高等数学(上)期末测试卷A答案
大一高等数学期末考试试卷及答案详解
⼤⼀⾼等数学期末考试试卷及答案详解⼤⼀⾼等数学期末考试试卷(⼀)⼀、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为(). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-?的值为().(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)⼀定可导(C)可能可导 (D)必⽆极限⼆、填空题(共12分)1.(3分)平⾯上过点(0,1),且在任意⼀点(,)x y 处的切线斜率为23x 的曲线⽅程为 .2. (3分) 1241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极⼤值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +?(1),f x dx -?其中,1,()1cos 1, 1.x xx f x xe x ?≤?=+??+>?5. (6分)设函数()y f x =由⽅程0cos 0yxte dt tdt +=??所确定,求.dy6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +?7. (6分)求极限3lim 1.2nn n →∞+四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ??=-≤≤与x 轴所围成图形绕着x 轴旋转⼀周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线⽅程.4. (7分)求函数y x =+[5,1]-上的最⼩值和最⼤值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbab a f x dx f a f b x a x b f x dx -''=++--?(⼆)⼀、填空题(每⼩题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第类间断点.2.函数()21ln x y +=,则='y.3. =?+∞→xx x x 21lim.4.曲线xy 1=在点2,21处的切线⽅程为 . 5.函数2332x x y -=在[]4,1-上的最⼤值,最⼩值 . 6.=+?dx xx21arctan . ⼆、单项选择题(每⼩题4分,共20分) 1.数列{}n x 有界是它收敛的() . () A 必要但⾮充分条件; () B 充分但⾮必要条件; () C 充分必要条件; () D ⽆关条件. 2.下列各式正确的是() .() A C e dx e x x +=--?; () B C xxdx +=?1ln ; () C ()C x dx x +-=-?21ln 2211; () D C x dx xx +=?ln ln ln 1. 3.设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数().() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是().() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去⼼邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每⼩题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ?+dx xx 221. 5. ?xdx x cos .6.⽅程yxx y 11=确定函数()x f y =,求y '.四、(10分)已知2x e 为()x f 的⼀个原函数,求()?dx x f x 2.五、(6分)求曲线x xe y -=的拐点及凹凸区间. 六、(10分)设()()C e x dx x f x++='?1,求()x f .(三)⼀、填空题(本题共5⼩题,每⼩题4分,共20分).(1) 21(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平⾏的切线⽅程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线⽅程为 .9131-=x y(5)微分⽅程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y⼆、选择题 (本题共5⼩题,每⼩题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=?-dx x (B) 21112-=?-dx x(C) +∞=?∞+141dx x (D) +∞=?∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所⽰,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy y y x '''--=(B )23e .xy y y '''--= (C )23e .x y y y x '''+-= (D )23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是( A ).(A) (())().f x dx f x '=? (B) ()().=?df x f x (C) [()]().d f x dx f x =(D) ()().fx dx f x '=?三、计算题(本题共4⼩题,每⼩题6分,共24分). 1.求极限) ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x xx ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分分2.⽅程??+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与2 2dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------??分分(分4.计算定积分?++3011dx xx.解 ??-+-=++3030)11(11dx x x x dx x x ?+--=30)11(dx x (3分)35)1(3(或令t x =+1)四、解答题(本题共4⼩题,共29分).1.(本题6分)解微分⽅程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征⽅程分特征解.分次⽅程的通解Y =C 分令分代⼊解得,所以分所以所求通解C 分2.(本题7分)⼀个横放着的圆柱形⽔桶(如图4-1),桶内盛有半桶⽔,设桶的底半径为R ,⽔的⽐重为γ,计算桶的⼀端⾯上所受的压⼒.解:建⽴坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------??分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =?,试求()()b a222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平⾯图形D. (1) (3) 求D 的⾯积A;(2) (4) 求D 绕直线e x =旋转⼀周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线⽅程是).(1ln 000x x x x y -+=1分yxyO1e 1D由该切线过原点知 01ln 0=-x ,从⽽.0e x =所以该切线的⽅程为.1x e y =平⾯图形D 的⾯积 ?-=-=10.121)(e dy ey e A y 2分(2)切线xe y 1=与x 轴及直线e x =所围成的三⾓形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(?-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=?e e dy e e e V V V y πππ 1分五、证明题(本题共1⼩题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法⼀:2112xe e x x xξ=++≥+解法⼆:设() 1.x f x e x =--则(0)0.f = 1分因为() 1.xf x e '=- 1分当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。
高等数学a上期末考试试题和答案
高等数学a上期末考试试题和答案高等数学A上期末考试试题一、选择题(每题3分,共30分)1. 极限的定义是()。
A. 函数在某点的值B. 函数在某点的增量C. 函数在某点的导数D. 函数在某点的无穷小答案:D2. 函数f(x)=x^2在x=0处的导数是()。
A. 0B. 1C. 2D. 3答案:C3. 定积分∫₀¹x²dx的值是()。
A. 1/3B. 1/2C. 1D. 2答案:C4. 函数f(x)=sinx在x=π/2处的值是()。
A. 0B. 1C. -1D. π/2答案:B5. 函数f(x)=e^x的原函数是()。
A. e^xB. e^(-x)C. ln(x)D. x答案:A6. 函数f(x)=x^3-3x^2+2的极值点是()。
A. 0B. 1C. 2D. 3答案:B7. 函数f(x)=x^2+2x+1的最小值是()。
A. 0B. 1C. 2D. 3答案:B8. 函数f(x)=ln(x)的定义域是()。
A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B9. 函数f(x)=x^3-6x^2+11x-6的拐点是()。
A. 1B. 2C. 3D. 4答案:B10. 函数f(x)=x^4-4x^3+6x^2-4x+1的零点是()。
A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共30分)11. 函数f(x)=x^3-3x^2+2的导数是______。
答案:3x^2-6x12. 函数f(x)=e^x的二阶导数是______。
答案:e^x13. 函数f(x)=ln(x)的不定积分是______。
答案:xln(x)-x+C14. 函数f(x)=x^2-4x+4的顶点坐标是______。
答案:(2, 0)15. 函数f(x)=sinx+cosx的周期是______。
答案:2π16. 函数f(x)=x^3-3x^2+2的单调增区间是______。
工程大学2023-2023学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案
工程大学2023-2024学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案试卷题目:高等数学(上)期末考试试卷(A卷)科目:高等数学(上)时间:2024年1月一、选择题(共30题,每题2分,共60分)1.在直角坐标系中,抛物线y = x^2 - 2x 的顶点坐标是()A. (1, -1)B. (1, 2)C. (2, 1)D. (-1, 1)2.设函数f(x) = sin(2x + π/3),则函数 f(x) 的一个周期是()A. π/3B. π/2C. πD. 2π3.函数 y = 3ln(2x + 1) 的图像在 x 轴上的截距是()A. -1/2B. 1/2C. 0D. -14.设函数 f(x) = x^3 + 4x^2 + 5x,则 f(x) 的极值点是()A. (-1, -1)B. (0, 0)C. (0, 5)D. (-5, 0)5.已知曲线 C 的参数方程为 x = t^2 - 4, y = t - 1,则曲线 C 属于()A. 抛物线B. 椭圆C. 双曲线D. 直线…二、填空题(共10题,每题3分,共30分)1.函数 f(x) = sin(2x) 的最小正周期是 _______。
2.函数 y = x^3 + 4x^2 的导函数是 _______。
…三、解答题(共4题,每题20分,共80分)1.求方程组 x^2 + y^2 = 4, x - y = 1 的解。
2.计算不定积分∫(cos^2x + 2sinx)dx。
…四、大题(共2题,每题20分,共40分)1.设 y = ax^2 + bx + c,其中 a, b, c 均为常数,且a ≠ 0。
若曲线 y = ax^2 + bx + c 的顶点坐标为 (1, -1),且该曲线与直线 y = x + 1 相切于点 (2, 3),求曲线方程。
2.设函数 f(x) = e^x / (1 + e^x),求f’(x) 和f’’(x)。
同济大学《高等数学》(上)期末试卷A及答案
高等数学(上)期末考试试卷试 题一、填空、选择题1.函数)(x f 在],[b a 上可积是)(x f 在],[b a 上连续的 条件,函数)(x f 在],[b a 上可导是)(x f 在],[b a 上连续的 条件.2.曲线(ln y x =在点(),ln(1处的切线方程是 .3.函数()(1)cos sin f x x x x =−−在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是 .4.曲线()x x y x −=2e 上有 个拐点.5.设可导函数()g x 满足(0)0g =,()00≠′g ,设())(sin 2x g x G =,则当0x →时, .(A )()G x 与()g x 是等价无穷小. (B )()G x 与()g x 是同阶的无穷小. (C )()G x 是比()g x 高阶的无穷小.(D )()G x 是比()g x 低阶的无穷小.6.极限nnn nnn 333lim 21+++∞→"= .7.如果一物体沿直线运动,物体的运动速度的变化曲线如图3所示(单位省略),则物体在这段位移过程中的平均速度为 .8.微分方程x x y x y sind d =+的通解为 . 二、1.设函数ln sec y x =,,22x ππ⎛⎞∈−⎜⎟⎝⎠.(1)讨论函数的单调区间与该函数的图形的凹凸性; (2)该曲线在哪点处的曲率半径为2?2.设()⎪⎩⎪⎨⎧=≠=∫,0,,0,d e 22x a x x t x x xt ϕ 求a 的值,使得()x ϕ在0=x 处连续,并用导数定义求(0)ϕ′.三、1.求定积分I =∫−π22d sin 1x x x .2.若()()⎪⎪⎩⎪⎪⎨⎧>+≤+=,0,11,0,112x x x x xx f 对于(,)x ∈−∞+∞,求()()∫∞−=xt t f x F d .四、1.设曲边梯形由曲线1y x x=+(0x >)与直线0y =,x a =,1x a =+所围成(其中0a >),问:当a 为何值时,曲边梯形的面积为最小,最小面积是多少?2.设一平板浸没在水中且垂直于水面(水的密度为1000kg/m 3),平板的形状为双曲四边形,即图形由双曲线2244x y −=,直线1y =与1y =−所围成(如图4所示,单位:m).(1)如果平板的上边缘与水面相齐,那么平板一侧所受到的水的总压力是多少?(2)如果水位下降,在时刻t ,水面位于y =()h t 处,且水面匀速下降,速率为0.01(m/s ),问:当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率是多少?五、设函数()f x 满足方程x x f u u f x u x 2cos )(d )()(0+=−∫,求()f x .参考答案一、1.必要,充分.2.|1x y ′,因此所求切线是ln(1y x =.3.()(1)sin f x x x ′=−−,在区间(0,)2π内有唯一驻点1x =且为极大值点,因此所求最大值是(1)sin1f =−.4.()x x y x 3e 2+=′′有2个零点3x =−与0x =,且y ′′在这2个零点的左、右两侧邻近异号,因此该曲线上有2个拐点.5.2222000(sin )(0)()(sin )sin (0)sin lim lim lim 00()(0)()()(0)x x x g x g G x g x x g x g x g g x g x x g x→→→−′==⋅=⋅=−′,因此当0x →时,()G x 是比()g x 高阶的无穷小,故选(C ).6.利用定积分的定义,得3ln 2d 3333lim1021==+++∫∞→x n x nn n n n ". 7.1011()d 101v v t t =−∫,根据定积分的几何意义,其中的定积分101()d v t t ∫是图中的图形面积,即10111118()d [4(61)4(86)(24)(108)]1019223v v t t ==⋅⋅−+⋅−++⋅−=−∫. 8.通解为()11d d sin 1cose e d sin d x x x x x x Cy x C x x C x xx−⎛⎞−+∫∫=+=+=⎜⎟⎝⎠∫∫. 二、1.(1)tan y x ′=,在,02π⎛⎞−⎜⎟⎝⎠内,0y ′<;在0,2π⎛⎞⎜⎟⎝⎠内,0y ′>.故,02π⎛⎤−⎜⎥⎝⎦是单调减少区间,0,2π⎡⎞⎟⎢⎣⎠是单调增加区间;而由2sec 0(,)22y x x ππ⎛⎞′′=>∈−⎜⎟⎝⎠得,该函数的图形是凹的. (2)322|||cos |(1)y K x y ′′==′+.由12K =,得3x π=±,故曲率半径为2的点是(,ln 2)3π±.2.11e e 2lim d e lim2224020=−=→→∫xx x xxt x xt ,因此1=a 时,()x ϕ在0=x 处连续. 22020d e lim1d e lim)0()(lim)0(22x x t xx t xx x xt x x xt x x −=−=−=′∫∫→→→ϕϕϕ02e 2e 16lim 21e e 2lim 22224040=−=−−=→→xx x x x x x x x .三、 1.I =∫∫∫−=ππππ222022d cos d cos d |cos |x x x x x x x x x[][]πππ22202sin 2cos 2sin sin 2cos 2sin xx x x xxx x x x −+−−+=4222−+=ππ.2.当0x <时,()2arctan d 112π+=+=∫∞−x t t x F x ; 当0x ≥时,()2arctan 2]arctan 2[2d )1(1d 11002ππ+=+=+++=∫∫∞−x t t t t t t x F xx . 因此()⎪⎪⎩⎪⎪⎨⎧≥+<+=.0,2arctan 2,0,2arctan x x x x x F ππ 四、1.曲边梯形的面积1111()()d ln2a a a A a x x a x a ++=+=++∫, 11()11A a a a ′=+−+.令()0A a ′=,解得在0a >范围内的唯一驻点12a −=,易知该点为极小值点,因此必为最小值点.而其最小面积min 1)ln 22A A −==+ 2.(1)水压力111000(1)2000F g y y g y −=−=∫∫10120002ln(10004ln 2g y g +⎤=++=+⎥⎦.(2)在时刻t ,水面位于()y h t =,平板一侧所受到的水压力为()(()1111000[()]1000()1000h t h t h t F g h t y y gh t y g y −−−=−=−∫∫∫,上式两边对t 求导,得(1d d 1000d d h t F hg y t t−=∫, 由于d 0.01d ht=−,因此,当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率为01d 10102ln(d F g y g y t −−⎤=−=−++⎥⎦∫154ln 2g =−+. 五、原方程为x x f u u f x u u f u xx 2cos )(d )(d )(0+=−∫∫,代入0x =,得(0)1f =−.上式两端对x 求导,得x x f u u f x2sin 2)(d )(0−′=−∫,代入0x =,得(0)0f ′=.上式两端再对x 求导,得x x f x f 2cos 4)()(−′′=−.故()y f x =满足初值问题⎩⎨⎧=′−==+′′==.0|,1|,2cos 400x x y y x y y 解得124cos sin cos 23y C x C x x =+−,代入初始条件解得113C =,20C =.故14()cos cos 233f x x x =−.。
高等数学期末考试试题及答案(大一考试)
(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。
5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。
大一上学期高数期末考试试题(五套)详解答案
2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
高数(大一上)期末试题及答案
高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
高等数学期末考试试题及答案(大一考试)
高等数学期末考试试题及答案(大一考试)姓名:__________ 班级:__________ 学号:__________课程名称:高等数学(上)(A卷) 考试日期:2008年1月10日注意事项:1.本试卷满分100分,要求卷面整洁、字迹工整、无错别字。
2.考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3.考生必须在签到单上签到,若出现遗漏,后果自负。
4.如有答题纸,请将答案全部写在答题纸上,否则不给分。
考完请将试卷和答题卷分别一同交回,否则不给分。
一、单选题(每题3分,共15分)1.lim(sin(x^2-1)/(x-1)),x趋近于1,等于()A)1;(B)0;(C)2;(D)不存在。
2.若f(x)的一个原函数为F(x),则∫e^(-x)f(e^x)dx等于()A)F(e^x)+c;(B)-F(e^-x)+c;(C)F(e^-x)+c;(D)F(e^-x^2/2)+c。
3.下列广义积分中()是收敛的。
A)∫sinxdx,从负无穷到正无穷;(B)∫1/|x|dx,从-1到1;(C)∫x/(1+x^2)dx,从负无穷到正无穷;(D)∫e^x dx,从负无穷到0.4.f(x)为定义在[a,b]上的函数,则下列结论错误的是()A)f(x)可导,则f(x)一定连续;(B)f(x)可微,则f(x)不一定可导;(C)f(x)可积(常义),则f(x)一定有界;(D)函数f(x)连续,则∫f(x)dx在[a,b]上一定有定义。
5.设函数f(x)=lim(n→∞)(1+x^2n)^2,则下列结论正确的是()A)不存在间断点;(B)存在间断点x=1;(C)存在间断点x=0;(D)存在间断点x=-1.二、填空题(每题3分,共18分)1.极限lim(x→∞)(x^2+1-1)/x=______。
2.曲线y=3t在t=2处的切线方程为y=______。
3.已知方程y''-5y'+6y=xe^(2x)的一个特解为-1/2(x+2x)e^(2x),则该方程的通解为______。
《高等数学》期末考试A卷(附答案)
《高等数学》期末考试A卷(附答案)【编号】ZSWD2023B0089一、填空题(每小题2分,共20分)1.设 是正整数, 为非零实数,若20001lim ()x x x x,则 _________________,______________________。
【答案】120012001,2.设)(x f 的定义域是]1,0[,且102a ,则()()f x a f x a 的定义域是____________________________ .【答案】1[,]a a3.2211sin()lim x x x x ______________________。
【答案】04.设1111010,(),x x x x e e x f x e e x,0 x 是)(x f 的___________间断点. 【答案】跳跃5.设24cos y x ,则dy ________________________. 【答案】3448sin cos x x x dx6.203sin limxx t dt x _________________________________.【答案】137. 函数2412()()x f x x的渐近线有______________________________.【答案】20,x y8.函数()x f x x e 的单调递增区间为____________________________.【答案】(,0)9.若 C x dx xx f sin )(ln ',则 )(x f .【答案】C e x )sin( 10.[()()]aaf x f x dx ______________________________________.【答案】0二、单项选择题(每小题2分,共10分) 1.若下列极限存在,则成立的是( ) .A. 0()()lim '()x f a x f a f a x B. 0000()()lim '() x f x f x x f x xC. 0(12)(1)lim '(1)t f t f f tD. 4(8)(4)lim '(4)4x f x f f x【答案】B2.当0 x 时,与x 等价的无穷小量是( )A. x x 1sinsin B. xx sin C. x x 22 D. )1ln(x【答案】D3. 当0x x 时,0'()f x ,当0x x 时,0'()f x ,则0x 必定是函数()f x 的( )A. 驻点B. 最大值点C.极小值点D. 以上都不对 【答案】D4.设'()f x 存在且连续,则()'df x ( )A. ()f xB. '()f xC. '()f x cD. ()f x c 【答案】B 5.设4()2xx f t dt,则40 f dx ( )A. 16B. 8C. 4D. 2【答案】A三、计算下列各题(每小题5分,共35分)1. 求极限)sin 11(cot lim 0xx x x解: )sin 11(cot lim 0x x x x xx x xx x tan sin sin lim 030sin lim x xx x (0 x 时x sin ~x ,x tan ~x )2031cos lim x x x 616sin lim 0 x x x2. 设3sin 2,0()9arctan 2(1),0xx ae x f x x b x x ,确定,a b 的值,使函数在0 x 处可导。
《高等数学(一)》期末复习题(答案)
《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。
安徽财经大学大学《高等数学A》2023-2024学年第一学期期末试卷
一、选择题:(每小题3分,共18分安徽财经大学试卷安徽财经大学2023-2024学年度第1学期试卷《高等数学A 》(上)试题(A 卷)参考答案和评分标准)1、已知,2)3('=f 则h f h f h 2)3()3(lim 0--→=(D )1-)(1)(2/3-)(2/3A D C B )(2、当0→x 时,下列无穷小中与2x 为同阶无穷小的是(C )11)()3arcsin()()1ln()(1A 423-+--x D x C x B e x )(3、如果)(x f 的导数为x cos ,则)(x f 的一个原函数为(D )x D x C x B x cos 1)(cos 1)(sin 1)(sin 1A -+-+)(4、设函数⎪⎪⎩⎪⎪⎨⎧>+=<---=0,1sin 0,0,1cos 1)(x b x x x a x x e x x f x 在0=x 处连续,则常数b a,的值为(A )1,0)(0,1)(1,0)(1,1A -========b a D b a C b a B b a )(5、曲线32122---=x x x y 有(A )铅直渐近线没有水平渐进线,两条铅直渐近线两条水平渐进线,一条铅直渐近线一条水平渐进线,两条条铅直渐近线)一条水平渐进线,一()()()(A D C B 6、设)(x f 在0=x 点附近有二阶连续导数,且1cos 1)(''lim 0=-→x x xf x ,则(C )专业班级姓名学号----------------------密------------------------------封-----------------------线-----------------------------的极小值。
是且的拐点。
)是曲线,且(的极小值。
是且的拐点。
)是曲线,但()()()0(,0)0('')()()0(0,0)0('')()()0(,0)0('')()()0(0,0)0(''A x f f f D x f f f C x f f f B x f y f f ≠===≠二、填空题(每小题3分,共18分)在以下各小题中画有_______处填上答案。
人教A版高一数学上学期期末测试卷(带答案)
高一数学本卷共三大题,时量120分钟,满分120分,试卷总页4页一.选择题:(本大题共10个小题,每小题4分,共40分,每小题都有四个不同的答案,其中只有一个是正确的,请把正确的答案选出来) 1.函数f(x)=x x ln 1+-的定义域为( )A.]1,(-∞B.(0,+∞)C.(0,1]D.(0,1)),1(+∞⋃2.下列函数中,既是奇函数,又是增函数的是( )A . y=-2xB . x y 2= C. x y lg = D . 3x y = 3. 已知空间直角坐标系中一点A(-3,1,-4),则点A 关于x 轴对称点的坐标为( )A .(-3,-1,4) B.(-3,-1,-4) C.(3,1,4) D.(3,-1,-4) 4.函数()3log 82f x x x =-+的零点一定位于区间( ) A. ()5,6 B. ()3,4 C. ()2,3 D. ()1,2 5.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)6.半径为R 的球的内接正方体的表面积是( )A.234R B.22R C.24R D.28R7.已知,αβ,γ是三个不同的平面, m,n 是两条不同的直线 ,下列命题中正确..的是( ) A.若m//α,n//α,则m//n B. 若m//α,m//β,则α//β C.若γα⊥,γβ⊥则α//βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α8、若0,0ac bc <<,则直线0ax by c ++=不经过( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限 9、若直线L :ax+by=1与圆C :122=+y x 相切,则点P (a,b)与圆C 的位置关系是 ( )A.在圆上B.在圆外C.在圆内D.以上皆有可能 10、如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.3B.5C.5D.5二.填空题(本大题共5个小题,每小题4分,共20分) 11.圆心在(2,-1)且与y 轴相切的圆的标准方程为 。
高等数学(上学期)期末考试试卷及答案
考试试卷答案课程名称: 高等数学 (A ) 课程所在学院: 理学院 一、填空题(每空2分,共20分)1. 设221)1(x x x x f +=+,则)(x f = 2()2f x x =- .2. 1lim sin x x x→∞= 0 . 3. 已知函数1(1),0(),0x x x f x a x ⎧⎪-≠=⎨⎪=⎩在0=x 处连续,则=a 1/e .4. 当0x →时,232x x +-与x 是 同阶 (填同阶或等价)无穷小.5. 函数()x f x xe =的带皮亚诺余项的n 阶麦克劳林公式为342()2!3!(1)!n n x x x x x x n ο++++++-. 6. d 212x e C +2.x e dx =7. 曲线42y ax x =-拐点的横坐标为1x =,则常数a =16. 8. 35425cos 32x xdx x x -=++⎰ 0 . 9. 若22()x f x dx x e C =+⎰,则()f x =222()x e x x +. 10. 方程2dyxy dx= 的通解是 2x yCe =.二、解答题(每题5分,共60分)1.求极限 0x → 00sin cos 1cos sin lim lim 21212x x x x x x x →→-++===解:原式2. 已知21lim ()01x x ax b x →∞⎡⎤+-+=⎢⎥+⎣⎦,求常数,a b .解: 221(1)()1()11x a x a b x bax b x x +--++--+=++ 由21lim ()01x x ax b x →∞⎡⎤+-+=⎢⎥+⎣⎦可得 10,0a a b -=+=,故1,1a b ==- 3. 设1ln 2arctan 1xy x x +=+-,求xy d d 及22d y dx . 解:241124[ln(1)ln(1)2arctan ]1111dy x x x dx x x x x'=+--+=++=+-+- 22d y dx =()()334224444(4)16111x x x x x'⋅-⎛⎫=-= ⎪-⎝⎭-- 4. 设063sin 33=+-+y x y x ,求.0=x dxdy解:把方程两边分别对x 求导,得,063cos 33322=+-+dxdy x dx dy y x (*) 故 .23cos 22+-=y x x dx dy 由原方程可得,0=x 时,0=y ,将0,0==y x 代入上式,即得 .210==x dxdy 5. 求极限1ln 0lim(cot )xx x +→解 1ln 011limln(cot )ln(cot )ln ln 0lim(cot )lim xx x x x xx x x e e+→++→→==201(csc )cot lim 11x x xxee +→--==.6. 设220()()x F x tf x t dt =-⎰,其中()f x 在0x =的某邻域内可导,且(0)0,(0)1f f '==,求4()limx F x x →. 解:2220222044300011()(()2)()22lim lim lim 4xu x t x x x x f u du f x x tf x t dt x x x=-→→→---⋅-===⎰⎰原式 2201()11lim (0)444x f x f x →'===7. 求不定积分dx ⎰ 解:332221==2x x C +原式8. 求不定积分解:655332666==6ln(1)1)()1x t dx t t dt dt t C C t t t t ====++=+++⎰⎰原式 9. 求定积分1arctan x xdx ⎰解:22211110000arctan arctan arctan arctan 222x x x x xdx xd x d x ==-⎰⎰⎰ 2110201111(arctan )24218242x dx x x x πππ=-=--=-+⎰ 10. 求反常积分2032dx x x +∞++⎰解:20001132(1)(2)12dx dx dx x x x x x x +∞+∞+∞==-++++++⎰⎰⎰ 01ln(1)ln(2)lnln 22x x x x +∞+∞+=+-+==+11. 求曲线()y f x =,使其切线在纵轴上的截距等于切点的横坐标.解:切线方程为()()Y y f x X x '-=-;当0X =,()()Y xf x f x '=-+由题意可得:()()x xf x f x '=-+;即11y y x'-=- 通解是 (ln )(ln )y x x C or y x x C =-+=+.12. 求初值问题()(0)1,(0)1x f e f x f f ''⎧=-⎨'==⎩.解:由题意,特征方程为210r +=,特征根为12,r i r i ==-,故对应齐次方程通解为12cos sin y C x C x =+;1λ=不是特征方程的根,故可设原方程有特解()x f x Ae *=,解得()12x f x e *=,故原方程的通解为()121cos sin 2x f x C x C x e =++;由(0)1,(0)1f f '==得本题解为()111cos sin 222x f x x x e =++.三、设)(x f 在区间[,]a b 上连续,且()0f x >,()(),[,]()x xabdtF x f t dt x a b f t =+∈⎰⎰. 证明:(1)()2F x '≥; (2)方程()0F x =在区间(,)a b 内有且仅有一个根.(5分). 证明:(1)1()()2()F x f x f x '=+≥;(2)()()()()a ab aba dtdt F a f t dt f t f t =+=-⎰⎰⎰;()()()()b b b a b a dt F b f t dt f t dt f t =+=⎰⎰⎰ 又()0f x >,所以()()0F a F b <,从而方程()0F x =在区间(,)a b 内有一个根. 又()20F x '≥>,是单调递增的,从而方程()0F x =在区间(,)a b 内仅有一个根. 四、设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明在(0,1)内存在一点ξ,使 ()()f f ξξξ'=-.(5分) 证明:令()()F x xf x =,则()F x 在[0,1]上连续,在(0,1)内可导,且因(1)0f =,则(0)0(1)F F == 即()F x 在[0,1]上满足罗尔定理的条件,则至少存在(0,1)ξ∈使()0F ξ'= 又()()()F x f x xf x ''=+,即()()0f f ξξξ'+=,即 ()()f f ξξξ'=-.五、设抛物线2y ax bx c =++通过点(0,0),且当[0,1]x ∈时,0y ≥.试确定,,a b c 的值,使得该抛物线与直线1,0x y ==所围图形的面积为4/9,且使该图形绕x 轴旋转而成的旋转体的体积最小. (10分)解:由于设抛物线2y ax bx c =++通过点(0,0),故0c =.且11222004;()9ax bxdx V ax bx dx π+==+⎰⎰;即有2241;()329523a b a b V ab π+==++;于是221444[2()()]5293393a a a V a π=+-+-且令1()053a V π'=+=.得唯一驻点53a =-,进而2b =. 所以,5,2,03a b c =-==.。
高数(大一上)期末试题及答案
第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。
大一高数a1期末试题及答案
大一高数a1期末试题及答案一、选择题(每题4分,共20分)1. 已知函数f(x)=x^2-4x+4,求f(2)的值。
A. 0B. 4C. 8D. 12答案:A2. 计算极限lim(x→0) (sin x / x)。
A. 0B. 1C. 2D. ∞答案:B3. 求不定积分∫(3x^2-2x+1)dx。
A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x - CD. x^3 + x^2 + x - C答案:A4. 判断以下级数是否收敛:∑(n=1 to ∞) (1/n^2)A. 收敛B. 发散答案:A5. 求函数y=ln(x)的导数。
A. 1/xB. xC. ln(x)D. x^2答案:A二、填空题(每题5分,共20分)1. 已知等差数列的首项为2,公差为3,求第5项的值:______。
答案:172. 计算定积分∫(0 to 1) x^2 dx的值:______。
答案:1/33. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:x=1, x=24. 判断函数f(x)=x^3-3x+1的单调性。
答案:在区间(-∞, 1)上单调递增,在区间(1, +∞)上单调递减。
三、解答题(共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点,并说明极值类型。
(15分)答案:函数f(x)的导数为f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1, x=2。
通过二阶导数测试,f''(x)=6x-12,f''(1)=-6<0,f''(2)=6>0,所以x=1处为极大值点,x=2处为极小值点。
2. 计算定积分∫(0 to 2) (x^2-2x+1) dx,并求出原函数。
(15分)答案:原函数为F(x)=1/3x^3-x^2+x,定积分值为F(2)-F(0)=8/3-4+2=2/3。
浙江师范大学 高等数学(上) 期末试题 A卷答案(理科1)
浙江师范大学《 高等数学(上) 》 A 卷答案(理科1)一、 选择题(每小题2分,共12分)1、C2、C3、D4、D5、B6、A二、 填空题(每小题2分,共16分)①e -3 ② 0 ③[1,1]- ④ln cos sin 2x x x C --++⑤ 5ln 6⑥ 2 ⑦ ⑻ x xy 224+'=() 三、问答题(5分) 221()x f x x x x-=-指出sin 的间断点,并判别其类型. 解 (1)(1)()01()(1)x x x f x x x f x x x +-===-sin ,与是的间断点 00(1)lim ()lim 2x x x x f x x →→+==sin 因,11(1)sin lim ()lim 2sin1x x x x f x x→→+==, 1()f x 所以0和都是的可去间断点。
四、 计算题(每小题7分,共49分)1、1lim xx x →+∞求极限 11ln lim ln lim lim 0.1xx x x x x y x y x →+∞→+∞→+∞====解设,则 01e ==原式2、44411ln ,d 4(1)41x y y x x=+++设 求. 解d ()d y y x x '=33324442141441d d 4(1)41(1)x x x x x x x x x x ⎡⎤⎛⎫-=+-=⎢⎥ ⎪+++⎝⎭⎣⎦ 3、.d )1(3x e e x x ⎰+求 解x e e x x ⎰+d )1(3)1d()1(3++=⎰x x e e 41(1).4x e C =++ 4、.)1)(1(d 2⎰++x x x 求 22d 111:()d (1)(1)211x x x x x x x -=-++++⎰⎰解2221d 1d(1)1d 214121x x x x x x +=-++++⎰⎰⎰ 2111l n 1l n 1a r c t a n .242x x x C =+-+++() 1200d ()d ln(1)d d y t y y x xy e t t t x -=+⎰⎰5、设是由方程所确定的隐函数,求. 解 y xy e y y +'-'=0,'=-y y e xy6、求232sec ,d sec tan d sec tan d 1d cos d sin cos sec tan sec 22x t x t t tt t t t t t t t t C t t t ==⋅⋅====++⋅⎰⎰⎰解 令 原式11arccos .2C x = 7、求微分方程d 1d e yy x x =+的通解。
高等数学上期末试卷(含答案)
一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。
高数a上册期末试题及答案
高数a上册期末试题及答案一、选择题(每题5分,共20题)1. 设函数 $f(x) = \sqrt{3x-2}$,则其定义域为A. $(-\infty, \frac{2}{3}]$B. $\left[ \frac{2}{3}, \infty \right)$C. $[\frac{2}{3}, \infty)$D. $(-\infty, \frac{2}{3}) \cup [\frac{2}{3}, \infty)$答案:C2. 函数 $y = \sin^2 x + \cos^2 x$ 的值域为A. $(-\infty, 1]$B. $[0, 1]$C. $[1, \infty)$D. $[\frac{1}{2}, 1]$答案:B3. 设函数 $f(x) = e^x \ln x$,则 $f'(x) = $A. $e^x \ln x$B. $e^x \left( \frac{1}{x} + \ln x \right)$C. $e^x \left( \ln x - \frac{1}{x} \right)$D. $e^x \left( \frac{1}{x} - \ln x \right)$答案:B4. 若直线 $y = 3x + b$ 与抛物线 $y = ax^2 + bx + 1$ 相切,则 $a + b = $A. 2B. 3C. 4D. 5答案:D5. 函数 $f(x) = \frac{x-1}{\sqrt{x^2 + 1}}$ 的渐近线为A. $y = x - 1$B. $y = x + 1$C. $y = -x + 1$D. $y = -x - 1$答案:A6. 函数 $f(x) = \ln(1 + e^{2x})$ 的反函数为A. $f^{-1}(x) = \ln(x) - \ln(1 - x^2)$B. $f^{-1}(x) = \ln(x^2 - 1)$C. $f^{-1}(x) = \frac{e^x - 1}{2}$D. $f^{-1}(x) = \frac{1}{2} \ln(x) + \ln(1 - x)$答案:D7. 设函数 $f(x) = \arcsin (\sin x)$,则当 $x = \frac{5\pi}{6}$ 时,$f(x) =$A. $\frac{5\pi}{6}$B. $\frac{\pi}{6}$C. $\frac{\pi}{3}$D. $\frac{2\pi}{3}$答案:C8. 函数 $f(x) = \frac{\sin x}{\cos^2 x}$ 的最大值为A. 1B. $\sqrt{3}$C. 2D. $2\sqrt{3}$答案:D9. 函数 $f(x) = x^2 + 2x + 1$ 在区间 $[-1, 1]$ 上的最大值为A. 0B. 1C. 2答案:D10. 函数 $f(x) = \frac{x^2 - 1}{x^2 + 1}$ 的图像关于直线 $x = a$ 对称,则 $a = $A. 1B. 0C. -1D. 2答案:B11. 设 $\sin \alpha = \frac{1}{4}$,$\cos \beta = \frac{4}{5}$,且$\alpha$ 和 $\beta$ 都是第二象限角,则下列四个式子中成立的是A. $\sin (\alpha - \beta) = -\frac{3}{4}$B. $\sin (\alpha + \beta) = \frac{3}{8}$C. $\cos (\alpha - \beta) = \frac{1}{5}$D. $\cos (\alpha + \beta) = \frac{2}{5}$答案:C12. 如果点 $A(1, 2)$ 在抛物线 $y = -x^2 + 3x + k$ 上,那么 $k = $A. -3B. -5D. -9答案:B13. 设函数 $f(x) = x^3 - 3x^2 - 4x + 12$,则 $f'(x)$ 的零点有A. -2, 2B. -1, 3C. -4, 3D. -1, 4答案:A14. 设点 $P(x, y)$ 满足 $y^2 = px$,其中 $p > 0$ 是常数,则焦点所在的直线方程为A. $y = -\frac{p}{2}$B. $x = -\frac{p}{2}$C. $y = \frac{p}{2}$D. $x = \frac{p}{2}$答案:B15. 函数 $f(x) = x^3 - 3x + 1$ 在区间 $[0, 2\pi]$ 上的最小值为A. -1B. 0D. 2答案:A16. 设直线 $y = 2x + 1$ 与曲线 $y = x^2 + bx + c$ 相切,则 $b + c = $A. 0B. $\frac{1}{2}$C. 1D. 2答案:C17. 设函数 $f(x) = (1 - x^2) \cos x$,则 $f''(x)$ 的一个零点在A. $(0, \frac{\pi}{2})$B. $(0, \pi)$C. $(\pi, 2\pi)$D. $(\pi, 3\pi)$答案:B18. 设函数 $f(x) = \sin^2 x - \sqrt{3} \sin x \cos x + \cos^2 x$,则$f(x)$ 的最大值为A. 2B. $2\sqrt{2}$C. 3D. $2 + \sqrt{3}$答案:C19. 设函数 $f(x) = e^x$,$g(x) = x^2$,则 $f(x) \cdot g(x) = $A. $e^{x^2}$B. $x^2 e^x$C. $x^2 e^{x^2}$D. $x^2 + e^x$答案:B20. 设 $a > 0$,则 $\lim\limits_{x \to +\infty} \frac{x^a}{e^x}$ 的值为A. 0B. $\frac{1}{e}$C. 1D. $+\infty$答案:A二、计算题(每题10分,共4题)1. 求函数 $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$ 的极限 $\lim\limits_{x\to 1} f(x)$.解:使用“分子分母可约”的性质,可将函数 $f(x)$ 化简为 $f(x) = 2x - 1$,则 $\lim\limits_{x \to 1} f(x) = \lim\limits_{x \to 1} (2x - 1) = 2(1) - 1 = 1$.答案:12. 求曲线 $y = e^x$ 与直线 $y = kx$ 相交的两个点的坐标,其中 $k > 0$ 是常数.解:将曲线 $y = e^x$ 和直线 $y = kx$ 代入方程中,得到 $e^x = kx$,然后可以使用迭代法或图像法求得相交点的坐标.答案:相交点的坐标为 $(x_1, e^{x_1})$ 和 $(x_2, e^{x_2})$,其中$x_1$ 和 $x_2$ 是满足方程 $e^x = kx$ 的两个解.3. 求曲线 $y = \sin x$ 与直线 $y = x$ 相交的点的个数,并说明理由.解:将曲线 $y = \sin x$ 和直线 $y = x$ 代入方程中,得到 $\sin x = x$,然后可以通过分析函数的周期性和图像来确定相交点的个数.答案:方程 $\sin x = x$ 的解存在无穷个,但相交点的个数取决于给定的区间. 在区间 $[0, \pi]$ 上,方程有一个解;在区间 $[2\pi, 3\pi]$ 上,方程又有一个解. 因此,相交点的个数是不确定的.4. 求函数 $y = x^2 + x$ 在区间 $[-2, 2]$ 上的最大值和最小值,并求出取得最大值和最小值的点.解:首先求导数 $y' = 2x + 1$,然后令 $y' = 0$,解得 $x = -\frac{1}{2}$,将 $x = -2, -\frac{1}{2}, 2$ 代入函数 $y = x^2 + x$,得到对应的 $y$ 值. 最大值为 $y = y_{\text{max}}$ 对应的点为 $(-\frac{1}{2},y_{\text{max}})$,最小值为 $y = y_{\text{min}}$ 对应的点为 $(-2,y_{\text{min}})$ 和 $(2, y_{\text{min}})$.答案:最大值为 $y_{\text{max}} = \frac{5}{4}$,取得最大值的点为 $(-\frac{1}{2}, \frac{5}{4})$;最小值为 $y_{\text{min}} = -2$,取得最小值的点为 $(-2, -2)$ 和 $(2, -2)$.三、证明题(每题20分,共2题)1. 证明函数 $f(x) = \frac{x^3}{3} - x^2 + 2x$ 的导数 $f'(x)$ 恒大于零.证明:求导数 $f'(x) = x^2 - 2x + 2$,我们可以通过判别式来判断 $f'(x)$ 的正负性.判别式为 $\Delta = (-2)^2 - 4(1)(2) = 4 - 8 = -4$,由于 $\Delta < 0$,所以判别式小于零,即 $f'(x)$ 的二次项系数小于零,说明二次项的系数是正的,从而导数 $f'(x)$ 恒大于零.证毕.2. 证明函数 $f(x) = x^3 - 3x^2 + 3$ 的图像关于直线 $x = 1$ 对称.证明:要证明函数的图像关于直线 $x = 1$ 对称,需证明对于任意$x$ 值,函数 $f(x)$ 和 $f(2 - x)$ 的函数值相等.将 $f(x) = x^3 - 3x^2 + 3$ 代入 $f(2 - x)$,得到 $f(2 - x) = (2 - x)^3 -3(2 - x)^2 + 3$,对其进行展开和化简得到 $f(2 - x) = (2 - x)^3 - 3(2 -x)^2 + 3 = x^3 - 3x^2 + 3 = f(x)$,即 $f(x) = f(2 - x)$,证明了函数的图像关于直线 $x = 1$ 对称.证毕.四、应用题(每题50分,共1题)1. 求函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值.解:求导函数 $f'(x) = 3x^2 + 2x - 3$,令 $f'(x) = 0$,求得驻点的 $x$ 坐标,然后将其代入原函数求得对应的 $y$ 坐标.求导的一阶导数方程为 $f'(x) = 3x^2 + 2x - 3 = 0$,通过求根公式求得 $x = -1$ 和 $x = \frac{1}{3}$,将其代入原函数 $f(x)$ 得到对应的$y$ 坐标.将 $x = -1$ 代入 $f(x)$,得到 $f(-1) = (-1)^3 + (-1)^2 - 3(-1) = -1 + 1+ 3 = 3$,将 $x = \frac{1}{3}$ 代入 $f(x)$,得到 $f(\frac{1}{3}) =(\frac{1}{3})^3 + (\frac{1}{3})^2 - 3(\frac{1}{3}) = \frac{1}{27} +\frac{1}{9} - 1 = 0$.因此,函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$.答案:驻点为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$,分别对应极大值和极小值.。
(完整版),期末高等数学(上)试题及答案,推荐文档
1、(本小题 3 分)
解: 原式
lim
x2
3x 6x2
2 12 18x
12
6x lim x 2 12 x 18
2
2、(本小题 3 分)
(1
x x2)2
dx
1 d(1 x2 ) 2 (1 x 2) 2
11 2 1 x2 c.
3、(本小题 3 分)
因为 arctan x
而 lim arcsin 1 0
lim
x
x
x
x
1
1
(10 )(11 )
x
x
10 11 21
(10 1 ) 2 x
6 10 11 7
2
16、( 本小题 10 分 )
解:
cos2x dx
1 sin x cosx
d( 1 sin 2x 1) 2
1 1 sin 2x 2
1 ln 1 sin 2x c
2
二、解答下列各题 (本大题共 2 小题,总计 13 分 ) 1、(本小题 5 分)
且
F ( 1) 1 0 , F (1) 1 0 .
22
由零点定理知存在
x1
1 [
,1]
,使
F ( x1 )
0.
2
由 F ( 0) 0 ,在 [ 0, x1] 上应用罗尔定理知,至少存在一点
(0, x1) ( 0,1) ,使 F ( ) f ( ) 1 0 ,即 f ( ) 1 …
第 7 页,共 7 页
9、(本小题 5 分)
3
求 x 1 x dx. 0
10、( 本小题 5 分 )
求函数 y 4 2 x
11、( 本小题 5 分 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 是 2 1 2
x
奇
函数;其导函数是
是函数 f x 的一个原函数,则 f x dx
e x C
2 2 4 - 1 处相切,则 a= 4.已知曲线 y x ax b和y 2 x y 在点 1,
5.如果 f x 在[-1,1]上连续且平均值为 2,则 1 f x dx
2 2 1 2 (2) V 0 2 sin x dx 旋转体的体积 V;
, y 0 围成一平面图形。求(1)此平面图形的面积
4.证明不等式 e 1 x ( x 0 ) 。 (注:Lagrange 中值定理)
4
;
y x2 1
9.经过点(1,2),且其切线的斜率为 2x 的曲线方程为
;
3,4 10.设 f ( x) ( x 1)( x 2)( x 3)( x 4), 方程f ,( x) 0 有 3 个根,它们分别在区间 1,2, 2,3, ;
二.计算下列各题(15 分)
四、综合题(每题 10 分,共 40 分)
1.求平面曲线 sin( xy ) ln 解:
x 1 1 在 x 0 处的切线方程和法线方程。 y
y y' cosxy y 2 / cosxy x y 1 x 1
把 x=0 代入原式得: y e 切线方程: y e e 2 x e
x 1 x
x
x
3.
x ln1 t 2 y t arctan t dy t dt 2
解: (过程略...)
2xarctan x
4
x 1 ln( 1 x ) 1 x
人生,是边走边学的幸福。Nothing is impossible
1. lim x
x cos x x cos x
2. =
xf
''
x dx
3. 0
x cos x 2 dx
解: (过程略...) =1
xf ' x f x C
0
三、求下列函数的导数(15 分)
1.
y arctan t dt
2
1 x2
2.
x y 1 x
1
4
2
6.设函数 f x 在点 x0 处可导,则 lim
x0
f ( x0 2x) f ( x0 ) x
2e
f
'
x
0
;
t 7.设 f x 0 t 1e dt ,则 f(x)的极小值为 x
sin 2 x
;
8. lim x 0
0
ln 1 t dt 1 cos x
于是
ex x 1
人生,是边走边学的幸福。Nothing is impossible
高等数学(上)期末测试卷
(100 分钟,试卷满分 100 分)
一、填空题(30 分)
1.函数 f x 在 a, b 上连续是 f x 在 a, b 上可积的 2.就奇偶性而言,函数 f x 3.如果 e
x
充分
条件; (充分、充要、必要) 偶 函数; ; 8/5 ,b= 2/5 ; ;
x
证明: 设
f x e x 当 x>0 时,f(x)在闭区间[0,x]上满足 Lagrange 中值定理的条件;
且: y ' e x 因此,根据定理,应有
e x e 0 x 0 e
其中, 0 x 由于, e e
0
因此, 从上式可得: e x e 0 x 0 e 0 x
2
d f t 3t 2 dx
f t t 3 C
C=0
即: f t t 3
t 3 360 s
(2)令 t 3 360
3.曲线 y sin x ( 0 x )与直线 x (1) S 0 2 sin xdx cos x 0 1
所以 y ' e e 2 法线方程: y
1 xe e e 2
2.一物体由静止开始运动,经过 t 秒后的速度是 3t 2 。问: (1)在 3 秒后物体离开出发点的距 离是多少?(2)物体走完 360 米需要多少时间? 解:设位移方程为 y f t ,由速度和位移的关系可导: 又因为物体由静止开始运动, f 0 0 (1) f 3 33 27 m