北京大学操作系统1996年考研真题考研试题

合集下载

1996考研数学一真题及答案解析

1996考研数学一真题及答案解析

1996年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1) 设2lim()8xx x a x a→∞+=-,则a =___________. (2) 设一平面经过原点及点(6,-3,2),且与平面428x y z -+=垂直,则此平面方程为___________.(3) 微分方程22xy y y e '''-+=的通解为___________.(4) 函数ln(u x =+在(1,0,1)A 点处沿A 点指向(3,2,2)B -点方向的方向导数为___________.(5) 设A 是43⨯矩阵,且A 的秩()2r A =,而102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()r AB =___________.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 已知2()()x ay dx ydyx y +++为某函数的全微分,则a 等于 ( )(A) -1 (B) 0 (C) 1 (D) 2 (2) 设()f x 有二阶连续导数,且(0)0f '=,0()lim 1||x f x x →''==,则 ( ) (A) (0)f 是()f x 的极大值 (B) (0)f 是()f x 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) (0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3) 设0(1,2,)n a n >=,且1n n a ∞=∑收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑( )(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 收敛性与λ有关(4) 设()f x 有连续的导数,(0)0f =,(0)0f '≠,220()()()xF x x t f t dt =-⎰,且当0x →时,()F x '与kx 是同阶无穷小,则k 等于 ( ) (A) 1 (B) 2 (C) 3 (D) 4(5) 四阶行列式112233440000000a b a b b a b a 的值等于 ( ) (A) 12341234a a a a b b b b - (B) 12341234a a a a b b b b +(C) 12123434()()a a b b a a b b -- (D) 23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分.)(1) 求心形线(1cos )r a θ=+的全长,其中0a >是常数. (2) 设110x =,11,2,)n x n +==,试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分.) (1) 计算曲面积分(2)Sx z dydz zdxdy ++⎰⎰,其中S 为有向曲面22(01)z x y z =+≤≤,其法向量与z 轴正向的夹角为锐角.(2) 设变换2,u x y u x ay=-⎧⎨=+⎩可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂化简为20zu v ∂=∂∂,求常数a ,其中(,)z z x y =有二阶连续的偏导数.五、(本题满分7分)求级数221(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0x >,曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01()xf t dt x⎰,求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件|()|f x a ≤,|()|f x b ''≤,其中,a b 都是非负常数,c 是(0,1)内任一点,证明|()|22b fc a '≤+.八、(本题满分6分)设T A E ξξ=-,其中E 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置,证明: (1) 2A A =的充要条件是1T ξξ=;(2) 当1Tξξ=时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2.(1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和 2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是__________. (2) 设ξ、η是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量 ξη-的数学期望()E ξη-=__________.十一、(本题满分6分.)设ξ、η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为{}13P i ξ==, i =1,2,3,又设max(,)X ξη=,min(,)Y ξη=.(1) 写出二维随机变量(,)X Y 的分布律:(2) 求随机变量X 的数学期望()E X .1996年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】ln 2【解析】这是1∞型未定式求极限.方法一: 3323lim()lim(1)x a axx a xax x x a a x a x a-⋅-→∞→∞+=+-- ,令3at x a=-,则当x →∞时,0t →, 则 1303lim(1)lim(1)x aa t x t a t e x a -→∞→+=+=-, 即 33lim lim 312lim()x x ax ax a x a x x a e e e x a→∞→∞-→∞+===-. 由题设有38ae=,得1ln8ln 23a ==.方法二:2223()2221lim 112lim lim lim 11lim 1x xa xax a x a x x a x x x a a x a a a x a e x x x e a x a e a a x x x ⋅→∞-→∞→∞→∞-⋅-→∞⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭===== ⎪ ⎪-⎝⎭⎛⎫ ⎪-⎛⎫- ⎪-⎝⎭ ⎪⎝⎭⎝⎭, 由题设有38ae=,得1ln8ln 23a ==.(2)【答案】2230x y z +-=【解析】方法一:所求平面过原点O 与0(6,3,2)M -,其法向量{}06,3,2n OM ⊥=-;平面垂直于已知平面428x y z -+=,它们的法向量也互相垂直:{}04,1,2n n ⊥=-;由此, 00//632446412ij kn OM n i j k ⨯=-=--+-.取223n i j k =+-,则所求的平面方程为2230x y z +-=.方法二:所求平面即为过原点,与两个不共线的向量(一个是从原点到点0(6,3,2)M -的向量{}06,3,2OM =-,另一是平面428x y z -+=的法向量{}04,1,2n =-)平行的平面,即 6320412xy z-=-,即 2230x y z +-=.(3)【答案】12(cos sin 1)xe c x c x ++【解析】微分方程22xy y y e '''-+=所对应的齐次微分方程的特征方程为2220r r -+=,解之得1,21r i =±.故对应齐次微分方程的解为12(cos sin )x y e C x C x =+.由于非齐次项,1xe αα=不是特征根,设所给非齐次方程的特解为*()xy x ae =,代入22x y y y e '''-+=得1a =(也不难直接看出*()x y x e =),故所求通解为1212(cos sin )(cos sin 1)x x x y e C x C x e e C x C x =++=++.【相关知识点】① 二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.② 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.③ 对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. (4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z∂∂∂∂∂∂,然后按方向导数的计算公式 cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数. 【解析】因为l 与AB 同向,为求l 的方向余弦,将{}{}31,20,212,2,1AB =----=-单位化,即得 {}{}12,2,1cos ,cos ,cos 3||AB l AB αβγ==-=.将函数ln(u x =+分别对,,x y z 求偏导数得12Au x ∂==∂,0Au y ∂==∂,12Au z∂==∂, 所以cos cos cos AA A A u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂ 1221110()233232=⨯+⨯-+⨯=. (5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】由于存在函数(,)u x y ,使得 22()()()x ay dx ydydu x y x y +=+++, 由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u yy x y ∂=∂+, 分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++,232()u yy x x y ∂-=∂∂+. 由于2u y x ∂∂∂与2u x y∂∂∂连续,所以22u uy x x y ∂∂=∂∂∂∂,即 33(2)2()()a x ay y x y x y ---=++2a ⇒=, 故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增. 又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A) 【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan )limn n n n n nλλλλλ→+∞→+∞=⋅=. 用比较判别法的极限形式,有22tanlim0nn nn a na λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1) 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2) 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3) 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(C)【解析】用洛必达法则.由题可知 220()()()xxF x xf t dt t f t dt =-⎰⎰,对该积分上限函数求导数,得220()2()()()2()x xF x x f t dt x f x x f x x f t dt '=+-=⎰⎰,所以 0010002()2()()lim lim lim x xk k k x x x x f t dt f t dt F x x x x-→→→'==⎰⎰ 23002()2()limlim (1)(1)(2)k k x x f x f x k x k k x --→→'---洛洛.因为()F x '与kx 是同阶无穷小,且(0)0f '≠,所以302()lim(1)(2)k x f x k k x -→'--为常数,即3k =时有 300()2()limlim (0)0(1)(2)k k x x F x f x f x k k x-→→'''==≠--, 故应选(C).【相关知识点】设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (5)【答案】(D)【解析】可直接展开计算,2222133133440000a b a b D a b a b b a a b =- 22221414232314143333()()a b a b a a b b a a b b a a b b b a b a =-=--,所以选(D).三、(本题共2小题,每小题5分,满分10分.) (1)【解析】由极坐标系下的弧微分公式得ds a θθ==2cos2a a d θθθ==.由于()(1cos )r r a θθ==+以2π为周期,因而θ的范围是[0,2]θπ∈. 又由于()()r r θθ=-,心形线关于极轴对称.由对称性,24cos 8sin 822s ds a d a a πππθθθ⎡⎤====⎢⎥⎣⎦⎰⎰.(2)【解析】用单调有界准则.由题设显然有0n x >,数列{}n x 有下界.证明n x 单调减:用归纳法.214x x ==<;设1n n x x -<,则1n n x x +==.由此,n x 单调减.由单调有界准则,lim n n x →+∞存在.设lim ,(0)n n x a a →+∞=≥,在恒等式1n x +两边取极限,即1lim lim n n n x a +→+∞=⇒=解之得3a =(2a =-舍去).【相关知识点】1.单调有界准则:单调有界数列必有极限.2. 收敛数列的保号性推论:如果数列{}n x 从某项起有0n x ≥(或0n x ≤),且lim n n x a →∞=,那么0a ≥(或0a ≤).四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z-≤≤≤≤,或01,z y ≤≤≤≤ 图1求Szdxdy ⎰⎰,自然投影到xOy 平面上.求(2)Sx z dydz +⎰⎰时,若投影到xOy 平面上,被积函数较简单且可利用对称性.【分析二】令(,,)2,(,,)0,(,,)P x y z x z Q x y z R x y z z =+==,则SI Pdydz Rdxdy =+⎰⎰.这里,213P Q R x y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰, 其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得 2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x x y dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰, 所以 22()xyD I x y dxdy =-+⎰⎰. 利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I 化成二重积分得2222)()()4().yzyzxyyzxyD D D D D I z dydz z dydz x y dxdyx y dxdy =-+-++=-++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2213111221131242200sin 2()344(1)cos 3343,34224yzz y D z y y t dy z y dyy dy tdt πππ=--====-=-=⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此, 4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以1(2)3S S x z dydz zdxdy dV Ω++=-⎰⎰⎰⎰⎰11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰, 其中,()D z 是圆域:22x y z +≤,面积为z π. 因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰. (2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, 2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂, 所以 22222222()()z z z z u z v z v z ux x u x v u x u v x v x v u x∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222z z zu u v v∂∂∂=++∂∂∂∂, 2222222()()z z z z u z v z v z u x y y u y v u y u v y v y v u y∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222(2)z z za a u u v v∂∂∂=-+-+∂∂∂∂,222222222222222()()2()()44.z z z a y y u y vz u z v z v z ua u y u v y v y v u yz z z a a u u v v∂∂∂∂∂=-+∂∂∂∂∂∂∂∂∂∂∂∂∂=-⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂=-+∂∂∂∂代入2222260z z zx x y y∂∂∂+-=∂∂∂∂,并整理得 2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂. 于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂. 【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分7分) 【解析】先将级数分解,212211222131111()(1)2211111111.212122n n n n n n n n n n n n A n n n n n n n ∞∞+==∞∞∞∞+++======---+=⋅-⋅=--+⋅⋅∑∑∑∑∑∑令 1221311,22n nn n A A nn∞∞+====⋅⋅∑∑, 则 12A A A =-.由熟知ln(1)x +幂级数展开式,即11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,得 1121111(1)1111()ln(1)ln 2242424n n n n n A n n -∞∞+==-==--=--=⋅∑∑,12331211(1)1()22(1)11111115()()ln(1)ln 2,22222288n nn n n n n n A n n n -∞∞==-∞=-==--⋅-=-----=----=-∑∑∑因此, 1253ln 284A A A =-=-.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,01()()()xf t dt f x f x x x' =-⎰. 为消去积分,两边乘以x ,得 20()()()xf t dt xf x f x x ' =-⎰, (*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即 ()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=, 因为0x >,所以1C y x'=, 两边积分得 12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==. 再积分得12()ln y f x C x C ==+.七、(本题满分8分)【解析】由于问题涉及到,f f '与f ''的关系,自然应当利用泰勒公式,而且应在点c 展开:2()()()()()()2!f f x f c f x x c x c ξ'''=+-+-,ξ在c 与x 之间. 分别取0,1x =得20()(0)()()(0)(0)2!f f f c f c c c ξ'''=+-+-,0ξ在c 与0之间, 21()(1)()()(1)(1)2!f f f c f c c c ξ'''=+-+-,1ξ在c 与1之间, 两式相减得 22101(1)(0)()[()(1)()]2!f f f c f c f c ξξ'''''-=+--,于是 22101()(1)(0)[()(1)()]2!f c f f f c f c ξξ'''''=----.由此 221011()(1)(0)()(1)()2!2!f c f f f c f c ξξ'''''≤++-+ 2212[(1)]222b a bc c a ≤+-+<+.八、(本题满分6分)【解析】(1)因为T A E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此, 2(2)(1)0TTTTTA A E E ξξξξξξξξξξ=⇔--=-⇔-=因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=.(2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===.与已知TA E E ξξ=-≠矛盾,故A 是不可逆矩阵. 九、(本题满分8分)【解析】(1)此二次型对应的矩阵为51315333A c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.因为二次型秩 ()()2r f r A ==,由513440400153153163333336A c c c -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭可得3c =.再由A 的特征多项式513||153(4)(9)333E A λλλλλλλ---=-=----求得二次型矩阵的特征值为0,4,9.(2)因为二次型经正交变换可化为222349y y +,故123(,,)1f x x x =,即2223491y y +=.表示椭圆柱面.【相关知识点】主轴定理:对于任一个n 元二次型12(,,,)T n f x x x x Ax =,存在正交变换x Qy =(Q 为n 阶正交矩阵),使得2221122()T T T n n x Ax y Q AQ y y y y λλλ==+++,其中12,,,n λλλ是实对称矩阵A 的n 个特征值,Q 的n 个列向量12,,,n ααα是A 对应于特征值12,,,n λλλ的标准正交特征向量.十、填空题(本题共2小题,每小题3分,满分6分.) (1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S 的一个划分,且()0,()0(1,2,,)i P A P B i n >>=,则1()(|)(|),1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式. (2)【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()0,EU E E E ξηξη=-=-=()11122DU D D D ξηξη=-=+=+=, 所以有 (0,1)UN .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰. 应用随机变量函数的期望公式有22(||)(||)||u E E U u du ξη+∞--∞-= =⎰222u du +∞-=⎰由凑微分法,有222(||)2()2u uE d ξη+∞--=--⎰22u +∞-==【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++, 22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.十一、(本题满分6分.)【解析】易见(,)X Y 的可能取值为(1,1),(2,1),(2,2),(3,1),(3,2),(3,3).依题意{}X Y <=∅,故{}0P X Y <=,即{}{}{}1,21,32,30P X Y P X Y P X Y =========, {}{}1,1max(,)1,min(,)1P X Y P ξηξη====={}{}{}11,1119P P P ξηξη=======. 类似地可以计算出所有ij p 的值列于下表中,得到随机变量(,)X Y 的联合分布律:(2)将表中各行元素相加求出X 的边缘分布123135999X⎡⎤⎢⎥⎢⎥⎣⎦, 由离散型随机变量数学期望计算公式可得135221239999EX =⋅+⋅+⋅=. 【相关知识点】1.离散型随机变量的边缘分布计算公式:二维离散型随机变量(,)X Y 关于X 与Y 的边缘概率分布或边缘分布律分别定义为:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑ {}{},,1,2,j j i j ij iip P Y y P X x Y y p j ⋅=======∑∑它们分别为联合分布律表格中第i 行与第j 列诸元素之和. 2. 离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.。

操作系统考研试题和答案

操作系统考研试题和答案

1.分时操作系统需要使用下面哪些成份。

(①②④⑥)①多道程序设计技术②作业说明书③终端命令解释程序④中断处理⑤优先级调度⑥系统调用2.进程具有哪些特性。

(①③④⑤)①动态性②共享性③并发性④相互制约性⑤独立性⑥静态性3. 在页式虚存管理系统中,若常发生抖动影响CPU的利用率,从系统管理员的角度,则下面哪些方法可改善CPU的利用率。

(③)①用一个更快的CPU ②用一个更大的辅存③减少多道程序的道数④增加多道程序的道数⑤增大主存⑥采用更快的I/O设备4.在文件系统中,为实现文件保护一般应采用下面哪些方法。

(①③④⑤)①口令②密码③访问控制④复制⑤在读写文件之前使用OPEN系统调用⑥在读写文件之后使用CLOSE系统服务5. 从资源分配角度,操作系统把外部设备分为(①②⑦)①独占型设备②共享型设备③快速型设备④慢速性设备⑤块设备⑥字符型设备⑦虚拟设备二、(9分)对访问串:1,2,3,4,1,2,5,1,2,3,4,5, 指出在驻留集大小分别为3,4时,使用FIFO和LRU替换当驻留集为3时,采用FIFO替换算法,页面故障数为9次;采用LRU替换算法时,页面故障数为10次。

当驻留集为4时,采用FIFO替换算法,页面故障数为10次;采用LRU替换算法时,页面故障数为8次。

结果表明,FIFO替换算法的故障数不随驻留集增大而减少;而LRU算法的故障数随驻留集增大而减少。

算法的页故障数。

结果说明了什么?三.(8分)简述文件的二级目录组织形式。

欲实现文件共享如何处理?把记录文件的目录分成主文件目录和由其主管的若干个子目录,各子目录的位置由主目录中的一项指出。

应用中常设一个主文件目录,而为系统中每一个用户设立一张主文件目录MFD,每个用户的所有文件均设立一个用户文件目录UFD,作为MFD中的一项。

用以描述UFD的文件名和物理位置,即UFD是用户全部文件的文件控制块的全体。

在二级文件目录中,欲共享文件需给出一个文件的全路径名。

1996年考研数学一真题及答案解析

1996年考研数学一真题及答案解析

1 2 1996 年全国硕士研究生入学统一考试理工数学一试题详解及评析一、 填空题⎛ x + 2a ⎫x(1) 设lim ⎪= 8, 则a = .x →∞ ⎝ 【答】 ln 2. x - a ⎭+ x ⎡3axx -a ⎤ x -a 【详解】 因为lim ⎛ x 2a ⎫ = lim ⎢⎛1+ 3a ⎫ 3a ⎥= e 3a , x →∞ x - a ⎪ x →∞ ⎢ x - a⎪ ⎥ ⎝ ⎭于是e 3a = 8 ⇒ a = ln 2⎣⎝ ⎭ ⎦(2)设一平面经过原点及点(6, -3, 2), 且与平面4x - y + 2z = 8 垂直,则此平面方程为.【答】 2x + 2 y - 3z = 0【详解】 原点与点(6, -3, 2) 连线的方向向量为 s = (6, -3, 2) ; 平面4x - y + 2z = 8 的法向量为 n = {4, -1, 2},根据题意,所求平面的法向量为i j ks ⨯ n = 6 4 -3 2 = 2i + 2 j - 3k .-1 2故所求平面方程为 2 ( x - 0) + 2 ( y - 0) - 3( z - 0) = 0,即2x + 2 y - 3z = 0 .(3)微分方程 y '' - 2 y ' + 2 y = e x 的通解为.【答】 y = C e x cos x + C e x sin x + e x【详解】 对应齐次方程的特征方程为λ 2 - 2λ + 2 = 0,解得特征根为 λ1,2 = 1± i ,由于α = 1 不是特征根,可设原方程的特解为 y * = Ae * ,1 2 ⎢ ⎥ 代入原方程解得 A = 1, 故所求通解为(4)函数u = ln (x 1y = C e x cos x + C e x sin x + e x在 A (1, 0,1) 点处沿 A 点指向的方向导数为.【答】 .2【详解】 因为∂u | = 1 |= 1 , ∂x A x (1,0,1) 2∂u | = 1 ⋅ y | = 0∂y A x (1,0,1)∂u | = 1 ⋅ z | = 1 , ∂z A x (1,0,1) 2–––K cos α = 2 , cos β = - 2 , cos γ = 1,3 3 3⎧ 2 2 1 ⎫沿 AB 方向的单位向量为⎨ 3 , - , ⎬,–––K⎩3 3⎭ 故u 沿 AB 方向的方向导数为∂u 1 2 ⎛ 2 ⎫ 1 1 1 –––K = ⋅ + 0 ⋅ - ⎪ + ⋅ = ∂ AB 2 3 ⎝ 3 ⎭ 2 3 2⎡ 1 0 2⎤(5)设 A 是4 ⨯ 3 矩阵,且 A 的秩 r ( A ) = 2, 而 B = ⎢ 0 2 0⎥ , 则 r ( AB ) =.⎢⎣-1 0 3⎥⎦【答】 2.【详解】 因为 B =1 0 22 0 = 10 ≠ 0,-1 0 3说明矩阵 B 可逆,故秩 r ( AB ) = 秩 r ( A ) = 2,二、选择题(1) 已知( x + ay ) dx + ydy ( x + y )2为某函数的全微分,则 a 等于(A )-1.(B )0.(C)1.(D)2.【】→ 【答】 应选(D ).( x + ay ) dx + ydy【详解】( x + y )2为某函数的全微分的充要条件是∂ ⎛ y ⎫ = ∂ ⎛ x + ay ⎫, 2 ⎪ 2 ⎪∂x ( x + y ) ∂y ( x + y ) ⎪即(a - 2) x - ay = -2 y ,⎝ ⎭ ⎝ ⎭(a - 2)( x - y ) = 0.当且仅当 a = 2 时上式恒成立,故正确选项为(D ). f '' ( x )(2)设 f ( x ) 有二阶连续导数,且 f ' (0) = 0, limx0 = 1, 则(A ) f (0) 是 f ( x ) 的极大值. (B ) f (0) 是 f ( x ) 的极小值.(C ) (0, f (0))是曲线 y = f ( x ) 的拐点.(D ) f (0) 不是 f ( x ) 的极值, (0, f (0))也不是曲线 y = f ( x ) 的拐点【 】【答】 应选(B ). f '' ( x )【详解】 由题设limx →0在此邻域内有f '' ( x )= 1 根据极限的性质知,存在 x = 0 的某邻域,≥ 0 .即 f '' ( x ) ≥ 0.又根据泰勒公式,f '' (ξ )f ( x ) = f (0) + f ' (0) x +f '' (ξ )x 2 其中ξ 在 0 与 x 之间, 2! 从而 f ( x ) = f (0) +x 2 ≥ 2!f (0)可见 f (0) 是 f ( x ) 的极小值,故正确选项为(B )∞⎛ π ⎫∞ n ⎛ λ ⎫ (3)设a n > 0 (n = 1, 2,⋯), 且∑a n 收敛,常数λ ∈ 0, 2 ⎪ , 则级数∑(-1) n tan n ⎪ a 2nn =1 ⎝ ⎭ n =1⎝ ⎭(A )绝对收敛. (B )条件收敛. (C)发散.(D )敛散性与λ 有关.【 】【答】 应选(A ).xxx⎝⎭ ⎝ ⎭ 0= lim∞x n⎛λ ⎫ λ 【详解】 由于 (-1) nn tan n ⎪ a 2n = n tan n ⋅ a 2n ,而lim n tann →∞λ = λ, 所以当n 充分大时,n tan λ⋅ a < (λ +1) an 2n2n∞∞又正项级∑an 收敛,所以其偶数项数列构成的级数∑a2n 也收敛,n =1n =1n⎛λ ⎫ 从而 ∑(-1) n =1n tan n ⎪ a 2n 绝对收敛,故正确选项为(A )(4)设 f ( x ) 有连续的导数, f (0) = 0, f ' (0) ≠ 0, F ( x ) = ⎰ x(x 2- t 2 )f (t ) dt , 且当 x → 0 时, F ' ( x )是与 xk是同阶无穷小,则 k 等于【答】 应选(C ). 【详解】 因为' ⎡ 2xx 2【 】⎤'x2 2 F ( x ) = ⎢⎣ x ⎰0xf (t ) dt - ⎰0 t f (t ) d t ⎥⎦= 2x ⎰0 f (t ) dt + x f ( x ) - x f ( x ) = 2x ⎰0 f (t )dt .又根据题设 F ' ( x ) 与xk 是同阶无穷小,且 f (0) = 0, f ' (0) ≠ 0,于是有F ' ( x )2x ⎰ f (t ) dt2 f ( x ) lim x →0 x k = lim 0 x →0 x kx →0 (k -1) x k -2 = 2 lim 1⋅f ( x ) - f (0) x →0 (k -1) x k -3 x - 0= 2 f ' (0)⋅lim 1≠ 0,x →0 (k -1) x k -3可见应有 k = 3 故正确选项为(C ).(5)四阶行列式 的值等于3 3(A ) a 1a 2 x 3 x 4 - b 1b 2b 3b 4 .(B ) a 1a 2a 3a 4 + b 1b 2b 3b 4 .a 1 0 0b 10 a 2 b 2 0 0 b 4 b 0 a 0 0 a 41 n →∞1 4(C ) (a 1a 2 - b 1b 2 )(a 3a 4 - b 3b 4 ).(D ) (a 2a 3 - b 2b 3 )(a 1a 4 - b 1b 4 ).【 】【答】 应选(D ) 【详解】 按第一行展开,a 1 0 0 0 a 2b 2 b 10 a 2 b 2 = a ⋅ b a 00 0 - b 0 a 2 b 2 b a 0 b 3 a 3 0b 0 0 a1 3 3 0 0 a 4 1 3 3 b 4 0 0 44= aaa 2b 2- b b a 2 b 2 b 3 a 3b 3 a 3故正确选项为(D ).= (a 2a 3 - b 2b 3 )(a 1a 4 - b 1b 4 ).三、(1)求心形线 r = a (1+ cos θ ) 的全长,其中a > 0 是常数.' 【详解】 因为 r (θ ) = -a sin θ , ds = d θ = 2a cosd θ 利用对称性知,所求心形线的全长s = 2⎰π 2a co sθ d θ = 8a s in θ |π= 8a0 2 2 0(2)设 x 1 = 10, x n +1 =【详解】 由 x 1 = 10, x 2 =n = 1, 2,⋯), 试证数列{x n } 的极限存在,并求此极限.= 4 知, x > x . 2设对某个正整数 k 有 x k > x k +1 则x k +1 =>= x k +2 .故由归纳法知,对一切正整数 n , 都有 x n > x n +1, 即数列{x n } 为单调减少数列.又显然有 x n > 0 (n = 1, 2,⋯),即{x n } 有下界,根据单调有界数列必有极限知,数列{x n } 的极限存在.记lim x n = a , 对 x n +1从而 a 2 - a - 6 = 0两边取极限,得 a解得 a = 3 或 a = -2 (舍去,因为 x n > 0 )θ21 41 y 0 0 2π 故所求极限值为 a = 3 .四、(1)计算曲面积分⎰⎰(2x + z )dydz + zdxdy , 其中 S 为有向曲面 z = x 2 + y 2(0 ≤ z ≤ 1) , s其法向量与 z 轴正向的夹角为锐角.【详解 1】 用高斯公式,以 S 表示法向量指向 z 轴负向的有向平面 z = 1(x 2 + y 2 ≤ 1), D 为S 1 在 xOy 平面上的投影区域,则⎰⎰(2x + z ) d yd z + z dxdy = º⎰⎰ (2x + z ) d ydz + zdx dy -⎰⎰ (2x + z ) dyd z + z dxdysS +S 1S 1= -⎰⎰⎰( 2 +1)dV - ⎰⎰ -dxdyΩ D = -3 d θ 1 rdr 2⎡-(-π )⎤dz⎰⎰=- 3π + π2π⎰r 2⎣ ⎦=- .2【详解 2】 用矢量投影法,因为z ' = 2x , z ' = 2 yx于是(2x + z ) dydz + zdxdy =⎡(2x + z )⋅(-z ' ) + z ⎤dxdy⎰⎰⎰⎰ ⎣ x ⎦sS= ⎰⎰(-4x 2 - 2xz + z )dxdyS= ⎰⎰ ⎡⎣-4x 2 - 2x (x 2 + y 2) + x 2 + y 2 ⎤⎦dxdyD= ⎰2πd θ ⎰1(-4r 2 c os 2 θ - 2r 3 c os θ + r 2 )π=- .2【详解 3 】 直接投影法,曲面 S 在 yOz 平面上投影 D yz 对应两个曲面:一是x ≤ z ≤ 1, 其方向指向前侧,因此积分取正号,一是 x =≤ z ≤ 1, 其方向指向后侧,因此积分取负号,再记 D xy 表示 S 在 xOy 平面上的投影区域,则⎩ ∂2 z ) 2 0 五、求级数∑ n - + 2 ⎰⎰(2x + z )dydz + zdxdys= ⎰⎰ (D yz= -4⎰⎰D yz+ z )dyd z + ⎰⎰ (-D yz+ ⎰⎰ (x 2 + y 2 )dxdyD xyz )dy dz + ⎰⎰ (x 2 + y 2 )dxdyD xy112π1 24⎰-1dy ⎰y 2+ ⎰0 d θ ⎰0 r ⋅ rdrπ =- 2 ⎧u = x - 2 y∂2 z∂2 z ∂2 z∂2 z(2)设变换⎨ v = x + ay 可把方程6 ∂x 2 + ∂x ∂y - ∂y 2 = 0 化简为∂u ∂v = 0, 求常数 a .∂z∂z ∂z ∂z ∂z ∂z 【详解】∂x = ∂u + ∂v , ∂y = -2 ∂u + a ∂v ,∂2 z= ∂2 z +∂2 z + ∂2 z∂x 2 ∂2 z ∂u 2 =- 2 ∂u ∂v ∂2 z∂v 2 , ∂2 z ∂2z∂x ∂y 2 ∂u 2 + (a - 2) ∂u ∂v + a ∂v 2 ,∂2 z = ∂y 2 ∂2 z 4 ∂u 2 - 4a ∂2 z ∂u ∂v ∂2 z a ∂v 2. 将上述结果代入原方程,经整理后得(10 + 5a )∂u ∂v+ (6 + a - a 依题意知 a 应满足∂2z = ∂v解之得 6 + a - a 2 = 0, 且10 + 5a ≠ 0,a = 3.∞n =2(n21-1)2n的和.∞n【详解】 令 S ( x ) = ∑ 2n =2 x , 则1=- .2 1x - 1 2 ∞1 ∑ ∞x n1 ⎛ ∞ x n ∞x n ⎫ S ( x ) = ∑ n 2 - = ∑ - ∑ ⎪n =2 1 2 ⎝ n =2 n -1 n =2 n +1 ⎭-1 ∞n +1 = x ∑∞ x n - 1 ∑ x 2 n =2 n -1 2x n =2 n +1= x ∑∞ x n - 1 ⎛ ∑∞n ⎫ x - x .2 n =1 n ⎪ ⎝ n =1 n2 ⎭因为 x n =1 n= - ln (1- x ), 于是有S ( x ) =- x ln (1- x ) + 1 + 1 x + 1ln (1- x )( x < 1, x ≠ 0),2 2 4 2x 1 ⎛ 1 ⎫ ∞ 1 53 令 x = , 得 2S 2⎪ = ∑ 2= - ln 2.⎝ ⎭ n =2 (n -1)2 8 41 x六、设对任意 x > 0, 曲线 y = f ( x ) 的一般表达式.f ( x ) 上点( x , f ( x ))处切线在Y 轴上得截距等于x⎰0f (t )dt , 求【详截】 曲线 y = f ( x ) 上点( x , f ( x ))处切线方程为Y - f ( x ) = f ' ( x )( X - x ) ,令 X = 0 得截距Y = f ( x ) - xf ' ( x )由题意有1⎰ xf (t )dt = f ( x ) - xf ' ( x ),x 0即⎰x f (t )dt = x ⎡ f ( x ) - xf ' ( x )⎤上式对 x 求导,化简得即(xf ' ( x ))'= 0;⎣ ⎦ xf ''' ( x ) + f ' ( x ) = 0积分得因此xf ' ( x ) = C ,f ( x ) = C 1 ln x + C 2 (其中C 1、C 2为任意常数).七、设 f ( x ) 在[0,1]上具有二阶导数,且满足条件常数, c 是(0,1) 内任意一点,证明f ( x ) ≤ a , f '' ( x ) ≤ b 其中 a 、b 都是非负n 2x n1 ⎣⎦ f ' (c ) ≤ 2a + b.2【详解】 对 f ( x ) 在 x = c 处用泰勒公式展开,得f ( x ) = f (c ) + f '(c )( x - c ) + f '' (ξ ) 2!( x - c )2(*)其中ξ = c + θ ( x - c ), 0<θ <1.在(*) 式中令 x = 0, 则有f (0) = f (c ) + f '(c )(0 - c ) +在(*) 式中令 x = 1 ,则有f '' (ξ ) 2!f '' (ξ )(0 - c )22,0<ξ1<c<1,f (1) = f (c ) + f '(c )(1- c ) +(1- c ) 2!,0<ξ2 <1,上述两式相减得f (1) - f (0) = f '(c ) +1 ⎡f ''(ξ)(1 - c )2 - f '' (ξ ) c 2 ⎤2! ⎣于是21⎦f ' (c ) = f (1) - f (0) - 1 ⎡ f '' (ξ )(1 - c )2- f '' (ξ )c 2 ⎤ 2 ⎣ 2 1 ⎦≤ f (1) + f (0) + f '' (ξ ) (1- c )2 + f '' (ξ ) c 2≤ 2a + b ⎡(1- c )2+ c 2 ⎤ .2 又因当c ∈(0,1) 时,有(1- c )2+ c 2 ≤ 1, 故f ' (c ) ≤ 2a + b.2八、设 A = E - ξξ T 其中 E 是 n 阶单位矩阵, ξ 是 n 维非列向量, ξ T 是ξ 的转置,证明:(1) A 2 = A 的充要条件是ξ T ξ = 1;(2) 当ξ T ξ = 1时, A 是不可逆矩阵.【详解】 (1) A 2 = (E - ξξ T )(E - 2ξξ T ) = E - 2ξξ T + ξ (ξ T ξ )ξ T = E - (2 - ξ T ξ )ξξ T ,因此 A 2 = A ⇔ E - (2 - ξ T ξ)ξξ T = E - ξξ T ⇔ (ξ T ξ -1)ξξ T = 01 2 1 22因为ξ≠ 0, 所以ξξT≠ 0故 A2=A 的充要条件为ξTξ= 1;(2)方法一:当ξTξ= 1时,由 A =E -ξξT, 有 Aξ=ξ-ξξTξ=ξ-ξ= 0,因为ξ≠ 0, 故Ax = 0 有非零解,因此A= 0 ,说明A 不可逆.方法二:当ξTξ= 1,由A2=A ⇔A(E -A)= 0, 即E -A 的每一列均为Ax = 0 的解,因为E -A =ξξT≠ 0, 说明Ax = 0 有非零解,故秩(A)<n ,因此A 不可逆.方法三:用反证法.假设 A 可逆,当ξξT= 1, 有 A2=A于是 A-1A2=A-1A, 即 A =E .这与A =E -ξξT≠E 矛盾,故A 是不可逆矩阵.九、已知二次型f (x , x , x )= 5x 2+ 5x 2+cx 2- 2x x+ 6x x- 6x x 的秩为2.1 2 3 1 2 3 1 2 1 3 2 3(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f (x1, x2 , x3)= 1表示何种二次曲面.【详解】(1)此二次型对应矩阵为⎡5 -1 3 ⎤A =⎢-1 5 -3⎥.⎢⎥⎢⎣3 -3 c⎥⎦因秩(A)= 2, 故A= 0, 由此解得c = 3, 容易验证,此时A 的秩的确为2.又由λ- 5 1 -3λE - A = 1 λ- 5 3 =λ(λ- 4)(λ- 9),-3 3 λ- 3所求特征值为λ1= 0, λ2= 4, λ3= 9.(2)由特征值可知,f (x1, x2 , x3)= 1表示椭球柱面.十、填空题(1)设工厂A 和工厂B 的产品率分别为1%和2%,现从由A 和B 的产品分别占60%和402 2 2π2π +∞=π2 .%的一批产品中随机抽取一件,发现是次品,则该次品属 A 产品的概率是.3 【答】 .7【详解】 设事件 A ={抽取的产品为工厂 A 生产的}, B ={抽取的产品为工厂 B 生产的},C ={抽取的是次品},则P ( A ) = 0.6, P ( B ) = 0.4, P (C | A ) = 0.01, P (C | B ) = 0.02,由逆概率公式知P ( A | C ) =P ( AC ) =P ( A )⋅ P (C | A ) P (C ) P ( A ) P (C | A ) + P ( B ) P (C | B )=0.6 ⨯ 0.010.6 ⨯ 0.01+ 0.4 ⨯ 0.02 = 3 . 7⎛ ⎛ ⎫2 ⎫(2)设ξ ,η 是两个相互独立且均服从正态分布 N 0, ⎪ ⎪的随机变量,则随机变量 ξ -η的数学期望 E( ξ -η ) =.⎝ ⎝ ⎭ ⎭【答】.【详解】 因为ξ ,η 是两个相互独立且均服从正态分布 N ⎛ 0,1 ⎫, 2 ⎪ ⎝ ⎭故 Z = ξ -η 也服从正态分布,且 E (Z ) = E ξ - E η = 0, D (Z ) = D ξ + D η = 1 + 1= 1,2 2即 Z ~ N (0,1).于是E ( ξ -η ) = E Z = ⎰ z 1-x22 dz -∞2 +∞ - x 2⎛ z 2 ⎫ = ⎰ e 2 d ⎪0 ⎝ 2 ⎭十一、设 ξ ,η 是两个相互独立且服从同一分布的两个随机变量,已知 ξ 的分布律为P {ξ = i } = 1, i = 1, 2, 3, 又设 X = max (ξ ,η ),Y = min (ξ ,η ).32π(1)写出二维随机变量(X ,Y )的分布律;(2)求随机变量 X 的数学期望 E (X ).P{X <Y}= 0 即【详解】(1 )由X = max (ξ,η),Y = min (ξ,η). 的定义知,P{X = 1,Y = 2}=P (X = 1,Y = 3)=P (X = 2,Y = 3)= 0,且进已步有P{X = 1,Y = 1}=P{ξ= 1,η= 1}=P{ξ= 1}⋅P{η= 1}=1 ,9P{X = 2,Y = 2}=P{ξ= 2,η= 2}=P{ξ= 2}⋅P{η= 2}=1 ,9P{X = 3,Y = 3}=P{ξ= 3,η= 3}=P{ξ= 3}⋅P{η= 3}=1 ,9P{X = 2,Y = 1}=P{ξ= 1,η= 2}+P{ξ= 2,η= 1}=1 +1 =2 ,9 9 9P{X = 3,Y = 2}=P{ξ= 2,η= 3}+P{ξ= 3,η= 2}=1 +1 =2 ,9 9 9P{X = 3,Y = 1}= 1-7 =2 ;9 9故所求的分布律为(2)X 的边缘分布为故X 的数学期望为E (X )=1 ⨯1+3 ⨯ 2 +5 ⨯ 3 =22 .9 9 9 9。

1996年考研英语真题及答案

1996年考研英语真题及答案

1996年全国硕士研究生入学统一考试英语试题Section I:Structure and V ocabularyPart ADirections:Beneath each of the following sentences, there are four choices marked [A],[B], [C] and [D]. Choose the one that best completes the sentence。

Mark your answer on the ANSWER SHEET by blackening the corresponding letter in the brackets。

(5 points)1。

Do you enjoy listening to records? I find records are often ________,or better than an actual performance。

[A] as good as[B] as good[C]good[D]good as2。

My pain ________ apparent the moment I walked into the room, for the first man I met asked sympathetically:“Are you feeling all right?”[A] must be[B] had[C] must have been[D]had to be3. The senior librarian at the circulation desk promised to get the book for me ________ she could remember who last borrowed it. [A]ever since[B]much as[C] even though[D] if only4。

北京大学研究生入学考试1996年试题

北京大学研究生入学考试1996年试题

北京大学研究生入学考试1996年试题考试科目:综合考试招生专业:法学各专业法理学(20分)一、简述法的规范作用。

(5分)二、谈谈第二次世界大战后资本主义法制的主要发展变化。

(5分)三、怎样理解我国法的渊源中法律和法规的区别。

(5分)四、简述法律关系客体的种类。

(5分)宪法学(20分)一、向全国人大有权提出议案的有哪些单位?(10分)二、民族自治地方的自治机关有哪些自治权?(10分)民法学(15分)根据我国《民法通则》、《继承法》、《著作权法》的有关规定,设想在下列民事主体之间可能因哪些法律事实,形成哪些常见的民事法律关系、继承法律关系、著作权法律关系?(不用作详细分析)1、具有完全民事行为能力的公民与一百货商店(法人)之间。

(5分)2、一公民死亡,在该死亡者的继承人之间以及继承人与其他公民、法人之间。

(5分)3、一画家与收藏、印制、出售绘画作品的画店之间。

(5分)刑法学(15分)一、名词解释:(每词2.5分,共5分)1、结合犯2、复杂客体二、简述题:(每题5分,共10分)1、简述犯罪过失的基本特征。

2、简述适用缓刑的条件。

民事诉讼法学(15分)一、我国民事诉讼中的协议管辖有何特点。

(5分)二、诉权与诉讼权利是何关系。

(5分)三、如何认识督促程序中的支付令。

(5分)刑事诉讼法(15分)一、人民法院对提起公诉的案件进行审查后可作出哪几种决定?作出这些决定的条件分别是什么?(5分)二、已发生法律效力的判决和裁定主要有哪几种?(5分)三、某人民法院经过开庭审理,确认据以认定被告人有罪的证据已确实充分,但被告人始终没有作出有罪供述。

请问法院能否对该被告人判决有罪?为什么?(5分)北京大学研究生入学考试1997年试题考试科目:理论法学招生专业:法学各专业一、论社会主义法制建设与社会主义精神文明建设的关系。

(20分)二、阐明法律关系的概念和特征,并用法律事实的实例说明法律关系的发生、变更和消灭。

(20分)宪法学(30分)一、试比较美国和德国的违宪审查制度。

计算机961考研题库

计算机961考研题库

计算机961考研题库计算机961考研题库涵盖了计算机科学与技术领域的多个核心知识点,以下是一些可能包含在题库中的问题类型和示例题目:一、数据结构1. 简述栈和队列的区别。

2. 描述二叉树的遍历方法,并给出相应的算法实现。

3. 如何使用哈希表解决冲突问题?二、计算机组成原理1. 解释冯·诺依曼体系结构的主要特点。

2. 描述指令周期的各个阶段。

3. 什么是缓存一致性问题,以及常见的解决策略有哪些?三、操作系统1. 进程和线程的区别是什么?2. 描述死锁的必要条件,并给出一个死锁的例子。

3. 什么是虚拟内存?它如何提高计算机系统的效率?四、计算机网络1. 简述TCP和UDP的区别。

2. 描述IP地址的分类和子网掩码的作用。

3. 什么是DNS?它在网络通信中扮演什么角色?五、数据库系统1. 解释关系数据库的基本概念和特点。

2. 什么是SQL?请给出一个查询数据库的SQL语句示例。

3. 描述事务的ACID属性。

六、软件工程1. 什么是软件开发生命周期?2. 描述敏捷开发方法的特点。

3. 什么是软件测试?它在软件开发过程中的重要性是什么?七、算法设计与分析1. 描述排序算法的时间复杂度和空间复杂度。

2. 解释递归算法的工作原理。

3. 如何使用分治策略解决算法问题?八、编译原理1. 编译器的主要组成部分是什么?2. 解释词法分析器的作用和实现方法。

3. 什么是语法分析树?九、人工智能1. 简述机器学习与深度学习的区别。

2. 描述神经网络的基本结构和工作原理。

3. 什么是强化学习?它在哪些领域有应用?十、网络安全1. 解释什么是加密和解密。

2. 描述常见的网络攻击类型及其防御方法。

3. 什么是公钥基础设施(PKI)?结束语:计算机961考研题库为考生提供了广泛的知识点,帮助考生全面复习和准备计算机科学与技术领域的研究生入学考试。

通过系统地练习这些题目,考生可以加深对计算机科学各个子领域的理解,提高解题能力和应试技巧。

北大操作系统习题答案完整版

北大操作系统习题答案完整版

北大操作系统习题答案完整版操作系统1.什么是计算机系统?计算机系统是怎么构成的?了解PC的组成情况,说明:1)硬件组织的基本结构,画出硬件配置图;2)主要系统软件和应用软件(若有的话)他们的作用。

答:计算机系统就是按照人的要求接收和存储信息,自动进行数据处理和计算,并输出结果信息的系统。

计算机系统由硬件子系统和软件子系统组成。

计算机系统的构成包括:如图1.2计算机硬件系统的构成:如图1.42.从功能以及程序涉设计的角度说明计算机系统中软件系统是如何构成的?答:分为系统软件,支撑软件和应用软件三层。

3.什么是操作系统?请举例说明操作系统在计算机系统中的重要地位。

答:操作系统是计算机系统中的一个系统软件,是一些程序模块的集合。

它们能以尽量有效、合理的方式组织和管理计算机的软硬件资源,合理的组织计算机的工作流程,控制程序的执行并向用户提供各种服务功能,使得用户能够灵活、方便、有效的使用计算机,使整个计算机系统能安全高效地运行4.请举一个实际的例子来说明操作系统的功能。

答:你能用用操作系统管理很多资源5.为什么说“操作系统是控制硬件的软件”的说法不确切?答:操作系统不仅能够控制硬件,也可以控制各种软件资源。

6.操作系统的基本特征是什么?说明他们之间的关系。

答:1.并发性2.共享性3.随机性7.试从独立性,并发性和交互性和实时性四个方面来比较批处理系统,分时系统以及实时系统。

答:分时系统:并发性是指同时有多个用户共同使用一个计算机,宏观上看是多个人同时使用一个CPU,微观上是多个人在不同时刻轮流使用CPU.独占性,是指用户感觉不到计算机为他们服务,就好像整个系统为他所独占。

交互性:是指用户根据系统响应结果进一步提出新要求,用户直接干预每一步。

实时性:是指系统对用户提出的请求及时响应。

8.引入多道程序设计技术的起因和目的是什么?多道程序系统的特征是什么?答:多道程序设计的基本思想在内存中保持多个作业,主机可以交替的方式同时处理多个作业,一般来说任何一道作业的运行总是要交替的使用处理器和外设子案9.多道程序设计的度是指在任一给定时刻,单个CPU所能支持的进程数目最大值。

1996考研数学真题+答案

1996考研数学真题+答案

1996年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设2lim()8xx x a x a→∞+=-,则a = ln2 .(2) 设一平面经过原点及点)2,3,6(-,且与平面824=+-z y x 垂直,则此平面方程为2x +2y –3z = 0 .(3) 微分方程''2'2xy y y e -+=的通解为)1sin cos (21++=x c x c e y x(4) 函数)ln(22 +zy x u +=)在A (1,0,1)处沿点A 指向点B (3,-2,2)方向的方向导数为12.(5) 设A 是4 ⨯3矩阵,且A 的秩r(A)=2,而B = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-301020201,则r(AB) = 2 .二、选择题:(本题共5小题,每小题3分,满分15分) (1) 已知2)()(y x ydydx ay x +++ 为某函数的全微分,则a 等于 (D)(A) –1. (B) 0 . (C) 1 . (D) 2.(2) 设()x f 有二阶连续导数, 且(0)0f '=,0()lim 1x f x x→''=,则 (B)(A) )0(f 是()x f 的极大值 (B) )0(f 是()x f 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) )0(f 不是()x f 的极值, (0,(0))f 也不是曲线y =()x f 的拐点.(3) 设0n a >(1,2,)n = ,且∑∞=1n n a 收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑ (A)(A) 绝对收敛 (B) 条件收敛 (C ) 发散 (D) 敛散性与λ有关.(4) 设()x f 有连续的导数,(0)0f =,)0('f ≠0,F ()x =,)()(202dt t f t x x-⎰且当0→x 时,)('x F 与k x 同阶无穷小,则k 等于 (C)(A) 1. (B )2. (C) 3. (D) 4.(5) 四阶行列式 4433221100000000a b a b b a b a 的值等于 (D)(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C)(2121b b a a -)(4343b b a a -) (D) (3232b b a a -)(4141b b a a -) 三、(本题共2小题,每小题5分,满分10分) (1) 求心形线)cos 1(θ+=a r 的全长,其中0>a .解:()sin r a θθ'=-,……2分22()ds r r d θ'=+22(1cos )(sin )2|cos |2a d a d θθθθθ=++-=……3分 利用对称性,所求心形线的全长0022cos 8sin822s a d a a ππθθθ===⎰. ……5分(2) 设101=x ,n n x x +=+61(n=1,2,…),试证数列{}n x 极限存在,并求此极限.证:由110x =及216164x x =+==,知12x x >.假设对某正整数k 有1k k x x +>,则有11266k k k k x x x x +++=+>+=,故由归纳法知,对一切正整数n ,都有1n n x x +>.即{}n x 为单调减少数列. ……3分又由16n n x x +=+,显见0(1,2,)n x n >= ,即{}n x 有下界. 根据极限存在准则,知lim n n x →∞存在.……4分令lim n n x a →∞=,对16n n x x +=+两边取极限,得6a a =+从而260a a --=.因此32a a ==-或.因为0(1,2,)n x n >= ,所以0a ≥.舍去2a =-,故极限值3a =. ……5分四、(本题共2小题,每小题6分,满分12分)(1) 计算曲面积分⎰⎰++Szdxdy dydz z x )(2,其中S 为有向曲面22y x z +=,(10≤≤z ),其法向量与z 轴正向的夹角为锐角.解一: 以1S 表示法向量指向z 轴负向的有向平面221(1)z x y =+≤,D 为1S 在XOY平面上的投影区域,则1(2)()S Dx z dxdy zdxdy dxdy π++=-=-⎰⎰⎰⎰.……2分记Ω表示由S 和1S 所围的空间区域,则由高斯公式知1(2)(21)S S x z dxdy zdxdy dv +Ω++=-+⎰⎰⎰⎰⎰212421113000336()6242r r r d rdr dz r r dr ππθππ⎡⎤=-=--=--=-⎢⎥⎣⎦⎰⎰⎰⎰. ……5分 因此13(2)()22S x z dxdy zdxdy πππ++=---=-⎰⎰. ……6分解二: 以,yz xy D D 表示S 在,YOZ XOY 平面平面上的投影区域,则(2)Sx z dxdy zdxdy ++⎰⎰2222(2)()(2)()yzyzxyD D D z y z dydz z y z dydz x y dxdy =--+--++⎰⎰⎰⎰⎰⎰2224()yzxyD D z y dydz x y dxdy =--++⎰⎰⎰⎰……2分其中3111222214(1)3yzyD z y dydz dy z y dz y dy--=-=-⎰⎰⎰4204431sin cos 334224y t tdt πππ==⋅⋅⋅=⎰;21222()2xyD x y dxdy d r rdr ππθ+=⋅=⎰⎰⎰⎰,……5分所以1(2) 4.222S x z dxdy zdxdy πππ++=-+=-⎰⎰. ……6分(2) 设变换⎩⎨⎧+=-=ay x v y x u 2 可把方程0622222=∂∂-∂∂∂+∂∂y z y x z x x 简化为02=∂∂∂v u z,求常数a .解:,2z z z z z z a x u v y u v∂∂∂∂∂∂=+=-+∂∂∂∂∂∂.……1分 22222222z z z z x u u v v ∂∂∂∂=++∂∂∂∂∂,2222222(-2)zz z z a a x yu u v v ∂∂∂∂=-++∂∂∂∂∂∂, 2222222244z z z z a a y u u v v ∂∂∂∂=-+∂∂∂∂∂. ……4分将上述结果代入原方程,经整理后得2222(105)(6)0z z a a a u v v∂∂+++-=∂∂∂. 依题意知a 应满足260,1050a a a +-=+≠且,解之得3a =.……6分五、(本题满分7分) 求级数∑∞=-222)1(1n nn 的和.解:设22()(||1)1nn x S x x n ∞==<-∑,……1分则2111()()211n n S x x n n ∞==--+∑,其中122111111n n n n n n x x x x x n n n ∞∞∞-=====--∑∑∑. 23111(0)1n nn n x x x n x n ∞∞===≠+∑∑.……3分设11()n n g x x n∞==∑,则11111()(||1)1n n n n g x x x x n x ∞∞-=='⎛⎫'===< ⎪-⎝⎭∑∑. 于是00()()(0)()ln(1)(||1)1x x dtg x g x g g t dt x x t'=-===--<-⎰⎰.从而21()[ln(1)][ln(1)]222x x S x x x x x =-------221ln(1)(||10)42x x x x x x+-=+-<≠且.……5分 因此221153ln 2(1)2284nn s n ∞=⎛⎫==- ⎪-⎝⎭∑. ……7分六、(本题满分7分)设对任意0>x ,曲线)(x f y =上点))(,(x f x 处的切线在y 轴上的截距等于⎰xdt t f x0)(1,求)(x f 的一般表达式. 解:曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-. ……1分 令0X =,得截距()()Y f x xf x '=-.……3分由题意,知01()()()xf t dt f x xf x x '=-⎰. 即0()[()()]x f t dt x f x xf x '=-⎰.上式对x 求导,化简得()()0xf x f x ''+=, ……5分即('())0d xf x dx=,积分得1'()x f x C =. 因此12()ln f x C x C =+(其中12,C C 为任意常数).……7分七、(本题满分8分)设)(x f 在[]1,0上具有二阶导数,且满足条件a x f ≤)(,b x f ≤)('',其中b a ,都是非负常数,c 是()0,1内的任意一点.证明22)('b a c f +≤.证:2()()()()()(),(*)2!f x c f x f c f c x c ξ''-'=+-+其中(),01c x c ξθθ=+-<<. ……2分在(*)式中令0x =,则有211()(0)(0)()()(0),01;2!f c f f c f c c c ξξ''-'=+-+<<<在(*)式中令1x =,则有222()(1)(1)()()(1),01;2!f c f f c f c c c ξξ''-'=+-+<<<上述两式相减得22211(1)(0)()()(1)()2!f f f c f c f c ξξ'''''⎡⎤-=+--⎣⎦. ……5分 于是22211|()|(1)(0)()(1)()2!f c f f f c f c ξξ'''''⎡⎤=----⎣⎦ 222111(1)|(0)||()|(1)|()|2!2!f f f c f c ξξ''''≤++-+22[(1)]2ba a c c ≤++-+. ……7分又因22(0,1),(1)1c c c ∈-+≤,故|()|22bf c a '≤+. ……8分八、(本题满分6分)设T A I ξξ=-,其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明: (1) A A =2的充要条件是1=ξξT ;(2) 当1=ξξT 时,A 是不可逆矩阵. 证:(1) 2()()2T T T T T A I I I ξξξξξξξξξξ=--=-+(2)(2)T T T T I I ξξξξξξξξ=--=--.A A =2即(2)T T T I I ξξξξξξ--=-,亦即()T T I ξξξξ-=O ,因为ξ是非零列向量,0T ξξ≠,故A A =2的充要条件是10T ξξ-=,即1T ξξ=.……3分 (2) 用反证法:当1T ξξ=时A A =2.若A 可逆,则有121A A A A --=,从而A I =.这与T A I I ξξ=-≠矛盾,故A 是不可逆矩阵.……6分九、(本题满分8分)已知二次型32312132132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2. (1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,)4f x x x =表示何种二次曲面.解:(1) 此二次型对应矩阵为A =51315333c -⎛⎫ ⎪-- ⎪ ⎪-⎝⎭, ……1分因()2r A =,故513||153033A c-=--=-,解得3c =.容易验证此时A 的秩的确是2. ……3分这时,||(4)(9)I A λλλλ-=--,故所求特征值为0,4,9λλλ===.……6分 (2) 由上述特征值可知,123(,,)1f x x x =表示椭圆柱面. ……8分十、填空题 (本题共2小题,每小题3分,满分6分)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是37.(2) 设,ξη是两个相互独立且均服从正态分布2))2N 的随机变量,则随机变量||ξη- 的数学期望(||)E ξη-=2π.十一、(本题满分6分)设,ξη是相互独立且服从同一分布的随机变量,已知ξ的分布律为1(),1,2,33P i i ξ===. 又设max{,},min{,}X Y ξηξη==.(1) 写出二维随机变量(,)X Y 发分布律;(2) 求随机变量X 的数学期望.解:(1)Y X1 2 3 11 / 9 0 02 2 / 9 1 / 9 032 / 92 / 91 / 9……4分(2) 13522()1239999E X =⋅+⋅+⋅=……6分 注:写对分布律中的1个数得1分,2~4个得2分,5~7个得3分,8~9个得4分.数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题共2小题,每小题5分,满分10分) (1) 计算积分dxdy y x D⎰⎰+22,其中D=(){}x y x x y y x 2,0,22≤+≤≤ .解:原式2cos 40d r rdr πθθ=⋅⎰⎰3408cos 3d πθθ=⎰……3分 42340088110(1sin )sin sin sin 23339d ππθθθθ⎡⎤=-=-=⎢⎥⎣⎦⎰……5分(2) 【 同数学一 第三、(1)题 】 (3) 【 同数学一 第三、(2)题 】四 ~ 七、【 同数学一 第四 ~ 七题 】 八、(本题共2小题,每小题6分,满分12分)(1) 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系.解:110011100111100001010011100010⎛⎫⎛⎫⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭……3分解得基础解系为12(1,0,1,0,1),(1,1,0,0,0)ξξ=--=-. ……6分(2) 【 同数学一 第八题 】九、(本题满分8分)【 同数学一 第九题 】数 学(试卷三)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 设322)(x e x y -+=, 则==|'x y 1/3.(2)=-+⎰-1122)1(dx x x 2 .(3) 052=+'+''y y y 的通解为)2sin 2cos (21x c x c e y x +=-. (4) =+-+∞→)]11ln(sin )31ln([sin lim xx x x 2 .(5) 由曲线1y x x =+,2x =及2y =所围图形的面积S =1ln 22-. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设当0→x 时,)1(2++-bx ax e x 是比2x 高阶的无穷小,则 (A )(A) 121==b a , (B) 11==b a , (C) 121=-=b a , (D) 11=-=b a ,. (2) 设函数()f x 在区间),(δδ-内有定义,若当),(δδ-∈x 时,恒有2()f x x ≤,则0x = 必是()f x 的 (C )(A) 间断点(B) 连续而不可导的点 (C) 可导的点,且(0)0f '=.(D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 (D )(A) 当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞.(B) 当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞.(C) 当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞.(D) 当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞.(4) 在区间),(∞-∞内,方程 0cos 2141=-+x x x(C )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有二个实根 (D) 有无穷多个实根 (5) 设()()f x g x 、在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),则曲线()y g x =,()y f x =,x a =及x b =所围成图形绕直线y m =旋转而成的旋转体体积为 (B )(A)⎰-+-badx x g x f x g x f m .)]()()][()(2[π(B)⎰---ba dx x g x f x g x f m .)]()()][()(2[π (C)⎰-+-b adx x g x f x g x f m .)]()()][()([π (D)⎰---badx x g x f x g x f m .)]()()][()([π三、(本题共6小题,每小题5分,满分30分) (1) 计算⎰--2ln 021dx e x解一:原式2ln 2ln 22220111x x xxee dx ee e --=-=--+-⎰⎰……3分 ln 22033ln(1)ln(23)x x e e --=-=++.……5分解二:令sin xet -=,则cos sin tdx dt t-=, 原式2222666cos 1sin sin sin t dt dt tdt t t ππππππ==-⎰⎰⎰……3分 2633ln(csc cot )ln(23)t t ππ=-+=+-. ……5分(2) 求⎰+x dxsin 1解一:原式21sin cos x dx x-=⎛⎜⎠ ……2分 1tan cos x C x=-+.……5分解二:原式222sec 2(cos sin )(1tan )222x dxdx x x x ==++⎛⎛⎜⎜⎜⎜⎜⎠⎠ ……3分2(1tan )222(1tan )1tan 22x d C x x+-==+++⎛⎜⎜⎜⎠.……5分(3) 设2022()[()]tx f u duy f t ⎧=⎪⎨⎪=⎩⎰,其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .解:222(),4()(),dx dy f t tf t f t dt dt'==所以22224()()4()()dydy tf t f t dt tf t dx dx f t dt''===. ……2分 22222214[()2()]()d y d dy f t t f t dx dx dt dx f t dt '''+⎛⎫== ⎪⎝⎭. ……5分 (4) 求函数()f x =xx+-11在0x =点处带拉格朗日型余项的n 阶泰勒展开式.解:2()11f x x=-+,()1(1)2!()(1,2,,1)(1)k k k k f x k n x +-⋅==++ . ……3分 所以12122()122(1)2(1)(1)n n n n n x f x x x x ξ+++=-+++-+-+ (ξ在0与x 之间).……5分 (5) 求微分方程2'''x y y =+的通解.解一:对应的齐次方程的特征方程为20λλ+=,解之得0,1λλ==-,故齐次方程的通解为12xy C C e -=+.……2分设非齐次方程的特解为2()x ax bx C ++,代入原方程得1,1,23a b c ==-=. 因此,原方程的通解为3212123x y x x x C C e -=-+++. ……5分 解二:令p y '=,代入原方程得2p p x '+=,……2分故()()220022xxxxx x p ex e dx C e x exe e C --=+=-++⎰.再积分得到20(22)xy x x c e dx -=-++⎰3212123x x x x C C e -=-+++. ……5分 解三:原方程为2()y y x ''+=,两边积分得3013y y x C '+=+. ……3分30213x x y e x C e dx C -⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦⎛⎜⎠()320213663x x x x x x e x e x e xe e C e C -⎡⎤=-+-++⎢⎥⎣⎦3212123x x x x C C e -=-+++. ……5分 (6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴且与底面成α解(20πα<<)的平面截此柱体,得一楔形体(如图),求此楔形体的体积V.解一:底面椭圆的方程为22221x y a +=,以垂直于y 轴的平行平面截此楔形体所得的截面为直角三角形,其一直角边长为221y a b -,另一直角边长为221y a bα-,故截面面积222()1tan 2a y S y b α⎛⎫=- ⎪⎝⎭,……3分 楔形体的体积为22220221tan tan 23ba y a bV dy b αα⎛⎫=-=⎪⎝⎭⎰. ……5分解二:底面椭圆的方程为22221x y +=,以垂直于x 轴的平行平面截此楔形体所得的截面为矩形,其一边长为22221x y b a=-tan x α,故截面面积22()21x S x bx aα=-,……3分楔形体的体积为32222222002221tan 1tan 33ab x a x a b V dx b a a ααα⎡⎤⎛⎫-⎢⎥=-=-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎰. ……5分 四、(本题满分8分) 计算不定积分⎰+.)1(22dx x x arctgx解一:原式22arctan arctan 1x x dx dx x x =-+⎛⎛⎜⎜⎠⎠……2分 22arctan 1(arctan )(1)2x dx x x x x =-+-+⎛⎜⎠ ……4分 2222arctan 1111()(arctan )212x d x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎛⎜⎠ ……6分 222arctan 11(arctan )ln 221x x x C x x=--+++. ……8分解二:令tan x t =,则原式2(csc 1)t t dt -⎰=……2分 2cos 1cot sin 2t t t dt t t =-+-⎰……4分21cot ln |sin |2t t t t C =-+-+……6分 22arctan 1(arctan )21x x C x x =-+++.……8分五、(本题满分8分)设函数⎪⎩⎪⎨⎧>-≤≤--<-=.2,1612,21,,1,21)(32x x x x x x x f(1) 写出()f x 的反函数()g x 的表达式;(2) 问()g x 是否有间断点与不可导点,若有,指出这些点.解:(1) 由题设,()f x 的反函数为3112()1816812x x g x x x x x ⎧--<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩. ……4分(2) ()g x 在(,)-∞+∞内处处连续,没有间断点.……5分 ()g x 的不可导点是01x x ==-及.……8分 (注:多写一个不可导点8x =扣1分)六、(本题满分8分)设函数()y y x =由方程1222223=-+-x xy y y 所确定. 试求()y y x =的驻点,并判 别它们是否为极值点.解:对原方程两边求导可得2320()y y yy xy y x '''-++-=*……2分令0y '=,得y x =.将此代入原方程有32210x x --=.从而解得唯一的驻点1x =. ……5分()*式两边求导,得22(32)2(31)210y y x y y y y ''''-++-+-=.因此(1,1)1|02y ''=>,故驻点1x =是()y y x =的极小值点. ……8分七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,'()'()0.f a f b >证明存在(,)a b ξ∈和),(b a ∈η,使()0f ξ=及0)(''=ηf .证一:先用反证法证明存在(,)a b ξ∈,使()0f ξ=. 若不存在(,)a b ξ∈,使()0f ξ=,则在区间(,)a b 内恒有()0f x >或()0f x <. 不妨设()0f x >(对()0f x <,类似可证),则()()()()lim lim 0x b x b f x f b f x f b x b x b--→→-'==≤--, ……3分 ()()()()lim lim 0x a x a f x f a f x f a x ax a ++→→-'==≥--.从而()()0f a f b ''≤,这与已知条件矛盾. 这即证得存在(,)a b ξ∈,使得()0f ξ=. ……5分再由()()()f a f f b ξ==及罗尔定理,知存在12(,)(,)a b ηξηξ∈∈和,使得12()()0f f ηη''==. 又在区间12[,]ηη上对()f x '应用罗尔定理知,存在12(,)(,)a b ηηη∈⊂,使()0f η''=.……8分证二:不妨设()0,()0f a f b ''>>(对()0,()0f a f b ''<<类似可证),即()lim 0x a f x x b +→>-,()lim 0x b f x x b-→>-. 故存在11(,)x a a δ∈+和22(,)x b b δ∈-,使1()0f x >及2()0f x <,其中12,δδ为充分小的正数. 显然12x x <,在区间12[,]x x 上应用介值定理知,存在一点12(,)(,)x x a b ξ∈⊂,使得()0f ξ=. ……5分 以下同证一. 八、(本题满分8分) 设()f x 为连续函数.(1) 求初值问题0'()0|x y ay f x y -+=⎧⎪⎨=⎪⎩的解()y y x =,其中a 是正常数; (2) 若()f x k ≤(k 为常数),证明:当0≥x 时,有()(1).ax k y x e a-≤-证一:(1) 原方程的通解为()[()][()]axax ax y x ef x e dx C e F x C --=+=+⎰, ……2分其中()F x 是()axf x e 的任一原函数.由(0)0y =得(0)C F =-,故()[()(0)]()xax ax at y x e F x F e f t e dt --=-=⎰.……4分 (2) 0()()xaxat y x ef t e dt -≤⎰……6分 0xaxat kee dt -≤⎰(1)(1),0ax ax ax k k e e e x a a--≤-=-≥. ……8分证二:在原方程的两端同乘以ax e ,得()ax ax ax y e aye f x e '+=.从而()()ax axye f x e '=,……2分 所以0()xaxat yef t e dt =⎰或0()xaxat y ef t e dt -=⎰.……4分(2)同证一数 学(试卷四)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设方程yy x =确定y 是x 的函数,则dy =(1ln )dxx y +.(2) 设⎰+=c x dx x xf arcsin )(,则=⎰)(x f dx 231(1)3x C -. (3) 设(00,y x )是抛物线c bx ax y ++=2上的一点,若在该点的切线过原点,则系数,,a b c应满足的关系是200(),c a ax c b ≥=或任意.(4) 设 123222212311111231111n n n n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,其中(;,1,2,,)i j a a i j i j n ≠≠= ,则线性方程组B X A T=的解是(1,0,,0)T X =(5) 设由来自正态总体X ~)9.0,(2μN 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间是 ( 4.412 , 5.588 ) 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 累次积分dr r r r f d ⎰⎰20cos 0)sin ,cos (πθθθθ可以写成 (D)(A) dx y x f dy y y ⎰⎰-102),(. (B)dx y x f dy y ⎰⎰-1102),(. (C)dy y x f dx ⎰⎰101),(. (D)dy y x f dx x x ⎰⎰-12),(.(2) 下述各选项正确的是 (A)(A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B) 若1n nn u v∞=∑收敛,则21nn u∞=∑和21nn v∞=∑都收敛(C) 若级数1n n u ∞=∑发散,则1n u n≥ (D) 若级数1nn u∞=∑收敛,且n n u v ≥(1,2,)n = ,则级数1nn v∞=∑也收敛(3) 设n 阶矩阵A 非奇异),2(≥n A *是矩阵A 的伴随矩阵,则 (C)(A) (A *)*=A A n 1- (B) (A *)*=A A n 1+(C) (A *)*=A An 2-(D) (A *)*=A An 2+(4) 设有任意两个n 维向量组12,,,m ααα 和12,,,m βββ ,若存在两组不全为零的12,,,mλλλ 和12,,,m k k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-= ,则 (D)(A) 12,,,m ααα 和 12,,,m βββ 都线性相关 (B) 12,,,m ααα 和 12,,,m βββ 都线性无关 (C) 11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性无关 (D)11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性相关(5) 已知0<P (B )<1,且P )()(])[(2121B A P B A P B A A +=+,则下列选项成立的是 (B)(A) )()(])[(2121B A P B A P B A A P +=+ (B) )()()(2121B A P B A P B A B A P +=+ (C) 1212()()()P A A P A B P A B +=+ (D) )()()()()(2211A B P A P A B P A P B P += 三、(本题满分6分)设()f x =()00,0xg x e x x x -⎧-≠⎪⎪⎨⎪⎪=⎩若若,其中()g x 有二阶连续导数,且(0)1g =, (0)1g '=-. (1) 求()f x '; (2) 讨论()f x '-∞+∞在(,)上的连续性.解:(1) 当0x ≠时,有22[()]()()()(1)()x x xx g x e g x e xg x g x x e f x x x---''+-+-++'==. ……1分 当0x =时,有20()(0)lim xx g x e f x-→-'= ……2分 00()()(0)1lim lim 222x x x x g x e g x e g x --→→'''''+--===. ……3分所以2()()(1)0()(0)102x xg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩若若.……4分(2) 因为在0x =处,有0lim ()x f x →'00()()()(1)()lim lim22x x xx x g x xg x g x e x e g x e x ---→→''''''+-+-+-== (0)1(0)2g f ''-'==.……5分 从而()f x '在0x ≠处连续,所以()f x '在(,)-∞+∞上为连续函数.……6分四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是x 、y 的函数,其中()f u 、()u ϕ可微;(),()p t u ϕ' 连续,且()1u ϕ'≠. 求 ()()z zp y p x x y∂∂+∂∂. 解:由()z f u =可得();();z u z uf u f u x x y y∂∂∂∂''==∂∂∂∂ ……1分在方程()()x yu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()()u uu p x x x ϕ∂∂'=+∂∂, ……2分 ()()u uu p y y yϕ∂∂'=-∂∂. ……3分 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-; ……5分 于是()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u φφ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦. ……6分五、(本题满分6分) 计算2(1)xx xe dx e -+∞-+⎰. 解一: 2200(1)(1)x x x x xe xe dx dx e e +∞+∞--=++⎛⎛⎜⎜⎠⎠011xxd e +∞-⎛⎫= ⎪+⎝⎭⎛⎜⎠ ……1分00111xxx dx e e ∞+∞=-+++⎛⎜⎠ ……2分 011x dx e+∞=+⎛⎜⎠. ……3分令x e t =,则1dx dt t=.于是2101(1)(1)x x xe dx dt e t t +∞+∞--=++⎛⎛⎜⎜⎠⎠ ……4分 1111ln 11t dt t t t +∞+∞⎛⎫=-= ⎪++⎝⎭⎛⎜⎠ ……5分 ln 2=.……6分解二:21(1)1x x xxe dx xd e e ---⎛⎫= ⎪++⎝⎭⎛⎛⎜⎜⎠⎠111x xx dx ee --=-++⎛⎜⎠ 11x x x x e dx e e-=-++⎛⎜⎠ln(1)1x x xxe e C e =-+++. ……3分 所以20lim ln(1)ln 2(1)1x x x x x x xe xe dx e e e +∞--→+∞⎡⎤=-++⎢⎥++⎣⎦⎛⎜⎠. ……4分其中lim ln(1)lim ln(1)11x x x x xxx x xe xe e x x e e e →+∞→+∞⎡⎤⎡⎤-+=-+-+⎢⎥⎢⎥++⎣⎦⎣⎦ lim ln 00011x x x x x e e e →+∞⎡⎤=-+=+=⎢⎥++⎣⎦ ……5分 因此20ln 2ln 2(1)x x xe dx e +∞--=+=+⎛⎜⎠. ……6分六、(本题满分5分)设)(x f 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰,求证:存在ξ)1,0(∈,使0)()(='+ξξξf f .证:设()()F x xf x =. 由积分中值定理,可见存在1(0,)2η∈.使112201()()()2xf x dx F x dx F η==⎰⎰. ……2分由已知条件,有1201(1)2()2()()2f xf x dx F F ηη==⋅=⎰.……3分 由于(1)(1)()F f F η==,……4分并且()F x 在[,1]η上连续,在(,1)η上可导.故由罗尔定理知:存在(,1)(0,1)ξη∈⊂,使得()0F ξ'=,即()()0f f ξξξ'+=.……5分七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成c bp aQ -+=,其中,,a b c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少;(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少? 解:(1) 设售出商品的销售额为R ,则a R PQ P c a b ⎛⎫==-⎪+⎝⎭,令22()0()ab c P b R p b -+'==+. 得00ab bp b a bc c c ==>. ……2分 当0bp a bc c <<时,有0R '>.所以随p 的增加,相应的销售额也增加. ……4分当bp a bc c>时,有0R '<.所以随p 的增加,相应的销售额将减少.……5分 (2) 由(1)知,当bp a bc c=时,销售额R 取得最大值,最大销售额为2max (/)()/R ab c b c a bc ab c==. ……6分八、(本题满分6分)求微分方程x y x y dx dy 22+-=的通解. 解:令y z x =,则dy dzz x dx dx=+. ……1分 当0x >时,原方程化为21dz z x z z dx +=+21dx x z =-+, ……3分 其通解为221ln(1)ln 1C z z x C z z x+=-++或=,……5分代回原变量,得通解22(0)y x y C x +>=.……6分当0x <时,原方程的解与0x >时相同.九、(本题满分8分)设矩阵A= 010010000010012y ⎫⎛⎪ ⎪⎪⎪⎝⎭(1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使(AP)T(AP)为对角矩阵.解:(1) 因为22||(1)[(2)21]0I A y y λλλλ-=--++-=. 当3λ=时,代入上式解得2y =.……3分于是0100100000210012A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. (2) 由T A A =,得2()()T T AP AP P A P =.而矩阵21000010000540045A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, ……4分 考虑二次型22222222212343412344495585()55T X A X x x x x x x x x x x x =++++=++++, ……6分 令1122334444,,,5y x y x y x x y x ===+=,即11223344100001000014/50001x y x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 取10000100400150001P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎭-⎪⎪⎝,则有100001000050()(900)05TAP AP ⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭.……8分(2) 另解:2A 的特征值为11λ=(三重),29λ=.……5分对应于11λ=的特征向量为123(1,0,0,0),(0,1,0,0),(0,0,1,1),T T T ααα===-经正交标准化后,得向量组123(1,0,0,0),(0,1,0,0),)22T T Tβββ===;……6分 对应于29λ=的特征向量为4(0,0,1,1)T α=,经单位化后,得422Tβ=. ……7分令()123410000100,,,00220022P ββββ⎛⎫ ⎪ ⎪ ⎪== ⎝,则210000100001000()()09T T P A P AP AP ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭.……8分十、(本题满分8分)设向量12,,,t ααα 是齐次线性方程组AX = 0的一个基础解系,向量β不是方程组 AX= 0的解,即A β≠0. 试证明向量组β,β+1α,β+2α,…,β+t α线性无关. 解:设有一组数12,,,,t k k k k ,使得1()0tiii k k ββα=++=∑,……1分 即11()()t tiiii i k k k βα==+=-∑∑ (1)……2分上式两边同时左乘矩阵A ,有11()()0t tiiii i k k A k A βα==+=-=∑∑.因为0A β≠,故10tii k k=+=∑ (2)……4分从而,由(1)式得1()0tiii k α=-=∑.由于向量组1,.......,t αα是基础解系,所以120t k k k ==== .……6分 因而由(2)式得0k =.因此向量组β,β+1α,……,β+t α线性无关.……8分十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获得利润10万元;发生一次故障仍可获得利润5万元;发生二次故障多获得利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?解:以X 表示一周五天内机器发生故障的天数,则X 服从参数为(5,0.2)的二项分布.即55{}0.20.8(0,1,2,3,4,5)kk kP X k C k -==⋅⋅=……2分 于是5{0}0.80.328P X ===, 145{1}0.20.80.410P X C ==⋅⋅=;……3分2235{2}0.20.80.205P X C ==⋅⋅=;{3}1{0}{1}{2}0.057P X P x P x P x ≥=-=-=-==. ……4分以Y 表示所获利润,则()Y f X ==10,05,10,22,3X X X X =⎧⎪=⎪⎨=⎪⎪≥⎩若若若-若,……5分所以100.32850.41000.20520.057 5.216EY =⨯+⨯+⨯-⨯=(万元).……7分十二、(本题满分6分)考虑一元二次方程x 2+ Bx + C = 0,其中B,C 分别是将一枚骰子接连掷两次先后出现的 点数.求方程有实根的概率p 和有重根的概率q .解:一枚色子(骰子)掷两次,其基本事件总数为36. 方程组有实根的充分必要条件是224,4B BC C ≥≤. ……2分B1 2 3 4 5 6 使2/4C B ≤的基本事件个数 0 1 2 4 6 6 使2/4C B =的基本事件个数11……4分因此,使方程组有实根的基本事件个数为1246619++++=.于是1936p =. ……5分 同理,使方程组有重根的基本事件个数为112+=,于是213618q ==. ……6分十三 (本题满分6分)设12,,,n X X X 独立且与X 同分布,k k EX α=(1,2,3,4)k =.求证:当n 充分大时,∑==n i i n X n z 121近似服从正态分布,并求出其分布参数. 解:依题意,12,,,n X X X 独立同分布,于是22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX k α==,有……1分 22i EX α=,2422242()i i i DX EX EX αα=-=-; ……2分 2211nn i i EZ EX n α===∑,……3分 22422111()n n i i DZ DX n nαα===-∑……4分根据中心极限定理2242()/n n U n αα=-即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.……6分数 学(试卷五)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学四 第一、(1) 题 】 (2) 【 同数学四 第一、(2) 题 】 (3) 设)1ln(2x x y ++=,则3x y '''=532(4) 五阶行列式aa a a a a a a a---------11110001100011000123451a a a a a =-+-+-.(5) 一实习生用同一台机器接连独立地制造3个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示3个零件中合格品的个数,则P (X=2)=1124. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设0)()(00=''='x f x f ,0)(0>'''x f , 则下列选项正确的是 (D)(A) )(0x f '是)(x f '的极大值 (B) )(0x f 是)(x f 的极大值(C) )(0x f 是)(x f 的极小值 (D) ))(,(00x f x 是曲线)(x f y =的拐点 (2) 【 同数学三 第二、(3) 题 】 (3) 【 同数学四 第二、(3) 题 】 (4) 【 同数学四 第二、(4) 题 】(5) 设A ,B 为任意两个事件,且A ⊂B , P (B )>0,则下列选项必然成立的是 (B)(A) ()()P A P A B < (B) ()()P A P A B ≤ (C) ()()P A P A B > (D) ()()P A P A B ≥ 三、(本题满分6分)【 同数学四 第三题 】 四、(本题满分7分) 设2(,)xyt f x y e dt -=⎰,求222222yfx y y x f x f y x ∂∂+∂∂∂-∂∂解:22x y fye x-∂=∂, ……2分 22x y f xey-∂=∂,222322x y f xy e x -∂=-∂, ……4分 222322x y f x ye y -∂=-∂,22222(12)x y f x y ex y-∂=-∂∂. ……6分 于是222222222x y x f f y f ey x x y x y -∂∂∂-+=-∂∂∂∂. ……7分五、(本题满分6分)【 同数学四 第五题 】六、(本题满分7分)【 同数学四 第七题 分值不同 】 七、(本题满分9分)已知一抛物线通过x 轴上的两点A ( 1, 0 ),B ( 3, 0 ).(1) 求证:两坐标轴与该抛物线所围图形的面积等于x 轴与该抛物线所围图形的面积; (2) 计算上述两个平面图形绕x 轴旋转一周所产生的两个旋转体体积之比. 解:(1) 设过,A B 两点的抛物线方程为(1)(3)y a x x =--, 则抛物线与两坐标轴所围图形的面积为110|(1)(3)|S a x x dx =--⎰……1分1204||(43)||3a x x dx a =-+=⎰. ……2分 抛物线与x 轴所围图形的面积为321|(1)(3)|S a x x dx =--⎰……3分 3214||(43)||3a x x dx a =-+=⎰.……4分所以12S S =.(2) 抛物线与两坐标轴所围图形绕x 轴旋转所得旋转体的体积为12210[(1)(3)]V a x x dx π=--⎰……5分124320[(1)4(1)4(1)]a x x x dxπ=---+-⎰5324120(1)4(1)38[(1)].5315x x a x a ππ--=--+=……6分抛物线与x 轴所围图形绕x 轴旋转所得旋转体的体积为32221[(1)(3)]V a x x dx π=--⎰353241(1)4(1)(1)53x x a x π⎡⎤--=--+⎢⎥⎣⎦ ……7分216.15a π=……8分 所以12198V V =.……9分八、(本题满分5分)设)(x f 在[,]a b 上连续,在(,)a b 内可导,且1()()ba f x dx fb b a=-⎰ 求证:在(,)a b 内至少存在一点ξ, 使 )(ξf ' = 0.证:因为()f x 在[,]a b 上连续,由积分中值定理可知,在(,)a b 内存在一点c ,使得()()()baf x dx f c b a =-⎰. ……2分 即()()()baf x dxf c f b b a==-⎰.……3分因为()f x 在[,]c b 上连续,在(,)c b 内可导,故由罗尔定理,在(,)c b 内至少存在一点出ξ,使得()0f ξ'=,其中(,)(,)c b a b ξ∈⊂.……5分九、(本题满分9分)已知线性方程组 ⎪⎪⎩⎪⎪⎨⎧+t= x - 6x - x - x -1=7x +px + x 2+3x -1= 4x + 6x - x + 2x 0= x 3+2x -x x 4321432143214321,讨论参数p, t 取何值时,方程组有解? 无 解? 当有解时, 试用其导出组的基础解系表示通解.解:方程组系数矩阵A 的增广矩阵为11230104112164101221327100800116100002A p p t t ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪-+ ⎪ ⎪---+⎝⎭⎝⎭……3分(1) 当2t ≠-时,()()A A ≠秩秩,方程组无解. ……4分 (2) 当2t =-时,()()A A =秩秩,方程组有解.……5分(a) 若8p =-,得通解1212141122(,010001x c c c c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为任意常数).……7分(b) 若8p ≠-得通解1112(0001x c c --⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数).……9分十、(本题满分7分)设有4阶方阵A 满足条件30I A +=,I A A T2=,0A <,其中I 是4阶单位阵,求方阵A 的伴随阵*A 的一个特征值.解:由3|(3)|0I A A I +=--=,得A 的一个特征值3λ=-. ……1分 又4|||2|2||16T AA I I ===,2||||||16T A A A ==.于是||4A =-.……3分由于||0A <,知A 可逆.设A 的对应于特征值3λ=-的特征向量为α,则3A αα=-,由此得11(3)A A A αα--=-.即113A αα-=-,知13-是1A -的特征值. ……5分 由于*114||(4)()33A A A αααα-==--=,所以*A 有特征值43.……7分十一、(本题满分7分)【 同数学四 第十一题 】 十二、(本题满分6分)某电路装有三个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为λ> 0的指数分布.当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T 的概率分布.解:以(1,2,3)i X i =表示第i 个电气元件无故障工作的时间,则123,,X X X 相互独立且同分布,其分布函数为1,0()00x e x F x x λ-⎧->=⎨≤⎩若,若,……1分设()G t 是T 的分布函数.当0t ≤时,()0G t =.当0t >时,有(){}1{}G t P T t P T t =≤=->……3分 1231{,,}P X t X t X t =->>>……4分 1231{}{}{}P X t P X t P X t =->⋅>⋅> ……5分 31[1()]F t =-- ……6分 31t e λ-=-.……7分总之,31,0()00t e t G t t λ-⎧->=⎨≤⎩若,若,于是T 服从参数为3λ的指数分布.。

北京大学ccer19962008年研究生入学考试历年试题 经济学原理

北京大学ccer19962008年研究生入学考试历年试题 经济学原理

九、(共20分)(1)什么是李嘉图等价定律?完整而又简洁的叙述这一理论。

(5分)(2)根据这一理论,分析政府减税对一个封闭经济中的利率是否有影响?(5分)(3)在一个实行浮动汇率的开放经济中,政府减税对汇率是否有影响?(5分)(4)在一个金融业很不发达的国家中,这一理论是否成立,为什么?(5分)十、(共15分)假设在一个由两国(A,B)组成的世界中,两国间资本和货物可以完全自由流动,如果A国政府采用扩张的货币政策及财政政策来刺激本国的经济,用Mundell-Fleming模型分析:(1)在浮动汇率下,哪一种政策相对比较有效?哪一种政策比较无效?汇率将会有什么变化?B国经济(产出和物价)如何受到影响?(7分)(2)在固定汇率下,哪一种政策相对比较有效?哪一种政策比较无效?A国的外汇储备将会有什么变化?B国经济(产出和物价)如何受到影响?(8分)2002CCER微观试题(Goschan提供)仅凭记忆与道友资料整理,欢迎知道的补充更正与参与讨论:1.已知偏好单调,求证偏好满足局部非餍足性;(10分)2.求证同一企业在Stackelberg均衡下的利润大于Cournot均衡下的利润;(10分)3.已知企业成本函数为C=w1^α.w2^β.y^γ,求:(1)该企业的条件要素需求函数;(2)假定产品价格为p,求利润函数. (10分)4.已知效用函数,求均衡解(此题算最简单吧,记不得了,好象是三问) (10分)5.(1)什么是“圣彼得堡悖论”?(2)伯努利又是如何解答的?(3)该解答对经济学有何意义?(10分)6.已知一个政府所属的垄断企业产品价格为p,生产成本为c,p=c, 假设政府将该企业私有化,则产品价格为p',成本为c',又已知市场需求弹性,价格变动与成本变动(记不了具体数值,但p'>p, c'<c,)问从社会福利的角度看政府是否应该将其私有化? (10分)7.似乎是一个用顺序归纳法解Bayesian均衡的问题。

操作系统考研试题1-5

操作系统考研试题1-5

1基本概念●什么是操作系统?它有什么基本特征?(哈工大2000年试题)【解答】操作系统:操作系统是计算机系统中的一个系统软件。

它是一些程序模块的集合,这些程序模块管理和控制计算机中的硬件和软件资源,合理地组织计算机工作流程,以便有效地利用这些资源为用户提供一个功能强、使用方便的工作环境,从而在用户及计算机之间起到接口的作用。

操作系统的基本特征是并行性、共享性、不确定性。

●判断:操作系统程序都是在核心态下才能运行。

(大连理工大学2000年试题)【分析】操作系统是一组控制和管理计算机硬件和软件资源、合理地对各类作业进行调度以及方便用户的程序的集合。

操作系统提供的服务,一部分必须在核心态下才能运行,如进程调度、目录服务等。

还有一些功能,如DOS下的外部命令,则可以由用户调用,运行在用户态下。

【解答】错误。

●批处理系统的主要缺点是:(清华大学1996年试题)A.CPU利用率低。

B.不能并发执行。

C.缺少交互性。

D.以上都不是。

【解答】选择C。

●填空:多道运行的特征之一是宏观上并行,它的含义是()。

(华中科技大学2000年试题)【分析】多道运行的特征是多道性、宏观上并行、微观上串行。

多道性是指计算机主存中同时存放几道相互独立的程序。

宏观上并行是指同时进入系统的几道程序都处于运行过程中,即它们先后开始了各自的运行,但都未运行完毕。

微观上串行是指主存中的多道程序轮流或分时地占有处理机交替执行。

【解答】并发程序都已经开始执行,但都未结束。

●判断:在分时系统中,响应时间≈时间片×用户数,因此为改善响应时间,常用的原则是使时间片越小越好。

(东南大学1996年试题)【分析】时间片越小,进程切换所用的开销就相对越大。

因此时间片不是越小越好,一般使用户键入的常用命令能在一个时间片内处理完毕即可。

【解答】错误。

●实时系统应具备的两个基本特性是()和()。

(北京理工大学2000年试题)【分析】实时系统是顺应实时控制和实时信息处理的需要而产生的。

北大考研888国际金融1996(含答案)

北大考研888国际金融1996(含答案)

北京大学1996年研究生入学考试试题考试科目:国际金融考试时间:1996年2月5日上午招生专业:国际金融研究方向:国际金融理论与实务国际证券市场国际金融一、国际收支平衡表体现复式帐薄原则,借贷方最终差额为零,为什么却可用来分析一国的国际收支问题?(15分)二、简析欧洲货币市场迅猛发展的原因。

(15分)三、我国94外汇体制改革成绩明显,汇率顺利并轨,贸易大幅顺差,本币稳定中有升,外汇储备猛增。

试对这些结果作深入分析。

(20分)货币银行学一、名词解释(16分)1.必需资产与奢侈资产(necessity and luxury assets )2.准备金(reserve )3.利率期限结构(the term structure of interest rates )4.开放型共同基金(open-end mutual funds )二、模型推导及说明(13分)中央银行及商业银行的资产负债表如下:中央银行资产负债表商业银行资产负债表1.如果货币供给量用1M 来试题,基础货币用H 来表示,支票存款的法定准备率为r ,现金与支票存款的比率为e ,试推导以1M 为基础的货币供给模型,货币乘数m 是多少?2.如果政府的财政赤字(PSBR )通过向中央银行借款和向私有部门融资(PrLG )来弥补,根据中央银行的资产负债表,试推导:F CLB LG PsBRH ∆+∆+∆-=∆Pr一般认为,基础货币是由中央银行控制的,货币供给的决定完全是货币政策问题,你的推导结果说明了什么?3.在弥补财政赤字的过程中,如果政府向私有部门融资主要通过两种方式来进行:(1)向社会公众发行国债(B );(2)向商业银行借款(BLG )那么BLG B CLG PSBR ∆+∆+∆=。

根据中央银行和商业银行的资产负债表,试推导:F BLP B PSBR M ∆+∆+∆-=∆米尔顿·弗里德曼曾经说过:“通货膨胀至始至终是一个货币现象”。

北京大学1996-2009历年数学分析_考研真题试题

北京大学1996-2009历年数学分析_考研真题试题


b
a
f ( x) d x]2 ≤ (b − a ) ∫ f 2 ( x) d x 。
a
b
π −x
2

2.证明它的 Fourier 级数在 (0, 2π ) 内每一点上收敛于 f ( x) 。
北京大学 2001 年研究生入学考试试题
考试科目:数学分析 一、 (10 分)求极限: lim
a 2n 。 n →∞ 1 + a 2 n
f ( n ) ( x) 在 [ a, b ] 上一致收敛于 φ ( x)(n → +∞) ,求证: φ ( x) = ce x , c 为常数。
四、 (15 分)设 xn > 0(= n 1, 2 ⋅⋅⋅) 及 lim xn = a ,用 ε − N 语言证明: lim
n →+∞
n →+∞
xn = a 。
北京大学 2002 年研究生入学考试试题
考试科目:数学分析 一、 (10 分)求极限: lim(
x →0 1 sin x 1−cos ) x。 x
二、 (10 分)设 α ≥ 0 , = x1 并求极限值。
2 + a , xn= +1
2 + xn ,= n 1, 2, ⋅⋅⋅ ,证明极限 lim xn 存在
五、 (15 分)求第二型曲面积分
∫∫ ( x d y d z + cos y d z d x + d x d y) ,其中 3; z 2 = 1 的外侧。
六、 (20 分)设 x = f (u , v) , y = g (u , v) ,w = w( x, y ) 有二阶连续偏导数,满足
x→a + x →b −

名校操作系统历年考研试题(含解答)

名校操作系统历年考研试题(含解答)

名校操作系统(cāo zuò xì tǒnɡ)考研试题与解答10.1北京大学1997年考研操作系统试题(一)名词术语解释(每小题5分,共30分)1.进程状态2.快表3.目录项4.系统调用5.设备驱动程序6.微内核(二)填空(每小题1分,共10分)1.如果系统中有n个进程,则在等待队列中进程的个数最多为________个。

2.在操作系统中,不可中断执行的操作称为_________。

3.如果系统中的所有作业是同时到达的,则使作业平均周转时间最短的作业调度是_________。

4.如果信号量的当前值为-4,则表示系统中在该信号量上有________个等待进程。

5.在有m个进程的系统中出现死锁时,死锁进程的个数k应该满足的条件是_________。

6.不让死锁发生的策略可以分为静态和动态两种,死锁避免属于_________。

7.在操作系统中,一种用空间换取时间的资源转换技术是_________。

8.为实现CPU与外部设备的并行工作,系统引入了__________硬件机制。

9.中断优先级是由硬件规定的,若要调整中断的响应次序可通过_________。

10.若使当前运行的进程总是优先级最高的进程,应选择________进程调度算法。

(三)问答题(每小题15分,共30分)1.消息缓冲通信技术是一种高级通信机制,由Hansen首先提出。

(1)试述高级通信机制与低级通信机制P、V原语操作的主要区别。

(2)请给出消息缓冲机制(有界缓冲)的基本原理。

(3)消息缓冲通信机制(有界缓冲)中提供发送原语Send(receiver,a),调用参数a表示发送消息的内存区首地址,试设计相应的数据结构,并用P、V原语操作实现Send原语。

2.在虚拟段式存储系统中,引入了段的动态链接。

(1)试说明为什么引入段的动态链接。

(2)请给出动态链接的一种实现方法。

(四)(共10分)在实现文件系统时,为加快文件目录的检索速度,可利用"文件控制块分解法"。

全国高校操作系统考试题96级B卷

全国高校操作系统考试题96级B卷

北京信息工程学院计算机系96111, 96112 级操作系统试卷 (B卷 )一。

( 10 分 )从供选择的答案中选出应填入下列叙述中空格处的正确答案,把编号写在答案的对应栏中。

1。

__A___是一种只能进行 P操作和 V操作的特殊变量。

__A_可以用来实现异步并行进程间的 __B_和 _C___。

__B 是指排它地访问数据!£ _C_则是指进程间在逻辑上的相互制约关系。

[供选择的答案 ] A, B, C:( 1) 调度 ( 2 ) 类程 ( 3 ) 进程 ( 4 ) 互斥 ( 5 ) 信号量 ( 6 ) 控制变量( 7 ) 条件变量 ( 8 ) 同步 ( 9 ) 共享变量 ( 10 )分配 (11 ) 管程答: A___________ B__________ C__________。

2。

当为多道程序所提供的共享的系统资源不能满足要求时,可能出现死锁。

系统资源即可能是永久性资源也可能是临时性资源。

此外,不适当的 __A__也可能产生死锁。

产生死锁的必要条件是 __B__, __C_,__D__, __E__。

有向资源分配图是分析死锁的有力工具。

既然死锁是由于资源不足造成的,当出现死锁时,即可以通过从其它进程剥夺足够数量的资源并分配给死锁进程来解脱死锁。

这是资源剥夺办法。

此外还可以采用 __F__来解脱死锁。

采取措施预防死锁的发生 __G__。

A: ( 1 ) 程序并行操作 ( 2 ) 资源的线性分配 ( 3 ) 分配队列优先数( 4 ) 进程推进顺序B, C, D, E:( 1 ) 使用非剥夺性资源 ( 2 ) 时间片过长 ( 3 ) 信号量 S=0 ( 4 ) 执行P_V操作 ( 5 ) 因请求资源而被阻塞的进程仍保持资源不放 ( 6 ) 每种资源只有一个 ( 7 )进程已获得资源,在未使用完之前不能被剥夺 ( 8 ) 某一进程请求的资源太多 ( 9 ) 各进程请求的资源总数超过了系统拥有的资源总数 ( 10 ) 环路等待:存在一个进程 --资源环形链。

操作系统硕士研究生入学考试模拟试题参考答案

操作系统硕士研究生入学考试模拟试题参考答案

操作系统硕士研究生入学考试模拟试题参考答案一、填空题1.中断优先级是由硬件规定的,若要调整中断响应次序可通过中断屏蔽实现。

(北京大学1997)2.多道程序设计的特点是多道、宏观上并行和微观上串行。

(西安电子科大2001)3.多道运行的特征之一是宏观上并行,它的含义是同时进入主存的程序都处于运行过程中,但都未运行完毕。

(华中理工2000)4.操作系统的基本类型主要有批处理操作系统、分时操作系统和实时操作系统。

(哈工大2002)5.批处理系统主要解决吞吐量问题,分时系统主要解决交互性问题。

(华中理工2001)6.操作系统具备处理同时性活动的能力,其最重要的硬件支持是中断机构。

(华中科技2001)7.为了实现处理器与外部设备的并行工作,系统引入了中断硬件机制。

(北大1997)8.操作系统向用户提供了两类接口,一类是命令级接口,另一类是程序级接口。

(西安电子科大2001)(中科大1998)9.现代操作系统的两个最基本的特征是(程序执行的) 并发性和(资源的) 共享性。

(中科院1997) (北交大2000)10.多道程序设计的引入给存储管理提出了新的课题,应考虑的三个问题是存储分配、存储保护和存储扩充。

(西安电子科大2000)11.在操作系统中,一种用空间换取时间的资源转换技术是SPOOLing。

(北京大学1997)12.如果系统中有n 个进程,则在等待队列中进程的个数最多为n 个。

(北京大学1997)13.若使当前运行进程总是优先级最高的进程,应选择剥夺式进程调度算法。

(北京大学1997)14.实现一个管程时必须考虑的3 个主要问题包括互斥、同步、条件变量。

(西安电子科大1996)15.在采用请求分页式存储管理的系统中,地址变换过程可能会因为缺页、地址越界和访问权限错等原因而产生中断。

(中科大1998)16.存储管理应实现的功能是:主存空间的分配和保护、地址重定位、主存空间的共享和扩充。

(西安电子科大2002)17.分区存储管理方案不能实现虚存的原因是作业地址空间大小不能超过存储空间大小。

北京大学1996年研究生入学考试试题数学分析

北京大学1996年研究生入学考试试题数学分析

(
)
f +′(a ) 存在且等于 l 。
5.若 f ( x) 是 [ a, +∞ ) 上的非负连续函数,且积分
( )

+∞
a
f ( x) d x 收敛,则 lim f ( x) = 0 。
x →+∞
( )
1 f (a + n ) 二、 (13 分)设 f ( x) 在 x = a 处可微, f (a ) ≠ 0 ,求极限: lim 。 n →∞ ( ) f a
n →∞
an +1 = l ,证明 : l ≤ 1 。 n →∞ a n
六、 (10 分)设在 [ a, b ] 上, f n ( x) 一致收敛于 f ( x) , g n ( x) 一致收敛于 g ( x) ,若存在正 数列 {M n } 使得 f n ( x) ≤ M n , g n ( x) ≤ M n , x ∈ [ a, b ] , = n 1, 2, ⋅⋅⋅ ,证明: f n ( x) g n ( x) 在 [ a, b ] 上一致收敛于 ห้องสมุดไป่ตู้ ( x) g ( x) 。
n →∞
lim an + p − an = 0。
n →∞
( )
若 f ( x) 在 [ a, +∞ ) 上有界, 则 f ( x) 在 [ a, +∞ ) 3.设 f ( x) 是 [ a, +∞ ) 上的递增连续函数, 上一致连续。
x→a
( )
4.设 f ( x) 在 [ a, b ] 上连续,且在 ( a, b ) 上可微,若存在极限 lim f ′( x) = l ,则右导数 +0
北京大学 1996 年研究生入学考试试题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档