2017高考模拟卷 数列专题一
湖北省各地2017届高三最新考试数学理试题分类汇编:数列 含答案 精品
湖北省各地2017届高三最新考试数学理试题分类汇编数列2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)设数列{}n a 满足122,6a a ==,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则122017201720172017a a a ⎡⎤+++=⎢⎥⎣⎦. 2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前n 项和,则(Ⅰ)7S =__________; (Ⅱ)若2017a m =,则2015S =__________.(用m 表示) 3、(荆州市五县市区2017届高三上学期期末)已知数列{}n a 的前n 项和为n S ,且满足41n n S a =+*()n ∈N ,设3log ||n n b a =,则数列{}n b 的通项公式为________.4、(襄阳市2017届高三1月调研)在等差数列{}n a 中,已知123249,21a a a a a ++==,数列{}n b 满足()12121211,2n n n n n b b b n N S b b b a a a *+++=-∈=+++,若2n S >,则n的最小值为A. 5B. 4C. 3D. 25、(襄阳市优质高中2017届高三1月联考)已知121,,,9a a --成等差数列,1239,,,,1b b b --成等比数列,则()221b a a -的值为 A. 8 B. 8- C. 8± D.98±6、(孝感市七校教学联盟2017届高三上学期期末)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .7、(湖北省部分重点中学2017届高三上学期第二次联考)在等差数列{}n a 中,36954a a a ++=,设数列{}n a 的前n 项和为n S ,则11S =A. 18B. 99C. 198D. 2978、(荆州中学2017届高三1月质量检测)已知数列{}n a 为等差数列,满足32015OA a OB a OC =+uu r uur uu u r,其中,,A B C 在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2017S 的值为( ) A.20172 B. 2017 C. 2016 D. 201529、(荆州中学2017届高三1月质量检测)对于数列{}n a ,定义na a a Hn nn 12122-+++=为{}n a 的“优值”.现在已知某数列{}n a 的“优值”12+=n Hn ,记数列{}n a kn -的前n 项和为n S ,若6n S S ≤对任意的正整数n 恒成立,则实数k 的取值范围是二、解答题1、(黄冈市2017届高三上学期期末) 已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭,n为正整数.(1)令2n n n b a =,求证:数列{}n b 为等差数列,并求出数列{}n a 的通项公式; (2)令121,n n n n n c a T c c c n+==+++,求n T .2、(荆门市2017届高三元月调考)已知数列{}n a 的前n 项和为n S ,11=a ,当2n ≥时,2)1(2-+=n n a n S .(Ⅰ)求2a ,3a 和通项n a ;(Ⅱ)设数列{}n b 满足12-⋅=n n n a b ,求{}n b 的前n 项和n T .3、(荆州市五县市区2017届高三上学期期末)已知等差数列{}n a 的前n 项和为n S ,且623518,3n n S S a a =+=,数列{}n b 满足124n S n b b b =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)令2log n n c b =,且数列11n n c c +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求2016T .4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知函数()x f x a =的图象过点1(1,)2,且点2(1,)()n a n n n*-∈N 在函数()x f x a =的图象上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,若数列{}n b 的前n 项和为n S ,求证5n S <.5、(武汉市2017届高三毕业生二月调研考) 已知数列{}n a 的前n 项和为n S ,0n a >,且满足()22441,.n n a S n n N *+=++∈(1)求1a 及通项公式n a ;(2)若()1nn n b a =-,求数列{}n b 的前n 项和n T .6、(武汉市武昌区2017届高三1月调研)设等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S ≤ .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为nT ,求证:49n T ≤.7、(襄阳市2017届高三1月调研)设各项均为正数的等比数列{}n a 中,132464,72.a a a a =+= (1)求数列{}n a 的通项公式; (2))设21log n nb n a =,n S 是数列{}n b 的前n 项和,不等式()log 2n a S a >-对任意正整数n 恒成立,求实数a 的取值范围.8、(孝感市七校教学联盟2017届高三上学期期末)已知数列{n a }的前n 项和为n s ,且1a =2,n +1n a =2(n+1)n a(1)记=nn a b n,求数列{n b }的通项公式; (2)求通项n a 及前n 项和n s .9、(湖北省部分重点中学2017届高三上学期第二次联考)已知等差数列{}n a 满足()()()()()1223121.n n a a a a a a n n n N *+++++++=+∈(1)求数列{}n a 的通项公式; (2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S .10、(荆州中学2017届高三1月质量检测)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .参考答案一、选择、填空题1、20162、(Ⅰ)33 (Ⅱ)1m -3、n b n =-4、B5、A6、357、C 8、A 9、167[,]73二、解答题 1、解:(I )在中,令n=1,可得,即当时,,.又数列是首项和公差均为1的等差数列.于是.……6分(II)由(I )得,所以由①-②得……12分2、(I)11=a ,当2n =时,22222(1)32S a a =+=-,则24a =,当3n =时,24)41(22333-=++=a a S ,则63=a ,………………2分 当2n ≥时,2)1(2-+=n n a n S ,∴当3n ≥时,2211-=--n n na S , ∴当3n ≥时,n n n n n a na a n S S 2)1()(211=-+=---, 即3n ≥时,1)1(-=-n n na a n ,所以11-=-n an a n n , …………………4分 因为22323==a a ,111=a ,所以11n n a a n n -==-…32232a a===,因此,当2n ≥时,n a n 2=,故1,(1),2,(2)n n a n n =⎧=⎨⎩≥. ……………6分(Ⅱ)由(I)可知,1,(1),2,(2)n nn b n n =⎧=⎨⋅⎩≥,所以当1=n 时,11==b T n ,…………8分 当2n ≥时,12n T b b =++…2312232n b +=+⨯+⨯+…2n n +⋅, 则34222232n T =+⨯+⨯+…1(1)22n n n n ++-⋅+⋅, 作差得:3418(22n T =--++…112)2(1)21n n n n n ++++⋅=-⋅+ 故12)1(1+⋅-=+n n n T ,)(+∈N n . ……………………………………………………12分3、解:(Ⅰ)设数列{}n a 的公差为d ,则[]11116155(2)18(1)(31)3(1)(2)a d a d a n d a n d +=++⎧⎪⎨+-=+-⎪⎩由(1)得12590a d -+=, ·················· 2分 由(2)得1a d =,联立得13a d ==, ············· 3分 所以3n a n =. ························· 4分易知164b =, ························ 5分 当2n ≥时11214n S n b b b --=,又124n S n b b b =,两式相除得64(2)n n b n =≥, ················· 7分 164b =满足上式,所以64n n b =. ··············· 8分 (Ⅱ)2log 646n n c n ==,111111()36(1)361n n c c n n n n +==-++, 10分11(1)361n T n =-+, ····················· 11分 因此2016562017T =. ····················· 12分 4、【解析】(Ⅰ)∵函数()x f x a =的图象过点1(1,)2, ∴11,()()22x a f x ==………………………………………………2分又点2(1,)()n a n n n*-∈N 在函数()x f x a =的图象上从而2112n n a n -=,即212n n n a -=……………………………………6分(Ⅱ)证明:由22(1)21222n n n n n n n b ++=-= 得23521222n n n S +=+++………………………………8分 则231135212122222n n n n n S +-+=++++ 两式相减得, 23113111212()222222n n n n S ++=++++- ∴2552n nn S +=-…………………………………………11分∴5n S <……………………………………………………12分5、6、解:(Ⅰ)由19a =,2a 为整数可知,等差数列{}n a 的公差d 为整数, 由5n S S ≤,知560,0a a ≥≤, 于是940d +≥ ,950d +≤,d 为整数,2d ∴=-.故{}n a 的通项公式为112n a n =-…………6分 (Ⅱ)由(Ⅰ),得()()11111111292292112n n a a n n n n +⎛⎫==- ⎪----⎝⎭, 1111111111......27957921122929n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,令192n b n =-,由函数()192f x x=-的图象关于点()4.5,0对称及其单调性,知12340b b b b <<<<,567...0b b b <<<<,41n b b ∴≤=.1141299n T ⎛⎫∴≤-= ⎪⎝⎭………12分7、(Ⅰ)解:设数列{a n }的公比为q ,则错误!未找到引用源。
2017年高考试题分类汇编(数列)
2017年高考试题分类汇编(数列)考点1 等差数列1.(2017·全国卷Ⅰ理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 CA .1B .2C .4D .82.(2017·全国卷Ⅱ理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 21n n + 3.(2017·浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是 “465+2S S S >”的 CA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 考点2等比数列1.(2017·全国卷Ⅲ理科)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =____.8-2.(2017·江苏卷)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = . 32 3.(2017·全国卷Ⅱ理科)我国古代数学名著《算法统宗》中有如下问题:“远 望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是: 一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍, 则塔的顶层共有灯 BA .1盏B .3盏C .5盏D .9盏 考法3 等差数列与等比数列综合1.(2017·全国卷Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为 AA .24-B .3-C .3D .82.(2017·北京理科)若等差数列{}n a 和等比数列{}n b 满足11a b ==-,44a b =8=,则22a b =____. 1 3.(2017·全国卷Ⅰ文科)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (Ⅰ)求{}n a 的通项公式;(2)n n a =-(Ⅱ)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.4.(2017·全国卷Ⅱ文科)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的 前n 项和为n T .11a =-,11b =,222a b +=.(Ⅰ)若335a b +=,求{}n b 的通项公式; 12n n b -= (Ⅱ)若321T =,求3S . 321S =或36S =-.5.(2017·北京文科)已知等差数列{}n a 和等比数列{}n b 满足111a b ==,24a a +10=,245b b a ⋅=.(Ⅰ)求{}n a 的通项公式;21n a n =- , (Ⅱ)求和:13521n b b b b -++++.312n T -=.6.(2017·天津理科)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首 项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; 32n a n =-,2n n b = (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 1328433n n n T +-=⨯+ 7.(2017·天津文科)已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首 项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; 32n a n =-,2n n b = (Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N . 2(34)216n n T n +=-⨯+8.(2017·山东理科)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=.(Ⅰ)求数列{}n x 的通项公式; 12n n x -=(Ⅱ)如图,在在平面直角坐标xOy 中,依次连接点11(,1)P x ,22(,1)P x ,,11(,1)n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域面积n T .1211222n n n T --=⨯+9.(2017·山东文科)已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =.(Ⅰ)求数列{}n a 通项公式; 2n n a =(Ⅱ){}n b 为各项非零的等差数列,其前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 15(25)()2n n T n =-+⨯考法4 一般数列1.(2017·全国卷Ⅲ文科)设数列{}n a 满足123(21)2n a a n a n +++-=.(Ⅰ)求{}n a 的通项公式;221n a n =- (Ⅱ)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 221n n S n =+。
普通高中2017高考高三数学第一次模拟试题精选:数列04含答案
数列045、设3x x f =)(,等差数列{}n a 中73=a ,12321=++a a a ,记n S =()31+n a f ,令n n n S a b =,数列}1{nb 的前n 项和为n T . (1)求{}n a 的通项公式和n S ;(2)求证:31<n T ;(3)是否存在正整数n m ,,且n m <<1,使得n m T T T ,,1成等比数列?若存在,求出n m ,的值,若不存在,说明理由.【答案】解:(1)设数列{}n a 的公差为d ,由7213=+=d a a , 12331321=+=++d a a a a .解得11=a ,d =3 , ……………2分 ∴23-=n a n ……………4分∵3x x f =)(, ∴S n =()31+n a f =131+=+n a n . ……………6分(2))13)(23(+-==n n S a b n n n∴)131231(31)13)(23(11+--=+-=n n n n b n ……………8分 ∴31)1311(31<+-=n T n ……………10分(3)由(2)知,13+=n n n T ∴13,411+==m m T T m ,13+=n n n T ,∵n m T T T ,,1成等比数列. ∴ 1341)13(2+=+n n m m ……………12分 即n n m m 4312+=+6当1=m 时,7n n 43+=,n =1,不合题意;当2=m 时,413n n 43+=,n =16,符合题意; 当3=m 时,919n n 43+=,n 无正整数解;当4=m 时,1625n n 43+=,n 无正整数解; 当5=m 时,2531n n 43+=,n 无正整数解;当6=m 时,3637n n 43+=,n 无正整数解; ……………15分当7≥m 时,010)3(1622>--=--m m m ,则1162<+m m ,而34343>+=+n n n ,所以,此时不存在正整数m,n,且1<m<n,使得n m T T T ,,1成等比数列. ……………17分综上,存在正整数m=2,n=16,且1<m<n,使得n m T T T ,,1成等比数列. ……………18分另解:(3)由(2)知,13+=n n n T ∴13,411+==m m T T m ,13+=n n n T ∵n m T T T ,,1成等比数列. ∴ 21()31431m n m n =⋅++, ……………12分 取倒数再化简得n n mm 4312+=+6 当2=m 时,413n n 43+=,n =16,符合题意; ……………14分 2221161611193,0,39339m m m m m m m +⎛⎫≥<≤=+=+-≤< ⎪⎝⎭时, 而34343>+=+nn n , 所以,此时不存在正整数m 、n , 且1<m<n,使得n m T T T ,,1成等比数列. ……………17分 综上,存在正整数m=2,n=16,且1<m<n,使得n m T T T ,,1成等比数列. ……………18分6、设等差数列}{n a 的前n 项和为n S ,且34135=+a a ,93=S .数列}{n b 的前n 项和为n T ,满足n n b T -=1.(1)求数列}{n a 的通项公式;(2)写出一个正整数m ,使得91+m a 是数列}{n b 的项;(3)设数列}{n c 的通项公式为ta a c n n n +=,问:是否存在正整数t 和k (3≥k ),使得1c ,2c ,k c 成等差数列?若存在,请求出所有符合条件的有序整数对),(k t ;若不存在,请说明理由.【答案】(1)设数列}{n a 的首项为1a ,公差为d ,由已知,有⎩⎨⎧=+=+9333416211d a d a ,……(2分)解得11=a ,2=d ,…………(3分)所以}{n a 的通项公式为12-=n a n (*N ∈n ).…………(4分)(2)当1=n 时,1111b T b -==,所以211=b .……(1分) 由n n b T -=1,得111++-=n n b T ,两式相减,得11++-=n n n b b b , 故n n b b 211=+,……(2分) 所以,}{n b 是首项为21,公比为21的等比数列,所以n n b ⎪⎭⎫ ⎝⎛=21.……(3分) )4(2182191+=+=+m m a m ,…………(4分) 要使91+m a 是}{n b 中的项,只要n m 24=+即可,可取4=m .…………(6分) (只要写出一个m 的值就给分,写出42-=n m ,*N ∈n ,3≥n 也给分)(3)由(1)知,tn n c n +--=1212,…………(1分) 要使1c ,2c ,k c 成等差数列,必须k c c c +=122,即tk k t t +--++=+12121136,…………(2分) 化简得143-+=t k .…………(3分) 因为k 与t 都是正整数,所以t 只能取2,3,5.…………(4分)当2=t 时,7=k ;当3=t 时,5=k ;当5=t 时,4=k .…………(5分) 综上可知,存在符合条件的正整数t 和k ,所有符合条件的有序整数对),(k t 为: )7,2(,)5,3(,)4,5(.…………(6分)7、等比数列....{}n c 满足11410-+⋅=+n n n c c ,*N n ∈,数列{}n a 满足n a n c 2=(1)求{}n a 的通项公式;(5分)(2)数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.求n n T ∞→lim ;(5分)(3)是否存在正整数(),1m n m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.(6分)【答案】解:(1)解:40,103221=+=+c c c c ,所以公比4=q 2分 10411=+c c 计算出21=c 3分 121242--=⋅=n n n c 4分 12-=∴n a n 5分(2)11122121n b n n ⎛⎫=- ⎪-+⎝⎭6分 于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦ 8分 n n T ∞→lim =21 10分(3)假设否存在正整数(),1m n m n <<,使得1,,m n T T T 成等比数列,则2121321m n m n ⎛⎫=⋅ ⎪++⎝⎭, 12分 可得2232410m m n m -++=>,由分子为正,解得1122m -<<+由,1m N m *∈>,得2m =,此时12n =, 当且仅当2m =,12n =时,1,,m n T T T 成等比数列。
福建省各地2017届高三最新考试数学理试题分类汇编:数列含答案
福建省各地2017届高三最新考试数学理试题分类汇编数学科网列 2017.03一、选择、填空题1、(福建省2017年普通高中毕业班单科质量检查模拟)设}{na 是公差为正数的等差数列,若321321,15a a a a a a =++=80,则131211a a a ++= (A )120 (B )105 (C )90 (D )75 2、(福建省2017年普通高中毕业班单科质量检查模拟)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列11111,,,,,234n. ①第二步:将数列①的各项乘以2n ,得到一个新数列1234,,,,,n a a a a a .则1223341n n a aa a a a a a -++++= .3、(漳州市八校2017届高三上学期期末联考) 等差数列{}na 中,nS 是前n 项和,且k S S S S==783,,则k 的值为( )A.4B.11C.2D. 124、(漳州市八校2017届高三下学期2月联考)等比数列{}n a 的前n 项和为nS ,若32S=,618S=,则105SS 等于( ) A .—3 B .5 C .-31 D .335、(漳州市八校2017届高三下学期2月联考)已知数列}{na 与}{nb 满足)(32*∈+=N n b an n,若}{n b 的前n 项和为)13(23-=n n S 且λλ3)3(36+-+>n b a n n 对一切*∈N n 恒成立,则实数λ的取值范围是 。
6、(福建省“永安、连城、华安、漳平一中等”四地六校2017届高三第二次(12月)月考)已知等差数列{}na 前9项和为27,()1099=8=aa ,则A . 100B 。
99 C. 98 D. 977、(福建省八县(市)一中联考2017届高三上学期期中)已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1598a a a ⋅⋅=-,2586b b b π++=,则4637cos 1b b a a +-⋅的值是( )A 。
2017年高考数学试题分类汇编之数列(精校版)
2017年高考试题分类汇编之数列一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1. (2017年新课标Ⅰ) 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )1.A2.B 4.C 8.D2.( 2017年新课标Ⅱ卷理) 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )1.A 盏 3.B 盏 5.C 盏 9.D 盏3.(2017年新课标Ⅲ卷理) 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为( ) 24.-A 3.-B 3.C 8.D4. (2017年浙江卷) 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是 “5642S S S >+”的( ).A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.(2017年新课标Ⅰ) 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家 学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )440.A 330.B 220.C 110.D二、填空题(将正确的答案填在题中横线上)6. (2017年北京卷理) 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a , 22a b =_______. 7.(2017年江苏卷)等比数列的各项均为实数,其前项和为,已知,则=_______________.{}n a n n S 3676344S S ==,8a8.( 2017年新课标Ⅱ卷理) 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk k S ==∑ . 9.(2017年新课标Ⅲ卷理)设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __.三、解答题(应写出必要的文字说明、证明过程或演算步骤)10.( 2017年新课标Ⅱ文)已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n(1)若533=+b a ,求}{n b 的通项公式; (2)若213=T ,求3S .11.(2017年新课标Ⅰ文) 记n S 为等比数列{}n a 的前n 项和,已知.6,232-==S S(1)求{}n a 的通项公式; (2)求n S ,并判断21,,++n n n S S S 是否成等差数列。
2017高考模拟试卷理数及答案
高三(2017届)数学模拟试题(理科)第Ⅰ卷(共60分)一、选择题:(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.设集合A={x|x 2﹣2x ﹣3<0},B={x|y=lnx},则A ∩B=( )A (0,3)B (0,2)C (0,1)D (1,2) 2. 复数z=i 2(1+i)的虚部为( )A. 1B. iC. -1D. - i{}n a 中,4a 与14a 的等比中项为22,则27211log log a a +的值 为( )A .4B .3C .2D .1 4.在四边形ABCD 中,“AB =2DC ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 5.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0, |φ|<2π)的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(3πx -6π B.f (x )=5sin(6πx -6π)C.f (x )=5sin(3πx +6π) D. f (x )=5sin(6πx +6π)6.如右图所示的程序框图,若输出的88S =,则判断框内应填入的条件是( )A .3?k >B .4?k >C .5?k >D .6?k >7. 设323log ,log 3,log 2a b c π===,则( )A.a b c >>B.a cb >>C.b ac >> D. b c a >>8.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )x -5y O 5 2 5A .433 B .533 C .23 D .833x y 、满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-1,则实数m =( )A .6B .5C .4D .3 10.函数()2sin f x x x =+的部分图象可能是( )11. 已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率为3的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为A .95 B. 75 C. 58 D. 6512、已知定义在R 上的可导函数f(x)的导函数为/()f x ,满足/()f x <()f x ,且()(2)f x f x -=+,(2)1f =,则不等式()x f x e <的解集为( )A. ()2,-+∞B. (0,+∞)C.(1, +∞)D.(2, +∞)第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4个小题,每小题5分,共20分). 13. (4y x 的展开式中33x y 的系数为 。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:数列01 Word版含答案
数列011、若函数()f x 满足)9(2)10(+=+x f x f ,且1)0(=f ,则=)10(f _ 【答案】102【 解析】令9x t +=,则9x t =-,所以由)9(2)10(+=+x f x f 得(1)2()f t f t +=,即(1)2()f t f t +=,即数列{()}f t 的公比为 2 不设1(0)a f =,则有11(10)a f =,所以由10111a a q =,即10112a =,所以10(10)2f =。
2、等差数列{}n a 中,67812a a a ++=,则该数列的前13项的和13S = 【答案】52【解析】在等差数列,67812a a a ++=得7312a =,即74a =。
所以11371313()1321345222a a a S +⨯===⨯=。
3、若等差数列}{n a 的前n 项和为n S ,1442=+a a ,770S =,则数列}{n a 的通项公式为 【答案】32n a n =-(*N n ∈)【 解析】在等差数列中,设公差为d ,则由2414a a +=,770S =得12414a d +=,71767702S a d ⨯=+=,即1310a d +=,解得11,3a d ==,所以13(1)n a n n =+-=-*N n ∈。
4、若三个互不相等的实数成等差数列,适当交换这三个数的位置后变成一个等比数列,则此等比数列的公比为 (写出一个即可). 【答案】21-2或-【 解析】设三个互不相等的实数为,,a d a a d -+。
(d ≠0) 交换这三个数的位置后: ①若a 是等比中项,则222()()a a d a d a d =-+=-,解得d=0,不符合; ②若a d -是等比中项则2()()a d a a d -=+,解得3d a =,此时三个数为,2,4a a a -,公比为﹣2或三个数为4,2,a a a -,公比为12-. ③若a+d 是等比中项,则同理得到公比为2-,或公比为12-. 所以此等比数列的公比是2-或12-5、正六边形111111F E D C B A 的边长为1,它的6条对角线又围成了一个正六边形222222F E D C B A ,如此继续下去,则所有这些六边形的面积和是 .【 解析】在Rt △A 1B 1A 2中,∠A 1B 1A 2=30︒,A 1B 1=1,∴A 1A 2=31= A 2F 2,又易知这些正六边形的边长组成等比数列,公比为31=q ,故所有所有这些六边形的面积和=211q s -=43911631243=-⨯⨯。
2017年上海高三数学各区一模试题-数列专题
2017年上海高三数学各区一模试题-数列专题1.(2017宝山区一模)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有 项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列, 则2668型标准数列的个数为 32.(2017宝山区一模)设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;3.(2017崇明县一模)实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+构成的数列( D )A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列4.(2017崇明县一模) 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和;(1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式;(2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式;(3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;解:(1)12n b =;(2)1n a n =+;(3)略; 5.(2017金山区一模)若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 2 6.(2017金山区一模)数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a与1i a +之间插入i 个(1)ii b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和;(3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由; 解:(1)n b n =;(2)201822033134+;(3)不存在;7.(2017虹口区一模)若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 2 8.(2017虹口区一模)已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ; 解:(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;9.(2017闵行区一模)已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=, 数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无 数次,则满足要求的1b 的值为 210.(2017松江区一模)已知数列{}n a 满足11a =,23a =,若1||2nn n a a +-=*()n N ∈,且21{}n a -是递增数列,2{}n a 是递减数列,则212limn n na a -→∞= 12-11.(2017松江区一模)如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时,试判断数列{}n c 是否为“H 型数列”,并说明理由;解:(1)1(,0)(,)2-∞+∞;(2)不存在; (3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;12.(2017浦东新区一模)设数列{}n a 满足21241n n a a n n +=+-+,22n n b a n n =+-; (1)若12a =,求证:数列{}n b 为等比数列;(2)在(1)的条件下,对于正整数2、q 、r (2)q r <<,若25b 、q b 、r b 这三项经适当 排序后能构成等差数列,求符合条件的数组(,)q r ; (3)若11a =,n n c bn =+,n d =n M 是n d 的前n 项和,求不超过2016M 的最大整数; 解:(1)12n n b -=;(2)(3,5);(3)2016;13.(2017青浦区一模)已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其中k 为不等于0与1的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件的1a 所有可能值的和为 22010314.(2017青浦区一模)如图,已知曲线12:1x C y x =+(0x >)及曲线21:3C y x=(0x >),1C 上的点1P 的横坐标为1a (1102a <<),从1C 上的点n P (*n N ∈)作直线平行于x 轴,交曲线2C 于n Q点,再从2C 上的点n Q (*n N ∈)作直线平行于y 轴,交曲线1C 于1n P +点,点n P (1,2,3,n =⋅⋅⋅)的横坐标构成数列{}n a ; (1)求曲线1C 和曲线2C 的交点坐标; (2)试求1n a +与n a 之间的关系; (3)证明:21212n n a a -<; 解:(1)12(,)23;(2)116n n na a a ++=;(3)略;15.(2017奉贤区一模)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为 516.(2017奉贤区一模)设数列{}n a 的前n 项和为n S ,若1122n na a +≤≤ *()n N ∈,则称{}n a 是“紧密数列”;(1)若11a =,232a =,3a x =,44a =,求x 的取值范围; (2)若{}n a 为等差数列,首项1a ,公差d ,且10d a <≤,判断{}n a 是否为“紧密数列”;(3)设数列{}n a 是公比为q 的等比数列,若数列{}n a 与{}n S 都是“紧密数列”,求q 的 取值范围;解:(1)[2,3];(2)是;(3)1[,1]2;17.(2017嘉定区一模)若数列{}n a23n n=+(*n N ∈),则1221lim()231n n a a a n n →∞++⋅⋅⋅+=+ 218.(2017嘉定区一模)已知无穷数列{}n a 的各项都是正数,其前n 项和为n S ,且满足:1a a =, 11n n n rS a a +=-,其中1a ≠,常数r N ∈;(1)求证:2n n a a +-是一个定值;(2)若数列{}n a 是一个周期数列(存在正整数T ,使得对任意*n N ∈,都有n T n a a +=成立,则称{}n a 为周期数列,T 为它的一个周期),求该数列的最小周期; (3)若数列{}n a 是各项均为有理数的等差数列,123n n c -=⋅(*n N ∈),问:数列{}n c 中的所有项是否都是数列{}n a 中的项?若是,请说明理由,若不是,请举出反例; 解:(1)2n n a a r +-=;(2)2T =;(3)不是;19.(2017普陀区一模)已知数列{}n a 的各项均为正数,且11a =,对任意的*n N ∈,均有2114(1)n n n a a a +-=⋅+,22log (1)1n n b a =+-;(1)求证:{1}n a +是等比数列,并求出{}n a 的通项公式;(2)若数列{}n b 中去掉{}n a 的项后,余下的项组成数列{}n c ,求12100c c c ++⋅⋅⋅+; (3)设11n n n d b b +=⋅,数列{}n d 的前n 项和为n T ,是否存在正整数m (1m n <<),使得1T 、m T 、n T 成等比数列,若存在,求出m 的值,若不存在,请说明理由;解:(1)21nn a =-;(2)11202;(3)2m =,12n =;20.(2017徐家汇区一模)已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n nS b n =⋅*()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是 [0,1) 21.(2017徐家汇区一模)正数数列{}n a 、{}n b 满足:11a b ≥,且对一切2k ≥,k N *∈,ka 是1k a -与1kb -的等差中项,k b 是1k a -与1k b -的等比中项; (1)若22a =,21b =,求1a 、1b 的值;(2)求证:{}n a 是等差数列的充要条件是n a 为常数数列; (3)记||n n n c a b =-,当2n ≥,n N *∈,指出2n c c ++与1c 的大小关系并说明理由; 解:(1)12a =12b =(2)略;(3)21n c c c ++<;。
广州市普通高中2017届高三第一次模拟数学备考试题精选:数列
广州市普通高中2017届高三第一次模拟数学备考试题精选:数列1、若函数()f x 满足)9(2)10(+=+x f x f ,且1)0(=f ,则=)10(f _ 【答案】102【 解析】令9x t +=,则9x t =-,所以由)9(2)10(+=+x f x f 得(1)2()f t f t +=,即(1)2()f t f t +=,即数列{()}f t 的公比为 2 不设1(0)a f =,则有11(10)a f =,所以由10111a a q =,即10112a =,所以10(10)2f =。
2、等差数列{}n a 中,67812a a a ++=,则该数列的前13项的和13S = 【答案】52【解析】在等差数列,67812a a a ++=得7312a =,即74a =。
所以11371313()1321345222a a a S +⨯===⨯=。
3、若等差数列}{n a 的前n 项和为n S ,1442=+a a ,770S =,则数列}{n a 的通项公式为【答案】32n a n =-(*N n ∈)【 解析】在等差数列中,设公差为d ,则由2414a a +=,770S =得12414a d +=,71767702S a d ⨯=+=,即1310a d +=,解得11,3a d ==,所以13(1)n a n n =+-=-*N n ∈。
4、若三个互不相等的实数成等差数列,适当交换这三个数的位置后变成一个等比数列,则此等比数列的公比为 (写出一个即可). 【答案】21-2或- 【 解析】设三个互不相等的实数为,,a d a a d -+。
(d≠0) 交换这三个数的位置后:①若a 是等比中项,则222()()a a d a d a d =-+=-,解得d=0,不符合; ②若a d -是等比中项则2()()a d a a d -=+,解得3d a =,此时三个数为,2,4a a a -,公比为﹣2或三个数为4,2,a a a -,公比为12-. ③若a+d 是等比中项,则同理得到公比为2-,或公比为12-. 所以此等比数列的公比是2-或12-5、正六边形111111F E D C B A 的边长为1,它的6条对角线又围成了一个正六边形222222F E D C B A ,如此继续下去,则所有这些六边形的面积和是 .【 解析】在Rt △A 1B 1A 2中,∠A 1B 1A 2=30︒,A 1B 1=1,∴A 1A 2=31= A 2F 2,又易知这些正六边形的边长组成等比数列,公比为31=q ,故所有所有这些六边形的面积和=211qs -=43911631243=-⨯⨯。
2017高考数学数列经典例题
高考数学数列经典例题(一)高考数学数列经典例题(一)高考数学数列知识点数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…。
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。
如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。
数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。
在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列。
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列。
数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一。
山东省13市2017届高三最新考试数学理试题分类汇编:数列 Word版含答案
山东省13市2017届高三最新考试数学理试题分类汇编数列2017.03一、选择、填空题1、(聊城市2017届高三高考模拟(一))已知数列{}n a 为等差数列,且1251,5,8a a a ≥≤≥,设数列{}n a 的前n 项和为S ,15S 的最大值为M ,最小值为m ,则M m + ( ) A .500 B .600 C. 700 D .8002、(青岛市2017年高三统一质量检测)已知1x >,1y >,且lg x ,14,lg y 成等比数列,则xy 有A .最小值10 BC .最大值10D二、解答题QQ 请到学科网下载,不要放到群1、(滨州市2017届高三下学期一模考试) 已知数列{}n a 满足22,,2,n n n a n a n N a n +++⎧⎪=∈⎨⎪⎩为奇数为偶数,且121,2a a ==.(1)求数列{}n a 的通项公式;(2)令1(1),n n n n b a a n N ++=-∈,求数列{}n b 的前n 项和n S .2、(德州市2017届高三第一次模拟考试)已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n N +∈,21n b n =-,且12a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1nn n n na cb -=,n T 为数列{}nc 的前n 项和,求n T .3、(菏泽市2017年高考一模)在数列{a n }中,a 1=1,=+(n ∈N*).(1)求数列{a n }的通项公式;(2)设b n =1+a(n ∈N*),求数列{2nb n }的前n 项和S n .4、(济宁市2017届高三第一次模拟(3月))已知数列{}n a 的前n 项和为n S ,且满足()22n n S a n N *=-∈,数列{}n b 为等差数列,且满足2183,b a b a ==.(I)求数列{}n a ,{}n b 的通项公式; (II)令()111n n n c a +=--,关于k 的不等式()40971100,k c k k N *≥≤≤∈的解集为M ,求所有()k k a b k M +∈的和S .5、(聊城市2017届高三高考模拟(一))设,n n S T 分别是数列{}n a 和{}n b 的前n 项和,已知对于任意*n N ∈,都有323n n a S =+,数列{}n b 是等差数列,且51025,19T b ==. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设()1n nn a b c n n =+,数列{}n c 的前n 项和为R ,求使n R >2017成立的n 的取值范围.6、(临沂市2017届高三2月份教学质量检测(一模))已知数列{}n a 的前n 项和为n S ,且()21n n S a n n N *=+-∈.(I)求数列{}n a 的通项公式;(II)定义[]x x x =+,其中[]x 为实数x 的整数部分,x 为x 的小数部分,且01x ≤<,记1n n n na a c S +=,求数列{}n c 的前n 项和n T .7、(青岛市2017年高三统一质量检测)已知数列{}n a 的前n 项和为n S ,11a =,且121n n a S +=+,N n *∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令32log n n c a =,21n n n b c c +=⋅ ,记数列{}n b 的前n 项和为n T ,若对任意N n *∈,n T λ<恒成立,求实数λ的取值范围.8、(日照市2017届高三下学期第一次模拟)已知数列{}n a 满足1111,14n na a a +==-,其中n N +∈.(I)设221n n b a =-,求证:数列{}n b 是等差数列,并求出数列{}n a 的通项公式;(II)设41n n a c n =+,数列{}2n n c c +的前n 项和为n T ,是否存在正整数m ,使得11n m m T c c +<对于n N +∈恒成立,若存在,求出m 的最小值,若不存在,请说明理由.9、(泰安市2017届高三第一轮复习质量检测(一模))若数列{}n a 是公差为2的等差数列,数列{}n b 满足1211,2n n n n b b a b b nb +==+=且 (I)求数列{}{}n n a b 、的通项公式; (Ⅱ)设数列{}n c 满足11n n n a c b ++=,数列{}n c 的前n 项和为n T ,若不等式()1nn T λ-<12n n -+对一切n N *∈都成立,求实数λ的取值范围.10、(潍坊市2017届高三下学期第一次模拟) 已知数列{}n a 是等差数列,其前n 项和为n S 。
2017高考数学专题数列全
所以an=
(k∈N*).
(2)S2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n) =(1+3+5+…+2n-1)+(2×30+2×31+…+2×3n-1)
第三十四页,共47页。
命题角度二 裂项相消求和 【典题3】已知等差数列{an}的前n项和为Sn,S5=35,a5和a7的等差中项为
第八页,共47页。
【答案】(Ⅰ)设{an}的公差为 d,据已知有 7+21d=28,解得 d=1. 所以{an}的通项公式为 an=n. b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2. (Ⅱ)因为 bn=
所以数列{bn}的前 1 000 项和为 1×90+2×900+3×1=1 893.
D.Sn=3-2an
【解析】选D.因为等比数列的首项为1,公比为 ,
2
3
所以Sn=3-2an.
第十四页,共47页。
2.(2016·绍兴模拟)已知等差数列{an}的前n项和为Sn,且
a3+a8=13,S7=35,则a7= ( )
A.8
B.9 C.10
D.11
【解析】选A.由已知条件可得,
所以a7=a1+6d=2+6×1=8.
n
(2)看到前n项和形式,想到_________________.
第二十三页,共47页。
【规范解答】(1)选A.an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =lnn-ln(n-1)+ln(n-1)-ln(n-2)+…+ln2-ln1+2=2+lnn. (2)当n≥2时,Sn=2an=2(Sn-Sn-1),Sn=2Sn-1,S1=2, 所以Sn=2n,所以an=
2017年高考数学模拟试题与答案(理科)
正视图 俯视图侧视图2017年高考数学模拟试题与答案(理科)( 满分150分,时长120分钟)说明:本试卷由第Ⅰ卷和第Ⅱ卷组成。
第Ⅰ卷为选择题,第Ⅱ卷为非选择题,将答案写在答题纸上,在本试卷上答题无效。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共有12小题,每小题5分,共60分。
在每小题所给出的四个选项中有且只有一个选项是符合题目要求的1. 集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A∩B={-1},则a 的值是 A .2 B .0 或1 C .-1 D .02. 若(x -i )i =y +2i ,x ,y ∈R ,则复数x +y i =A .2+iB .-2+iC .1+2iD .1-2i 3. 由代数式的乘法法则类比推导向量的数量积的运算法则:①“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”; ②“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”; ③“(m+n)t =mt +nt”类比得到“(a+b)·c=a·c+b·c”; ④“t≠0,mt =xt ⇒m =x”类比得到“p≠0,a·p=x·p ⇒a =x”; ⑤“mn=nm”类比得到“a·b=b·a”; ⑥“ac bc =a b ”类比得到“a·c b·c =a b”.以上的式子中,类比得到的结论正确的个数是 A .1 B .2 C .3 D .4 4. 如图是某几何体的三视图,则该几何体的体积为A. 83B. 435.下列函数在其定义域上既是奇函数又是减函数的是A.()2x f x =B.()sin f x x x =C. 1()f x x=D.x x x f -=)( 6. 设,6.0log ,4.0log ,2.0log 3.02.01.0===c b a 则A. a>c>bB. a>b>cC.b>c>aD.c>b>a 7. 执行如图所示程序框图,则输出的S = A.-2012 B. 2012 C. -2013 D. 20138. 若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02且y x z +=2的最小值为4,则实数b 的值为9. 等差数列{}n a 前n 项和为n S ,且20162015120162015S S =+,则数列{}n a 的公差为 A .2017 B .2016 C .2 D .110. 已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线3y x =上,则sin(2)3πθ+=A. B. CD11. 我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有A .28个B .21个C .35个 D.56个12. 已知函数2,0,()4,0x a x f x x x x ⎧+≤⎪=⎨+>⎪⎩有最小值,则实数a 的取值范围是 A .(4,)+∞ B .(,4]-∞ C .[4,)+∞ D .(,4)-∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分. 共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017全国模拟卷解析(数列汇总)
一、选择题
1、(徽.文)《九章算术》有这样一个问题:今有织女善织,日増等尺。
七日织二十一尺,第二日、第五日、第八日所织之和为一十五尺,问第十日所织尺数为(D ) A 、6 B 、9 C 、12 D 、15
2、(广东.理)等比数列
{}n
a 的前n 项和为n s ,若032=+s a ,则公比q=(A )
A 、-1
B 、1
C 、-2
D 、2
3、已知数列
{}n
a 满足01
=a
,且1121+++=+n n n a a a ,则13
a
=(C )
A 、142
B 、156
C 、168
D 、195 (贵州.理)
解
析
:
由
1
121+++=+n n n a a a 可得
2
1)11(1++=++n n a a ,
1111++=++n n a a ,且01=a 。
{}1+n
a 是以1为首项公差为1的等差数列,求
得12-=n a n ,16813=a
4、在正项等比数列
{}n
a 中,存在两项m a 、n a 使得
14a a a n m =,且
4562a a a +=,则
n
m 4
1+的最小值是(A ) (贵州.文) A 、3/2 B 、2 C 、7/3 D 、25/6
解析:由4562a a a +=得44242a q a q a +=,解得q=2或q=-1(舍去),14a a a n m = 得4222=-+n m ,即m+n=6,
16
6=+n
m 成立;所以 2
366426566465664141=⨯+≥++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+m n n m m n n m n m n m n m
5、(河北.文)已知等差数列{}n
a 的前n 项和为n s ,且201
-=a 。
在区间(3,5)
内任取一个数作为数列
{}n
a 的公差,则n s 的最小值为6s 的概率为( D )
A 、1/5
B 、1/6
C 、3/14
D 、1/3
解析:n s 的最小值为6s ,有05206<+-=d a ,06207>+-=d a ,解得
43
10
<<d 3/135/3104=-⎪⎭⎫ ⎝
⎛
-
6、(河北.理)在明朝陈大位《算法统宗》中有这样一首歌谣:远看魏巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯。
这首古诗描述的佛塔古称浮屠,本题说它一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,请问塔顶有几盏灯?(A )
A 、3
B 、4
C 、5
D 、6
7、(湖南.文)已知n s 是数列{}n
a 的前n 项和,31
++=+n n n a s s
,且2354=+a a ,
则=8s (C )
A 、72
B 、88
C 、92
D 、98
解析:311+=-=++n n n n a s s a ,得{}n a 是公差为3的等差数列,
()924548=+=a a s
8、(湖南.理)已知数列{}n a 、
{}n b 满足11=a ,且n a 、
1+n a 为方程022=+-n n x b x
的两个根。
则=10b ( D)
A 、24
B 、32
C 、48
D 、64
解析:韦达定理得n n n a a 21=⨯+,可推知1
212+++=⨯n n n a a ,两式相除得
22
=+n
n a a ,又由11=a ,得22=a 。
可知数列{}n a 奇数项、偶数项分别成公比为2的等比数列。
1++=n n n a a b ,643232111010=+=+=a a b
9、(湖北.理)《九章算术》:今有墙厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?(A )
A 、4
B 、5
C 、2
D 、3
10、(河南)已知各项均不为零的等差数列{}n a 满足02
1127
3=+-a a a ,数列{}n b 为等比数列,且77a b =,则=⨯131b b (B )
A 、25
B 、16
C 、8
D 、4
解析:由0211273=+-a a a ,得02
2277=-a a ,477==a b ,162
7131==⨯b b b
11、(哈尔滨.文)已知数列{}n a 为等比数列,其前n 项和为n s ,公比q>0。
2222a s =+,432a s =+,则=6a (C )
A 、16
B 、32
C 、64
D 、128
解析:324232a a a s s =-=-,得022=--q q ,解得q=2或q=-1(舍去);又
2222a s =+得212a a =+,即1122a a =+,求得21=a ;642516=⨯=a a
12、(大庆市.理)等差数列{}n a 的公差为d ,关于x 的不等式
02212≥+⎪⎭⎫
⎝
⎛-+c x d a x d 的解集是[0,22],则使得数列{}n a 的前n 项和最大的正整数n 为(A ) A 、11 B 、12 C 、13 D 、不确定
解析:解集是[0,22],有韦达定理可知⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛
--=+2/22201d d a ,解得d a 2
211-=即02
21
1=+d a ,所以010111>+=d a a ,011112<+=d a a。