(方案)一次函数知识点大总结.ppt

合集下载

第10讲 一次函数

第10讲 一次函数

简记为“左加右减,上加下减”.
知识点四
常用方法
步骤
确定一次函数的表达式
待定系数法
(1)设函数表达式;(2)列方程(组);(3)解方程(组),确定待定系数;(4)写出函数表达式
常见类型 (1)已知两点坐标;(2)已知两对对应值;(3)利用平移规律;(4)利用实际问题中的数量关系
知识点五
一次函数与方程(组)、不等式的关系
待定系数法求函数表达式.
(2)表格型应用题:分析表格中数据,从表格中提取两组量,应用待定系数法求函数表达式.
(3)图象型应用题:从函数图象上找出两点,将其坐标代入求函数表达式;若函数为分段函数,则要注意
取同段函数图象上的两点,依此方法分别求各段函数的表达式,最后记得加上对应自变量的取值范围.
(4)方案选取问题:根据表达式分类讨论,比较几个方案在不同取值下的最优结果.

解:(1)当 x=100 时,y=- ×100+13=9,

∴B(100,9).
设线段 BC 的表达式为 y=kx+b(k≠0),


= ,
= + ,

解得

= + ,
=- ,

∴线段 BC 的表达式为




y= x- (100≤x≤140).
(2)如果从甲地到乙地全程为260 km,包括60 km限速为50 km/h的省道和200 km限速为120
A
B
C
D
)
[变式2] (2022眉山)一次函数y=(2m-1)x+2的值随x的增大而增大,则点P(-m,m)所在象限为(B
)
A.第一象限

八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件

八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件
第21章 一次函数
21.2 一次函数的图像(tú 和性质 xiànɡ)
第一页,共二十四页。
第21章 一次函数
第2课时(kèshí) 一次函数的性质
知识目标 目标突破 总结反思
第二页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
知识(zhī shi)目标
1.经历(jīnglì)观察图像探索一次函数的增减性的过程,会应用一次函 数的增减性解决字母参数问题. 2.经历探索一次函数的图像和k,b的关系的过程,会运用一次函数的 图像和比例系数的关系求解字母参数.
D.k<0,b<0
[解析] ∵一次函数y=kx+b的图像(tú xiànɡ)经过一、三象限,∴k>0.又∵ 该图像与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.
第八页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
(2)2017·广安当k<0时,一次函数y=kx-k的图像不经过( )
第十六页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
【归纳总结】一次函数的其他性质:
(1)一次函数 y=kx+b(k≠0,k,b 为常数)与 x 轴的交点坐
b 标为(-k,0),与
y
轴的交点坐标为(0,b);
(2)一次函数与不等式的关系:可以根据函数关系式将一个变
量满足的不等关系,转变为另一个变量满足的不等关系,从而确
第二十一页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ) 2.已知直线y=2x+m不经过第二象限,求m的取值范围.
解:∵k=2>0,
∴直线经过第一、三象限. ∵直线不经过第二象限,
∴直线经过第一、三、四象限,故m<0.

一次函数图像与性质ppt课件

一次函数图像与性质ppt课件


象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是

条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .

《一次函数的图象》一次函数PPT课件

《一次函数的图象》一次函数PPT课件

观察图象可以发现:①直线y=x,y=3x向右


逐渐
,
上升

即y的值随x的增大而增大;

②直线
,y=-4x向右逐渐

即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.

2
增大

分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x

(完整版)一次函数知识点总结

(完整版)一次函数知识点总结

一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量. 常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

一次函数讲解ppt(共87张PPT)

一次函数讲解ppt(共87张PPT)
输出的函数值为(
3
2
A.
5
的值为2,则
)
2
5
B.
5
解析 ∵x=2时,在
4
25
C.
2≤x≤4 之间,∴将
25
4
D.
5
x=2代入函数
1
y=得
2
y=5.故
选 B.
答案 B
22
教材新知精讲
拓展点一
拓展点二
拓展点三
综合知识拓展
拓展点四
23
教材新知精讲
拓展点一
拓展点二
拓展点三
综合知识拓展
拓展点四
拓展点二根据表格求函数的解析式
6
教材新知精讲
知识点一
知识点二
知识点三
知识点四
综合知识拓展
知识点五
7
教材新知精讲
知识点一
知识点二
知识点三
知识点四
综合知识拓展
知识点五
知识点二函数和自变量
一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确
定的值,y都有唯一的值与其对应,那么我们就说x是自变量,y是x的函数.
解读 正确理解函数这一概念必须注意如下几点:
2.找特殊点
3.数形结合
知识点二从函数图象读取信息
观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就
是观察图象反映的是哪两个变量之间的关系。 观察图象图象上
一句话解决方案
的特殊点,如与坐标轴的交点、图象上的拐点、线段的端点等,这
些特殊点的意义往往对问题的解决有很大的帮助.分析(1)找到第一天
中最高点与最低点的坐标,进而可得骆驼体温的变化范围与它的体温从 数形结合,正确理解自变量和

《一次函数——一次函数与正比例函数》数学教学PPT课件(3篇)

《一次函数——一次函数与正比例函数》数学教学PPT课件(3篇)

即n=±2,n≠2,m=3.
所以m=3,n=-2.
因此,当m=3,n=-2时,函数是一次函数.
(2)由(1)得此一次函数关系式为y=-8x+7.
当x=1时,y=-8×1+7=-1.
(来自《点拨》)
知1-讲
总 结
根据一次函数定义求待定字母的值时,要注意:
(1) 函数关系式是自变量的一次式,若含有一次以上
(2)当m为何值时,y是x的正比例函数?
解:(1) 根据一次函数的定义可得:m-1≠0,所以
m≠1,即当m≠1时,y是x的一次函数.
1
1
3
3
(2) 根据正比例函数的定义可得:m-1≠0且
1-3m=0,所以m=
,即当m=
时,
(来自《点拨》)
知3-练
1 下列说法中正确的是( D )
A.一次函数是正比例函数
(1)y=2.2x,y是x的一次函数,也是x的正比例函数.
(2)y=80x+100 ,y是x的一次函数. (

(√

2.在函数y=(m-2)x+(m2-4)中,当m ≠2 时,y是x的一次
函数;当m =-2 时,y时x的正比例函数.

3.已知函数y=(m-1)x|m︱+1是一次函数,求m值;
解:根据题意,得∣m∣=1,
B.正比例函数不是一次函数
这一条件.
(来自《点拨》)
知2-练
1 (中考·上海)下列y关于x的函数中,是正比例函
数的为( C )
A.y=x2x
B.y=
2
2 C.y=
2
x
x1
2
D.y=
1
2
0
已知函数y=2x2a+b+2b是正比例函数,则a=

一次函数

一次函数

第十四章一次函数一、一次函数及其图像知识总结(一)知识总结(二)例题精讲知识点一:变量与函数知识点二:一次函数与正比例函数的意义知识点三:待定系数法求一次函数的解析式知识点一:变量与函数A、夯实基础每个同学购买一支钢笔,每支笔 5 元,求总金额y(元)与学生数出式中的函数与自变量,写出自变量的取值范围。

解答: y=5n, n 是自变量, y 是 n 的函数。

自变量n 的取值范围是:解析:这里的自变量的取值范围,要考虑它的实际意义。

n(个)的函数关系并指n 为自然数。

B、双基固化如果 A、 B两人在一次百米赛跑中,路程s(米)与赛跑的时间t (秒)的关系如图所示,则下列说法正确的是((A) A 比 B 先出发(B)A、B两人的速度相同(C) A 先到达终点( D) B 比 A 跑的路程多C )C、能力提升一水管以均匀的速度向容积为如下表,请从表中找出 t 与100 立方米的空水池中注水,注水的时间t 与注入的水量Q Q之间的函数关系式,且求当t=5 分 15 秒时水池中的水量Q的值.T(分钟)2468...Q(立方米)481216...解答:∵水管是匀速流出水于池中,速度是(4 ÷ 2)=2 ,即每分钟Q=2t,自变量 t 为非负数 .又∵水池容积为100 立方米,时间不能超过100÷2=50( 分钟 ) ,∴0≤ t ≤ 50.2 立方米,函数解析式为当t=5 分 15 秒时, Q=2× 5.25=10.5( 立方米 )即当 t 为 5 分 15 秒时,水量为10.5立方米.知识点二:一次函数与正比例函数的意义A、夯实基础下列函数中 , 哪些是一次函数(1)Y = -3X+7是一次函数.(2)Y = 6X2-3X不是一次函数.(3)Y = 8X是一次函数, 也是正比例函数(4)Y = 1+9X是一次函数(5)Y =6不是一次函数XB、双基固化列出下列函数关系式,判别其中哪些为一次函数、正比例函数.(1)正方形周长 p 和一边的长 a.解答 :(1)∵p=4a.自变量 a 为一次且其系数为4( 不为零 ) .∴p为 a 的一次函数.又∵不含常数项∴也是正比例函数.(2) 长 a 一定时矩形面积y 与宽 x.解答:∵ y=ax,自变量x 为一次且系数 a 为长度 ( 不为零 ) .∴y是 x 的一次函数.∵不含常数项.∴y也是 x 的正比例函数.(3)定期存 100 元本金,月利率 1.8 %,本息和 y 与所存月数 x.解答 : ∵ y=100+100× 1.8%x,自变量 x 的次数为一次,又含有常数项.∴ y 是 x 的一次函数但不是正比例函数.(4) 水库原存水Q立方米,现以每小时 a 立方米的流量开闸放水,同时上游以每小时 b 立方米的流量向水库注水,求这时水库的蓄水量M与时间 t 的函数关系.解答 : ∵ M=Q+(b-a)t ,因为自变量 t 的次数为一次,当 a≠ b 时, M是 t 的一次函数.若 Q=0 时,M是 t 的正比例函数;若 a=b 时, M是常量函数,不是 t 的一次函数.C、能力提升已知 y = -(m2+2m)xm2+m-1 ,当 m是什么数值时,为正比例函数?解答:设正比例函数为y = kx (k≠ 0),∵正比例函数k≠ 0,x 的指数为1.∴m2+2m≠ 0,解得 m1≠ 0, m2≠-2 ,且m2+m-1 = 1 ,解得 m3 = -2 ,m4 = 1 .∴当 m = 1 时,为正比例函数.知识点三:待定系数法求一次函数的解析式B、双基固化已知一次函数y=kx+b 在 x=-4 时的值为9,在 x=6 时的值为 3,求k 与 b解:由已知得:9 = - 4k + b3 = 6k + b解得 k=- 0.6, b = 6.6C、能力提升一次函数的图象经过点(0,2)和点( 4, 6)。

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

问题10:
已知x点A(-4,0),B(2,0),若点C在一次函数y 1 x 2 2
的图象上,且△ABC是直角三角形,则满足条件点C
有(
)
A.1个 B.2个 C.3个 D.4个
C
C
x
2C C
A
OB4
y
问题11: 如图,直线AB与y轴,x轴交点分别为A(0,2) B(4,0),以坐标轴上有一点C,使△ACB为等腰三角形
45x 30(6 x) 240
120x
1680
2300
解得xx3641
∵x是整数,∴x 取4,5 ∵k=120>O ∴y 随x的增大而增
∴当x=4时,Y的最小值=2160元
2.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗
震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地
需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分
3.某蓄水池的横断面示意图如右图,分深 水区和浅水区,如果这个注满水的蓄水池 以固定的流量把水全部放出.下面的图象 能大致表示水的深度h和放水t时间之间的
关系的是( A )
h
h
h
h
h
O tO
tO t O
t
A
B
C
D
1.已知y+1与x-2成正比例,当x=3时,y=-3, (1)求y与x的函数关系式; (2)画出这个函数图象; (3)求图象与坐标轴围成的三角形面积; (4)当-1≤x≤4时,求y的取值范围;
v y
v
v
0
x
x O
A B
函数的定义要点:
0
x
C
0
x
D
(1)在一个变化过程中有两个变量x,y

一次函数及其图像知识点总结

一次函数及其图像知识点总结

第一节:函数一、知识归纳函数的概念一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y 是x的函数,其中x是自变量,y是因变量。

函数的三种表达式:(1)图象;(2)表格;(3)关系式。

要使函数的解析式有意义。

函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

④函数的解析式是三次根式时,自变量的取值应是一切实数。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

4 常见函数关系式几何物理生活二、经典题型题型考点一求简单的函数关系式,识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

例1.某市自来水公司为限制单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。

⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨;②用水量大于3000吨。

⑵某月该单位用水3200吨,水费是元;若用水2800吨,水费元。

⑶若某月该单位缴纳水费1540元,则该单位用水多少吨?参考答案:(1)y=0.5 x 、y=1500+0.8(x-3000)(2)1660 1400(3) 3050例2.函数是研究( )A.常量之间的对应关系的B.常量与变量之间的对应关系的C.变量与常量之间对应关系的D.变量之间的对应关系的题型考点二确定函数的自变量取值范围,例1 .(2010四川凉山)在函数121xyx+=-中,自变量x的取值范围是____题型考点三能根据实际问题的意义以及函数关系式,确定函数图像例1、某游客为爬上3千米高的山顶看日出,先用了1小时爬了2千米,休息0.5小时后,又用了1小时爬上了山顶。

游客爬山所用时间t与登山高度h间的函数关系用图形表示是()第二节一次函数一、知识归纳知识点一:一次函数的定义函数y=______(k、b为常数,k_____,自变量x的次数是U__ _U次)叫做一次函数.知识点二:正比例函数的定义当b_____时,函数y=_____ (k______,比例系数U____)叫做正比例函数.知识点三:一次函数与正比例函数的异同(1)一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)。

初二数学《一次函数》课件

初二数学《一次函数》课件

进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。

一次函数的应用(第1课时)北师大数学八年级上册PPT课件

一次函数的应用(第1课时)北师大数学八年级上册PPT课件
你能归纳出待定系数法求函数解析式的基本步骤吗?
探究新知
归纳总结
求一次函数解析式的步骤: (1)设:设一次函数的一般形式 y=kx+b(k≠0)
(2)列:把图象上的点 x1, y1 ,x2 , y2 代入一次
函数的解析式,组成几个__一__次_____方程; (3)解:解几个一次方程得k,b; (4)还原:把k,b的值代入一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(2,0)与(0,6)分别代入y=kx+b,得:
0 2k b 6 b
解得:bk
3 6
这个一次函数的解析式为y=-3x+6.
巩固练习
变式训练
已知一次函数的图象过点(3,5)与(0,-4),求这个 一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(3,5)与(0,-4)分别代入,得:
5 3k b 4 b
解得
k 3 b 4
,
所以这个一次函数的解析式为 y=3x-4.
探究新知 素养考点 2 已知一点利用待定系数法求一次函数的解析式
例2 若一次函数的图象经过点 A(2,0)且与直线y=-x+3平行,
求其解析式.
解:设这个一次函数的解析式为y=kx+b.
因为一次函数图象与直线y= -x+3平行,所以k= -1.
解:(1)设v=kt, 因为(2,5)在图象上, 所以5=2k, k=2.5,即v=2.5t.
(2) v=7.5 米/秒
(2,5)
(2,5)
t/秒
探究新知
例 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当 所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之 间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.

10、一次函数PPT课件

10、一次函数PPT课件
第一部分 教材同步复习
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)

第十九章 一次函数 小结与复习-天津市2020年空中课堂人教版八年级数学下册课件(共30张PPT)

第十九章 一次函数 小结与复习-天津市2020年空中课堂人教版八年级数学下册课件(共30张PPT)

图象:一条直线
性质: k > 0,y 随 x 的增大而增大; k < 0,y 随 x 的增大而减小.
三、重要知识点的应用
应用1 正比例函数、一次函数的定义.
例1 下列变量之间关系中,一个变量是另一个变量的正比例函数 的是( B ).
(A)正方形的面积 S 随着边长 x 的变化而变化
S=x2
(B)正方形的周长 C 随着边长 x 的变化而变化
常量:100 和 10 ;变量:x 和 y ; 自变量:x ; 函数:y 是 x 的函数 .
问题3 函数有几种表示方法?各有哪些特点?画函数图象分几步?
(1) y = x2
解析式法
描述变量之间的对应关系
x
(2)
… -3 -2 -1 0
1
2
3

y=x2 … 9 4 1 0 1 4 9 …
列表法
直接给出 部分对应值
函数
字母系数取值 ( k>0)
y=kx+b (k ≠ 0)
b >0 b=0
b<0
图象
y Ox y
Ox y Ox
经过的象限 变化趋势
一、二、三 一、三
y 随x 的增大 而增大
一、三、四
问题7 一次函数图象的特征?一次函数的性质?
函数
字母系数取值 ( k<0)
b>0
y=kx+b (k ≠ 0) b = 0
一次函数的小结与复习 八年级 数学
学习目标:
1. 经历回顾与思考,整理本章学习内容. 2. 建立相关知识之间的联系,优化知识结构. 3. 理解一次函数在解决实际问题中的作用. 4. 进一步体会函数模型思想、数形结合思想及变化对应的思想.
二、本章主要知识点回顾

北师大版八年级数学上册《函数》一次函数PPT课件

北师大版八年级数学上册《函数》一次函数PPT课件
(4)当关系式有零指数幂(或负整数指数幂)时,自变 量的取值需使相应的底数不为0;
(5)当关系式是实际问题的关系式时,自变量的取值 需使实际问题有意义;
(6)当关系式是复合形式时,自变量的取值需使所有 式子同时有意义.
知2-讲
知例(1)3识y=点求3x下+列7;函(2数) 中y=自3变x1量2x;的(取3) 值y=范围x: 4 .
干旱持续时间t/天 蓄水量V/万立方米
0 10 20 30 40 50 60
(3)当t取0至60之间的任一值时,对应几个V值? (4)V可以看作t的函数吗?若可以,写出函数关系式.
知3-讲
知导引识:点(1)通过读图可知,横坐标表示干旱持续时间,纵坐标表
示水库蓄水量,因此它表示的是干旱持续时间与水库蓄水 量之间的关系;(2)根据图象信息确定每个特殊点的坐标即 可;(3)观察图象即可得解;(4)可根据函数的定义来判断. 解:(1)这个图象反映了干旱持续时间与水库蓄水量之间的关
知1-讲
例1 已知三角形的一边长为12,这边上的高是h,
则三角形的面积S= 1 ×12·h,即S=6h.在 2
这个式子中,常量和变量分别是什么? 导引:根据常量和变量的定义分析.由于三角形的面
积是边长与该边上的高的长度的乘积的一半, 已知边长,因此可以得出常量是边长的一半, 变量是高和面积. 解: 常量是6,变量是h和S.
(1)根据图填表:
t/min 0 1 2 3 4 5 …
h/m

(2)对于给定的时间t,相应的高度h确定吗?
知识点 1 函 数
知1-导
做一做 1. 罐头盒等圆柱形的物体常常如下图那样堆放,随着
层数的增加,物体的总数是如何变化的?
知1-导

一次函数及其图像知识点总结

一次函数及其图像知识点总结
11、反比例有关的面积问题(图7三角形AOB的面积有多种方法)
12、 函数与方程、不等式之间的关系
指示:解决此类题目的关键在于,找到图像的交点,并且理解交点的意思,之后再过交点作x轴的垂线,并且左右平移垂线,进行观察。
例1:画出函数 的图像,根据图像,指出:
(1) 取什么值时,函数值 等于0
(2) 取什么值时,函数值 大于0
备注:上下平移(即 值不变, 值的变化),我们可以从函数与 轴交点的变化更容易观察出结论。
向左平移1个单位______________;向右平移2个单位_________________
备注:左右平移(即 值不变, 值的变化),我们可以从函数与 轴交点的变化更容易观察出结论。
7、直线之间的位置关系
已知直线:
思考:如何解决点关于y=x,y=-x对称,以及点旋转90°之后的坐标。
5、点的平移: 向上平移2格______;向下平移3格_______;向右平移1格______;向右平移5格_______(概括:左右平移改变的是横坐标,上下平移改变的是纵坐标)
6、两点之间的距离
在同一条水平上线上的时候:求A、B两点之间的距离
例、如图所示:直线 与 、 轴轴分别交于点 、 ,其中点E的坐标为 点A的坐标 。点P为直线 上的一动点。
(1)、求 的值
(2)、若点 是第二象限内,在点P的运动过程中,试写出△OPA的面积 与 轴的函数关系式,并写出自变量 的取值范围。
(2)、探究:当点P运动到什么位置时,△OPA的面积为 ,并说明理由。
例2、如图14,已知 , 是一次函数 的图象和反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线 与 轴的交点 的坐标及△ 的面积;

4.3 一次函数的图象(课件)北师大版数学八年级上册

4.3 一次函数的图象(课件)北师大版数学八年级上册
解题秘方:紧扣一次函数图象的画法作图.
解:列表如下:
知3-练
x01 y1 -1 1
x01 y2 0 2
x01 y3 2 4
描点、连线,即可得到它们的图象, 如图4-3-4.
知3-练
从图象中我们可以看出:它们是一组互相平行的直 线,因为这组函数的表达式中k的值都是2.
结论:一次函数中的k值相等(b值不相等)时,其图 象是一组互相平行的直线. 它们可以通过互相平移得到.
知2-练
知2-练
方法三 根据正比例函数的增减性比较函数值的大小. 因为k=3>0,所以y随x的增大而增大,因为-1>-2, 所以y1>y2.
知2-练
3-1. 如图, 在同一平面直角坐标系中,一次函数y=k1x, y=k2x,y=k3x,y=k4x的图象分别为l1,l2,l3,l4, 则下列关系中正确的是( B ) A. k1<k2<k3<k4 B. k2<k1<k4<k3 C. k1<k2<k4<k3 D. k2<k1<k3<k4
续表
知3-讲
图象的 位置
增减性 y随x的增大而增大
与y轴 交点的 正半轴 负半轴 原点 位置
y随x的增大而减小 正半轴 负半轴 原点
特别提醒
知3-讲
◆由 k,b 的符号可以确定直线y=kx+b(k,b为常数,
k ≠ 0)所经过的象限;反之,由直y=kx+b(k,b 是
常数,k ≠ 0)所经过的象限也可以确定 k,b 的符
解题秘方:正比例函数中比较函数值大小的方法: (1)求值比较法;(2)用“形”上的点的位置比较 “数”的大小;(3)利用函数的增减性比较大小 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.函数解析式与函数图像的关系:对于任意 的(x,y)若满足解析式,则(x,y)一定在 此图像上;若(x,y)在图像上,则一定满足 函数解析式。
• 题型:1.直线y=kx+2一定经过(2,3)______

2.直线y=2x+3与Y轴,求交点:对于交点。 交点在两条直线上,所以均满足两条直线 的解析式。
• 题型:1.知道(2,3) y=x+b或y=kx+3
• 2.知道y=2x+3.y=-2x+11求交点.

2x+3=-2x+形式是y=kx+b。其中k 和b对函数图像的影响:
• K的正负决定了一个函数是上坡还是下坡。
• B的正负决函数。
• 1.取值范围:即x或y能取哪些值。
• 其中x的取值范围称为定义域。Y的取值范 围叫值域。
• 解释:在同一个坐标系,不同段X上函数解 析式不同,给出一个X,先判断X在哪一段 上,再采用对应的函数解析式解答。
• 2.分段函数大题:读懂题意。区分不同段 X。知道各个区段对应的函数关系式。
• K>0→标准语言:y随x的增大而增大。 (俗语:上坡)
• K<0→标准语言:y随x的数y=2x+3。问经过象限, 方法:先看k,k>0,上坡,就经过一三象 限。再看b,若是b>0.往上平移。所以经过 一二三象限。
• 2.问一次函数经过二三四函数,二四, 和一三对应。二应用题。 • 1.任何一个应用题都得先搞清楚x.y分别表
示什么意思。
• 2.根据图像求出函数关系式。它的步骤是: • (1)设出函数关系式 • (2)找点 • (3)代点 • (4)解出待• 设函数解析式y=kx+b • 把(x,y),(x,y)代入关系式得: • {y1=kx1+b • {y2=kx2+b • 解得:{k=__ • {b=____ • 所以y=kx+b
相关文档
最新文档