单片机-最小系统原理解析
单片机最小系统的设计原理
单片机最小系统的设计原理单片机最小系统的设计原理是将单片机作为核心芯片,配合外部芯片和电路,实现单片机的基本工作和功能。
单片机最小系统通常包括四个主要部分:单片机芯片、时钟电路、复位电路和外部接口电路。
首先,单片机芯片是整个最小系统的核心。
单片机芯片是一个集成电路芯片,内部包含了中央处理器(CPU)、存储器、输入输出接口、定时器/计数器等模块。
其中,CPU是单片机芯片的核心,负责指令执行和数据处理等任务;存储器包括了程序存储器(通常是闪存或EEPROM)和数据存储器(通常是RAM);输入输出接口负责与外部设备的通信;定时器/计数器用于计时和计数等特定功能。
其次,时钟电路是单片机最小系统中的重要组成部分。
时钟电路提供了单片机运行所需的稳定时钟信号,用于同步CPU的工作。
单片机将时钟信号作为基准来执行指令和处理数据。
在单片机最小系统中,时钟电路通常使用晶体振荡器和其他电路元件,来产生稳定的时钟信号。
晶体振荡器是一种能够以固定频率振荡的电子元件,通过晶体的震荡来产生时钟信号。
第三,复位电路是确保单片机正常工作的必要电路。
当单片机上电或者出现异常情况时,复位电路能够将单片机复位到初始状态,以保证程序的正确执行。
复位电路一般由复位电源、复位电路和复位信号生成电路组成。
复位电源提供电源电压,复位电路监测电源电压,并在电源电压达到稳定值后产生复位信号。
复位信号生成电路能够根据复位信号来控制单片机的复位过程。
最后,外部接口电路是单片机最小系统中连接外部设备和单片机的桥梁。
单片机的外部接口电路通常包括输入接口、输出接口和通信接口。
输入接口负责将外部设备的信号输入到单片机中,例如按键输入、传感器数据等;输出接口负责将单片机处理的数据输出到外部设备,例如LED显示、继电器控制等;通信接口用于单片机与其他设备进行通信,例如串口通信、SPI通信等。
外部接口电路通常使用电阻、电容、放大器等元器件,来实现与外部设备的连接和通信。
单片机最小系统原理
单片机最小系统原理引言单片机最小系统是指单片机与外部器件连接形成的系统,其包括单片机、晶振、复位电路等基本组成部分。
了解单片机最小系统的原理对于学习和应用单片机具有重要意义,本文将介绍单片机最小系统的原理及其相关内容。
单片机简介单片机(Microcontroller)是一种在单一芯片上集成了中央处理器、存储器、输入输出设备和各种外围设备接口的微型计算机系统。
单片机广泛应用于控制系统、嵌入式系统等领域,具有体积小、功耗低、成本低、灵活性高等特点。
单片机最小系统的组成单片机最小系统主要由以下几个基本组成部分构成:1.单片机:单片机是整个系统的核心,负责控制运算和执行程序。
2.晶振:晶振是提供时钟信号的器件,单片机需要时钟信号来同步操作。
3.复位电路:复位电路用于在系统上电时将单片机的内部寄存器和相关电路初始化为初始状态。
单片机最小系统的工作原理单片机最小系统的工作原理如下:1.系统上电后,晶振开始振荡,产生时钟信号。
2.复位电路将单片机的内部寄存器和相关电路初始化为初始状态。
3.单片机开始运行程序,根据时钟信号进行指令执行和数据处理。
单片机与晶振的连接为了使单片机能够正常工作,需要将晶振连接到单片机的时钟输入引脚上。
具体连接方式如下:1.将晶振的一个引脚连接到单片机的时钟输入引脚。
2.将晶振的另一个引脚连接到单片机的地引脚。
单片机与复位电路的连接为了在系统上电时将单片机的内部寄存器和相关电路初始化为初始状态,需要将复位电路连接到单片机的复位引脚上。
具体连接方式如下:1.将复位电路的一个引脚连接到单片机的复位引脚。
2.将复位电路的另一个引脚连接到系统的电源引脚。
单片机最小系统的搭建步骤按照以下步骤可以搭建一个单片机最小系统:1.准备单片机、晶振、电容、电阻等器件。
2.连接晶振的引脚到单片机的时钟输入引脚,并连接晶振的另一个引脚到单片机的地引脚。
3.连接复位电路的引脚到单片机的复位引脚,并连接复位电路的另一个引脚到系统的电源引脚。
单片机最小系统原理图及单片机电源模块复位振荡电路解析
单片机最小系统原理图及单片机电源模块复位振荡电路解析单片机最小系统原理图及单片机电源模块/复位/振荡电路解析2015-03-19 12:51:21 来源:diangon关键字:单片机最小系统电路解析单片机最小系统主要由电源、复位、振荡电路以及扩展部分等部分组成。
最小系统原理图如图所示。
电源模块对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。
51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。
电源模块电路图此最小系统中的电源供电模块的电源可以通过计算机的USB口供给,也可使用外部稳定的5V电源供电模块供给。
电源电路中接入了电源指示LED,图中R11为LED的限流电阻。
S1 为电源开关。
复位电路单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。
单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。
当复位电平持续两个机器周期以上时复位有效。
复位电平的持续时间必须大于单片机的两个机器周期。
具体数值可以由RC电路计算出时间常数。
复位电路由按键复位和上电复位两部分组成。
(1)上电复位:STC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。
(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。
单片机最小系统原理
单片机最小系统原理在现代电子技术领域,单片机(Microcontroller Unit)起到了至关重要的作用。
而单片机最小系统又是构成单片机的基础。
本文将为您详细介绍单片机最小系统的原理。
一、什么是单片机最小系统单片机最小系统是指由单片机、外围电路和一些外设组成的一个基本电子系统。
它是单片机的工作环境,相当于单片机的基础设施。
单片机最小系统中的外围电路主要包括晶振、电源、复位电路和扩展器件等。
二、晶振晶振是单片机最小系统中的重要组成部分。
它可以提供准确的时钟信号,使单片机能够按照既定的频率运行。
晶振的频率越高,单片机处理数据的能力越强。
常用的晶振频率有4MHz、8MHz等,选择适当的晶振频率取决于具体的应用需求。
同时,在连接晶振时,需要注意晶振的引脚连接正确,以免影响系统正常运行。
三、电源电源是单片机最小系统的核心部分。
单片机需要一个稳定的电源来供电。
一般情况下,单片机最小系统使用5V直流电源。
同时,考虑到电源的稳定性和噪声问题,可以使用稳压电路或滤波电路来提供干净的电源给单片机。
四、复位电路复位电路是单片机最小系统中的重要组成部分。
当单片机上电或者发生异常情况时,复位电路能够将单片机复位,使其重新回到初始状态,确保系统正常运行。
复位电路一般由电容、电阻和去反器等元件组成。
在设计复位电路时,需要注意其稳定性和可靠性。
五、扩展器件单片机最小系统中的扩展器件是为了满足不同应用需求而添加的。
常见的扩展器件有LED显示屏、数码管、按键、继电器等。
这些扩展器件可以通过引脚与单片机进行连接,实现外围设备与单片机之间的数据交互。
六、最小系统的搭建步骤搭建单片机最小系统需要遵循一定的步骤,以确保系统的正常运行。
1. 准备所需材料和工具,包括单片机、晶振、电容、电阻、电源等元件,以及焊接工具、测试仪器等。
2. 制定最小系统的设计方案,包括电路图和器件连接方式等。
3. 根据设计方案进行电路的焊接和连接,注意焊接的质量和器件的正确连接。
51单片机最小系统原理图
51单片机最小系统原理图51单片机最小系统原理图的功能详解单片机的最小系统是由组成单片机系统必需的一些元件构成的,除了单片机之外,还需要包括电源供电电路、时钟电路、复位电路。
单片机最小系统下面着重介绍时钟电路和复位电路。
1)时钟电路单片机工作时,从取指令到译码再进行微操作,必须在时钟信号控制下才能有序地进行,时钟电路就是为单片机工作提供基本时钟的。
单片机的时钟信号通常有两种产生方式:内部时钟方式和外部时钟方式。
内部时钟方式的原理电路如图所示。
在单片机XTAL1和XTAL2引脚上跨接上一个晶振和两个稳频电容,可以与单片机片内的电路构成一个稳定的自激振荡器。
晶振的取值范围一般为0~24MHz,常用的晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz等。
一些新型的单片机还可以选择更高的频率。
外接电容的作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率的作用,一般选用20~30pF的瓷片电容。
外部时钟方式则是在单片机XTAL1引脚上外接一个稳定的时钟信号源,它一般适用于多片单片机同时工作的情况,使用同一时钟信号可以保证单片机的工作同步。
时序是单片机在执行指令时CPU发出的控制信号在时间上的先后顺序。
AT89C51单片机的时序概念有4个,可用定时单位来说明,包括振荡周期、时钟周期、机器周期和指令周期。
振荡周期:是片内振荡电路或片外为单片机提供的脉冲信号的周期。
时序中1个振荡周期定义为1个节拍,用P表示。
时钟周期:振荡脉冲送入内部时钟电路,由时钟电路对其二分频后输出的时钟脉冲周期称为时钟周期。
时钟周期为振荡周期的2倍。
时序中1个时钟周期定义为1个状态,用S表示。
每个状态包括2个节拍,用P1、P2表示。
机器周期:机器周期是单片机完成一个基本操作所需要的时间。
一条指令的执行需要一个或几个机器周期。
一个机器周期固定的由6个状态S1~S6组成。
指令周期:执行一条指令所需要的时间称为指令周期。
AT89S51(52)单片机最小系统设计原理详解
51最小系统设计原理1、定义:单片机最小系统是指能让单片机运行起来所需的最小器件构成的电路系统。
2、电源部分:从电脑USB接口DC5V取电,C4、C5构成USB接口电源的简单滤波电路。
开关电源的输出电压往往波纹较大,不像线性稳压器输出的那么稳定,所以要进行必要的滤波。
如果需要接一个电源开关,应该接在C4和C5的前面,这样在接通开关的瞬间产生的抖动能被这两个电容吸收。
3、复位电路:C1和R1构成单片机的上电自动复位电路。
A T89S51/52单片机属于高电平复位,RST管脚上需要持续两个机器周期(24个时钟周期)以上的高电平,单片机才能复位。
复位原理:上电瞬间,电源给C1充电,在R1产生压降,R1上端为高电平,RST管脚检测到高电平,单片机的各个寄存器清零或恢复初始状态,特别是PC计数器清零,程序便从头开始执行。
C1和R1常用取值:C1取10uf时R1取10k;C1取22uf时R1取4.7k;如果C1、R1取值过大或C1、R1取值过小都会引起单片机复位实践过长或过短,不利于单片机启动。
如果需要加手动复位,那就在C1两端并联一个按钮即可。
4、时钟电路:C2、C3和Y构成单片机的时钟源电路。
C2和C3是晶振Y的负载电容,过大或过小都会影响晶振的频率和幅度。
AT89S51/52单片机对晶振负载电容的取值有明确要求:在20pf到40pf之间,最佳值为30pf。
Y的取值可从1MHz到24MHz,如果用的是12MHz 的晶振,那个一个机器周期刚好就是1微妙,编程时计时很方便。
焊接时一定要注意,这三个元器件应尽量靠近单片机相应的管脚,以减少线路上寄生电容的影响。
机器周期:在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
5、程序下载电路:第一种,ISP下载,10PH是AtmelISP并口下载线10p接头。
单片机-最小系统原理解析
单
片
机
最
小
系
统原
理
一、题目:单片机最小系统
二、引言:
由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。
目前,可用于MCS-51系列单片机开发的硬件越来越多,与其配套的各类开发系统、各种软件也日趋完善,因此,可以极方便地利用现有资源,开发出用于不同目的的各类应用系统。
单片机最小系统是在以MCS-51单片机为基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。
单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。
本课题设计主要在MCS-51单片机上扩展I/O口,扩展定时器定时范围,扩展键盘显示接口。
适合于我们学生用于单片机的学习掌握和一些各种科研立项等的需求。
因此,研究单片机最小系统有很大的实用意义。
三、关键字:
DevKit MCS51 Lite 、AT89S51、AD/DA、RS232串口、串行EEPROM存储器、
蜂鸣器、独立按键、LED、8段数码管。
通俗易懂解读单片机最小系统
通俗易懂解读单片机最小系统2020年3月18日10:17:35原创声明:本文章原创作者是赛先生卢仕强,转载需注明原创出处。
单片机最小系统,通俗来讲,就是使单片机能够工作起来最基本的要求,没有最小系统(可以理解为最小组成单元)单片机永远也不能正常运行。
那么最小系统电路由哪几部分构成呢?首先我们给出单片机最小系统电路原理图如下:单片机最小系统电路原理图如图中所示,我们可以看到单片机最小系统一共由以下三部分构成:电源电路:图中标记为1的部分,通俗来讲,电源电路就是给单片机提供电能,在电子电路中,电源是电路工作必备的要素之一。
电源由VCC(电源正极)和GND(电源负极,或叫“电源地”、“地”,GND是英文ground的缩写)构成,VCC接单片机的40号管脚,GND 接单片机的20号管脚。
需要注意的是:单片机电源电压的选取不是图中固定的5V,在设计时应查阅所选取单片机的datasheet(数据手册)。
晶振电路:图中标记为2的部分,晶振电路又称时钟电路。
在51单片机中,一般情况下晶振电路由晶振Y1和电容C2、C3构成,电路连接如图中所示。
这里讲一下什么是晶振,即晶体振荡器,他可以产生固定频率的信号,我们知道,频率又与时钟(即时间周期T)有对应关系f = 1/T,这就是晶振电路又称时钟电路的由来。
晶振电路的作用就是给单片机内部提供固定的时钟信号,单片机的工作都是基于这个时钟信号的步伐进行工作,让单片机有序运行。
其中电容C2、C3的作用是给晶振Y1起振,C1、C2称为起振电容,即保证晶振能够稳定振荡起来,其容值的大小应灵活参考所选取单片机的datasheet。
需要注意的是:在设计中,晶振电路应尽可能的靠近晶振电路的管脚(如图中所示单片机的晶振电路管脚是18号、19号管脚),起振电容也应尽可能靠近晶振Y1。
复位电路:图中标记为3的部分,有极性电容C1正极接电源,C1负极接单片机的9号管脚(RST复位脚),1K电阻一端接9号管脚,一端接地。
单片机 最小系统原理解析
最小系统原理解析-单片机单片机最小系统原理3一、题目:单片机最小系统二、引言:由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。
目前,可用于MCS-51系列单片机开发的硬件越来越多,与其配套的各类开发系统、各种软件也日趋完善,因此,可以极方便地利用现有资源,开发出用于不同目的的各类应用系统。
单片机最小系统是在以MCS-51单片机为4基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。
单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。
本课题设计主要在MCS-51单片机上扩展I/O 口,扩展定时器定时范围,扩展键盘显示接口。
适合于我们学生用于单片机的学习掌握和一些各种科研立项等的需求。
因此,研究单片机最小系统有很大的实用意义。
三、关键字:DevKit MCS51 Lite 、AT89S51、AD/DA、RS232串口、串行EEPROM存储器、蜂鸣器、独立按键、LED、8段数码管。
四、目的要求4.1 目的:通过对单片机最小系统的研究,掌握单片机各引脚功能,理解单片机工作过程及原理,以及与各种外部扩展器件的连接,能够自己运5用单片机来解决实际问题。
4.2 任务:根据单片机最小系统的连接说明图,完成单片机最小系统的焊接以及调试。
掌握Isplay、keil 等单片机相关软件的使用。
理解小系统的工作原理,掌握实际运用单片机小系统。
五、系统原理MCS51 Lite 是由电源、复位及振荡电路、蜂鸣器电路、RS232串口电路、八段数码管显示电路、按键及LED电路、串行存储器电路、AD/DA转换电路、JTAG下载接口、Byte Blaster II下载线等部分组成。
单片机最小系统介绍及电路设计
一.什么是单片机最小系统常见的单片机最小系统为单片机能独立运行程序及控制外围电路的最简单电路,主要由单片机、晶振电路、复位电路三部分构成。
Stm32f103c8t6也不例外,构成最小的运行电路也需要以上三部分。
Stm32f103最小系统板原理图如下:二.最小系统电路Stm32单片机最小系统电路有单片机、晶振电路、复位电路。
1. 单片机Stm32f103系列单片机主要资源如图:Stm32f103c8t6工作电压为2-3.6V(一般采用3.3V),内置64-128KBytes Flash,20KBytesSRAM,带有37个通用GPIO口(含特殊功能IO)。
在最小系统板上主要连接晶振电路、复位电路、工作电源、以及配置BOOT启动方式。
BOOT启动方式主要有三种,主闪存存储器启动、系统存储器启动、内置SRAM 启动,对应的BOOT引脚状态如下图:最常用的模式为主闪存存储器启动,即内部Flash启动,BOOT1=0,BOOT1=x(x 表示0或1均可)。
(注意三种模式的对应启动地址均不一样,内部Flash启动的地址为0x0800000)2. 晶振电路(1)主时钟晶振Stm32单片机内部自带一个8MHz的RC时钟,在符合设计需求的情况下,可通过程序在初始化时钟函数内,选择采用内部时钟。
外部主时钟晶振主要作为供单片机内核的时钟源,官方推荐晶振电路主要参数如下:Stm32单片机外部晶振为4-16MHz,常用8MHz,电路图如下:(2)RTC时钟晶振同样,RTC时钟在符合设计需求的情况下,可选用内部自带的40kHz RTC时钟。
外部晶振32.768KHz主要作为单片机内部RTC时钟的时钟源,电路图如下:3. 复位电路复位电路由RC电路及按键构成,10k电阻及1uF电容组成的RC电路;stm32单片机复位引脚为低电平有效,复位电路的作用是使单片机复位引脚在上电时,确保复位引脚至少有1ms以上的低电平状态。
复位按键的作用是当按键按下,复位引脚的被拉至低电平,单片机触发复位。
单片机最小系统讲解
单片机最小系统讲解单片机(Microcontroller Unit,简称MCU)是指在一个芯片上集成了微处理器核心、存储器、输入输出接口和定时器等功能模块的专用集成电路。
单片机由于体积小、功耗低、成本低等优势,广泛应用于各种电子设备中。
而单片机的最小系统是指将单片机与必要的外部电路组合在一起,以实现单片机的基本功能。
本文将对单片机最小系统进行详细讲解。
一、单片机最小系统的组成单片机最小系统主要由单片机芯片、晶振、电源电路和复位电路等组成。
1. 单片机芯片单片机芯片是单片机最核心的部分,它集成了微处理器核心、存储器和各种外设接口等功能单元。
单片机芯片根据不同的应用需求,有不同的型号和规格可供选择。
2. 晶振晶振是单片机最小系统中的重要组成部分,它提供了单片机系统的时钟信号。
单片机通过时钟信号来同步各种操作,保证系统的正常运行。
3. 电源电路电源电路为单片机提供稳定的电源供电,保证单片机系统的正常工作。
一般情况下,单片机最小系统采用直流电源供电,可以是电池或者是稳压电源。
4. 复位电路复位电路是单片机最小系统中的另一个重要组成部分,它用于保证单片机系统在上电或者复位时,能够正常启动和初始化。
复位电路通常由电源复位电路和外部复位电路组成。
二、单片机最小系统的工作原理单片机最小系统的工作原理主要分为以下几个步骤:1. 上电初始化当单片机系统上电或者复位时,复位电路将在系统满足工作电压条件后,发送复位信号给单片机芯片。
单片机芯片接收到复位信号后,将会执行初始化动作,包括清除寄存器和设置初始值等。
2. 系统时钟初始化在上电初始化完成后,单片机系统将会初始化系统时钟。
系统时钟一般由晶振提供,并通过时钟分频器对时钟信号进行分频处理,以产生单片机内部各个模块需要的时钟信号。
3. 程序执行经过上电初始化和系统时钟初始化后,单片机系统就进入了正常的工作状态。
此时,单片机将开始按照程序内存中的指令顺序执行各种操作。
程序由程序员编写,并存储在单片机的闪存或者RAM中。
单片机最小的系统原理
单片机最小的系统原理
单片机最小的系统原理指的是使用最少的器件和外围电路搭建一个能够正常工作的单片机系统。
具体原理如下:
1. 单片机芯片:选择一款适合的单片机芯片,根据需求选择各项参数,如处理器速度、存储容量、接口数量等。
2. 时钟电路:单片机需要一个稳定的时钟信号来同步其内部操作。
可以使用一个晶体振荡器或者其它时钟源来提供时钟信号。
3. 复位电路:复位电路用于在系统上电时将单片机置于初始状态,以便其正常运行。
常用的复位电路包括电源复位电路和外部复位电路。
4. 供电电路:为单片机提供稳定的电源电压。
一般使用稳压器或者电源模块来提供单片机所需的工作电压。
5. 编程及调试接口:为了方便对单片机进行编程或者调试,通常需要提供一个编程和调试接口。
常见的接口有JTAG、ISP(In-System Programming)等。
以上是单片机最小系统的基本构成要素,通过组合这些部分可以搭建一个简单的单片机系统。
当然,根据具体的应用需求,还可以添加外部存储器、外设接口、
通信接口等功能模块。
单片机最小系统原理
单片机最小系统原理单片机最小系统是指单片机芯片与外围器件组成的最基本的工作系统。
它包括单片机芯片、时钟电路、复位电路、电源电路和外围器件等几个部分。
下面我们将逐一介绍单片机最小系统的原理。
首先,单片机芯片是整个最小系统的核心部分。
单片机芯片是一种集成了微处理器、存储器、定时器、串行通信接口等功能于一体的芯片,它是整个系统的控制中心。
单片机芯片的选择应根据具体的应用需求来确定,不同的单片机芯片有着不同的指令集、存储容量和外设接口,因此在选择单片机芯片时需要充分考虑系统的功能需求和性能要求。
其次,时钟电路是单片机最小系统中不可或缺的部分。
时钟电路为单片机提供了基本的时序信号,使单片机能够按照一定的时序工作。
时钟电路一般由晶体振荡器和放大器组成,晶体振荡器产生稳定的振荡信号,放大器将振荡信号放大后送入单片机芯片,从而使单片机能够按照指定的时钟频率工作。
另外,复位电路也是单片机最小系统中至关重要的组成部分。
复位电路能够在系统上电或者复位信号出现时将单片机初始化,使其进入工作状态。
复位电路一般由复位芯片和相关的外围元器件组成,它能够确保单片机在上电或者复位时能够正常工作,避免因为系统状态不确定而导致的错误操作。
此外,电源电路是单片机最小系统中不可或缺的一部分。
电源电路为单片机提供稳定的工作电压,保证单片机能够正常工作。
电源电路一般由稳压芯片、滤波电容和电感等组成,它能够将输入的不稳定电压转换为稳定的工作电压,从而保证单片机的正常工作。
最后,外围器件也是单片机最小系统中必不可少的一部分。
外围器件包括与单片机芯片相连的外部元器件,如LED、按键、显示器、传感器等。
这些外围器件能够为单片机系统提供输入输出接口,使单片机能够与外部环境进行交互,实现具体的功能。
总的来说,单片机最小系统是由单片机芯片、时钟电路、复位电路、电源电路和外围器件等几个部分组成的。
它是单片机系统中最基本的工作系统,为单片机的正常工作提供了必要的支持。
单片机最小系统原理说明-复位电路
单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.下面给出一个51单片机的最小系统电路图.说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC 值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R 取8.2K.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.复位电路:一、复位电路的用途单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。
单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
单片机复位电路如下图:二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。
所以可以通过按键的断开和闭合在运行的系统中控制其复位。
51单片机最小系统原理
51单片机最小系统原理
51单片机最小系统是指由51单片机芯片、时钟电路、复位电路和电
源电路等组成的最基本的硬件系统。
它是进行51单片机软件开发和运行
的基础,对于学习和应用51单片机技术来说非常重要。
下面将详细介绍
51单片机最小系统的原理。
1.51单片机芯片
51单片机是由英特尔公司推出的一种8位微控制器,是指基于哈佛
结构、具有复杂存储器结构和指令集的通用型单片机。
51单片机具有很
强的通用性,广泛应用于各种嵌入式系统和控制系统中。
常用的51单片
机芯片有AT89C51、AT89S52等。
2.时钟电路
时钟电路是指为51单片机提供稳定的时钟信号的电路。
由于51单片
机是以时序为基础进行工作的,因此时钟信号对于单片机的运行至关重要。
一般来说,时钟电路采用晶体振荡器作为时钟源,晶体振荡器的频率一般
为11.0592MHz。
时钟电路还包括电容和电阻等元件,用于保持晶体振荡
器的稳定性。
3.复位电路
复位电路是指对51单片机进行复位操作的电路。
当51单片机上电或
按下复位按钮时,复位电路会向单片机的复位引脚发送一个复位信号,使
单片机回到初始状态。
复位电路一般由电源滤波电路、复位电容和复位电
阻等元件组成。
4.电源电路
电源电路是指为51单片机提供稳定的电源电压的电路。
由于51单片机对电源电压的要求较高,一般在3.3V至5V之间,因此电源电路需要将输入的电源电压进行适当的处理,使其保持在合适的范围内。
电源电路一般由稳压电路、电容和电阻等元件组成。
单片机最小系统的原理
单片机最小系统的原理
单片机最小系统是指由单片机、晶振、复位电路和稳压电源组成的基本硬件系统。
其原理是通过晶振提供时钟信号,使单片机按照一定的频率工作,通过复位电路对单片机进行初始化,保证系统的正确启动。
稳压电源则为单片机提供稳定的工作电压,保证系统正常运行。
具体原理如下:
1. 晶振:晶振作为系统的时钟源,通过产生规律的振荡信号来控制单片机的工作节奏。
晶振一般由晶体振荡器和电容、电阻等元件组成。
当电压施加在晶体上时,晶体会因为压电效应而发生振荡,产生稳定的频率信号,供给给单片机使用。
2. 复位电路:复位电路用于保证系统正常启动和单片机在出现异常情况下的复位。
当电源接通时,复位电路会向单片机的复位引脚提供一个低电平信号,使单片机处于复位状态,进行初始化操作。
当复位信号解除后,单片机开始正常工作。
3. 稳压电源:稳压电源为单片机提供稳定的工作电压。
单片机在工作过程中需要一定的电压供应,而供电电压的稳定性对于单片机的正常工作至关重要。
稳压电源通常由变压器、整流电路、滤波电路和稳压电路等组成,通过将输入的交流电转化为稳定的直流电供给单片机使用。
通过以上几个基本硬件组成,单片机最小系统可以实现对于输入输出的控制、数据处理和存储等功能。
它是单片机应用开发
的基础,提供了一个可靠的硬件平台,方便对单片机进行编程和开发各种应用。
单片机最小系统讲解
单片机最小系统讲解┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第1章绪论单片机自从问世以来,性能在不断的提高和完善,它不仅能够满足很多应用场合的需要,而且具有集成度高、功能强、速度快、体积小使用方便、性能可靠、价格低廉等特点。
因此,在工业控制、智能仪器仪表、数据采集和处理、通信、智能接口、商业营销等领域得到广泛的应用,并且正在逐步取代现有的多片微机应用系统。
单片机的潜力越来越被人们所重视,所以更扩大了单片机的应用范围,也进一步促进了单片机技术的发展,单片机的发展史大致可分为三个阶段。
目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。
下面是单片机的主要发展趋势。
单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。
从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。
这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。
单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。
单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。
通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。
因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。
单片机经过不断的发展,正朝着多功能、高性能、低电压、低功耗、低价格、大存储容量、强I/O功能及较好的结构兼容性方向发展。
其发展趋势不外乎以下几个方面。
1、多功能单片机中尽可能地把所需要的存储器和I/O口都集成在一块芯片上,使得单片机可以实现更多的功能。
比如A/D、PWM、PCA(可编程计数器阵列)、WDT(监视定时器---看家狗)、高速I/O口及计数器的捕获/比较逻辑等。
有的单片机针对某一个应用领域,集成了相关的控制设备,以减少应用系统的芯片数量。
单片机最小系统原理描述
单片机最小系统原理描述,原理图,以及电路说明51单片机最小系统电路介绍1.51单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。
2.51单片机最小系统晶振Y1也可以采用6MHz或者11.0592MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。
3.51单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。
设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。
计数值N乘以机器周期Tcy 就是定时时间t。
设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。
在每个机器周期的S5P2期间采样T0、T1引脚电平。
当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。
由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。
当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。
标识符号地址寄存器名称P3 0B0H I/O口3寄存器PCON 87H 电源控制及波特率选择寄存器SCON 98H 串行口控制寄存器SBUF 99H 串行数据缓冲寄存器TCON 88H 定时控制寄存器TMOD 89H 定时器方式选择寄存器TL0 8AH 定时器0低8位TH0 8CH 定时器0高8位TL1 8BH 定时器1低8位TH1 8DH 定时器1高8位。
单片机最小系统原理
单片机最小系统原理
单片机最小系统原理是指由单片机芯片、外部时钟电路、复位电路和电源电路等核心元件组成的最基本的硬件系统。
其原理主要包括以下几个方面:
1.单片机芯片:单片机芯片是整个最小系统的核心,它包含了
处理器核心、存储器、输入输出接口以及各种外设控制器等功能模块。
根据不同的应用需求和性能要求,可以选择不同型号的单片机芯片。
2.外部时钟电路:单片机需要一个外部时钟信号来提供时钟脉冲,以驱动其内部的各种时序操作。
外部时钟电路一般由晶振、电容和电阻等元件组成,通过晶振产生一个稳定的时钟信号,并通过时钟引脚传递给单片机芯片。
3.复位电路:复位电路用于在单片机上电或者出现异常情况时
将单片机恢复到初始状态。
它包括一个复位电源和一个复位电路。
复位电路通过监测电源电压或者外部复位信号,当监测到复位条件满足时,会将复位电源信号提供给单片机芯片,从而实现复位操作。
4.电源电路:单片机需要一个稳定的电源电压来正常运行。
电
源电路主要包括直流电源的接入、稳压电路以及滤波电路等。
稳压电路和滤波电路可以保证单片机工作时的电源电压稳定,并且滤除电源中的噪声干扰。
通过以上几个元件的组合,单片机最小系统可以实现对单片机芯片进行编程和控制,以实现各种不同应用的功能需求。
stc89c52单片机的最小系统工作原理
stc89c52单片机的最小系统工作原理stc89c52单片机是一种常见的单片机芯片,广泛应用于各种电子设备和嵌入式系统中。
它具有成本低、性能稳定、易于编程等优点,在电子行业中得到了广泛的应用。
stc89c52单片机的最小系统是指将其与外围电路连接起来,使其能够正常工作的最基本的电路配置。
最小系统主要由晶振电路、电源电路、复位电路、编程电路和I/O口电路组成。
晶振电路是stc89c52单片机最小系统中非常重要的部分,它提供了时钟信号,使单片机能够按照一定的时间间隔执行指令。
stc89c52单片机通常采用12MHz晶振,通过晶振电路将晶振与单片机相连接,使其能够工作在所需的频率下。
电源电路是为stc89c52单片机提供工作电压的部分,它通常由稳压电路和滤波电路组成。
稳压电路可以将电源电压稳定在单片机所需的工作电压范围内,以保证单片机正常工作。
滤波电路则可以滤除电源中的噪声和干扰信号,保证单片机的工作稳定性。
复位电路是stc89c52单片机最小系统中的另一个重要部分,它可以在单片机上电或复位时将其复位到初始状态。
复位电路通常由复位电阻和电容组成,当单片机上电或复位时,复位电路会将单片机复位到初始状态,使其能够按照程序的要求重新开始执行。
编程电路是stc89c52单片机最小系统中负责编程和调试的部分,它通常由编程接口和下载线组成。
通过编程电路,我们可以将编写好的程序下载到单片机中,并可以通过调试工具对单片机进行调试和测试。
I/O口电路是stc89c52单片机最小系统中与外部设备进行数据交换的部分,它通常由输入电路和输出电路组成。
输入电路可以将外部设备的信号输入到单片机中,输出电路则可以将单片机中的信号输出到外部设备中。
通过将上述各个部分连接起来,就可以构成stc89c52单片机的最小系统。
在最小系统中,晶振电路提供时钟信号,电源电路提供工作电压,复位电路提供复位功能,编程电路提供编程和调试功能,而I/O口电路则与外部设备进行数据交换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机-最小系统原理解析
单
片
机
最
小
系
统原
理
一、题目:单片机最小系统
二、引言:
由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。
目前,可用于MCS-51系列单片机开发的硬件越来越多,与其配套的各类开发系统、各种软件也日趋完善,因此,可以极方便地利用现有资源,开发出用于不同目的的各类应用系统。
单片机最小系统是在以MCS-51单片机为
基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。
单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。
本课题设计主要在MCS-51单片机上扩展I/O口,扩展定时器定时范围,扩展键盘显示接口。
适合于我们学生用于单片机的学习掌握和一些各种科研立项等的需求。
因此,研究单片机最小系统有很大的实用意义。
三、关键字:
DevKit MCS51 Lite 、AT89S51、AD/DA、RS232串口、串行EEPROM存储器、蜂鸣
器、独立按键、LED、8段数码管。
四、目的要求
4.1 目的:
通过对单片机最小系统的研究,掌握单片机各引脚功能,理解单片机工作过程及原理,以及与各种外部扩展器件的连接,能够自己运
用单片机来解决实际问题。
4.2 任务:
根据单片机最小系统的连接说明图,完成单片机最小系统的焊接以及调试。
掌握Isplay、keil 等单片机相关软件的使用。
理解小系统的工作原理,掌握实际运用单片机小系统。
五、系统原理
MCS51 Lite 是由电源、复位及振荡电路、蜂鸣器电路、RS232串口电路、八段数
码管显示电路、按键及LED电路、串行存
储器电路、AD/DA转换电路、JTAG下载
接口、Byte Blaster II下载线等部分组成。
5.1 电源
电源接口电路图
MCS51 Lite的电源通过计算机的USB口供给,使用套件提供的USB A转B
口电缆连接计算机USB口与开发板即可。
在电源电路中接入了电源指示LED,使用330Ω电阻限流。
并提供两个测试点来测量5V电是否正常。
5.2 复位及振荡电路
复位及振荡电路图
复位电路由按键复位和上电复位两部分组成。
AT89S系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为8.2K和10uF。
按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。
MCS51 LITE使用22.1184MHz的晶体振荡器作为振荡源,由于
单片机内部带有振荡电路,所以外部只要连接一个晶振和两个电容即可,电容容量一般在15pF至50pF之间。
5.3 蜂鸣器电路
蜂鸣器电路图
蜂鸣器使用PNP三极管进行驱动控制,板上使用的是直流蜂鸣器,当P3.7输出低电平时,蜂鸣器鸣叫。
由于蜂鸣器为感性原件,可以在两端并接一个二极管来起到泄放作用。
5.4 RS232串口电路
RS232串口电路图
RS232串口电路使用MAX232CPE作为电平转换芯片,并通过套件提供的串口电缆连接到计算机背后的COM口(9针D型口),用于MCS51 LITE与上位机通信以及和其他串口设备的数据交互。
需要注意的是这里在电路板上对TxD和RxD进行了交叉,对应使用的DB9接头类型为Female,使用的线缆为延长线,也叫做直连线,线缆一头为Female一头为Male。
如果电路板上不将RxD和TxD交叉,就应该采用Male类型的接头和交叉线缆(两头均为Female)连接。
5.5 八段数码显示管
数码管电路图
七段数码管电路图
MCS51 LITE包含两个共阳8段数码管显示器,使用动态扫描方式驱动。
共阳极作为位选有PNP三极管驱动连接在P1.0和P1.1口,八位段选在通过330Ω限流后连接在单片机的P0口上。
由于数码管是共阳的,所以当驱动信号为0时对应的数码管才点亮。
5.6 按键及LED电路
按键及LED电路图
开发板上提供了8个独立LED,由P2口控制,同样采用共阳级接法,所以只有当P2口输出低电平时LED才会点亮。
这样做的主要原因是因为单片机的低电平驱动能力高电平强。
4个独立按键使用10K电阻上拉后连接到单片机的P3.2-P3.5口,中间串接的330Ω电阻起到限流作用。
按键没有按下时口线上因为上拉而呈现高电平,当某个按键按下时对应口线会被连接到GND而变成低电平。
另外由于LED的反向截止特性以及按键上拉较弱,P2口及P3.2-P3.5口亦可以兼做通用IO 口使用,用来连接外部器件。
MCS51 Lite板上也提供了插针方便连接。
5.7 串行存储器
串行存储器电路图
MCS51 Lite使用Atmel 93系列串行Flash 存储器作为存储单元。
使用93C46时可以存储1K bit的数据,93C56为2K、93C66为4K。
存储器连接在单片机的P1.3、P1.2、P1.4和P1.6上,其中CS为片选信号,SCL为串行时钟,D为数据输入,Q为数据输出。
ORG是存储位宽选择,当ORG 接VCC时,存储器为16 位结构,接GND时存储器为8位结构。
而当ORG引脚悬空时内部的上拉电阻把存储器选择为16位结构。
开发板上使用跳线帽P2来切换,将跳线帽短路为8位,断开相当为悬空,为16位。
5.8 AD/DA转换器
AD/DA转换器电路图
AOUT为模拟数据输出引脚,SCLK为读写时钟输入,DIN是数据输入引脚,DOUT为输入输出引脚。
CS为芯片使能。
5.9 JTAG下载口
JTAG下载口电路图
JTAG接口为ISP下载接口,用于通过下载电缆将程序从计算机上下载到单片机中。
5.10 Byte Blaster II 下载线
Byte Blaster II 下载线电路图
用户可以通过ISPlay软件方便的对AT89S系列单片及编程。
在对CPLD、FPGA编程时需要Altera Quartus II软件支持;对ARM编程时需要
H-JTAG以及ADS等软件支持。
六、具体步骤
6.1 先按照说明书的器件规格要求,找到每个
位置对应的具体器件,特别是电阻和三极管的大小,单片机等各个芯片的缺口要与板子对应。