典型离散信号的运算

合集下载

离散时间信号的基本运算

离散时间信号的基本运算

信号绝对值的积分
总结词
信号绝对值的积分是指将离散时间信号中每个值的绝对值与其对应的权系数相乘,并求和得到的结果 。
详细描述
信号绝对值的积分在处理一些具有正负性质的问题时非常有用,例如计算信号的能量或幅度。对于离散时 间信号 $x(n)$,其绝对值的积分可以表示为 $sum_{n=0}^{N-1} |x(n)| cdot Delta t$。
符号相加主要用于处理具有正负符号 的信号,使得正负符号能够相互抵消, 从而得到一个新的符号较少的信号。
02
离散时间信号的乘法
离散时间信号的乘法 信号相乘
信号相乘
离散时间信号的乘法是指将两个信号对应时刻的数值相乘。当两个信号相乘时,其输出信号的幅度将等于两个输入信 号幅度相乘的结果。
信号的绝对值相乘
04
离散时间信号的微分
信号的微分
信号的微分是指将信号中的每个值都 减去前一个值,得到的结果就是微分 后的信号。在离散时间信号中,微分 运算可以用于分析信号的变化趋势。
例如,如果一个离散时间信号为 [1, 3, 5, 7, 9],其微分为 [0, 2, 2, 2, 2],表 示信号在每个时刻的变化量。
信号符号的积分
总结词
信号符号的积分是指将离散时间信号中 每个值的符号与其对应的权系数相乘, 并求和得到的结果。
VS
详细描述
信号符号的积分可以用于处理一些具有正 负性质的问题,例如计算信号的极性或方 向。对于离散时间信号 $x(n)$,其符号的 积分可以表示为 $sum_{n=0}^{N-1} text{sgn}(x(n)) cdot Delta t$,其中 $text{sgn}(x(n))$ 表示 $x(n)$ 的符号函数。
03

离散时间信号的表示及运算

离散时间信号的表示及运算

第2章离散时间信号的表示及运算2.1实验目的学会运用MATLAB表示的常用离散时间信号;学会运用MATLAB实现离散时间信号的基本运算。

2.2实验原理及实例分析221 离散时间信号在 MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散序列通常用x(n)来表示,自变量必须是整数。

离散时间信号的波形绘制在MATLAB中一般用Stem函数。

stem函数的基本用法和Plot函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。

如果要实心,需使用参数“fill、"‘filled ,或者参数:”。

由于MATLAB中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。

类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。

1. 单位取样序列单位取样序列J.(n),也称为单位冲激序列,定义为(n =0)(12-1)(n = 0)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n=0处是取确定的值1。

在MATLAB中,冲激序列可以通过编写以下的impDT.m文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0调用该函数时n必须为整数或整数向量。

【实例2-1】禾U用MATLAB的impDT函数绘出单位冲激序列的波形图。

解:MATLAB源程序为>>n=-3:3;>>x=impDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on>>title('单位冲激序列’)>>axis([-3 3 -0.1 1.1])程序运行结果如图12-1所示。

2. 单位阶跃序列单位阶跃序列u(n)定义为u(n)(n —O) (n 0)(12-2)在MATLAB 中,冲激序列可以通过编写uDT .m 文件来实现,即function y=uDT(n) y=n>=0;%当参数为非负时输出 1调用该函数时n 也同样必须为整数或整数向量。

离散时间信号的表达及运算规则

离散时间信号的表达及运算规则

06
离散时间信号的应用
在通信系统中的应用
数字信号传输
01
离散时间信号在数字通信系统中用于表示和传输信息,如数字
调制解调、数字信号处理等。
信号压缩与编码
02
离散时间信号在数据压缩和信道编码中用于提高通信系统的传
输效率和可靠性。
无线通信
03
离散时间信号在无线通信中用于处理和传输无线电信号,如数
字音频广播、卫星通信等。
在图像处理中的应用
01
图像数字化
离散时间信号用于将连续的图像 信息转换为离散的数字信号,便 于计算机处理和存储。
图像增强
02
03
图像压缩
离散时间信号在图像增强中用于 改善图像质量,如滤波、锐化等。
离散时间信号在图像压缩中用于 减少图像数据量,提高存储和传 输效率。
在控制系统中的应用
控制算法实现
离散时间信号在控制系统中用于实现控制算法,如PID控制、模 糊控制等。
离散时间信号的图形表示法可以直观地展示信号的幅度和时间变化,有助于理解信号的周期性、趋势 和突变等特征。
数学表示法
离散时间信号的数学表示法通常使用 序列来表示,即使用一串数值来表示 信号在不同时刻的值。
常用的数学表示法包括差分方程、离 散时间函数和离散时间系统等,这些 方法可以用来描述离散时间信号的数 学特征和运算规则。
系统建模与仿真
离散时间信号在控制系统建模和仿真中用于描述系统的动态行为。
故障诊断与预测
离散时间信号在故障诊断和预测中用于分析系统的运行状态和异 常情况。
感谢您的观看
THANKS
FIR滤波器的设计
FIR滤波器的定义
FIR(有限冲激响应)滤波器是一种离散时间系统,其 冲激响应有限长,且在有限时间内收敛到零。

离散时间信号的时域描述及基本运算

离散时间信号的时域描述及基本运算

[例] 画出信号f (t) 的奇、偶分量 画出信号f
解:
f(t) 2 1
-1
0
f(t) 2 1
1
t
-1
0
1
t
3.信号分解为实部分量与虚部分量 信号分解为实部分量 实部分量与
连续时间信号
f (t ) = f r (t ) + j f i (t )
实部分量 虚部分量
f * (t ) = f r (t ) j f i (t )
在序列2点之间插入 个点 在序列 点之间插入M1个点 点之间插入
4. 序列相加
指将若干离散序列序号相同的数值相加
y[k ] = f1[k ] + f 2 [k ] + … + f n [k ]
f1 [ k ]
1 k 0 1
f1[k ] + f 2 [k ]
2
f 2 [k ]
k
1 k
0
0
5. 序列相乘
1 f o (t ) = [ f (t ) f (t )] 2 f o (t ) = f o (t )
离散时间信号
f [k ] = f e [k ] + f o [k ] 1 f o [k ] = { f [k ] f [ k ]} 2
1 f e [k ] = { f [k ] + f [k ]} 2
1. 翻转
f [k] → f [k]
以纵轴为中心作180度翻转 将 f [k] 以纵轴为中心作 度翻转
f [k] 2 1 1 0 1 2 3 k
2 1 0 1
3 2
f [k] 2
3 2 1 2 k
2. 位移 f [k] → f [k±n]

离散时间信号与离散时间系统

离散时间信号与离散时间系统

§7-1 概述一、 离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。

离散时间系统:处理离散时间信号的系统。

混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。

二、 连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、 离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。

例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。

例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。

四、 典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ下图表示了)(n k -δ的波形。

连续信号离散信号 数字信号 取样量化这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。

例如:)()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。

2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。

用它可以产生(或表示)单边信号(这里称为单边序列)。

3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。

4、 单边正弦序列:)()cos(0k k A εφω+(a) 0.9a = (d) 0.9a =-(b) 1a = (e) 1a =-(c) 1.1a = (f) 1.1a =-双边正弦序列:)cos(0φω+k A五、 离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。

离散时间信号的表示及运算

离散时间信号的表示及运算

实验一 离散时间信号的表示及运算一、实验目的学会运用MATLAB 表示的常用离散时间信号;学会运用MATLAB 实现离散时间信号的基本运算。

二、实验原理(一) 离散时间信号在MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散序列通常用)(n x 来表示,自变量必须是整数。

离散时间信号的波形绘制在MATLAB 中一般用stem 函数。

stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。

如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。

由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。

类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。

(二) 离散时间信号的基本运算对离散时间序列实行基本运算可得到新的序列,这些基本运算主要包括加、减、乘、除、移位、反折等。

两个序列的加减乘除是对应离散样点值的加减乘除,因此,可通过MATLAB 的点乘和点除、序列移位和反折来实现,与连续时间信号处理方法基本一样。

三、实验内容(包括代码与产生的图形)1. 试用MATLAB 命令分别绘出下列各序列的波形图。

(1)()()n u n x n⎪⎭⎫⎝⎛=21 (2)()()n u n x n 2=(3)()()n u n x n⎪⎭⎫⎝⎛-=21 (4)()()()n u n x n 2-=(5)()()121-=-n u n x n (6)()()n u n x n 121-⎪⎭⎫⎝⎛=(1)、(2) n=-3:8; a=1/2;x=a.^n.*uDT(n); subplot(221);stem(n,x,'fill','r'),xlabel('n'),grid on title('(1)x(n)=(1/2)^{n}*U(n)') axis([-3 8 -0.1 1.1]) n1=-3:8; b=2;x=b.^n1.*uDT(n1); subplot(222);stem(n1,x,'fill','r'),xlabel('n'),grid on title('(2)x(n)=(2)^{n}*U(n)') axis([-3 4.5 -1.5 18])分析:(1)该信号为指数衰减序列与阶跃序的乘积,当n<0时,U(n)=0,所以该信号为零;当n=0时,U(n)=1,n⎪⎭⎫⎝⎛21=1,该信号为1;当n>0,U(n)=1,该信号呈现指数衰减趋势。

离散信号的产生及运算

离散信号的产生及运算

离散信号的产生及运算实验一离散信号的产生及运算一.实验目的:1.复习和巩固数字信号处理中离散信号的产生和运算2.学习和掌握用MATLAB 产生离散信号的方法3.学习和掌握用MATLAB 对离散信号进行运算二.实验原理1.用MATLAB 函数产生离散信号信号是数字信号处理的最基本内容。

没有信号,数字信号处理就没了工作对象。

MATLAB7.0 内部提供了大量的函数,用来产生常用的信号波形。

例如,三角函数(sin,cos), 指数函数(exp),锯齿波函数(sawtooth), 随机数函数(rand)等。

⑴产生被噪声污染的正弦信号用随机数函数产生污染的正弦信号。

⑵产生单位脉冲序列和单位阶跃序列按定义,单位脉冲序列为0 0 0 1, ( ) 0,n n n n n n单位阶跃序列为。

0 0 0 1, ( ) 0,n n u n n n n⑶矩形脉冲信号:在MATLAB 中用rectpuls 函数来表示,其调用形式为:y=rectpuls(t,width),用以产生一个幅值为1,宽度为width,相对于t=0 点左右对称的矩形波信号,该函数的横坐标范围由向量t 决定,是以t=0 为中心向左右各展开width/2 的范围,width 的默认值为1。

例:以t=2T(即t-2×T=0)为对称中心的矩形脉冲信号的MATLAB 源程序如下:(取T=1)t=0:0.001:4;T=1;ft=rectpuls(t-2*T,2*T);plot(t,ft);grid on; axis([0 4 –0.5 1.5]);⑷周期性矩形波(方波)信号在MATLAB 中用square 函数来表示,其调用形式为:y=square(t,DUTY),用以产生一个周期为2π、幅值为±1 的周期性方波信号,其中的DUTY 参数表示占空比,即在信号的一个周期中正值所占的百分比。

例如频率为30Hz 的周期性方波信号的MATLAB 参考程序如下:t=-0.0625:0.0001:0.0625;y=square(2*pi*30*t,75);plot(t,y);axis([-0.0625 0.0625 –1.5 1.5]);grid on ;2.MATLAB 中信号的运算乘法和加法:离散信号之间的乘法和加法,是指它的同序号的序列值逐项对应相乘和相加。

2-3 离散时间信号的表达及运算规则

2-3 离散时间信号的表达及运算规则

x[k]→x[-k] x[k]→ x[k-N] x[k]→ x[Mk]
y[k ] = ∑n = −∞ x[n]h[k − n]
例:已知x1[k] ∗ x2[k]= y[k],试求y1[k]= x1[k−n] ∗ x2[k−m]。
结论: y1[k]= y[k−(m+n)]
例:x[k] 非零范围为 N1≤ k ≤ N2 , h[k] 的非零范围为 N3≤ k≤ N4
x(n) =
m = −∞


x ( m )δ ( n − m )
2-3离散时间信号的表达及运算规则
序列的表示 序列的产生 序列的运算规则及符号表示 常用序列 序列的周期性 序列的线性组合 序列的能量
离散信号(序列 的表示 离散信号 序列)的表示 序列
1.离散时间信号 1.离散时间信号 离散时间信号是在离散的时间上取 在两个取样间隔内数值为零的信号。 值,在两个取样间隔内数值为零的信号。 又称离散时间信号序列 离散时间信号序列。 又称离散时间信号序列。 2.表示: 2.表示 表示:
实指数序列的定义为
n x(n)=a
其中a为不等于零的任意实数。 图2-18是0<a<1的一个实指数 序列的图形。
图2-18 实指数序列
(5) 正弦序列
正弦序列的定义为
x(n)=sin(nω0)
其图形如图2-19所示。
图2-19正弦序列 正弦序列
序列的基本运算
• 翻转(time reversal) • • • • 位移(延迟) 抽取(decimation) 内插(interpolation) 卷积
常用序列
(1) 单位取样序列
单位取样序列的定义为
其图形如图2-15所示。

信号系统-离散时间信号的基本运算

信号系统-离散时间信号的基本运算

翻转(x[k] →x[-k])位移(x[k] →x[k±n])内插与抽取序列相加序列相乘差分与求和x [k -n ]表示将x [k ]右移n 个单位。

x [k +n ]表示将x [k ]左移n 个单位。

[]}[{][2=∇∇=∇k x k x k x []}[{][2k x k x k x ==∆∆∆]}[{][1k x k x n n-∇∇=∇]}[{][1k x k x n n-=∆∆∆]1[][][--=∇k x k x k x ][]1[][k x k x k x -+=∆单位脉冲序列可用单位阶跃序列]1[][][--=k u k u k δ1.信号分解为直流分量与交流分量2.信号分解为奇分量与偶分量之和3.信号分解为实部分量与虚部分量4.连续信号分解为冲激函数的线性组合5.离散序列分解为脉冲序列的线性组合)()()(AC DC t x t x t x +=⎰-=bat t x a b t x d )(1)(DC ][][][AC DC k x k x k x +=∑=+-=21][11][12DC N N k k x N N k x 连续时间信号离散时间信号直流交流)()()(AC DC t x t x t x +=)()()(o e t x t x t x +=)]()([21)(e t x t x t x -+=)]()([21)(o t x t x t x --=)()(e e t x t x -=)()(o o t x t x --=][][][o e k x k x k x +=]}[][{21][e k x k x k x -+=[][{21][o k x k x k x --= 离散时间信号偶分量奇分量解:-)∆u +ττδτd )()()(-=⎰∞∞-t x tx物理意义:不同的连续信号都可以分解为冲激信号,不同的信号只是它们的系数不同。

实际应用:当求解信号通过系统产生的响应时,只需求解冲激信号通过该系统产生的响应,然后利用线性时不变系统的特性,进行迭加和延时即可求得信号x (t )产生的响应。

离散系统常用基本运算单元

离散系统常用基本运算单元

在离散系统中,常用的基本运算单元包括一些逻辑运算和数字运算。

以下是一些常见的离散系统基本运算单元:
1. 逻辑门(Logic Gates):逻辑门是执行逻辑运算的基本单元,包括与门(AND)、或门(OR)、非门(NOT)等。

这些门用于处理二进制信号,执行逻辑运算。

2. 加法器(Adder):加法器用于执行二进制加法操作。

全加器是一种常见的加法器,可以对两个二进制数字进行相加,并处理进位。

3. 寄存器(Register):寄存器是用于存储二进制数据的元件。

在离散系统中,寄存器通常用于存储中间结果或其他需要暂时保存的数据。

4. 计数器(Counter):计数器用于对输入的脉冲或信号进行计数。

它在许多应用中用于跟踪事件的数量。

5. 状态机(State Machine):状态机是一种用于描述系统状态和状态转换的模型。

它在控制系统中广泛使用,能够响应输入并根据当前状态执行相应的操作。

6. 多路复用器(Multiplexer):多路复用器用于从多个输入中选择一个输出。

它在数据传输和信号处理中常用于选择特定输入通道。

7. 比较器(Comparator):比较器用于比较两个输入,并产生相应的输出,通常包括等于、大于和小于等比较结果。

8. 移位器(Shifter):移位器用于对二进制数进行左移或右移操作。

这在位操作和乘除法的实现中很常见。

这些基本运算单元通常被组合在一起以执行更复杂的离散系统功能。

不同的应用领域可能使用不同的组合和变体来满足特定的需求。

§7.2 离散时间信号——序列

§7.2 离散时间信号——序列
§7.2 离散时间信号——序列 离散时间信号——序列
离散信号的表示方法 离散信号的表示方法 离散时间信号的运算 离散时间信号的运算 常用离散时间信号 常用离散时间信号
北京邮电大学电子工程学院 2003.1

一.离散信号的表示方法
x(t ) → x(nT) 等间隔 x(n) T n = 0,±1,±2,
6 页
X

1.单位样值信号
0, n ≠ 0 δ (n) = 1, n = 0
δ (n)
1
O
1
n
7 页
0, n ≠ j 时移性 δ (n j) = 1, n = j
比例性 cδ (n), cδ (n j) 抽样性 f (n)δ (n) = f (0)δ (n)
δ (n 1)

O
1
n
注意: 注意: δ (t )用面积 (强度)表示,→ 0 幅度为 ∞); (t , 表示,

N N = , 为有理数 ② ω0 m m 2π sin[ω0 (n+ N)] = sinω0 n + m = sin(ω0n + m 2π) = sin(ω0n) + ω0 2π 周期: N sin(ω0n)仍为周期的 周期: = m ω0 2π ③ 为无理数
找不到满足x(n + N) = x(n)的N值 为非周期的 ,
( ) δ (n)在n = 0取有限值不是面积.
X

利用单位样值信号表示任意序列
x(n) =
m=∞
8 页
∑x(m)δ (n m)

f (n)
1.5
1 o 1
2
3
3
4
n
f (n) = 1,1.5,0,3,0,0, = δ (n + 1) + 1.5δ (n) 3δ (n 2) ↑ n=0

离散信号的运算实验报告

离散信号的运算实验报告

一、实验目的1. 理解离散信号的基本概念及其运算规则。

2. 掌握MATLAB在离散信号运算中的应用。

3. 通过实验,验证离散信号运算的基本原理和规律。

二、实验原理离散信号是指在一定时间间隔上取值的信号,其特点是时间离散、幅度连续。

在数字信号处理中,离散信号运算主要包括信号的时域运算、频域运算和变换运算。

三、实验设备与软件1. 实验设备:计算机、MATLAB软件2. 实验数据:常用离散信号数据四、实验内容与步骤1. 信号生成(1)利用MATLAB内置函数生成常用离散信号,如单位脉冲序列、单位阶跃序列、正弦序列等。

(2)绘制信号的波形图,观察信号的时域特性。

2. 时域运算(1)信号相加与相减:将两个离散信号进行相加或相减,观察运算结果。

(2)信号移位:将离散信号进行左移或右移,观察运算结果。

(3)信号反转:将离散信号进行反转,观察运算结果。

(4)信号尺度变换:将离散信号进行尺度变换,观察运算结果。

3. 频域运算(1)快速傅里叶变换(FFT):将离散信号进行FFT变换,观察频谱特性。

(2)频域相乘与相加:将两个离散信号的频谱进行相乘或相加,观察运算结果。

4. 变换运算(1)离散余弦变换(DCT):将离散信号进行DCT变换,观察变换结果。

(2)离散正弦变换(DST):将离散信号进行DST变换,观察变换结果。

五、实验结果与分析1. 信号生成(1)通过MATLAB生成单位脉冲序列、单位阶跃序列、正弦序列等,绘制波形图,观察信号特性。

(2)分析不同信号的特点,如单位脉冲序列的冲击特性、正弦序列的周期特性等。

2. 时域运算(1)信号相加与相减:将两个离散信号进行相加或相减,观察运算结果,验证运算规则。

(2)信号移位:将离散信号进行左移或右移,观察运算结果,验证移位规则。

(3)信号反转:将离散信号进行反转,观察运算结果,验证反转规则。

(4)信号尺度变换:将离散信号进行尺度变换,观察运算结果,验证尺度变换规则。

3. 频域运算(1)快速傅里叶变换(FFT):将离散信号进行FFT变换,观察频谱特性,验证FFT原理。

离散信号的运算

离散信号的运算

8
例5
xn
6 5 4 3 2 1 O 123456 n
x2n 抽取
6
4
2
已知x(n)波形,请画出
x(2n),
x
n 2
波形。
内插
O 123456 n
9
9.序列的能量
E x(n) 2
n
有限间隔 K n K上的序列能量定义为
K
EK
x(n) 2
n K
10
例6
求此信号能量E。
解:
E x(n) 2
n 2 y 2 0 1 2 3
n 3 y 3 0 1 2 3 6
n 4 y 4 0 1 2 3 4 10
n 4 y n 10
7
8.重排(抽取和内插)
抽取(decimation)
x n x Nn
N为正整数
Decimation. Etching by William Hogarth in
内插(Interpolation) Beaver's Roman Military Punishments (1725) 来源:https:///wiki/Decimation_(Roman_army)
x
n
x
n N
,N为正整数
注意:有时需去除某些点或补足相应的零值。
第一章 信号与系统分析导论
1.8 离散信号的运算
1
主要内容
• 相加 • 相乘 • 乘系数 • 移位 • 倒置 • 差分 • 累加 • 重排(压缩、扩展) • 序列的能量 • 序列的功率
2
1.相加
z(n) x(n) y(n)
例1:
x(n)=
1
,
2,

实验一离散时间信号的表示与运算

实验一离散时间信号的表示与运算

实验一离散时间信号的表示与运算实验一:离散时间信号的表示与运算一、实验目的本实验旨在让学生了解和掌握离散时间信号的基本表示方法,包括时域和频域表示方法,以及基本信号的运算方法,从而为学生进一步学习数字信号处理和通信系统等课程打下坚实的基础。

二、实验原理离散时间信号是在时间轴上离散出现的信号,与连续时间信号不同,它只能在离散的时间点上采样观察。

离散时间信号的表示方法包括时域和频域表示方法,其中时域表示方法是最基本和直观的表示方法。

离散时间信号的运算包括加法、减法、乘法和除法等基本运算,通过这些基本运算可以实现对离散时间信号的基本处理。

此外,离散时间信号的变换也成为频域分析,将信号从时域转化为频域,可以对信号的频率特性进行分析。

三、实验步骤1.准备阶段:在进行实验之前,需要准备好实验所需的器材和软件,包括计算机、信号发生器和数字示波器等。

同时,学生应该对离散时间信号的基本概念和表示方法进行预习,以便更好地进行实验。

2.时域表示:首先,通过计算机生成一组离散时间信号,例如矩形波信号、正弦波信号和余弦波信号等。

然后,将所生成的离散时间信号在数字示波器中进行观察和记录,并对这些信号进行简单的处理,例如加减乘除等基本运算。

3.频域表示:通过使用离散傅里叶变换(DFT)将所生成的离散时间信号从时域转化到频域,并对信号的频谱进行分析。

通过观察信号的频谱,可以了解信号的频率成分和幅度分布等情况。

4.实验总结:在完成实验观察和记录后,学生应该对实验结果进行分析和总结,并对实验过程中遇到的问题进行思考和解决。

同时,学生应该了解并掌握离散时间信号的表示与运算的基本原理和方法。

四、实验结果及分析通过本次实验,学生应该得到以下实验结果:1.了解并掌握离散时间信号的基本概念和表示方法;2.学会使用简单的离散时间信号处理算法对信号进行处理;3.掌握将离散时间信号从时域转化为频域的方法,并对信号的频谱进行分析;4.学会使用MATLAB等软件对离散时间信号进行处理和分析。

§7.2 离散时间信号——序列

§7.2 离散时间信号——序列

退出
二.量化
采样过程就是对模拟信号的时间取 量化的过程—得到离散信号 得到离散信号。 量化的过程 得到离散信号。
幅值量化——幅值只能分级变化; 幅值只能分级变化; 幅值量化 幅值只能分级变化 数字信号:离散信号在各离散点的幅值被量化的信号。 数字信号:离散信号在各离散点的幅值被量化的信号。
退出
三.离散信号的表示方法 离散信号的表示方法
单位样值信号 矩形序列 单边指数序列 复指数序列 •难点:信号的周期 难点: 难点
一.离散时间信号
只在一系列分隔的时间点上才有意义, 只在一系列分隔的时间点上才有意义,而在其它的时间上无 意义,因此它在时间上是不连续的序列。 意义,因此它在时间上是不连续的序列。是离散时间变量t k 的函数。 的函数。
f (t k ) 在L t − 2 , t −1 ,0, t1 , t 2 , t 3 L 瞬间具有相应的数值,在 瞬间具有相应的数值, L t1 → t 2 , t 2 → t 3 , L 间无定义。间隔可以是均匀的,也可 间无定义。间隔可以是均匀的,
以是不均匀的,一般为均匀的。 以是不均匀的,一般为均匀的。
若给出函数值的离散时刻的间隔是均匀的, 若给出函数值的离散时刻的间隔是均匀的,间隔为 T,表示为 , n 取整数: n = 0,±1,±2,L 取整数: 离散时间信号在用数字计算机或数字化设备处理时, 离散时间信号在用数字计算机或数字化设备处理时,常寄存
在存储器中待取。信号一般是先记录后分析 因此,不必以 存储器中待取。信号一般是先记录后分析。因此 中待取 先记录后分析 因此,
n= 0
n= 0
例1: x( n) = { 1 ,2,3,4,5,6} 则 x( 2n) = { 1 ,3,5} ↑ ↑ 例2:

离散信号的时域运算

离散信号的时域运算

离散信号的时域运算离散信号的时域运算是数字信号处理中一项非常重要的操作,通过对信号在时域上的运算,可以实现信号的加减、乘除、卷积等操作,进而实现对信号的滤波、特征提取等处理。

本文将从离散信号的时域运算的定义、加法、乘法、卷积等方面进行详细介绍。

一、离散信号的时域运算定义离散信号的时域运算是指对离散时间序列信号进行加、减、乘、除、卷积等操作,在时域上对信号进行处理。

时域运算可以表示为以下公式:y(n) = f(x1(n), x2(n), ..., xn(n))其中,y(n)为输出的离散信号,x1(n)、x2(n)、...、xn(n)为输入的离散信号,f为时域运算函数。

二、离散信号的加法离散信号的加法是指对两个离散信号在时域上进行加法运算。

假设有两个离散信号x1(n)和x2(n),它们的和为:y(n) = x1(n) + x2(n)加法运算可以实现信号的叠加,例如在音频处理中,可以将两个音频信号进行叠加,实现混音的效果。

三、离散信号的乘法离散信号的乘法是指对两个离散信号在时域上进行乘法运算。

假设有两个离散信号x1(n)和x2(n),它们的积为:y(n) = x1(n) * x2(n)乘法运算可以实现信号的放大或缩小,例如在音频处理中,可以将音频信号乘以一个系数,实现音量的调节效果。

四、离散信号的卷积离散信号的卷积是指对两个离散信号在时域上进行卷积运算。

假设有两个离散信号x1(n)和x2(n),它们的卷积为:y(n) = x1(n) * x2(n) = ∑(k=-∞)^(∞) x1(k) * x2(n-k)卷积运算可以实现信号的滤波、特征提取等操作,例如在图像处理中,可以通过卷积运算实现边缘检测、模糊等效果。

五、离散信号的除法离散信号的除法是指对两个离散信号在时域上进行除法运算。

假设有两个离散信号x1(n)和x2(n),它们的商为:y(n) = x1(n) / x2(n)除法运算在信号处理中较为少用,但在某些特殊场合下仍然有一定的应用。

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式
离散信号的卷积公式是信号与系统理论中的重要概念之一。

卷积运算是将两个序列进行混合操作,以得到新的序列。

在信号处理和系统分析中,离散信号的卷积公式可以通过以下方式表示:
设有两个离散信号序列x[n]和h[n],其中n为整数。

若卷积结果为y[n],则其数学表达式为:
y[n] = Σ(x[k]·h[n-k])
其中,Σ表示求和符号,k为累加范围。

该公式表示在离散时间下,输出序列y[n]的每个元素由输入序列x[n]和h[n]的乘积累加得出。

信号的卷积可用于系统响应的计算、滤波器设计、图像处理等领域。

它可以帮助我们理解信号在系统中的传递和转换过程。

离散信号的卷积公式是信号与系统理论中的基础,为我们研究和分析离散时间系统提供了有效的数学工具。

需要注意的是,在实际应用中,离散信号的卷积计算可以通过离散傅里叶变换(DFT)等方法进行高效计算。

此外,离散信号的卷积还涉及卷积定理、卷积的性质以及快速卷积算法等相关概念。

通过学习和应用离散信号的卷积公式,我们可以更好地理解和分析离散时间系统的行为和特征。

总之,离散信号的卷积公式是信号与系统领域的重要概念,它描述了输入序列之间通过卷积运算生成输出序列的关系。

通过应用该公式,我们可以更好地理解和分析离散时间系统的特性,并在实际应用中进行信号处理和系统设计。

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验指导书实验一 常见离散信号的产生一、实验目的1. 加深对离散信号的理解。

2. 掌握典型离散信号的Matlab 产生和显示。

二、实验原理及方法在MATLAB 中,序列是用矩阵向量表示,但它没有包含采样信息,即序列位置信息,为此,要表示一个序列需要建立两个向量;一是时间序列n,或称位置序列,另一个为取值序列x ,表示如下: n=[…,-3,-2,-1,0,1,2,3,…]x=[…,6,3,5,2,1,7,9,…]一般程序都从0 位置起始,则x= [x(0), x(1), x(2),…]对于多维信号需要建立矩阵来表示,矩阵的每个列向量代表一维信号。

数字信号处理中常用的信号有指数信号、正弦信号、余弦信号、方波信号、锯齿波信号等,在MATLAB 语言中分别由exp, sin, cos, square, sawtooth 等函数来实现。

三、实验内容1. 用MATLAB 编制程序,分别产生长度为N(由输入确定)的序列:①单位冲击响应序列:()n δ可用MATLAB 中zeros 函数来实现; ②单位阶跃序列:u(n)可用MATLAB 中ones 函数来实现; ③正弦序列:()sin()x n n ω=; ④指数序列:(),nx n a n =-∞<<+∞⑤复指数序列:用exp 函数实现()0()a jb nx n K e+=,并给出该复指数序列的实部、虚部、幅值和相位的图形。

(其中00.2,0.5,4,40a b K N =-===.)参考流程图:四、实验报告要求1. 写出实验程序,绘出单位阶跃序列、单位阶跃序列、正弦序列、指数序列的图形以及绘 出复指数序列的实部、虚部、幅值和相位的图形。

2. 序列信号的实现方法。

3. 在计算机上实现正弦序列0()sin(2)x n A fn πϕ=+。

实验二 离散信号的运算一、实验目的1. 掌握离散信号的时域特性。

2. 用MATLAB 实现离散信号的各种运算。

离散时间信号的表示及运算

离散时间信号的表示及运算

第2章 离散时间信号的表示及运算2.1 实验目的● 学会运用MATLAB 表示的常用离散时间信号;● 学会运用MATLAB 实现离散时间信号的基本运算。

2.2 实验原理及实例分析2.2.1 离散时间信号在MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散序列通常用)(n x 来表示,自变量必须是整数。

离散时间信号的波形绘制在MATLAB 中一般用stem 函数。

stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。

如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。

由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。

类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。

1. 单位取样序列单位取样序列)(n δ,也称为单位冲激序列,定义为)0()0(01)(≠=⎩⎨⎧=n n n δ (12-1)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。

在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0调用该函数时n 必须为整数或整数向量。

【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。

解:MATLAB 源程序为>>n=-3:3;>>x=impDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on>>title('单位冲激序列')>>axis([-3 3 -0.1 1.1])程序运行结果如图12-1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章典型离散信号的运算尹霄丽
离散信号的运算
离散时间信号的基本运算;
离散时间信号的自变量的变换;
4.1 离散时间信号的基本运算
MATLAB可以对信号做加、减、乘、除、乘以标量以及对信号取幂等运算,要求代表这些信号的向量都有相同的时间原点和相同的元素个数。

对于逐项地做乘、除和取幂运算,必须要在该算符的前面放一个圆点,也就是要用.*符号来代替*来做逐项相乘。

常用函数:sin, cos, exp, sign, abs, sqrt, power, zeros, ones...
4.2 累加运算
∑−∞
==
n
k k x n z )
()(cumsum ()
CUMSUM Cumulative sum of elements. For vectors, CUMSUM(X) is a vector containing the
cumulative sum of the elements of X. For matrices, CUMSUM(X) is a matrix the same size as X
containing the cumulative sums over each column. For N-D arrays, CUMSUM(X) operates along the first non-singleton dimension.
举例x=ones(1,20);
cumsum(x)
ans=
Columns 1 through 8
1 2 3 4 5 6 7 8 Columns 9 through 16
9 10 11 12 13 14 15 16 Columns 17 through 20
17 18 19 20

4.4离散时间信号的自变量的变换
[][][](a) MATLAB nx MATLAB x 2, 0
1, 2 1, 3
3, 40, (b) x n x n n n x n n n n
≤≤=⎧⎪=⎪⎪
=−=⎨⎪=⎪⎪⎩定义一个向量是在-3n 7上的时间变量,而向量是信号在这些样本上的值,这里给出如下:
其余画出该向量的图形;
请画出下面离散时间变量[][][][][][]
[][][]1234 2 1 (c) 22y n x n y n x n y n x n y n x n x n =−=+=−=−+−的图形:
请画出的图形。

说明
宗量相同,函数值相同,求新坐标
应该定义y1~y3=x
关键是要正确定义标号向量ny1~ny3。

3。

相关文档
最新文档