是一种常见的经济学和社会科学研究方法,用于研究在一定时间内观察到的个体或单位的变化。

面板数据可以提供比横截面数据或时间序列数据更多的信息,因为它同时考虑了个体之间的差异和时间的变化。

面板数据通常由两个维度构成:个体维度和时间维度。

个体维度可以是个人、家庭、企业、国家等,而时间维度可以是天、月、年等。

面板数据的独特之处在于可以观察到个体内部的变化和个体之间的差异,这为研究人员提供了更准确的分析和推断能力。

面板数据分析可以用于多种目的,例如,研究个体间的经济行为、评估政策措施的效果、预测未来发展趋势等。

它可以帮助研究人员更好地理解经济和社会现象,并为政策制定者提供有力的决策依据。

具体而言,面板数据分析可以包括以下几个步骤:1. 数据准备:收集和整理面板数据。

这包括选择适当的个体和时间维度,并确保数据的质量和完整性。

在进行面板数据分析之前,还需要对数据进行清洗和处理,以确保数据的可靠性和可用性。

2. 描述性统计:对面板数据进行基本的描述性统计分析,如均值、标准差和相关性等。

这有助于了解数据的总体特征和个体之间的关系。

3. 面板数据模型建立:建立适当的面板数据模型来解释个体和时间维度的变化。

常用的面板数据模型包括固定效应模型、随机效应模型和混合效应模型等。

选择适当的模型是关键,需要根据具体研究问题和数据特征来确定。

4. 参数估计和推断:利用面板数据模型进行参数估计和推断,以获得对个体和时间变化的准确描述。

这可以通过最大似然估计、广义矩估计等统计方法来实现。

5. 模型诊断和策略分析:对建立的面板数据模型进行诊断检验,评估模型的拟合度和稳健性。

然后,可以利用模型的结果进行策略分析和政策评估,以指导实际决策和干预措施。

面板数据分析在实证经济学、社会科学和市场研究等领域具有广泛的应用。

它可以应用于各种问题和场景,例如研究教育投资对学生表现的影响、评估医疗政策对健康结果的影响、分析企业之间的竞争关系等。

(完整word版)面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

(完整word版)面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析)面板数据分析方法:面板单位根检验—若为同阶—面板协整—回归分析—若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。

先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。

不是时间序列那种接近0.8为优秀。

另外,建议回归前先做stationary。

很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。

fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。

该如何选择呢?步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

eviews面板数据回归分析步骤

eviews面板数据回归分析步骤

eviews面板数据回归分析步骤EViews面板数据回归分析步骤面板数据回归分析是一种常用的经济学研究方法,可以帮助研究人员探究变量之间的关系。

EViews是一种统计软件,提供了丰富的功能来进行面板数据回归分析。

本文将介绍EViews中面板数据回归分析的基本步骤。

第一步:数据准备在进行面板数据回归分析之前,首先需要准备好需要分析的数据集。

在EViews中,可以使用多种方式导入数据,包括从Excel或其他文件格式导入,或者直接在EViews中创建数据。

第二步:设置数据类型在导入或创建数据后,需要将数据设置为面板数据类型。

面板数据包含了多个时间点和多个单位(个体)的变量观测值。

在EViews中,可以通过菜单栏中的"View" -> "Structure" -> "Autodetect"来自动检测数据类型并设置为面板数据。

第三步:查看数据面板在进行面板数据回归分析之前,可以先查看数据面板的基本信息。

在EViews的工作区中,选择要查看的数据,然后点击菜单栏中的"View" -> "Group Statistics" -> "Panel Data",即可显示出数据面板的基本统计信息。

第四步:设定回归模型在EViews中,可以通过命令或拖拽方式来设定回归模型。

首先需要确定因变量和自变量,然后选择回归模型。

EViews支持多种回归模型,例如普通最小二乘回归(OLS)、固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)等。

在设定回归模型时,可以考虑是否添加控制变量和截距项。

第五步:进行回归分析在设定回归模型后,可以进行回归分析。

在EViews中,可以通过点击工具栏上的"Estimate"按钮或通过菜单栏中的"Object" -> "Estimate Equation"来进行回归分析。

面板数据回归分析步骤(一)2024

面板数据回归分析步骤(一)2024

面板数据回归分析步骤(一)引言概述:面板数据回归分析是一种常用的经济学和统计学方法,用于研究面板数据的相关性、影响因素和趋势。

本文将详细介绍面板数据回归分析的步骤和方法,帮助读者更好地理解和应用这一方法。

正文:一、数据准备1. 收集面板数据:通过调查、观测或公共数据库来获得所需的面板数据。

2. 确定面板数据的类型:面板数据可以是平衡面板数据(每个交叉单元的观测次数相等)或非平衡面板数据(每个交叉单元的观测次数不相等)。

3. 检查数据的完整性和准确性:对面板数据进行缺失值和异常值的处理,确保数据的可靠性。

二、建立模型1. 确定因变量和自变量:根据研究目的和问题,确定面板数据中的因变量和自变量。

2. 选择适当的回归模型:根据变量的特点和关系,选择合适的面板数据回归模型,如随机效应模型、固定效应模型或混合效应模型。

3. 进行模型检验和诊断:对所选的面板数据回归模型进行统计检验,检查模型的拟合度和假设的成立情况。

三、估计回归系数1. 选择估计方法:根据面板数据的性质,选择合适的估计方法,如最小二乘法、广义最小二乘法或仪器变量法。

2. 进行回归系数估计:根据选择的估计方法,对面板数据回归模型进行回归系数估计,得到对各个自变量的系数估计值。

四、解释结果1. 解释回归系数:根据回归系数的估计结果,解释自变量对因变量的影响程度和方向。

2. 进行统计推断:对回归系数进行假设检验和置信区间估计,判断回归系数的显著性和可靠性。

五、结果分析与应用1. 分析回归结果:综合考虑回归系数的解释和统计推断结果,分析面板数据回归分析的整体效果和相关性。

2. 制定政策建议:通过分析回归结果,得出结论并提出政策建议,为决策者提供参考和借鉴。

总结:本文系统介绍了面板数据回归分析的步骤和方法,包括数据准备、模型建立、回归系数估计、结果解释和分析以及应用。

通过学习和应用面板数据回归分析,可以更好地理解和分析面板数据的相关性和趋势,从而为决策者提供有力的支持。

面板数据的聚类分析及其应用

面板数据的聚类分析及其应用

根据聚类结果,该企业可以针对不同类型的产品采取有针对性的营销策略。 例如,对于第一类产品,可以继续保持和提升当前的市场地位和客户满意度;对 于第二类产品,需要市场份额的扩大和客户满意度的提升;对于第三类产品,可 以在保持客户满意度的基础上,努力提高销售额;对于第四类产品,需要加强市 场推广和品牌建设,提高销售额和市场占有率。
方法与步骤
1、数据准备
在进行面板数据聚类分析之前,首先要对数据进行预处理。这包括数据清洗、 缺失值填充、异常值处理等。确保数据具有较高的质量和可信度,以避免后续分 析结果受到干扰。
2、特征提取
面板数据聚类分析的关键在于特征的提取。通过对数据的深入挖掘和分析, 选择能够反映数据特性的特征,为后续聚类提供依据。特征提取的方法可以包括 主成分分析、因子分析、线性判别分析等。
感谢观看
3、聚类过程
在特征提取完成后,将数据进行聚类。常用的聚类方法包括K-means聚类、 层次聚类、DBSCAN聚类等。根据具体需求选择合适的聚类方法,将相似的数据分 为同一类,不同的数据分为不同的类。
4、结果解读
聚类完成后,需要对结果进行解读。这包括评估聚类的效果、分析不同类别 数据的特征、以及解释聚类结果的经济学或社会学含义等。通过结果解读,我们 可以更好地理解数据的分布和关系,为后续研究提供支持。
2、特征提取
通过对数据的深入挖掘和分析,我们选取了销售额、市场份额和客户满意度 作为主要特征,来反映各个产品的销售情况和市场地位。
3、聚类过程
பைடு நூலகம்
采用K-means聚类方法,将选取的三个特征作为输入,对各个产品进行聚类。 经过多次试验和调整,最终确定了四类产品集群。
4、结果解读
经过聚类分析,我们将该企业的多个产品分为四类。第一类是高销售额、高 市场份额、高客户满意度的产品,共计4个;第二类是高销售额、低市场份额、 低客户满意度的产品,共计3个;第三类是低销售额、高市场份额、高客户满意 度的产品,共计2个;第四类是低销售额、低市场份额、低客户满意度的产品, 共计1个。

面板数据的分析步骤

面板数据的分析步骤

面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。

面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。

步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间)的面板单位根检验。

面板数据分析方法

面板数据分析方法

面板数据分析方法面板数据分析方法是一种使用面板数据(panel data)进行统计分析的方法。

面板数据是指在一段时间内对多个个体进行观测得到的数据,例如对同一组个体在多个时间点上的经济数据、社会调查数据等。

面板数据分析方法可用于研究个体间的动态变化和个体间的差异,对于探索个体特征、推断因果关系以及进行政策评估具有重要的意义。

面板数据分析方法的主要步骤包括面板数据的描述、面板数据的平稳性检验、面板数据的估计以及面板数据的推断等。

首先,在进行面板数据分析前,需要对面板数据进行描述性分析。

可以通过计算面板数据的平均值、标准差、最大值、最小值等统计量来描述面板数据的整体情况,以及通过绘制各个个体在不同时间点上的散点图和折线图等图表来观察面板数据的变化趋势和个体间的差异。

其次,为了能够进行面板数据的分析,需要对面板数据的平稳性进行检验。

平稳性是指面板数据中个体和时间之间的变化趋势是稳定的,如果面板数据不满足平稳性前提,则可能会导致估计结果的偏误。

一种常用的平稳性检验方法是基于单位根检验,例如ADF检验和PP检验,这些检验方法可以检验面板数据中的个体序列和时间序列是否是平稳的。

然后,在对面板数据进行估计时,可以使用固定效应模型(Fixed Effects,FE)和随机效应模型(Random Effects,RE)等方法。

固定效应模型假设个体间的差异是固定的,只有个体内部的变化是随时间变动的,可以通过引入个体固定效应来控制个体间的不可观测因素。

随机效应模型则假设个体间的差异是随机的,无法通过个体固定效应来完全控制。

FE模型和RE模型的选择可以基于Hausman检验等方法进行。

最后,面板数据分析方法可以用于面板数据的推断。

例如,可以通过FE模型和RE模型的估计结果进行个体间的差异比较,判断不同因素对个体间差异的影响是否显著。

此外,还可以使用面板数据进行因果推断,如Granger因果检验和差分GMM模型等方法,用于探索个体特征之间的因果关系。

面板数据分析方法步骤全解

面板数据分析方法步骤全解

面板数据分析方法步骤全解yonglee , May 5 16:16 , 文档资料»数据挖掘, 评论(0) , 引用(0) , 阅读(35079) , 本站原创面板数据分析方法步骤全解(2009-11-07 11:50:38)转载标签:面板数据步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。

Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。

面板数据分析方法步骤全解

面板数据分析方法步骤全解

面板数据分析方法步骤全解面板数据分析是一种重要的统计分析方法,广泛应用于经济、金融、社会科学等领域。

它可以有效地处理多个观测单位在不同时间点上的数据,提供了更为精确和全面的分析结果。

本文将介绍面板数据分析的基本概念、步骤和常见方法。

一、面板数据的基本概念面板数据也被称为追踪数据、长期数据或纵向数据,它是一种将多个观测单位在不同时间点上的数据进行整合的方式。

面板数据分为两种类型:平衡面板和非平衡面板。

平衡面板是指每个观测单位在每个时间点上都有完整的数据,而非平衡面板则允许观测单位在某些时间点上缺失数据。

面板数据的优势在于可以充分利用时间序列和截面数据的信息,提供更为准确和有力的分析结果。

然而,面板数据的分析往往需要解决一些特殊的问题,比如异质性、序列相关性和观测单位间的相关性等。

二、面板数据分析的步骤1. 数据准备:面板数据分析的第一步是准备好所需的数据。

这包括收集和整理各个观测单位在不同时间点上的数据,并进行数据清洗和处理。

在数据准备阶段,需要注意保持数据的一致性和完整性,排除异常值和缺失数据等。

2. 描述性统计:在面板数据分析中,描述性统计是了解数据特征和趋势的基础。

通过计算各个变量的均值、标准差、最大值、最小值等统计量,可以对数据的分布和变化进行初步分析。

此外,还可以绘制折线图、柱状图等图表,直观地展示数据的变化趋势。

3. 模型选择:选择适当的模型是面板数据分析的核心步骤。

常见的面板数据分析模型包括固定效应模型、随机效应模型和混合效应模型。

固定效应模型假设每个观测单位的效应是固定的,而随机效应模型假设每个观测单位的效应是随机的。

混合效应模型则将两者结合起来,既考虑了固定效应,又考虑了随机效应。

4. 假设检验:在面板数据分析中,假设检验是判断模型的显著性和一致性的重要方法。

通过假设检验可以判断各个变量之间的关系是否显著,以及模型的拟合程度如何。

常用的假设检验方法包括t检验、F检验等,可以用于检验模型参数的显著性和方差的平稳性。

5分钟搞定Stata面板数据分析

5分钟搞定Stata面板数据分析

【原创】5分钟搞定Stata面板数据分析简易教程ver2.0作者:张达5分钟搞定Stata面板数据分析简易教程步骤一:导入数据原始表如下,数据请以时间(1998,1999,2000,2001⋯⋯)为横轴,样本名(北京,天津,河北⋯⋯)为纵轴将中文地名替换为数字。

注意:表中不能有中文字符,否则会出现错误。

面板数据中不能有空值。

去除年份的一行,将其余部分复制到stata的data editor中,或保存为csv格式。

打开stata,调用数据。

方法一:直接复制到data editor中。

方法二:使用口令:insheet using 文件路径调用例如:insheet using C:\STUDY\paper\taxi.csv 其中csv格式可用excel的“另存为”导出如图:步骤二:调整格式首先请将代表样本的var1重命名口令:rename var1 样本名例如:rename var1 province也可直接在var1处双击,在弹出的窗口中修改:接下来将数据转化为面板数据的格式口令:reshape long var, i(样本名)例如:reshape long var, i(province)其中var代表的是所有的年份(var2,var3,var4⋯⋯)转化后的格式如图:转化成功后继续重命名,其中_j 这里代表原始表中的年份,var代表该变量的名称口令例如:rename _j yearrename var taxi也可直接在需要修改的名称处双击,在弹出的窗口中修改如图:步骤三:排序口令:sort 变量名例如:sort province year意思为将province按升序排列,然后再根据排好的province数列排year这一列如图:(虽然很多时候在执行sort前数据就已经符合要求了,但以防万一请务必执行此操作)最后,保存。

至此,一个变量的前期数据处理就完成了,请如法炮制的处理所有的变量,也就是说每个变量都做一个dta文件。

Stata面板数据回归分析的步骤和方法

Stata面板数据回归分析的步骤和方法

Stata面板数据回归分析的步骤和方法面板数据回归分析是一种用于分析面板数据的统计方法,可以通过观察个体和时间上的变化来研究变量之间的关系。

Stata软件是进行面板数据回归分析的常用工具之一,下面将介绍Stata中进行面板数据回归分析的步骤和方法。

一、数据准备在进行面板数据回归分析前,首先需要准备好相关的数据。

面板数据通常由个体和时间两个维度构成,个体维度可以是不同的个体、公司或国家,时间维度可以是不同的年、季度或月份。

将数据按照面板结构整理好,并确保数据的一致性和准确性,可以直接在Stata中导入数据进行处理。

二、面板数据回归模型选择在进行面板数据回归分析时,需要选择适合的回归模型来研究变量之间的关系。

常见的面板数据回归模型包括固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)。

固定效应模型通过控制个体固定效应来分析变量间的关系,而随机效应模型则假设个体固定效应与解释变量无关。

三、面板数据回归分析步骤1. 导入数据在Stata中,可以使用"import"命令导入面板数据。

例如:`import excel "data.xlsx", firstrow`可以导入Excel文件,并指定首行为变量名。

2. 设定面板数据结构在Stata中,需要将数据设置为面板数据结构,采用"xtset"命令即可完成设置。

例如:`xtset id year`将数据的个体维度设定为"id",时间维度设定为"year"。

3. 估计面板数据回归模型在Stata中,可以使用"xtreg"命令来估计面板数据回归模型。

例如:`xtreg dependent_var independent_var1 independent_var2, fe`可以用固定效应模型进行回归分析。

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。

Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。

Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。

由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。

Stata面板数据回归分析的步骤和方法

Stata面板数据回归分析的步骤和方法

Stata面板数据回归分析的步骤和方法哎哟,说起Stata面板数据回归分析,我这心里就直发痒。

我这人就是喜欢琢磨这些个数字,特别是这面板数据,看着就亲切。

来来来,咱们就坐在这,我给你掰扯掰扯这回归分析的步骤和方法。

首先啊,你得准备数据。

这数据啊,得是面板数据,就是横着竖着都是数据。

你得把数据导进Stata里头,看着那一排排数字,心里就得有谱,知道这数据从哪儿来,将来要干啥用。

然后啊,咱们先得把数据整理一下。

Stata里有那么多命令,咱们得用上“xtset”这个命令,告诉Stata这是面板数据。

然后呢,就得看看数据有没有问题,比如有没有缺失值啊,有没有异常值啊。

这就像咱们做人,也得讲究个整洁,别邋里邋遢的。

接下来啊,咱们得确定模型。

面板数据回归模型有好几种,比如说固定效应模型、随机效应模型,还有混合效应模型。

你得根据实际情况来选择。

就像做菜,得看你要做什么菜,是做炒菜还是炖菜。

选好了模型,那就得建模型了。

Stata里有“xtreg”这个命令,专门干这个活。

你把数据输入进去,再指定你的模型,Stata就帮你算出来了。

就像咱们孩子写作业,咱们给他点拨点拨,他就写得有模有样了。

算完模型,就得检验。

这就像咱们看完电影,得聊聊感想。

检验模型,就是看这个模型有没有问题,比如有没有多重共线性啊,残差有没有自相关啊。

这就像咱们吃饭,得看看吃得饱不饱,营养均衡不均衡。

最后啊,你得解释结果。

这结果啊,得结合实际情况来说。

就像咱们买衣服,得看合不合身。

解释结果,就是要看这些数字背后的故事,看看这些数据能告诉我们什么。

哎呀,说起来这Stata面板数据回归分析,真是门学问。

得有耐心,得有细心,还得有恒心。

就像咱们种地,得用心浇灌,才能收获满满。

好啦,我这就唠叨这么多了。

你要是想学这玩意儿,得多看多练。

就像咱们学说话,得多说多练,才能说得溜。

来来来,咱们下次再聊聊其他的话题。

面板数据回归分析步骤(二)2024

面板数据回归分析步骤(二)2024

面板数据回归分析步骤(二)引言概述:面板数据回归分析是一种经济学和社会科学中常用的统计方法,用于探究个体间和时间间的关系。

本文将介绍面板数据回归分析的具体步骤,以帮助读者理解和运用这一方法。

正文:一、数据准备阶段1. 收集面板数据:收集涉及多个个体和多个时间点的数据,确保数据的质量和可靠性。

2. 数据清洗和处理:对数据进行处理,包括去除缺失值、删除离群值等,以保证数据的准确性和一致性。

3. 数据转换:如果有需要,对数据进行转换,如对变量进行标准化或对数化处理,以符合回归模型的要求。

二、模型设定阶段1. 选择回归模型类型:根据研究问题和数据特点,选择适合的回归模型类型,如固定效应模型、随机效应模型等。

2. 确定自变量和因变量:根据研究目的,选择适当的自变量和因变量,并进行变量的定义和测量。

3. 添加控制变量:根据理论知识和实际需求,添加可能的控制变量,以控制其他因素对因变量的影响。

三、模型估计阶段1. 估计模型参数:利用面板数据回归模型进行参数估计,得到各个自变量对因变量的影响程度。

2. 检验模型的拟合程度:通过计算回归模型的拟合度指标,如R方、调整R方等,评估模型对数据的拟合情况。

3. 分析模型的显著性:利用t检验或F检验等方法,对模型的显著性进行检验,以确定模型是否有效。

四、模型解释和分析阶段1. 解释回归系数:分析估计得到的回归系数的意义,解释自变量对因变量的影响方式和程度。

2. 检验假设:根据回归系数的显著性检验结果,检验研究假设是否被支持。

3. 进行敏感性分析:对模型的稳健性进行检验,进行不同假设和规范性分析,以确保结论的稳健性。

五、结果报告和讨论阶段1. 结果呈现:将回归模型的结果呈现出来,包括回归系数、显著性检验结果等,以清晰地展示研究结果。

2. 结果解读:解读回归结果的含义,并与相关的理论框架和研究背景进行对比和讨论。

3. 结论总结:总结回归分析的结果和发现,提出可能的政策建议或进一步研究的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.面板数据分析方法步骤面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。

面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。

步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。

Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。

Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。

由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。

其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程, Hadri Z统计量的检验原假设为不存在普通的单位根过程。

有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。

如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。

但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。

具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。

并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。

此外,单位根检验一般是先从水平(level)序列开始检验起,如果存在单位根,则对该序列进行一阶差分后继续检验,若仍存在单位根,则进行二阶甚至高阶差分后检验,直至序列平稳为止。

我们记I(0)为零阶单整,I(1)为一阶单整,依次类推,I(N)为N阶单整。

步骤二:协整检验或模型修正情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。

协整检验是考察变量间长期均衡关系的方法。

所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。

此时我们称这些变量序列间有协整关系存在。

因此协整的要求或前提是同阶单整。

但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。

另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量的单整阶数。

如果只含有两个解释变量,则两个变量的单整阶数应该相同。

也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。

而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。

协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。

(2)Pedron(1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。

和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。

(3)Larsson et al(2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。

我们主要采用的是Pedroni、Kao、Johansen的方法。

通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的。

因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。

这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。

但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。

引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。

”下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺序(A前B后),那么我们便可以说X是Y的原因。

考虑最简单的形式,Granger检验是运用F-统计量来检验X的滞后值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y的“Granger原因”(Granger cause);如果影响显著,那么称X是Y的“Granger原因”。

同样,这也可以用于检验Y是X的“原因”,检验Y的滞后值是否影响X(已经考虑了X的滞后对X自身的影响)。

Eviews好像没有在POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。

说明Eviews是无法对面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。

也就是说格兰杰因果检验在Eviews中是针对普通的序列对(pairwise)而言的。

你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试。

情况二:如果基于单位根检验的结果发现变量之间是非同阶单整的,即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。

但此时也不要着急,我们可以在保持变量经济意义的前提下,对我们前面提出的模型进行修正,以消除数据不平稳对回归造成的不利影响。

如差分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数据。

此时的研究转向新的模型,但要保证模型具有经济意义。

因此一般不要对原序列进行二阶差分,因为对变动数据或增长率数据再进行差分,我们不好对其冠以经济解释。

难道你称其为变动率的变动率?步骤三:面板模型的选择与回归面板数据模型的选择通常有三种形式:一种是混合估计模型(Pooled Regression Model)。

如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。

一种是固定效应模型(Fixed Effects Regression Model)。

如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。

一种是随机效应模型(Random Effects Regression Model)。

如果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,并且这两个随机误差项都服从正态分布,则固定效应模型就变成了随机效应模型。

在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型还是固定效应模型,然后用Hausman检验确定应该建立随机效应模型还是固定效应模型。

检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归:在回归的时候,权数可以选择按截面加权(cross-section weights)的方式,对于横截面个数大于时序个数的情况更应如此,表示允许不同的截面存在异方差现象。

相关文档
最新文档