成都中考数学考点

合集下载

2020年成都中考数学中考点对点 21代数求值 - 答案

2020年成都中考数学中考点对点  21代数求值 - 答案

中考点对点 21代数求值 答案班级:__________ 姓名:____________考点一、条件求值1. 已知2a b +=,则22a ab b ++=___________.法1.(逐步代入)()222224a ab b a a b b a b ++=++=+=法2.(消元代入)2a b =-,()()2222224a ab b b b b b ++=-+-+= 法3.(特值代入)取1a b ==,或0,2a b ==2. 已知2222(2)(3)12a b a b ++++=,则22a b +=_____________.答案:13. 已知1x =,则3222x x ++= ,分析:易知()213x +=,222x x +=;()32221222x x x x x x ++=+=+=4. 已知2310,x x -+=求441x x +=_________________。

【详解】2221129x x x x ⎛⎫+=++= ⎪⎝⎭,即2217x x +=,∴2242411249x x x x ⎛⎫+=++= ⎪⎝⎭,∴44147x x +=.5. 已知:,0x y >,且442224,180x y +=+=,则xy =_____________.116. 已知非零实数,,a b c |42|0a b c -+=,则a b b c +-=________.答案:577. 设,a b 同时满足:①2(2)|1|1a b b b -++=+;②30a b +-=,则ab =_____.分析:2,32,1a b a b a b =+=⇒==考点二、根系关系求值1.设α,β是一元二次方程x 2+3x ﹣7=0的两个根,则α2+4α+β=________.分析:α+β=﹣3,α2+3α﹣7=0,即α2+3α=7,然后代入可求解为:α2+4α+β=α2+3α+α+β=7﹣3=4, 故答案为4.2.已知a 是方程x 2﹣2018x +1=0的一个根a ,则a 2﹣2017a +220181a +的值为_____. 解析:根据题意可知:a 2﹣2018a+1=0,∴a 2+1=2018a ,a 2﹣2017a=a ﹣1,∴原式=a 2﹣2017a+1a =a ﹣1+1a =21a a +﹣1=2018﹣1=20173.已知a ,b 是方程x 2+x ﹣1=0的两根,则a 2+2a+1b的值是_____. 【详解】由题意得:a +b =﹣1,ab =﹣1,∴1b=﹣a ,∴a 是方程x 2+x ﹣1=0的根, ∴a 2+a ﹣1=0,即a 2+a =1,∴a 2+2a +1b=1+a ﹣a =1. 4.已知关于x 的方程x 2+(a ﹣6)x+a=0的两根都是整数,则a 的值等于_____.【详解】设两个根为x 1,x 2,且x 1≥x 2.由韦达定理得:12126x x a x x a+=-⎧⎨=⎩,从上面两式中消去a 得: x 1x 2+x 1+x 2=6,∴(x 1+1)(x 2+1)=7,∴121711x x +=⎧⎨+=⎩或1122116170x x x x +=-=⎧⎧∴⎨⎨+=-=⎩⎩,或1228x x =-⎧⎨=-⎩,∴a =x 1x 2=0或16. 故答案为:0或16.5.设实数s 、t 分别满足22199910,99190s s t t ++=++=,并且st≠1,求41st s t ++=___. 分析:由题意得s 与是方程的两个根,由根与系数的关系分别求出两根的和与两根的积,代入代数式即可求出结果.把方程转化为 ∴s 与是方程的两个根 ∴, ∴ 6.设1a =,b 为整数,方程2250ax x b ---=有两个负实数根,则b =________.【详解】设方程的两个根为x 1x 2,由根与系数的关系得出x 1+x 2=<0,x 1x 2=>0.因为│a │=1,所以a =﹣1.又因为方程有两个负实数根,则∆=b 2-4ac =﹣16-4b ≥0,所以b ≤﹣4.又因为﹣b -5>0,解得﹣5<b ,所以﹣5<b ≤﹣4.因为b 是整数,所以b =﹣4.7.关于x 的一元二次方程()()222120m x m x m -+++-=有两个不相等的正实数根,则m 的取值范围是____________【详解】12120,0,0x x x x ∆>+>> ∴221212(21)4(2)02102202m m m x x m m x x m ⎧⎪∆=+-->⎪+⎪+=->⎨-⎪-⎪=>⎪-⎩①② 由∴得:34m > 由∴得:122m -<< 故m 的取值范围是:324m <<8.已知,,a b c 是等腰ABC ∆的三条边,其中2b =,如果 ,a c 是关于y 的一元二次方程 260y y n -+=的两个根,则n 的值是__.解:当2b =为腰长时,将2y =代入原方程,得:4120n -+=,解得:8n =,此时原方程为y y -+=2680, 解得:12y =,24y =.2Q 、2、4不能围成三角形,8n ∴=不符合题意;当2b =为底长时,方程260y y n -+=有两个相等的实数根,∴∴2(6)40n =--=,9n ∴=,此时原方程为2690y y -+=,解得:123y y ==.2Q 、3、3能围成三角形,9n ∴=符合题意.故答案为:9.9.已知m 是方程x 2+x -1=0的根,则式子m 3+2m 2+2017的值为__________.【详解】因为m 是方程x 2+x -1=0的根,所以 m 2+m -1=0,所以 m 2=1-m ,所以m 3= m 2×m=(1-m) ×m=m - m 2= m -(1-m)=2m -1,所以m 3+2m 2+2017=2m -1+2(1-m)+2017=2018.10.若方程x 2﹣kx+6=0的两根分别比方程x 2+kx+6=0的两根大5,则k 的值是______.【解析】设方程x 2+kx+6=0的两根分别为a 、b ,则由方程x 2﹣kx+6=0的两根分别为a+5,b+5,根据一元二次方程根与系数的关系x 1+x 2=-b a ,x 1•x 2=c a,得a+b=﹣k ,a+5+b+5=k ,所以10﹣k=k ,解得k=5.11.关于x 的一元二次方程kx 2有两个不相等的实数根,那么k 的取值范围是_____. 解:∴关于x的一元二次方程220kx -+=有两个不相等的实数根,∴04104180k k k k ≠⎧⎪+≥⎨⎪+->⎩,解得:﹣14≤k <14且k ≠0.故答案为:﹣14≤k <14且k ≠0.12.已知函数2(1)22y a x ax a =--++的图象与两坐标轴共有两个交点,则a 的值为______. 解:∴当函数为一次函数时,即a -1=0,解得a=1;∴当函数为二次函数时(a≠1),与x 轴有一个交点,与y 轴有一个交点,∴x 轴有一个交点,.∴∴=(-2a )2-4(a+2)(a -1)=0,解得:a=2∴函数为二次函数时(a≠1),与x 轴有两个交点,与y 轴的交点和x 轴上的一个交点重合,即图像经过原点,∴a+2=0,a=-2.当a=-2,此时y=234x x -+,与坐标轴有两个交点.故答案为1,2或-2。

中考数学-热点02 二次函数图像与系数a,b,c之间关系(四川成都专用)(原卷版)

中考数学-热点02 二次函数图像与系数a,b,c之间关系(四川成都专用)(原卷版)

热点02二次函数图像与系数a,b,c之间关系二次函数图像与性质是四川成都中考数学的必考考点,常见以选填的形式,主要是函数与其系数之间关系等问题,一般出现在中考的第8题,以简单题为主,思路相对比较固定,但除了常规考法以外,日常练习中多注意新颖题目的考向。

【题型1图像与系数之间关系】a>A.0C.点B的坐标为()4,0【变式1-1】(2021·四川成都A .0abc >B .2【变式1-3】(2023·四川广安且点A 的横坐标是-2,点抛物线2y ax =的函数值都随着能是等边三角形;⑤当2-A .①②③B .【变式1-4】(2023·四川南充交点的横坐标分别为1x ,0204abc a b a <+<①②③A.2个B.3个C.4个D.5个【题型2二次函数与其他函数图像综合】....=的图象与一次函数a+的图象可能是(2-1】在同一坐标系中,二次函数y ax.B.B .C ..2-3】已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数b +的大致图象不可能是().B .C ..2-4】在同一平面直角坐标系中,一次函数y mx n =-的图象和二次函数2y mx nx =+的图象可能是.B ...(建议用时:30分钟)1.(2023·四川南充·四川省南充高级中学校考三模)如图,二次函数()20y ax bx c a =++≠的图象经过点()12,且与x 轴交点的横坐标分别为12x x ,,其中121012x x -<<<<,,下列结论:①0abc >.②20a b +<.③420a b c ++<.④248ac b a ->.⑤1a ≤-.其中,结论正确的个数有()A .2个B .3个C .4个D .5个2.(2023·四川成都·校考三模)已知抛物线()20y ax bx c a =++>,且1a b c ++=-,3a b c -+=-.则下列结论中错误的是()A .点()1,1-和()1,3--在抛物线上B .抛物线与x 轴负半轴必有一个交点C .0abc >D .当02x ≤≤时,y 的最大值为3a 3.(2023·四川成都·统考二模)二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论中正确的是()A .<0abc B .函数的最小值为a b c ++C .当13x -<<时,0y >D .420a b c ++>4.(2023·四川成都·模拟预测)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于A ,B 两点,与y 轴A.1个B.2 5.(2023·四川攀枝花·校考一模)抛物线A.2个B.3 7.(2023·四川成都·统考二模)如图,二次函数直线32x=-,根据图像判断以下说法正确的是(A .240b ac -<C .若0y >,则41x -<<8.(2023·四川广元·统考一模)如图,与y 轴的交点在()0,2和()0,3两点之间A .1B .29.(2023·四川南充·统考一模)二次函数A .1个11.(2023·四川成都在第二象限.下列说法正确的是(A .0a >C .240b ac -<12.(2023·四川成都·统考一模)如图,已知二次函数与y 轴的交点B 在(02-,②930a b c ++=;③4A .①③B .13.(2023·四川成都·校考二模)在平面直角坐标系()1,0A -和点B ,其顶点坐标为A .0abc <15.(2023·四川成都·坐标为(1,)n ,与y ①0abc >;②93a +A .①②⑤B .16.(2023·四川眉山·校考三模)如图,二次函数为(1)0,,对称轴为=1x -,结合图象给出下列结论:17.(2022·四川成都·校考一模)②3a +c >0;③4a +2b。

2023成都中考数学考点总结

2023成都中考数学考点总结

2023成都中考数学考点总结成都中考数学考点总结1.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半2.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h3(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d4.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d5.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b6.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例7.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例8.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边9.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例10.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似11.相似三角形判定定理1两角对应相等,两三角形相似(ASA)12.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似13.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)14.判定定理3三边对应成比例,两三角形相似(SSS)15.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似中考数学考点总结1.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项2.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项3.推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等4.如果两个圆相切,那么切点一定在连心线上5.①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)6.定理相交两圆的连心线垂直平分两圆的公共弦7.定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形8.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆9.正n边形的每个内角都等于(n-2)×180°/n10.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形11.正n边形的面积Sn=pnrn/2p表示正n边形的周长12.正三角形面积√3a/4a表示边长13.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=414.弧长计算公式:L=nπR/18015.扇形面积公式:S扇形=nπR/360=LR/216.内公切线长=d-(R-r)外公切线长=d-(R+r)中考数学考点1有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.2合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒. 5平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.6完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央; 首±尾括号带平方,尾项符号随中央.7因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.8单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.成都中考数学考点总结。

成都市中考数学必考重点题型

成都市中考数学必考重点题型
变式练习
1热气球的探测器显示,从热气球看一栋高楼顶部的仰角为 ,看这栋高楼底部的俯角为 ,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1m,参考数据: )
2为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛 北偏西 并距该岛 海里的 处待命.位于该岛正西方向 处的某外国商船遭到海盗袭击,船长发现在其北偏东 的方向有我军护航舰(如图9所示),便发出紧急求救信号.我护航舰接警后,立即沿 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置 处?
(1)试写出该商店前20天的日销售利润 (元)和后l0天的日销售利润 (元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.
注:销售利润=销售收入一购进成本.
变式练习
1由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金。他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价 (万元/台)与月次 ( 且为整数)满足关系是式: ,一年后发现实际每月的销售量 (台)与月次 之间存在如图所示的变化趋势.
B卷
(一)迭代法求值,整体代入求值
例题
已知y = x – 1,那么 x2– 2xy + 3y2– 2的值是.
变式练习
1.若 ,则 .
2: 则代数式 的值为。
(二)根与系数的关系
例题
已知实数 且 求 的值
变式练习

2024成都中考数学第一轮专题复习之第三章 第三节 函数的表达式(含平移) 知识精练(含答案)

2024成都中考数学第一轮专题复习之第三章 第三节 函数的表达式(含平移) 知识精练(含答案)

2024成都中考数学第一轮专题复习之第三章 第三节 函数的表达式(含平移) 知识精练 基础题1. (2023云南)若点A (1,3)是反比例函数y =k x(k ≠0)图象上一点,则常数k 的值为( ) A. 3 B. -3 C. 32 D. -322. (2022益阳)已知一个函数的因变量y 与自变量x 的几组对应值如下表,则这个函数的表达式可以是( )A. y =2xB. y =x -1C. y =2xD. y =x 2 3. 若二次函数的图象的顶点坐标为(2,-1),且该函数图象过点(0,3),则二次函数的表达式是( )A. y =-(x -2)2-1B. y =-12(x -2)2-1 C. y =(x -2)2-1 D. y =12(x -2)2-1 4. (北师九下P41习题第2题改编)若抛物线y =-x 2-2x +3经过平移后得到的新抛物线的顶点坐标为(2,5),则平移方式为( )A. 先向右平移3个单位长度,再向下平移1个单位长度B. 先向右平移3个单位长度,再向上平移1个单位长度C. 先向左平移3个单位长度,再向下平移1个单位长度D. 先向左平移3个单位长度,再向上平移1个单位长度5. 已知点A (-3,a ),B (5,a ),C (-8,a +b )(b <0)在同一个函数的图象上,则这个函数可能是( )A. y =2xB. y =-3xC. y =(x -1)2D. y =-12x 2+x +2 6. [新考法—结论开放](2023上海)一个二次函数y =ax 2+bx +c 的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是________.7. 若直线y =x 向下平移3个单位长度后经过点(2,m ),则m 的值为________.8. 若将抛物线平移,有一个点既在平移前的抛物线上,又在平移后的抛物线上,则称这个点为“平衡点”.现将抛物线C 1:y =(x -2)2-4向右平移m (m >0)个单位长度后得到新的抛物线C 2,若(4,n )为“平衡点”,则m 的值为________.拔高题9. 已知在平面直角坐标系中,O 为原点,等边△AOB 的边AO 在x 轴上,点A (4,0),点B 在第一象限,则经过等边△AOB 三个顶点的抛物线的函数表达式为________________.10. 如图所示,直线y 1=-43x 与双曲线y =k x交于A ,B 两点,点C 在x 轴上,连接AC ,B C.当AC ⊥BC ,S △ABC =15时,k 的值为________.第10题图参考答案与解析1. A 【解析】∵点A (1,3)在反比例函数y =k x(k ≠0)图象上,∴k =1×3=3. 2. A 【解析】根据表中数据可以看出:y 的值是x 值的2倍,∴y =2x .3. C 【解析】设这个二次函数的表达式为y =a (x -h )2+k ,∵二次函数的图象的顶点坐标为(2,-1),∴二次函数的表达式为y =a ·(x -2)2-1,把(0,3)代入得a =1,∴y =(x -2)2-1.4. B 【解析】∵y =-x 2-2x +3=-(x +1)2+4,∴平移前抛物线的顶点坐标为(-1,4).∵平移后新抛物线的顶点坐标为(2,5),∴平移方式为先向右平移3个单位长度,再向上平移1个单位长度.5. D 【解析】∵A (-3,a ),B (5,a ),∴点A 与点B 关于直线x =1对称.∵函数y =2x ,y =-3x的图象不关于直线x =1对称,∴A ,B 选项均不符合题意;∵b <0,∴a +b <a .由A (-3,a ),C (-8,a +b )可知,在对称轴的左侧,y 随x 的增大而增大,∴C 选项不符合题意,D 选项符合题意.6. y =-x 2+1(答案不唯一) 【解析】由题意得b =0,a <0,c >0,∴这个二次函数的解析式可以是y =-x 2+1.7. -1 【解析】将直线y =x 向下平移3个单位,得到直线y =x -3,把点(2,m )代入,即m =2-3,∴m =-1.8. 4 【解析】根据题意,将(4,n )代入抛物线C 1:y =(x -2)2-4,得到:n =(4-2)2-4=0,所以“平衡点”为(4,0).将抛物线C 1:y =(x -2)2-4向右平移m (m >0)个单位得到新抛物线C 2:y =(x -2-m )2-4.将(4,0)代入新抛物线C 2:y =(x -2-m )2-4,得0=(4-2-m )2-4,解得m =4(负值已舍去).9. y =-32x 2+23 x 【解析】根据题意,可设该抛物线的函数表达式为y =ax ·(x -4),由题知,点B 的坐标为(2,23 ),∴将点B 坐标代入,得23 =a ×2×(2-4),解得a =-32 ,∴该抛物线的函数表达式为y =-32x 2+23 x . 10. -9 【解析】∵直线y 1=-43 x 与双曲线y =k x交于A ,B 两点,∴点A 与点B 关于原点对称,OA =OB .∵AC ⊥BC ,∴∠ACB =90°,∴OA =OB =OC .设A (t ,-43t ),则B (-t ,43 t ),OA =t 2+(-43t )2 =-53 t ,∴OC =- 53 t .∵S △ABC =15,∴12 ×(- 53 t )·(-43 t -43 t )=15,解得t =±332 ,∴A (-332 ,23 ).把A (-332 ,23 )代入y =k x 中,得k =-332×23 =-9.。

成都数学中考考点分析

成都数学中考考点分析

中考数学复习建议1 中考数学复习经过本人对成都历年中考的分析以及解剖觉得,若要在中考数学轻松的高分,以及对高中数学打下牢实的基础,一下几个过程不可少。

无论你来自成都市还是成都附近的,都有自己的梦想的高中学校:四七九中、成外、实外、新都实验一中、新津一中、棠湖中学。

希望这个小小的总结能帮你实现梦想。

一、近年成都市中考试题分析为了更好地做好中考复习,首先应对近年成都市中考试题作必要的分析.1.整体特点(1)主要考查重点知识点,无偏题怪题;(2)试卷结构、题型保持较平稳,但在不断寻求变化,推陈出新;(3)A卷除最后一题(20题)外,整体较简单、运算量也较小;B卷难度较大,区分度明显,充分体现选拔功能.2.考点分布及分值统计按国家初中数学学业考试命题指导研究组的要求:初中数学学业考试整卷应涉及全部二级知识点,即数与式、方程与不等式、函数、图形的认识、图形与变换、图形与坐标、图形与证明、统计、概率.三级知识点(共45个)的覆盖率不能低于85%.下表是近三年成都市中考数学试题中,“数与代数”、“空间与图形”、“统计与概率”三大板块分值占比情况的统计:3、考点分析从上表不难看出很多考点每年都考,且题型大体不变●选择、填空题常见考点:(1)科学计数法;(2)整式(幂)的运算;(3)函数自变量取值范围;(4)三视图;(5)几何变换与坐标;(6)与圆有关的角度或长度计算;(7)与圆锥有关的计算;(8)众数与中位数.●计算题常见类型:(1)实数运算(含特殊角三角函数);(2)分式运算;(3)整式运算;(4)解不等式组;(5)解方程.●解答题常见题型:(1)一次函数与反比例函数的综合;(2)用列表法或树状图求概率;(3)解直角三角形的应用;(4)以四边形为基架,结合全等或相似的证明与计算;(5)现实情景应用题;(6)以圆为基架的综合题;(7)以二次函数为基架的综合题.4.命题趋势(1)淡化纯概念和文字命题的考查(2)渗透参数思想,强化符号运算二、复习建议1.处理好三个关系(1)基础与能力比如,评讲卷子老师容易忽视A卷,而恰恰评讲A卷更具实效性,通过对细节的点评可以让大面积学生得到提高,而且用时较少. B卷的评讲重点应放在讲思路,讲方法,讲改错要求上,不必完整讲评,而且有些内容学生还可以互助.(2)数量与质量(3)讲解与过手2.落实阶段复习计划和目标我校中考复习一般分为三个阶段:第一阶段:(2月——4月中旬)知识梳理、夯实双基第二阶段:(4月下旬——5月中旬)专题强化、提升能力第三阶段:(5月下旬——6月上旬)综合训练、查漏补缺3.专题设计与分析●A卷专题(1)计算题专题①实数运算;②分式运算;③解不等式组;④解方程(重点是分式方程).(2)反比例函数与一次函数专题①用待定系数法求函数解析式;②联立解析式求交点坐标;③面积问题;④根据图象比较两函数的大小关系;⑤与几何的简单结合.(3)解直角三角形应用专题①测山高,塔高,楼高类;(仰角,俯角)②航海类;(方位角)③加固大坝,拓宽沟渠类.(坡度,坝长)(4)A卷压轴题专题①以三角形为基架;②以四边形为基架;③以圆为基架.命题方式:建立在全等基础上的证明与计算;建立在相似基础上的证明与计算;简单的几何变换;简单的动点问题.(5)统计与概率专题(6)与圆锥有关的计算专题●B卷专题(1)B卷填空专题①代数式化简或求值;②一元二次方程判别式与根系关系;③分式方程增根问题;④探索规律;⑤综合型概率问题;⑥动点问题;⑦多项判断问题;⑧双解或多解问题;⑨含字母参数的问题;⑩较难的几何问题.(2)应用题专题按问题背景分:①工程问题;②行程问题;③增长率问题;④销售问题或利润问题;⑤方案设计问题;⑥调度问题.按涉及知识分:①一元二次方程;②二元一次方程组;③分式方程;④不等式(组);⑤一次函数;⑥二次函数;⑦反比例函数;⑧分段函数.(3)几何压轴题专题①以四边形为基架;②以圆为基架.(4)二次函数压轴题专题①二次函数与面积;②二次函数与特殊三角形;③二次函数与相似形;④二次函数与特殊四边形;⑤二次函数与圆;⑥二次函数与几何变换.4.教学中的具体做法(1)回归课本、回归课标、回归基础;(2)精心编写每一份试卷,做到有的放矢;(3)淡化特殊技巧,注重通性通法;(4)注重基本图形的归纳,如相似中的A型、X型、斜A型、斜X型、母子型、K型等;(6)不要一讲到底,应给学生留足纠错和消化的时间;(7)加强分层辅导,增强针对性,重视小考与过关;(8)注重知识的纵横联系、相互交汇,以利于学生知识网络的构建和思维品质的提升;(9)适度加强压轴题(1)、(2)小问的训练,消除学生对压轴题的恐惧心理,提高整体成绩;(10)加强考题研究,预测可能的命题方式.5.两点注意(1)不要忽略近年未考的知识点,如代数中的因式分解,几何中的几何变换作图、投影等;(2)不要局限于去年或近年考题的模式,形成思维定势,防止题型的突变.三、补充内容说明1.一元二次方程根系关系(韦达定理)去年的要求是“了解”,今年的要求是“理解”;难度要求到平方关系,三次以上不作要求;2.补充分母有理化,要求到形如“131”的化简;3.射影定理可使用,但需注明“由射影定理得”的字样;4.平行线分线段成比例定理,有两边平行的两个三角形相似都可直接使用,但需写出由哪两条平行线得出的;5.可补讲两点间距离公式和中点坐标公式,及两一次函数图象垂直的等价条件是121kk,为学生解题多提供一种思路;6.作图要作要求;7.不必补讲圆幂定理,但还不能弱化圆,学生需对如“证切线”一类的问题要熟练; 8.不必补讲余切和0、90的三角函数值.四、其他事项1.今年中考可能实行网上阅卷,教师应指导学生书写答题卡,如何写出关键得分点,有哪些注意事项,多进行板书示范;2.今年中考可能倾向于2009年的中考模式,因此一诊按成都市2009年的结构命题,同时实行网上阅卷.。

成都数学中考考点

成都数学中考考点

成都数学中考考点数学,有学习、学问、科学之意。

古希腊学者视其为哲学之起点,“学问的基础”。

即便在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。

今天作者在这给大家整理了一些成都数学中考考点,我们一起来看看吧!成都数学中考考点整式1.整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

2.乘法(1)同底数幂相乘,底数不变,指数相加。

(2)幂的乘方,底数不变,指数相乘。

(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。

3.整式的除法(1)同底数幂相除,底数不变,指数相减。

(2)任何不等于零的数的零次幂为1。

分数的性质1.分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。

读作几分之几。

2.分数可以表述成一个除法算式:如二分之一等于1除以2。

其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而0.5分数值则等于商。

3.分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。

4.当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。

因此,每一个分数都有无穷个与其相等的分数。

利用此性质,可进行约分与通分。

5.一个分数不是有限小数,就是无穷循环小数,像π等这样的无穷不循环小数,是不可能用分数代替的。

数学中考考点总结一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。

2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、类似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

2020年四川省成都中考数学试卷-答案解析

2020年四川省成都中考数学试卷-答案解析
2020年四川省成都中考数学试卷
答案解析
1.【答案】C
【解析】解: 的绝对值是2.
故选:C.
【考点】绝对值
2.【答案】D
【解析】从主视图的左边往右边看得到的视图为:
故选:D.
【考点】左视图的识别
3.【答案】B
【解析】解: .
故选:B.
【考点】用科学记数法表示较大的数
4.【答案】A
【解析】解:将点 向下平移2个单位长度所得到的点坐标为 ,即 ,

由折叠 性质可知 , ,


(2)由题意可得 ,



由勾股定理得 ,


(3)过点 作 于点 .



,即

又 平分 , , ,


整理得: .
【考点】矩形的折叠和相似三角形的综合题
28.【答案】(1)
(2)
(3)存在, 或
【解析】(1) 抛物线 与 轴交于 , 两点,与 轴交于点 .


抛物线的函数表达式为 ;
11.【答案】
【解析】 .
12.【答案】
【解析】解:因为一次函数 的值随 值的增大而增大,
所以 .
解得 .
故答案为: .
【考点】一次函数的性质
13.【答案】
【解析】解: ,






故答案为: .
【考点】圆的基本性质,圆周角定理
14.【答案】
【解析】设1头牛值金 两,1只羊值金 两,由题意可得,

所以这组数据的众数为5,中位数为7.
故选:A.
【考点】众数、中位数

成都中考数学2022、2023考点分布

成都中考数学2022、2023考点分布
(1)求二次函数的解析式;(2) 由等腰三角形与抛物线的关系, 求点的坐标:(3)C:直线与抛物线的交点、韦达定理、一ห้องสมุดไป่ตู้函数 解析式、直角坐标系下的垂直条件等,求待定系数.
2022 年 求一个数的相反数 用科学计数法表示数万的大数 整式运算:合并同类项,单项式乘以多项式,差的完全平方公式, 平方差公式 全等三角形的判定与性质 求六个数组成的一组数据的众数 正多边形的性质,多边形内角和,勾股定理 列二元一次方程组 二次函数图象及性质 幂的乘方 由反比例函数图象与性质求待定系数的取值范围 位似三角形的性质 求分式方程的解 尺规作图,线段中垂线的性质,勾股定理 (1)实数运算: 负整数指数幂、算数平方根、特殊角的三角函数、绝对值; (2)解一元一次不等式组 (1)条形统计图及表格信息的应用;(2)树状图列举求概率 解直角三角形(两次) (1)由圆周角定理推论,余角的性质证等角, (2)由等腰三角形判定、直角三角形斜边上的中线性质,圆周角定 理推论锐角三角函数,勾股定理、相似三角形的判定与性质,四 点共圆的判定与性质求线段长. (1) 由点在图象上的意义、待定系数法求解析式; (2) C:由分类讨论、线段比的条件,相似三角形的判定与性质, 勾股定理等求线段长; (3) C:由相似三角形的判定与性质,,公式法求一次函数解析式, 解方程组,中点坐标公式等求点的坐标 整体代入求分式的的值 由韦达定理、勾股定理、整体代入求直角三角形的斜边长
(1) 由手拉手型全等三角形、等腰直角三角形等求三条线段的 等量关系;(2) 由手拉手型全等三角形、等腰直角三角形、三 角形中位线定理等求三条线段的等量关系; (3) C:由手拉手型全等三角形、全等三角形、类比、相似三角 形的判定与性质等求三条线段的等量关系.
(1) 由矩形的性质,证明 K 型相似; (2) 由矩形的性质,类比,证明 K 型相似进而构造一元二次方程 方程求线段长,进而求锐角的正切; (3) C:等腰三角形底边的不确定分类,进而由相似三角形的判定 与性质,构造一元一次方程方程求线段长,进而求锐角的正切.

四川省成都地区中考数学第二部分系统复习专题9四点共圆巧解中考题课件

四川省成都地区中考数学第二部分系统复习专题9四点共圆巧解中考题课件
4 3-3 ∵PA= 3 AH,
∴PA=(4 3-3)k.∴PH=4 3k.
DH 3 ∴在 Rt△PDH 中,tan∠P=PH= 3 . ∴∠P=30°,∠PDH=60°. ∵PD⊥DO, ∴∠BDE=90°-∠PDH=30°. 连接 BE,则∠DBE=90°,DE=2r=50, ∴BD=DE·cos 30°=25 3.
方法提炼
1.四点共圆 如果同一平面内的四个点在同一个圆上,则称这四 个点共圆,一般简称为“四点共圆”. 2.四点共圆的性质 (1)共圆的四个点所连成同侧共底的两个三角形的 顶角相等. (2)圆内接四边形的对角互补. (3)圆内接四边形的一个外角等于它的内对角.
方法提炼
3.四点共圆的判定 (1)用“角”判定: ①一组对角互补的四边形的四个顶点在同一个圆上; ②一个外角等于它的内对角的四边形的四个顶点在同一个圆 上; ③如果两个三角形有一条公共边,且位于公共边同侧的两个 角相等,则这两个三角形的四个顶点在同一个圆上. (2)“等线段”判定: 四顶点到同一点的距离相等,若OA=OB=OC=OD,则A,B,C, D四点共圆. (3)用“比例线段”判定: 若线段AB,CD(或其延长线)交于点P,且PA·PC=PB·PD,则 A,B,C,D四点共圆.
∵∠DBE=∠DBE,∴△BOF∽△BED. BO OF 3
∴BE=DE=10 5. 6
∵DE=4,∴OF=5 5.
∴BF=59 10.
课堂精讲
方法二:如图,∵∠BOC=∠BFC=90°,
∴B,C,F,O 四点共圆.
∴∠1=∠2=45°.
∵∠2=∠3=45°,∴∠1=∠3=45°.
∵∠DBE=∠FBO,∴△BOF∽△BED.
第 8 题图
课后精练

中考数学-热点03 尺规作图问题(四川成都专用)(解析版)

中考数学-热点03 尺规作图问题(四川成都专用)(解析版)

热点03尺规作图问题尺规作图问题是四川成都中考数学的必考考点,常见以填空题的形式,主要是考查角平分线、垂直平分线性质等问题,一般出现在中考的第13题,以简单题为主,思路相对比较固定,但除了常规考法以外,日常练习中多注意新颖题目的考向。

【题型1角平分线问题】【答案】42【分析】利用基本作图得到BE 行线的性质证明F EBF∠=∠【详解】解:由作法得BE=【答案】25【分析】如图,先利用勾股定理计算出则AG =AO =25,从而求解.【详解】解:如图,∵▱AOBC 的顶点∴AC ∥OB ,OA =()()222040--+-由作法得OG 平分∠AOB ,∴∠AOG =∠BOG ,而AC ∥OB ,∴∠AGO =∠BOG ,∴∠AOG =∠AGO ,∴AG =AO =25故答案为:25.【点睛】本题考查了作图−基本作图,解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)行四边形的性质.【题型2中垂线问题】A.平行四边形【答案】C【分析】先根据作图∠=∠得到CFD AED⊥即可证明平行四边形结合EF AC【详解】解:由作图=,EF∴AD CD【答案】5【分析】根据题目作图方法可得理求出BM 的值.【详解】解:由题得PQ 为∴=90MNB ∠︒,12BN BC =【答案】106︒/106度【分析】由作图可知,MN 是AC DE BD =,32EDA A ∠=∠=︒,根据BFC DBE CDB ∠=∠+∠,计算求解即可.【详解】解:由作图可知,MN ∵CD AB ⊥,∴90CDA ∠=︒,【答案】50︒/50度【分析】根据作图可知DA DB =,∠根据CAD CAB DAB ∠=∠-∠即可求解.【详解】解:∵在Rt ABC 中,C ∠=∴70CAB ∠=︒,由作图可知MN 是AB 的垂直平分线,DA DB ∴=,(建议用时:30分钟)A .22+B .22+【答案】B 【分析】由题目作图知,AD 是【详解】解:过点D 作DH AB ⊥则2CD DH ==,∵ABC 为等腰直角三角形,∴45B ∠=︒,∴DHB △为等腰直角三角形,∴222BD HD ==,A.1B.2【答案】B⊥于M,【分析】如图所示,过点H作HM BC得到31==+,从而求出HM,CM CH BC∠,由作图方法可知,BH平分ABC∠=∠,∴ABH CBH∵四边形ABCD是平行四边形,∴31,,==+∥BC AD AB CD【答案】5则BAD E∠=∠,∠由作图知,AD平分BAC ∴∠=∠,CAD BAD∴∠=∠,CAD E∴==,10AC CE【答案】2【分析】本题主要考查了角平分线的性质,掌握角平分线的尺规作图是解题的关键.∠,如图:过点根据作图过程可知:AF平分BAC【详解】解:根据作图过程可知:AF平分∵90B Ð=°,∴FB AB ⊥,∵FG AC ^,∴2FG FB ==.∴点F 到AC 的距离为2.【答案】24【分析】本题考查了作图-基本作图,是菱形.连接BF 交AE 于点O ,证明四边形证明四边形ABEF 是菱形,进而可得四边形【详解】解:如图,连接BF 交∵AD BC EF AB ,∥∥,∴四边形ABEF 是平行四边形,根据作图过程可知:AE 平分∠【答案】22【分析】由题意可知,DE为线段即可得43∠=∠=︒,BACB BAE∠1∠=∠可得答案.EAF EAC【答案】8【分析】根据题意求出8AD DC +=【详解】解:ABCD 的周长为16,8AD DC ∴+=,由作图可知MN 垂直平分线段AC ,【答案】60︒/60度【分析】根据作图EF 是线段利用直角三角形的两个锐角互余计算即可.【详解】∵EF 是线段DB ∴DE BE =,∴EDB EBD ∠=∠,∵DE 平分ADB ∠,∴ADE BDE =∠∠,∴ADE BDE ABD =∠=∠∠;∵矩形ABCD ,∴90A ∠=︒,∴90ADE BDE ABD +∠+∠=︒∠,∴30ADE BDE ABD =∠=∠=︒∠,∴303060ADE BDE ∠+∠=︒+︒=︒ADB=∠,故答案为:60︒.【点睛】本题考查了矩形的性质,直角三角形的性质,线段垂直平分线和角的平分线的尺规作图,熟练掌握基本作图,直角三角形的两个锐角互余,矩形的性质是解题的关键.。

2025年四川省聚焦中考数学必备考点透析-第7章 图形及其变化微专题六 图形的折叠问题

2025年四川省聚焦中考数学必备考点透析-第7章 图形及其变化微专题六 图形的折叠问题
故 CE 的长为3.
答案:3
返回目录
5
方法点拨:解决三角形折叠问题的技巧主要包括利用轴对称及全等
的性质、勾股定理的应用、方程思想的运用以及数形结合的方法.这些技
巧不仅适用于解决折叠问题中的线段长度求解,还有助于理解和分析折
叠问题中的几何关系和变化规律.
返回目录
6
【热身演练1】
(2023·凉山中考)如下图,在Rt△ ABC 纸片中,∠ ACB =90°, CD 是
涉及如何利用折叠前后图形的全等性、对称轴的性质以及如何通过构造
直角三角形和利用勾股定理来解决问题,而且是培养空间想象能力的好
题材,也是中考命题的热点.
返回目录
3
专题讲练
(2024·甘孜中考)如下图,在Rt△ ABC 中,∠ C =90°, AC
=8, BC =4,折叠△ ABC ,使点 A 与点 B 重合,折痕 DE 与 AB 交于点
处,则 cos ∠ CEF 的值为()
例3
A.
7
4
B.
7
3
3
C.
4
5
D.
4
返回目录
15
分析:∵四边形 ABCD 是矩形,
∴ AD = BC =8,∠ B =∠ C =∠ D =90°,
∴∠ CEF +∠ EFC =90°.
∵把△ ADE 沿 AE 折叠,点 D 恰好落在 BC 边上的点 F 处,
∴ AF = AD =8,∠ AFE =∠ D =90°,





∴ EF = BD = ×8=4.∵ EF ⊥ AO ,∴∠ OME =90°,∴ S△ OEF =




2023年四川省成都市中考数学真题+答案解析

2023年四川省成都市中考数学真题+答案解析

2023年四川省成都市中考数学真题+答案解析(真题部分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.在3,﹣7,0,四个数中,最大的数是()A.3 B.﹣7 C.0 D.2.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×10113.下列计算正确的是()A.(﹣3x)2=﹣9x2B.7x+5x=12x2C.(x﹣3)2=x2﹣6x+9 D.(x﹣2y)(x+2y)=x2+4y24.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33,27,34,40,26,则这组数据的中位数是()A.26 B.27 C.33 D.345.如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BD B.OA=OC C.AC⊥BD D.∠ADC=∠BCD6.为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.B.C.D.7.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为()A.(x+4.5)=x﹣1 B.(x+4.5)=x+1C.(x+1)=x﹣4.5 D.(x﹣1)=x+4.58.如图,二次函数y=ax2+x﹣6的图象与x轴交于A(﹣3,0),B两点,下列说法正确的是()A.抛物线的对称轴为直线x=1 B.抛物线的顶点坐标为(﹣,﹣6)C.A,B两点之间的距离为5 D.当x<﹣1时,y的值随x值的增大而增大二、填空题(本大题共5个小题,每小题4分,共20分)9.因式分解:m2﹣3m=.10.若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1y2(填“>”或“<”).11.如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.12.在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是.13.如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式组:.15.(8分)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.16.(8分)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)17.(10分)如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接P A,以P为位似中心画△PDE,使它与△P AB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.20.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有个.21.为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14,取1.73)22.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A=.23.定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.二、解答题(本大题共3个小题,共30分)24.(8分)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).2023年四川省成都市中考数学真题+答案解析(答案部分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.在3,﹣7,0,四个数中,最大的数是()A.3 B.﹣7 C.0 D.【分析】运用有理数大小比较的知识进行求解.【解析】解:∵﹣7<0<<3,∴最大的数是3,故选:A.【点评】此题考查了有理数大小比较的能力,关键是能准确理解并运用以上知识.2.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×1011【分析】运用科学记数法进行变形、求解.【解析】解:3000亿=3000×108=3×1011,故选:D.【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.3.下列计算正确的是()A.(﹣3x)2=﹣9x2B.7x+5x=12x2C.(x﹣3)2=x2﹣6x+9 D.(x﹣2y)(x+2y)=x2+4y2【分析】利用幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式对每个选项进行主要判断即可得出结论.【解析】解:∵(﹣3x)2=9x2,∴A选项的运算不正确,不符合题意;∵7x+5x=12x,∴B选项的运算不正确,不符合题意;∵(x﹣3)2=x2﹣6x+9,∴C选项的运算正确,符合题意;∵(x﹣2y)(x+2y)=x2﹣4y2,∴D选项的运算不正确,不符合题意.故选:C.【点评】本题主要考查了整式的混合运算,幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式,熟练掌握上述性质与公式是解题的关键.4.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33,27,34,40,26,则这组数据的中位数是()A.26 B.27 C.33 D.34【分析】根据中位数的定义即可得出答案.【解析】解:把这些数从小到大排列为:26,27,33,34,40,则这组数据的中位数是33.故选:C.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5.如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BD B.OA=OC C.AC⊥BD D.∠ADC=∠BCD【分析】利用平行四边形的性质一一判断即可解决问题.【解析】解:A、错误.平行四边形的对角线互相平分,但不一定相等,不合题意;B、正确.因为平行四边形的对角线互相平分,符合题意;C、错误.平行四边形的对角线不一定垂直,不合题意;D、错误.平行四边形的对角相等,但邻角不一定相等,不合题意;故选:B.【点评】本题考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6.为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.B.C.D.【分析】根据概率公式直接计算即可.【解析】解:∵卡片共6张,其中水果类卡片有2张,∴恰好抽中水果类卡片的概率是.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为()A.(x+4.5)=x﹣1 B.(x+4.5)=x+1C.(x+1)=x﹣4.5 D.(x﹣1)=x+4.5【分析】设木长x尺,根据题意列出方程解答即可.【解析】解:设木长x尺,根据题意可得:,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题的关键.8.如图,二次函数y=ax2+x﹣6的图象与x轴交于A(﹣3,0),B两点,下列说法正确的是()A.抛物线的对称轴为直线x=1B.抛物线的顶点坐标为(﹣,﹣6)C.A,B两点之间的距离为5D.当x<﹣1时,y的值随x值的增大而增大【分析】A将点A的坐标代入即可解答即可判定A;B先运用二次函数图象的性质确定B;C利用两点间的距离公式解答即可;D根据函数图象即可解答.【解析】解:A、把A(﹣3,0)代入y=ax2+x﹣6得,0=9a﹣3﹣6,解得a=1,∴y=x2+x﹣6,对称轴直线为:x=﹣,故A错误;令y=0,0=x2+x﹣6,解得x1=﹣3,x2=2,∴AB=2﹣(﹣3)=5,∴A,B两点之间的距离为5,故C正确;当x=﹣时,y=,故B错误;由图象可知当x时,y的值随x值的增大而增大,故D错误.故选:C.【点评】本题主要考查二次函数图象的性质,掌握二次函数图象的性质,对称轴的计算方法,函数最值的计算方法是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9.因式分解:m2﹣3m=m(m﹣3).【分析】直接找出公因式m,进而分解因式得出答案.【解析】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1>y2(填“>”或“<”).【分析】根据反比例函数的性质得出答案即可.【解析】解:∵y=中k=6>0,∴在每个象限内,y随x的增大而减小,∵﹣3<﹣1<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,能熟记反比例函数的性质是解此题的关键,反比例函数y=,①当k>0时,y随x的增大而减小,②当k<0时,y随x的增大而增大.11.如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF 的长为3.【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解析】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.12.在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变即可得出答案.【解析】解:∵关于y轴对称,∴横坐标互为相反数,纵坐标不变,∴点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).【点评】本题考查了关于x轴,y轴对称的点的坐标,掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变是解题的关键.13.如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.【分析】由作图知∠A=∠BDE,由平行线的性质得到DE∥AC,证得△BDE∽△BAC,根据相似三角形的性质即可求出答案.【解析】解:由作图知,∠A=∠BDE,∴DE∥AC,∴△BDE∽△BAC,△BAC的面积:△BDE的面积=(△BDE的面积+四边形ACED的面积):△BDE的面积=1+四边形ACED的面积:△BDE的面积=1+=,∴△BDC的面积:△BAC的面积=()2=,∴=,∴=.故答案为:.【点评】本题考查作图﹣复杂作图,相似三角形的性质和判定,平行线的判定和性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式组:.【分析】(1)分别根据算术平方根的定义,特殊角的三角函数值,零指数幂的定义以及绝对值的性质计算即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解析】解:(1)原式=2+2×﹣1+2﹣=2+﹣1+2﹣=3;(2),解不等式①,得x≤1,解不等式②,得x>﹣4,所以原不等式组的解集为﹣4<x≤1.【点评】本题考查了实数的运算以及解一元一次不等式组,掌握相关定义与运算法则是解答本题的关键.15.(8分)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【分析】(1)根据“清洁卫生”的人数和所占的百分比求出样本容量,再用样本容量减去其他三个项目的人数,可得“文明宣传”的人数,进而补全条形统计图;(2)用360°乘“敬老服务”所占的百分比即可得出“敬老服务”对应的圆心角度数;(3)用参加志愿者服务的人数乘样本中参加“文明宣传”的人数所占的百分比即可.【解析】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:故答案为:300;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数为:360°×=144°;(3)1500×80%×=360(名),答:估计参加“文明宣传”项目的师生人数大约为360名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(8分)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)【分析】过A作AT⊥BC于T,AK⊥CE于K,在Rt△ABT中,BT=AB•sin∠BAT=1.4(米),AT =AB•cos∠BAT≈4.8(米),可得CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),而∠ADK =45°,知DK=AK=2.6米,故CD=CK﹣DK=4.8﹣2.6=2.2米.【解析】解:过A作AT⊥BC于T,AK⊥CE于K,如图:在Rt△ABT中,BT=AB•sin∠BAT=5×sin16°≈1.4(米),AT=AB•cos∠BAT=5×cos16°≈4.8(米),∵∠ATC=∠C=∠CKA=90°,∴四边形ATCK是矩形,∴CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),在Rt△AKD中,∵∠ADK=45°,∴DK=AK=2.6米,∴CD=CK﹣DK=4.8﹣2.6=2.2(米),∴阴影CD的长约为2.2米.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义,求出相关线段的长度.17.(10分)如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.【分析】(1)结合已知条件,根据同弧所对的圆周角相等易证得∠ADE=∠ACE=∠BAC=∠B,再由等边对等角即可证得结论;(2)连接AE,易证得△ABC∽△ADE,根据已知条件,利用直径所对的圆周角为直角可得∠ADB =∠ADC=90°,根据三角函数值可得AD=2BD,再结合,CD=3,AC=3+BD,利用勾股定理列得方程,求得CD的长度,从而得出AD,BC,AB的长度,再利用相似三角形的对应边成比例即可求得答案.【解析】(1)证明:∵∠ADE=∠ACE,∠ADE=∠B,∴∠B=∠ACE,∵CE∥AB,∴∠BAC=∠ACE,∴∠B=∠BAC,∴AC=BC;(2)解:如图,连接AE,∵∠ADE=∠B,∠AED=∠ACB,∴△ADE∽△ABC,∴=,∵AC为⊙O的直径,∴∠ADB=∠ADC=90°,∴tan B==2,∴AD=2BD,∵CD=3,∴AC=BC=BD+CD=BD+3,∵AD2+CD2=AC2,∴(2BD)2+32=(BD+3)2,解得:BD=2或BD=0(舍去),∴AD=2BD=4,AB===2,BC=2+3=5,∵=,∴=,∴DE=2.【点评】本题主要考查圆与相似三角形的综合应用,(2)中利用三角函数值可得AD=2BD,再根据勾股定理列得方程是解题的关键.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接P A,以P为位似中心画△PDE,使它与△P AB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.【分析】(1)解方程得到点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,求得B(1,4),将B(1,4)代入y=得,求得反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,解方程得到N(S,0),求得OA=ON =5,根据两点间的距离的结论公式得到=,求得M(0,3),待定系数法求得直线l的解析式为y=4x+3,设点C的坐标为(t,t+3),根据三角形的面积公式列方程得到t=﹣4或t=6,求得点C的坐标为(6,9)或(﹣4,﹣1);(3)解方程组求得E(﹣4,﹣1),根据相似三角形的性质得到∠P AB=∠PDE,根据平行线的判定定理得到AB∥DE,求得直线DE的解析式为y=﹣x﹣5,解方程组得到D(﹣1,﹣4),则直线AD的解析式为y=9x+5,于是得到P(﹣,),根据两点间的距离距离公式即可得到结论.【解析】解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4),将B(1,4)代入y=得,4=,解得k=4,∴反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,令y=﹣x+5=0得,x=5,∴N(5,0),∴OA=ON=5,∵∠AON=90°,∴∠OAN=45°,∵A(0,5),B(1,4),∴=,∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,∴,∴M(0,3),设直线l的解析式为y=k1x+b1,将M(0,3),B(1,4)代入y=k1x+b1得,,解得,∴直线l的解析式为y=4x+3,设点C的坐标为(t,t+3),∵•|x B﹣x C|=,解得t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);(3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,将直线l与双曲线的解析式联立方程组,解得,或,∴E(﹣4,﹣1),画出图形如图所示,∵△P AB∽△PDE,∴∠P AB=∠PDE,∴AB∥DE,∴直线AB与直线DE的一次项系数相等,设直线DE的解析式为y=﹣x+b2,∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,∴直线DE的解析式为y=﹣x﹣5,∵点D在直线DE与双曲线的另一个交点,∴解方程组得,或,∴D(﹣1,﹣4),则直线AD的解析式为y=9x+5,解方程组得,,∴P(﹣,),∴,,∴m=.【点评】本题考查了反比例函数的综合题,待定系数法求函数的解析式,反比例函数的性质,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解析】解:(1﹣)÷=•=•=b(a﹣b)=ab﹣b2,∵3ab﹣3b2﹣2=0,∴3ab﹣3b2=2,∴ab﹣b2=,当ab﹣b2=时,原式=.故答案为:.【点评】本题考查了分式的化简求值,能正确根据分式的运算法则进行计算是解此题的关键.20.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有6个.【分析】根据正面看与上面看的图形,得到搭成这个几何体底层4个,上面1层最多2个小正方体.【解析】解:根据俯视图发现最底层有4个小立方块,从主视图发现第二层最多有2个小立方块,故最多有4+2=6(个)小立方块.故答案为:6.【点评】本题考查的是三视图知识,以及由三视图判断几何体,利用三视图判断得出几何体形状是解题关键.21.为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳183名观众同时观看演出.(π取3.14,取1.73)=S 【分析】过O作OD⊥AB,D为垂足,可得到∠AOD=60°,所以∠AOB=120°,再求出S阴影部分扇形OAB ﹣S△OAB=﹣×10×5=π﹣25≈61(m2),然后乘以3即可得到观看马戏的观众人数约为183人.【解析】解:过O作OD⊥AB,D为垂足,∴AD=BD,OD=5m,∵cos∠AOD===,∴∠AOD=60°,AD=OD=5m,∴∠AOB=120°,AB=10m,∴S阴影部分=S扇形OAB﹣S△OAB=﹣×10×5=π﹣25≈61(m2),∴61×3=183(人).∴观看马戏的观众人数约为183人.故答案为:183人.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键,也考查了三角函数的概念和特殊角的三角函数值.22.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A=.【分析】过点G作GM⊥DE于M,证明△DGE∽△CGD,得出DG2=GE×GC,根据AD∥GM,得==,设GE=3k,AG=7k,EM=3n,DM=7n,则EC=DE=10n,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中GM2=GE2﹣EM2,则DG2﹣DM2=GE2﹣EM2,解方程求得k,则k,GE=3k,用勾股定理求得GM,根据正切的定义,即可求解.【解析】解:过点G作GM⊥DE于M,如图,∵CD平分∠ACB交AB于点D,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴ED=EC,∵将△DEC沿DE折叠得到△DEF,∴∠3=∠4,∴∠1=∠4,又∵∠DGE=∠CGD,∴△DGE∽△CGD,∴,∴DG2=GE×GC,∵∠ABC=90°,DE∥BC,∴AD⊥DE,∴AD∥GM,∴=,∠MGE=∠A,∵,∴,设GE=3k,EM=3n,则AG=7k,DM=7n,∴EC=DE=10n,∴DG2=GE×GC=3k×(3k+10n)=9k2+30kn,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中,GM2=GE2﹣EM2,∴DG2﹣DM2=GE2﹣EM2,即9k2+30kn﹣(7n)2=(3k)2﹣(3n)2,解得:k,∴EM=k,∵GE=3k,∴GM===k,∴tan A=tan∠EGM===.故答案为:.【点评】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23.定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是15;第23个智慧优数是57.【分析】根据新定义m2﹣n2,可以分别列出m2和n2的值,进而即可求解.【解析】解:根据题意,且m﹣n>1,当m=3,n=1,则第1个智慧优数为:32﹣12=8,当m=4,n=2,则第2个智慧优数为:42﹣22=12,当m=4,n=1,则第3个智慧优数为:42﹣12=15.正整数的平方分别为:1,4,9,16,25,36,49,64,81.当m=5,n=3,则第3个智慧优数为:52﹣32=16,当m=5,n=2,则第3个智慧优数为:52﹣22=21,当m=5,n=1,则第3个智慧优数为:52﹣12=24,以此类推,当m=6时,有4个智慧优数,同理m=7时有5个,m=8时,有6个,1+2+3+4+5+6=21,又两数之间的差越小,平方越小,所以后面也有智慧优数比较小的第22个智慧优数,当m=9时,n=5,第22个智慧优数为:92﹣52=81﹣25=56,。

2024成都中考数学第一轮专题复习之第三章 微专题 二次函数综合题 知识精练(含答案)

2024成都中考数学第一轮专题复习之第三章 微专题 二次函数综合题 知识精练(含答案)

2024成都中考数学第一轮专题复习之第三章微专题二次函数综合题知识精练类型一线段问题1.(2023重庆A卷节选)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(-1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标.第1题图2.(2023济宁节选)如图,直线y=-x+4交x轴于点B,交y轴于点C,对称轴为x=32的抛物线经过B,C两点,交x轴负半轴于点A.P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若m<32,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.第2题图类型二面积问题3.(2023安徽)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(ⅰ)当0<t<2时,求△OBD与△ACE的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为32若存在,请求出点B的横坐标t的值;若不存在,请说明理由.类型三等腰三角形存在性问题4.(2023青海省卷节选)如图,二次函数y=-x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由.第4题图类型四直角三角形存在性问题5.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴,y轴分别交于点A(4,0),B(0,-4),对称轴是直线x=1,点P为平面内一点.(1)求抛物线的函数表达式;(2)若点P为y轴右侧抛物线上一点,其横坐标为t,过点P分别作AB和y轴的垂线,垂足分别为点E,F,PF交AB于点G,当△PEG≌△BFG时,求t的值;(3)若P是抛物线对称轴上的点,将抛物线y=ax2+bx+c先向左平移4个单位,再向上平移3个单位,得到新的抛物线y1,抛物线y1与y轴交于点M,点N为抛物线y1的顶点,当△PMN 为直角三角形时,直接写出所有符合条件的点P的纵坐标.第5题图备用图类型五特殊四边形存在性问题6.(2023邵阳节选)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(-2,0)和点B(4,0),且与直线l:y=-x-1交于D,E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式;(2)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B,C,M,R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.第6题图类型六相似三角形问题7.(2023随州节选)如图,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(-1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出....抛物线和直线BC的解析式;(2)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出....点P和点Q的坐标;若不存在,请说明理由.第7题图类型七角度问题x2+bx+c经过点A(-4,0),B(2,0),与y轴8.如图,在平面直角坐标系中,抛物线y=12交于点C,作直线A C.(1)求抛物线的函数表达式;(2)点M是直线AC下方抛物线上的一个动点,连接MA,MC,BC,求四边形ABCM面积的最大值及此时点M的坐标;(3)若点D是抛物线的顶点,点P是抛物线上的一个动点,是否存在点P,使得∠ACP=∠CAD,若存在,请直接写出点P的坐标;若不存在,请说明理由.第8题图参考答案与解析1.解:(1)将点(1,3),(-1,0)代入抛物线y=ax2+bx+2,+b+2=3,-b+2=0,=-12,=32,∴该抛物线的表达式为y=-12x2+32x+2;(2)∵当x=0时,y=2,∴C(0,2).∵当y=0时,x=-1或x=4,∴B(4,0),∴OC=2,OB=4,BC=25.∵直线BC过点B(4,0),C(0,2),∴直线BC的函数表达式为y=-12x+2.∵PD⊥BC,PE∥y轴,∴∠PDE=∠BOC=90°,∠PED=∠BCO,∴△PDE∽△BOC,∴DEOC=PEBC=PDBO,∴DE2=PE25=PD4,∴DE=55PE,PD=255PE.设P(m,-12m2+32m+2),则E(m,-12m+2)(0<m<4).∴PE=-12m2+32m+2-(-12m+2)=-12(m-2)2+2.∵-12<0,∴当m=2时,PE有最大值,最大值为2,∴△PDE 周长的最大值为DE +PD +PE =55PE +255PE +PE =655+2.此时点P 的坐标为(2,3).2.解:(1)在直线y =-x +4中,当x =0时,y =4,当y =0时,x =4,∴B (4,0),C (0,4).由题可设抛物线的解析式为y =a (x -32)2+k (a ≠0),把B (4,0),C (0,4)(4-32)2+k =0,(0-32)2+k =4,=-1,=254,∴抛物线的解析式为y =-(x -32)2+254=-x 2+3x +4;(2)存在,理由如下:∵点A 是抛物线y =-x 2+3x +4与x 轴的另一个交点,∴点A (-1,0).①当-1<m <32时,点P 在x 轴的上方,∵MN =2ME ,∴点E 为线段MN 的中点,∴点E 的横坐标为x E =3-m +m 2=32,纵坐标y E =y M +y N 2=-m 2+3m +42∴点E 的坐标为(32,-m 2+3m +42).又∵点E 在直线BC :y =-x +4上,代入得m 2-3m +1=0,解得m 1=3+52(舍去),m 2=3-52.②当m =-1时,P 点即A 点,此时点E 与点M 重合,不合题意.③当m <-1时,点P 在x 轴下方,点E 在射线NM 上.设线段MN 的中点是点F (32,-m 2+3m +42).∵MN =2ME ,∴M 为EF 的中点,∴点M 的横坐标为x m =3-m =x E +x F 2=x E +322.纵坐标为y m =-m 2+3m +4=y E +y F 2=y E +-m 2+3m +422.∴点E 的坐标为(92-2m ,-3m 2+9m +122).又∵点E 在y =-x +4上,∴代入得-3m 2+9m +122=2m -12,即3m 2-5m -13=0,解得m 1=5+1816(舍去),m 2=5-1816.综上,存在m 使MN =2ME ,m =3-52或m =5-1816. 3.解:(1)-b 2a=2,a +3b =3,=-1=4;(2)(i)如解图①,延长BD 与x 轴交于点M ,延长CE 与x 轴交于点N ,过点A 作AF ⊥CE 于点F ,第3题解图①由(1)知抛物线的解析式为y =-x 2+4x ,由题意知直线OA 的解析式为y =x ,∴B (t ,-t 2+4t ),C (t +1,-(t +1)2+4(t +1)),D (t ,t ),E (t +1,t +1),∴OM =t ,BD =-t 2+3t ,CE =-(t +1)2+3(t +1),AF =-t +2,∵0<t <2,∴1<t +1<3,∴S △OBD +S △ACE=12OM ·BD +12CE ·AF=12t ·(-t 2+3t )+12[-(t +1)2+3(t +1)]·(-t +2)=2.(ii)存在.如解图②,当点B 在点D 上方,即2<t <3时,过点D 作DQ ⊥EC 于点Q ,第3题解图②∵BD ∥EC ,∴四边形DBEC 为梯形,则S 四边形DBEC =12(BD +EC )·DQ =12(-t 2+3t +t 2-t -2)·1=t -1,当S 四边形DBEC =32时,可得t -1=32,解得t =52;当点D 在点B 上方,即t >3时,如解图③,过点D 作DQ ⊥EC 于点Q ,第3题解图③此时S 四边形DBCE =12(BD +EC )·DQ =12(t 2-3t +t 2-t -2)·1=t 2-2t -1,令t 2-2t -1=32,解得t 1=142+1<3,t 2=-142+1<3,均舍去.综上所述,t 的值为52.4.解:(1)∵点C (1,0)和点B (0,3)是二次函数y =-x 2+bx +c 图象上的两点,把点C (1,0)和点B (0,3)1+b +c =0,=3,=-2,=3,∴二次函数的解析式为y =-x 2-2x +3;(2)存在.如解图,连接AB ,作线段AB 的垂直平分线交对称轴于点M ,连接AM ,BM ,过点M 作MG ⊥y 轴于点G .设点M (-1,y ),对称轴与x 轴交于点Q ,则QM =y ,BG =3-y .∵△AMB 是等腰三角形,∴AM =BM ,则AM 2=BM 2,∴在Rt △AQM 中,AM 2=AQ 2+MQ 2=22+y 2.在Rt △BMG 中,BM 2=MG 2+BG 2=12+(3-y )2∴22+y 2=12+(3-y )2,解得y =1,∴点M 的坐标为(-1,1).第4题解图5.解:(1)∵抛物线过点B (0,-4),∴c =-4,即抛物线的函数表达式为y =ax 2+bx -4.将点A (4,0)代入y =ax 2+bx -4中,得16a +4b -4=0.∵抛物线的对称轴是直线x =1,∴-b 2a=1,a +4b -4=0,-b 2a=1,=12,=-1,∴抛物线的函数表达式为y =12x 2-x -4;(2)∵PE ⊥AB ,PF ⊥y 轴,∴∠PEG =∠BFG =90°.∵∠PGE =∠BGF ,∴△PEG ∽△BFG .∵A (4,0),B (0,-4),∴OA =OB =4,∴△OAB 是等腰直角三角形,∴∠OBA =45°.∵PF ⊥y 轴,∴△BFG 是等腰直角三角形,∴∠BGF =45°,∴∠PGE =45°∵PE ⊥AB ,∴△PEG 是等腰直角三角形,∴PG =2EG .当△PEG ≌△BFG 时,∴EG =FG ,∴PG =2FG .由A (4,0),B (0,-4)可知直线AB 的函数表达式为y =x -4,∴P (t ,12t 2-t -4),G (12t 2-t ,12t 2-t -4),∴PG =t -(12t 2-t )=-12t 2+2t ,FG =12t 2-t ,∴-12t 2+2t =2(12t 2-t ),解得t =0(舍去)或t =22;第5题解图(3)当△PMN 为直角三角形时,所有符合条件的点P 的纵坐标为-256或73或3+174或3-174.【解法提示】∵y =12x 2-x -4=12(x -1)2-92,∴y 1=12(x -1+4)2-92+3=12(x +3)2-32=12x 2+3x +3,∴N (-3,-32).令x =0,则y 1=3,∴M (0,3).∵抛物线y 的对称轴为直线x =1,点P 在抛物线对称轴上,∴设P (1,m ),∴PN 2=(1+3)2+(m +32)2,MN 2=1174,PM 2=12+(m -3)2.∵△PMN 为直角三角形,∴需要分以下三种情况:①当∠MNP =90°时,MN 2+PN 2=PM 2,1174+(1+3)2+(m +32)2=12+(m -3)2,解得m =-256;②当∠PMN =90°时,PM 2+MN 2=PN 2,12+(m -3)2+1174=(1+3)2+(m +32)2,解得m =73;③当∠MPN =90°时,PM 2+PN 2=MN 2,12+(m -3)2+(1+3)2+(m +32)2=1174,解得m =3+174或m =3-174.综上所述,当△PMN 为直角三角形时,所有符合条件的点P 的纵坐标为-256或73或3+174或3-174.6.解:(1)∵抛物线y =ax 2+x +c 经过A ,B 两点,a -2+c =0a +4+c =0,=-12,=4,∴抛物线的解析式为y =-12x 2+x +4;(2)∵抛物线与y 轴交于点C ,∴当x =0时,y =4,即C (0,4).∵B (4,0),M (t ,-t -1),∴BC =42+42=42,BM 2=(t -4)2+(-t -1)2=2t 2-6t +17,CM 2=t 2+(t +5)2=2t 2+10t +25,①如解图①,当BC 为对角线时,MB =CM ,∴2t 2-6t +17=2t 2+10t +25,解得t =-12,∴M (-12,-12).R -12=4+0,R -12=4+0,R =92,R =92,∴R (92,92);②当CM 为对角线时,如解图②,∵四边形BMRC 为菱形,∴BM =BC ,∴2t 2-6t +17=(42)2,解得t =3-392或t =3+392,∴-t -1=-3-392-1=-5+392或-t -1=-3+392-1=-5-392,∴M (3-392,-5+392)或M (3+392,-39-52).由菱形的性质可得,R +4=3-392+0,R +0=-5+392+4,或R +4=3+392+0,R +0=-5-392+4,解得R =-5-392,R =3+392,或R =-5+392,R =3-392,∴R (-5-392,3+392)或R (-5+392,3-392);③当BM 为对角线时,如解图③,即四边形CMRB 是菱形,点R 的坐标即为四边形BMRC 为菱形时,点M 的坐标,∴R (3-392,-5+392)或R (3+392,-39-52).综上所述,点R 的坐标为(3-392,-5+392)或(3+392,-39-52)或(-5-392,3+392)或(-5+392,3-392)或(92,92).图①图②图③第6题解图7.解:(1)抛物线的解析式为y =-x 2+x +2,直线BC 的解析式为y =-x +2;【解法提示】(1)∵抛物线过点A (-1,0),B (2,0),∴抛物线的解析式为y =a (x +1)·(x -2),将点C (0,2)的坐标代入上式,得2=-2a ,∴a =-1.∴抛物线的解析式为y =-(x +1)(x -2),即y =-x 2+x +2.设直线BC 的解析式为y =kx +t ,将点B (2,0),C (0,2)的坐标代入上0=2k +t2=t k =-1t 2.∴直线BC 的解析式为y =-x +2;(2)存在.P (2,2),Q (0,2-1)或P (13+13,7+139),Q (0,4-2139)或P (1+3,-1-3),Q (0,1)或P (1+5,-3-5),Q (0,-2).【解法提示】∵点P 与点C 相对应,∴△POQ ∽△CBN 或△POQ ∽△CNB .①若点P 在点B 左侧,则∠CBN =45°,BN =2-m ,CB =22.当△POQ ∽△CBN ,即∠POQ =45°时,直线OP 的解析式为y =x ,∴-m 2+m +2=m ,解得m =2或m =-2(舍去).∴OP 2=(2)2+(2)2=4,即OP =2.∴OP BC =OQ BN ,即222=OQ 2-2,解得OQ =2-1.∴P (2,2),Q (0,2-1).当△POQ ∽△CNB ,即∠PQO =45°时,当点Q 在点P 上方时,PQ =2m ,OQ =-m 2+m +2+m =-m 2+2m +2,∴PQ CB =OQ NB ,即2m 22=-m 2+2m +22-m,解得m =1+5(舍去)或m =1-5(舍去).当点Q 在点P 下方时,PQ =2m ,直线QP 的解析式为y =x -m 2+2.∴OQ =m 2-2,∴PQ CB =OQ NB,即2m 22=m 2-22-m,解得m =13+13或m =1-133(舍去),∴OQ =-4+2139,∴P (13+13,7+139),Q (0,4-2139).②若点P 在点B 右侧,则∠CBN =135°,BN =m -2.当△POQ ∽△CBN ,即∠POQ =135°时,直线OP 的解析式为y =-x ,∴-m 2+m +2=-m ,解得m =1+3或m =1-3(舍去),∴OP =2m =2+6,∴OP BC =OQ BN ,即2+622=OQ 3-1,解得OQ =1.∴P (1+3,-1-3),Q (0,1).当△POQ ∽△CNB ,即∠PQO =135°时,PQ =2m ,OQ =|-m 2+m +2+m |=m 2-2m -2.∴PQ CB =OQ NB ,即2m 22=m 2-2m -2m -2,解得m =1+5或m =1-5(舍去).∴P (1+5,-3-5),Q (0,-2).综上所述,P (2,2),Q (0,2-1)或P (13+13,7+139),Q (0,4-2139)或P (1+3,-1-3),Q(0,1)或P(1+5,-3-5),Q(0,-2).8.解:(1)∵抛物线y=12x2+bx+c经过点A(-4,0),B(2,0),-4b+c=0,2b+c=0,=1,=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)在y=12x2+x-4中,令x=0,得y=-4,∴点C(0,-4).设直线AC的函数表达式为y=kx+c,将A(-4,0),C(0,-4)代入,=-4k+c,4=c,=-1,=-4,∴直线AC的函数表达式为y=-x-4.如解图①,过点M作ME⊥x轴于点E,交AC于点F,设点M的坐标为(d,12d2+d-4),则点F的坐标为(d,-d-4),∴MF=(-d-4)-(12d2+d-4)=-12d2-2d.∵A(-4,0),B(2,0),C(0,-4),∴OA=4,AB=6,OC=4,∴S△ABC=12AB·OC=12×6×4=12,S△ACM=12MF·OA=12×(-12d2-2d)×4=-d2-4d=-(d+2)2+4.当d=-2时,S△ACM取得最大值,为4.∴四边形ABCM面积的最大值=12+4=16,此时点M的坐标为(-2,-4);第8题解图①(3)存在点P,点P的坐标为(-5,72)或(-103,-169).【解法提示】如解图②,过点D 作DG ⊥x 轴于点G ,过点P 作PH ⊥y 轴于点H ,则∠DGA =∠CHP =90°.由题意得点D (-1,-92),设P (m ,12m 2+m -4),∴DG =92,AG =3,CH =12m 2+m -4-(-4)=12m 2+m ,PH =-m ,分两种情况讨论:①当点P 在直线AC 上方时,记为P 1,设过点P 1作P 1H ⊥y 轴的点H 为H 1,∵∠ACP 1=∠CAD ,∴P 1C ∥AD ,易得∠DAG =∠CP 1H 1.又∵∠DGA =∠CH 1P 1=90°,∴△DAG ∽△CP 1H 1,∴DG CH 1=AG P 1H 1,即9212m 2+m =3-m ,解得m =0(舍去)或m =-5,∴点P 1(-5,72);②当点P 在直线AC 下方时,记为P 2,设过点P 2作P 2H ⊥y 轴的点H 为H 2,∵OA =OC =4,∴∠OAC =∠OCA .∵∠ACP 2=∠CAD ,∴∠OAC +∠CAD =∠OCA +∠ACP 2,即∠DAG =∠P 2CH 2.又∵∠DGA =∠P 2H 2C =90°,∴△DAG ∽△P 2CH 2,∴DG P 2H 2=AG CH 2,即92-m =312m 2+m ,解得m =0(舍去)或m =-103,∴点P 2(-103,-169).综上所述,存在点P,点P的坐标为(-5,72)或(-103,-169).第8题解图②。

2023成都中考数学考点归纳

2023成都中考数学考点归纳

2023成都中考数学考点归纳成都中考数学考点归纳1反比例函数2反比例函数的图像与性质3反比例函数的应用※反比例函数的概念:一般地,(k为常数,k≠0)叫做反比例函数,即y是x 的反比例函数。

(x为自变量,y为因变量,其中x不能为零)※反比例函数的等价形式:y是x的反比例函数←→←→←→←→变量y与x 成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值即。

(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征)。

※反比例函数性质:①当k 0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;②当k 0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。

※反比例函数图象的几何特征:(如图4所示)点P(x,y)在双曲线上都有中考数学考点归纳【因式分解】1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的公约数相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式”.中考数学考点一:公式法利用一些现有公式对某一类型的代数式直接配方如:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2a2+b2+c2+2ab+2ac+2bc=(a+b+c)2二:函数法数学中的很多东西都是交集的,对于某些特定的二次函数(只有一个顶点,且该定点在x轴上),令其顶点坐标为(a,0),则该函数对应的关于自变量的代数式就可以配方为(x-a)2配方法对于代数式x2-2x+1可以配方为(x-1)2【用公式法求解一元二次方程】步骤1.化方程为一般式:ax2+bx+c=0(a≠0)2.确定判别式,计算Δ。

2024成都中考数学第一轮专题复习之第七章 第一节 尺规作图 知识精练(含答案)

2024成都中考数学第一轮专题复习之第七章 第一节 尺规作图 知识精练(含答案)

2024成都中考数学第一轮专题复习之第七章第一节尺规作图知识精练基础题1.(2023随州)如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是()A.AE =CFB.DE =BFC.OE =OFD.DE =DC第1题图2.(2023甘肃省卷)如图,BD 是等边△ABC 的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则∠DEC =()第2题图A.20°B.25°C.30°D.35°3.(2023通辽)下面是“作已知直角三角形的外接圆”的尺规作图过程:已知:如图①,在Rt △ABC 中,∠C =90°.求作:Rt △ABC 的外接圆.作法:如图②.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O .⊙O 即为所求作的圆.图①图②第3题图下列不.属于..该尺规作图依据的是()A.两点确定一条直线B.直角三角形斜边上的中线等于斜边的一半C.与线段两个端点距离相等的点在这条线段的垂直平分线上D.线段垂直平分线上的点与这条线段两个端点的距离相等4.[新考法—数学文化](2023兰州)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康,则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA =OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a ∥b .按以上作图顺序,若∠MNO =35°,则∠AOC =()A.35°B.30°C.25°D.20°第4题图5.(2023贵州)如图,在四边形ABCD 中,AD ∥BC ,BC =5,CD =3.按下列步骤作图:①以点D 为圆心,适当长度为半径画弧,分别交DA ,DC 于E ,F 两点;②分别以点E ,F 为圆心,以大于12EF 长为半径画弧,两弧交于点P ;③连接DP 并延长交BC 于点G .则BG 的长是()第5题图A.2B.3C.4D.56.(2023营口)如图,在△ABC中,以A为圆心,AC长为半径作弧,交BC于C,D两点,分别以点C和点D为圆心,大于12CD长为半径作弧,两弧交于点P,作直线AP,交CD于点E.若AC=5,CD=6,则AE=________.第6题图7.(2023广东省卷)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法,过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.第7题图8.如图,已知△ABC,∠ABC=120°,AB=BC,D是AC的中点,连接B D.(1)请在CD的上方找一点E,使得∠CDE=∠BCD,且满足DE=BC;(要求:尺规作图,不写做法,保留作图痕迹)(2)在(1)的条件下,连接CE,若AB=6,求四边形BCED的周长.第8题图拔高题9.(2023孝感)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()第9题图A.10B.11C.23D.410.[新考法—无刻度直尺作图](2023江西)如图是4×4的正方形网格,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹).(1)在图①中作锐角△ABC,使点C在格点上;(2)在图②中的线段AB上作点Q,使PQ最短.图①图②第10题图参考答案与解析1.D 【解析】根据作图可知,EF 垂直平分BD ,∴BO =DO .∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠EDO =∠FBO .∵∠BOF =∠DOE ,∴△BOF ≌△DOE (ASA),∴BF =DE ,OE =OF ,故B ,C 正确;无法证明DE =CD ,故D 错误.2.C 【解析】∵△ABC 是等边三角形,BD 是AC 边上的高,由“三线合一”得∠DBC =30°,又∵BD =DE ,∴∠DEC =∠DBC =30°.3.D 【解析】如解图,作直线PQ (两点确定一条直线),连接PA ,PB ,QA ,QB ,OC ,由作图步骤得,PA =PB ,QA =QB ,∴PQ ⊥AB 且AO =BO (与线段两个端点距离相等的点在这条线段的垂直平分线上).∵∠ACB =90°,∴OC =12AB (直角三角形斜边上的中线等于斜边的一半),∴OA =OB =OC ,∴A ,B ,C 三点在以O 为圆心,AB 为直径的圆上,∴⊙O 为△ABC 的外接圆.第3题解图4.A 【解析】由作图,得a ∥b ,∴∠CON =∠MNO =35°.∵OA =OB ,C 是AB 的中点,∴OC 平分∠AON ,∴∠AOC =∠CON =35°.5.A 【解析】由题可得,DG 是∠ADC 的平分线,∴∠ADG =∠CDG .∵AD ∥BC ,∴∠ADG =∠CGD ,∴∠CDG =∠CGD ,∴CG =CD =3,∴BG =CB -CG =5-3=2.6.4【解析】由作图可知,AD =AC ,AE 是CD 的垂直平分线,∵CD =6,∴CE =DE =3.∵CA =5,∴AE =AC 2-CE 2=52-32=4.7.解:(1)如解图,DE 即为所求;第7题解图(2)在Rt △ADE 中,∵∠DAB =30°,∴AE =AD ·cos ∠DAB =4×32=23,∴BE =AB -AE =6-23,即BE 的长为6-23.8.解:(1)作图如解图①;(作法不唯一)第8题解图①(2)如解图②,∵AB =BC ,∴△ABC 是等腰三角形.∵D 是AC 的中点,∴BD ⊥AC ,BD 平分∠ABC ,∴∠DBC =12∠ABC =60°.在Rt △BDC 中,BC =AB =6,∴BD =BC ·cos 60°=3.∵∠CDE =∠BCD ,∴DE ∥BC .又∵DE =BC ,∴四边形BCED 是平行四边形,∴EC =DB =3,DE =BC =6,∴▱BCED 的周长为2(BD +BC )=18.第8题解图②9.A 【解析】如图,设BP 交CD 与点J ,过点J 作JK ⊥BD 于点K .∵四边形ABCD 是矩形,∴AB =CD =3,∠BCD =90°.∵CN ⊥BM ,∴∠CMB =∠CDN =90°,∴∠CBM +∠BCM =90°,∠BCM +∠DCN =90°,∴∠CBM =∠DCN ,∴△BMC ∽△CDN ,∴BM CD =BC CN ,∴BM ·CN =CD ·CB =3×4=12.∵∠BCD =90°,CD =3,BC =4,∴BD =CD 2+BC 2=32+42=5.由作图可知BP平分∠CBD,∵JK⊥BD,JC⊥BC,∴JK=JC.∵S△BCD=S△BDJ+S△BCJ ,∴12×3×4=12×5×JK+12×4×JC,∴JC=KJ=43,∴BJ=CB2+JC2=42+(43)2=4103.∵cos∠CBJ=BMCB=BCBJ,∴BM4=44103,∴BM=6105.∵CN·BM=12,∴CN=10.第9题解图10.解:(1)如解图①,△ABC即为所求作(答案不唯一,作出其中一个即可).(2)如解图②,点Q即为所求作.【作法提示】从直线外一点到这条直线上各点所连的线段中,垂线段最短.图①图②第10题解图。

2024年四川省成都市中考真题数学试卷含答案解析

2024年四川省成都市中考真题数学试卷含答案解析

2024年四川省成都市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A .B .C .D .【答案】A【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A .()2233x x =B .336x y xy+=C .()222x y x y +=+D .()()2224x x x +-=-【答案】D【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A .()1,4--B .()1,4-C .()1,4D .()1,4-【答案】B【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A .53B .55C .58D .646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A .AB AD =B .AC BD ⊥C .AC BD =D .ACB ACD∠=∠【答案】C【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A .142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B .142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C .142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A .ABE CBE ∠=∠B .5BC =C .DE DF =D .53BE EF =【答案】D【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .二、填空题9.若m ,n 为实数,且()240m +=,则()2m n +的值为.10.分式方程2x x=-的解是.【答案】x=3【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为.12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为.【答案】5【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,三、解答题14.(1)计算:()0162sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【详解】(1)解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;(2)解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s+=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;(3)解:如图,设点(),0D x ,则(),0E x -,0x <,四、填空题19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为.【答案】100︒/100度【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.21.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.【答案】9144【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =.∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =∴112CF DF CD ===,EAC ∠23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是.五、解答题24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【详解】(1)解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克(2)设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.∴(12ACD D S CE x x =⋅- ∵ACD 的面积与ABD △∴222461n n n -++=-720⎛⎫则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an aB n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a=+--++∵()22232463ax ax a ax an a x an a--=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.(2)连接CE,延长BM交∠=∠,∴ABD ACE∵中线BM(3)如图,当AD与故1·2CDES CD DE==如图,当AD 在CA 的延长线上时,此时故(11·22CDE S CD DE ==⨯ 如图,当DE EC ⊥时,此时过点A 作AQ EC ⊥于点Q ∵5AE AC ==,1EQ QC EC ==,如图,当DC EC ⊥时,此时过点A 作AQ EC ⊥于点∴12EQ QC EC x ===,1EN EQ ==【点睛】本题考查了旋转的性质,用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由上表可知初中数学主要考察了以下知识:(1)数与代数部分集中考察了平方根、科学记数法、方程、函数等基本概念的理解水平。

这些问题的解决建立在学生日常学习中对概念的理解和掌握的水平上,通常以选择、填空、解答的形式出现,难度不大。

突出学生计算能力的考查,常规题型为:代数式的计算、解方程等。

虽说是送分题但学生比较粗心很难拿到高分。

由于函数涉及了一次函数、反比例函数、二次函数,它体现的数学知识、数学思想较抽象,因而是初中数学中比较难的部分,很具区分度。

(2)统计概率主要考查众数、中位数、频数与频率、树状图、概率,该部分较基础。

(3)空间与图形该部分的考查重点为三角形有关性质、解直角三角形的应用以及圆的相关知识。

考查形式多样,内容均注重对基础知识及学生合情推理和严谨证明的考查。

三角形全等与相似、直角三角形的性质尤为突出,圆的相关内容考查的越来越多,应引起重视。

一、试卷整体结构:(以2013年为例)
全套试卷分为A卷、B卷。

A卷满分为100分,其中包括10道选择题30分,4道填空题16分,6道解答题54分(计算6分、解方程组6分、化简6分、3道解答36分)。

B卷满分为50分,其中包括5个填空题20分,3个解答题30分(二次函数的实际应用8分、圆10分、抛物线与直线方程的综合运用12分)。

二、试题特色:
1、基础知识与技能考查上降低起点,突出核心内容考查
每年在A卷选择题、填空题必考的内容有实数的运算、代数式的化简求值、解不等式组、解方程或方程组等;解答题中概率与统计的实际应用、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点。

故试卷的起点题及每种题型的起点题都属基础知识。

2、基本思想方法及基本活动经验考查贯穿全卷
全卷包含了分类、集合、数形结合、符号表示、对称等抽象思想,归纳、公理化、联想类比、特殊与一般等推理思想,量化、函数、方程、抽样统计等建模思想。

考查了学生的动手能力及图形的剪裁、拼接、旋转、折叠、勾股定理的运用等知识,增强学生基本活动经验、培养学生的动手实践能力和创新意识是初中数学始终追求的目标。

3、注重综合运用,合理体现选拔功能
B卷整体强调初升高的衔接,如最后一题函数综合(坚持在数形结合、分类讨论、待定系数法、方程组讨论、勾股定理等方面做文章)。

尤其是几何代数化,强调了几何性质转化为方程组讨论的衔接教学对初三的必要性,应引起重视。

4、关注探究过程,强化运算及推理考查
从三套试卷来看,看似计算题考查不多,但深度分析能发现有许多题都包含了计算。

以2012年考题为例,第20(2)、22、23、24、26、27、28题包含了计算简化、列解方程等运算。

第22题分类运算求和,23题分类运算列举,24题数形结合、数形转化、分类运算找规律,25题分类作图后计算,26题分段计算求解析式、列不等式、配方求最值,27题边证明边计算,28题几何性质转化为方程组讨论等,无不体现正确、巧妙、敏捷的高要求计算。

5、数学情景关注热点,贴近学生实际生活
2013年试卷中就以雅安芦山地震和中国梦为背景出题,将数学知识运用于生
活实践。

这种做法有利于引导学生关注生活中的数学,关注身边的数学,从实际问题中抽象出数学模型,促进学生形成学数学、用数学、做数学的意识。

6、压轴题注重衔接,适合考查不同学生的数学学习水平
压轴题综合考查学生的可持续发展的数学能力,层次分明。

最后三个压轴题分别为一次函数与二次函数的实际应用题,形式新颖,密切联系生活实际;
27题在几何计算与演绎推理上综合;28题在函数与坐标,几何与方程、函数与方程组等强调衔接,综合程度较高,有较好的区分度。

三、学生易丢分情况分析:
1、基础知识和基本能力不扎实是大量失分的根本原因(反映在教学上是知识没
有过手,没掌握)(1)基础知识薄弱(2)基本运算能力差(3)实际运用能力差(4)逻辑推理能力差
2、缺乏规范的审题和解题习惯
3、综合应用数学知识解决问题的能力有待提高
四、教学建议:
1、加强运算能力培养
现在的学生有一个普遍问题:运算能力不高,表现在运算速度慢,会做的不得分或得不全分以及运算不合理。

要改变这种现状就必须切实重视运算能力的培养,使学生做到“会”就一定做对,把运算的准确、迅速和简捷等技能作为一项基本技能常抓不懈。

教师要结合具体的教学内容培养学生良好的解题习惯,加强对算理的强化和渗透,重视解题规范的要求,讲解每个题目必须具有规范性,纠正只重思路分析而忽视学生动手运算的不良倾向。

2、加强空间观念形成
在教学中使学生形成以下技能:(1)能由形状简单的实物想象出几何图形,由几何图形想象出实物(2)能由较复杂的平面图形分解出简单、基本的图形(3)能在基本图形中找出基本元素及其关系(4)掌握综合法证明的格式,初步感受公理化的思想
3、培养思维能力
在教学中要注意展现知识形成的运用过程,培养观察、比较、分析、抽象、概括的能力,引导学生会用归纳、演绎、类比的方法进行推理,以提高学生的思维品质。

4、培养用所学知识和技能分析问题和解决问题的能力
在教学中引导学生通过阅读背景材料,透过现象看本质,将实际问题转化为数学问题。

可以对日常一些数学应用题进行归类,对所涉及到数学知识、基本技能和思想方法进行梳理,优化学生的数学认知结构,提高分析问题、解决问题的能力。

5、培养阅读理解能力,加强识图能力和处理图表信息能力
中考中很多数学试题都以图像、图表为背景展现,形式多样,有利于培养学生的自学能力、创新意识和实践能力。

这类题目一般通过观察图像、整理信息,抽象出数学问题,并用数学语言抽象成数学模型。

因此在教学中,一定要重视学生阅读理解能力的培养,加强识图能力和处理图表信息能力。

6、培养探究意识,关注动态问题
在教学中依据学生的年龄特点和认知水平,将书本知识与学生的生活联系起来,科学的设计探究性和开放性问题,给学生提供自主探究的机会,诱发学生的求知欲,鼓励学生独立思考,并学会用数学的思维方式去观察、分析现实有意义的实际问题,达到培养学生的创新意识和实践能力的目的。

7、注重衔接,提升素质
在新《课程标准》中,有些高中学习中常应用到的知识在现行的初中数学教材上进行了较大幅度的压缩、上调、降低难度。

这部分内容需要强化,有针对性的练习讲解,为以后高中学减轻负担。

相关文档
最新文档